xref: /openbmc/qemu/hw/block/fdc.c (revision fafa4d50)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "hw/hw.h"
31 #include "hw/block/fdc.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "hw/isa/isa.h"
35 #include "hw/sysbus.h"
36 #include "sysemu/block-backend.h"
37 #include "sysemu/blockdev.h"
38 #include "sysemu/sysemu.h"
39 #include "qemu/log.h"
40 
41 /********************************************************/
42 /* debug Floppy devices */
43 //#define DEBUG_FLOPPY
44 
45 #ifdef DEBUG_FLOPPY
46 #define FLOPPY_DPRINTF(fmt, ...)                                \
47     do { printf("FLOPPY: " fmt , ## __VA_ARGS__); } while (0)
48 #else
49 #define FLOPPY_DPRINTF(fmt, ...)
50 #endif
51 
52 /********************************************************/
53 /* Floppy drive emulation                               */
54 
55 typedef enum FDriveRate {
56     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
57     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
58     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
59     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
60 } FDriveRate;
61 
62 typedef struct FDFormat {
63     FDriveType drive;
64     uint8_t last_sect;
65     uint8_t max_track;
66     uint8_t max_head;
67     FDriveRate rate;
68 } FDFormat;
69 
70 static const FDFormat fd_formats[] = {
71     /* First entry is default format */
72     /* 1.44 MB 3"1/2 floppy disks */
73     { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, },
74     { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, },
75     { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, },
76     { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, },
77     { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, },
78     { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, },
79     { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, },
80     { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, },
81     /* 2.88 MB 3"1/2 floppy disks */
82     { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, },
83     { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, },
84     { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, },
85     { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, },
86     { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, },
87     /* 720 kB 3"1/2 floppy disks */
88     { FDRIVE_DRV_144,  9, 80, 1, FDRIVE_RATE_250K, },
89     { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, },
90     { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, },
91     { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, },
92     { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, },
93     { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, },
94     /* 1.2 MB 5"1/4 floppy disks */
95     { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, },
96     { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, },
97     { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, },
98     { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, },
99     { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, },
100     /* 720 kB 5"1/4 floppy disks */
101     { FDRIVE_DRV_120,  9, 80, 1, FDRIVE_RATE_250K, },
102     { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, },
103     /* 360 kB 5"1/4 floppy disks */
104     { FDRIVE_DRV_120,  9, 40, 1, FDRIVE_RATE_300K, },
105     { FDRIVE_DRV_120,  9, 40, 0, FDRIVE_RATE_300K, },
106     { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, },
107     { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, },
108     /* 320 kB 5"1/4 floppy disks */
109     { FDRIVE_DRV_120,  8, 40, 1, FDRIVE_RATE_250K, },
110     { FDRIVE_DRV_120,  8, 40, 0, FDRIVE_RATE_250K, },
111     /* 360 kB must match 5"1/4 better than 3"1/2... */
112     { FDRIVE_DRV_144,  9, 80, 0, FDRIVE_RATE_250K, },
113     /* end */
114     { FDRIVE_DRV_NONE, -1, -1, 0, 0, },
115 };
116 
117 static void pick_geometry(BlockBackend *blk, int *nb_heads,
118                           int *max_track, int *last_sect,
119                           FDriveType drive_in, FDriveType *drive,
120                           FDriveRate *rate)
121 {
122     const FDFormat *parse;
123     uint64_t nb_sectors, size;
124     int i, first_match, match;
125 
126     blk_get_geometry(blk, &nb_sectors);
127     match = -1;
128     first_match = -1;
129     for (i = 0; ; i++) {
130         parse = &fd_formats[i];
131         if (parse->drive == FDRIVE_DRV_NONE) {
132             break;
133         }
134         if (drive_in == parse->drive ||
135             drive_in == FDRIVE_DRV_NONE) {
136             size = (parse->max_head + 1) * parse->max_track *
137                 parse->last_sect;
138             if (nb_sectors == size) {
139                 match = i;
140                 break;
141             }
142             if (first_match == -1) {
143                 first_match = i;
144             }
145         }
146     }
147     if (match == -1) {
148         if (first_match == -1) {
149             match = 1;
150         } else {
151             match = first_match;
152         }
153         parse = &fd_formats[match];
154     }
155     *nb_heads = parse->max_head + 1;
156     *max_track = parse->max_track;
157     *last_sect = parse->last_sect;
158     *drive = parse->drive;
159     *rate = parse->rate;
160 }
161 
162 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
163 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
164 
165 /* Will always be a fixed parameter for us */
166 #define FD_SECTOR_LEN          512
167 #define FD_SECTOR_SC           2   /* Sector size code */
168 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
169 
170 typedef struct FDCtrl FDCtrl;
171 
172 /* Floppy disk drive emulation */
173 typedef enum FDiskFlags {
174     FDISK_DBL_SIDES  = 0x01,
175 } FDiskFlags;
176 
177 typedef struct FDrive {
178     FDCtrl *fdctrl;
179     BlockBackend *blk;
180     /* Drive status */
181     FDriveType drive;
182     uint8_t perpendicular;    /* 2.88 MB access mode    */
183     /* Position */
184     uint8_t head;
185     uint8_t track;
186     uint8_t sect;
187     /* Media */
188     FDiskFlags flags;
189     uint8_t last_sect;        /* Nb sector per track    */
190     uint8_t max_track;        /* Nb of tracks           */
191     uint16_t bps;             /* Bytes per sector       */
192     uint8_t ro;               /* Is read-only           */
193     uint8_t media_changed;    /* Is media changed       */
194     uint8_t media_rate;       /* Data rate of medium    */
195 } FDrive;
196 
197 static void fd_init(FDrive *drv)
198 {
199     /* Drive */
200     drv->drive = FDRIVE_DRV_NONE;
201     drv->perpendicular = 0;
202     /* Disk */
203     drv->last_sect = 0;
204     drv->max_track = 0;
205 }
206 
207 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
208 
209 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
210                           uint8_t last_sect, uint8_t num_sides)
211 {
212     return (((track * num_sides) + head) * last_sect) + sect - 1;
213 }
214 
215 /* Returns current position, in sectors, for given drive */
216 static int fd_sector(FDrive *drv)
217 {
218     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
219                           NUM_SIDES(drv));
220 }
221 
222 /* Seek to a new position:
223  * returns 0 if already on right track
224  * returns 1 if track changed
225  * returns 2 if track is invalid
226  * returns 3 if sector is invalid
227  * returns 4 if seek is disabled
228  */
229 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
230                    int enable_seek)
231 {
232     uint32_t sector;
233     int ret;
234 
235     if (track > drv->max_track ||
236         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
237         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
238                        head, track, sect, 1,
239                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
240                        drv->max_track, drv->last_sect);
241         return 2;
242     }
243     if (sect > drv->last_sect) {
244         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
245                        head, track, sect, 1,
246                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
247                        drv->max_track, drv->last_sect);
248         return 3;
249     }
250     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
251     ret = 0;
252     if (sector != fd_sector(drv)) {
253 #if 0
254         if (!enable_seek) {
255             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
256                            " (max=%d %02x %02x)\n",
257                            head, track, sect, 1, drv->max_track,
258                            drv->last_sect);
259             return 4;
260         }
261 #endif
262         drv->head = head;
263         if (drv->track != track) {
264             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
265                 drv->media_changed = 0;
266             }
267             ret = 1;
268         }
269         drv->track = track;
270         drv->sect = sect;
271     }
272 
273     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
274         ret = 2;
275     }
276 
277     return ret;
278 }
279 
280 /* Set drive back to track 0 */
281 static void fd_recalibrate(FDrive *drv)
282 {
283     FLOPPY_DPRINTF("recalibrate\n");
284     fd_seek(drv, 0, 0, 1, 1);
285 }
286 
287 /* Revalidate a disk drive after a disk change */
288 static void fd_revalidate(FDrive *drv)
289 {
290     int nb_heads, max_track, last_sect, ro;
291     FDriveType drive;
292     FDriveRate rate;
293 
294     FLOPPY_DPRINTF("revalidate\n");
295     if (drv->blk != NULL) {
296         ro = blk_is_read_only(drv->blk);
297         pick_geometry(drv->blk, &nb_heads, &max_track,
298                       &last_sect, drv->drive, &drive, &rate);
299         if (!blk_is_inserted(drv->blk)) {
300             FLOPPY_DPRINTF("No disk in drive\n");
301         } else {
302             FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n", nb_heads,
303                            max_track, last_sect, ro ? "ro" : "rw");
304         }
305         if (nb_heads == 1) {
306             drv->flags &= ~FDISK_DBL_SIDES;
307         } else {
308             drv->flags |= FDISK_DBL_SIDES;
309         }
310         drv->max_track = max_track;
311         drv->last_sect = last_sect;
312         drv->ro = ro;
313         drv->drive = drive;
314         drv->media_rate = rate;
315     } else {
316         FLOPPY_DPRINTF("No drive connected\n");
317         drv->last_sect = 0;
318         drv->max_track = 0;
319         drv->flags &= ~FDISK_DBL_SIDES;
320     }
321 }
322 
323 /********************************************************/
324 /* Intel 82078 floppy disk controller emulation          */
325 
326 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
327 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
328 static int fdctrl_transfer_handler (void *opaque, int nchan,
329                                     int dma_pos, int dma_len);
330 static void fdctrl_raise_irq(FDCtrl *fdctrl);
331 static FDrive *get_cur_drv(FDCtrl *fdctrl);
332 
333 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
334 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
335 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
336 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
337 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
338 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
339 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
340 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
341 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
342 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
343 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
344 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
345 
346 enum {
347     FD_DIR_WRITE   = 0,
348     FD_DIR_READ    = 1,
349     FD_DIR_SCANE   = 2,
350     FD_DIR_SCANL   = 3,
351     FD_DIR_SCANH   = 4,
352     FD_DIR_VERIFY  = 5,
353 };
354 
355 enum {
356     FD_STATE_MULTI  = 0x01,	/* multi track flag */
357     FD_STATE_FORMAT = 0x02,	/* format flag */
358 };
359 
360 enum {
361     FD_REG_SRA = 0x00,
362     FD_REG_SRB = 0x01,
363     FD_REG_DOR = 0x02,
364     FD_REG_TDR = 0x03,
365     FD_REG_MSR = 0x04,
366     FD_REG_DSR = 0x04,
367     FD_REG_FIFO = 0x05,
368     FD_REG_DIR = 0x07,
369     FD_REG_CCR = 0x07,
370 };
371 
372 enum {
373     FD_CMD_READ_TRACK = 0x02,
374     FD_CMD_SPECIFY = 0x03,
375     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
376     FD_CMD_WRITE = 0x05,
377     FD_CMD_READ = 0x06,
378     FD_CMD_RECALIBRATE = 0x07,
379     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
380     FD_CMD_WRITE_DELETED = 0x09,
381     FD_CMD_READ_ID = 0x0a,
382     FD_CMD_READ_DELETED = 0x0c,
383     FD_CMD_FORMAT_TRACK = 0x0d,
384     FD_CMD_DUMPREG = 0x0e,
385     FD_CMD_SEEK = 0x0f,
386     FD_CMD_VERSION = 0x10,
387     FD_CMD_SCAN_EQUAL = 0x11,
388     FD_CMD_PERPENDICULAR_MODE = 0x12,
389     FD_CMD_CONFIGURE = 0x13,
390     FD_CMD_LOCK = 0x14,
391     FD_CMD_VERIFY = 0x16,
392     FD_CMD_POWERDOWN_MODE = 0x17,
393     FD_CMD_PART_ID = 0x18,
394     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
395     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
396     FD_CMD_SAVE = 0x2e,
397     FD_CMD_OPTION = 0x33,
398     FD_CMD_RESTORE = 0x4e,
399     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
400     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
401     FD_CMD_FORMAT_AND_WRITE = 0xcd,
402     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
403 };
404 
405 enum {
406     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
407     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
408     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
409     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
410     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
411 };
412 
413 enum {
414     FD_SR0_DS0      = 0x01,
415     FD_SR0_DS1      = 0x02,
416     FD_SR0_HEAD     = 0x04,
417     FD_SR0_EQPMT    = 0x10,
418     FD_SR0_SEEK     = 0x20,
419     FD_SR0_ABNTERM  = 0x40,
420     FD_SR0_INVCMD   = 0x80,
421     FD_SR0_RDYCHG   = 0xc0,
422 };
423 
424 enum {
425     FD_SR1_MA       = 0x01, /* Missing address mark */
426     FD_SR1_NW       = 0x02, /* Not writable */
427     FD_SR1_EC       = 0x80, /* End of cylinder */
428 };
429 
430 enum {
431     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
432     FD_SR2_SEH      = 0x08, /* Scan equal hit */
433 };
434 
435 enum {
436     FD_SRA_DIR      = 0x01,
437     FD_SRA_nWP      = 0x02,
438     FD_SRA_nINDX    = 0x04,
439     FD_SRA_HDSEL    = 0x08,
440     FD_SRA_nTRK0    = 0x10,
441     FD_SRA_STEP     = 0x20,
442     FD_SRA_nDRV2    = 0x40,
443     FD_SRA_INTPEND  = 0x80,
444 };
445 
446 enum {
447     FD_SRB_MTR0     = 0x01,
448     FD_SRB_MTR1     = 0x02,
449     FD_SRB_WGATE    = 0x04,
450     FD_SRB_RDATA    = 0x08,
451     FD_SRB_WDATA    = 0x10,
452     FD_SRB_DR0      = 0x20,
453 };
454 
455 enum {
456 #if MAX_FD == 4
457     FD_DOR_SELMASK  = 0x03,
458 #else
459     FD_DOR_SELMASK  = 0x01,
460 #endif
461     FD_DOR_nRESET   = 0x04,
462     FD_DOR_DMAEN    = 0x08,
463     FD_DOR_MOTEN0   = 0x10,
464     FD_DOR_MOTEN1   = 0x20,
465     FD_DOR_MOTEN2   = 0x40,
466     FD_DOR_MOTEN3   = 0x80,
467 };
468 
469 enum {
470 #if MAX_FD == 4
471     FD_TDR_BOOTSEL  = 0x0c,
472 #else
473     FD_TDR_BOOTSEL  = 0x04,
474 #endif
475 };
476 
477 enum {
478     FD_DSR_DRATEMASK= 0x03,
479     FD_DSR_PWRDOWN  = 0x40,
480     FD_DSR_SWRESET  = 0x80,
481 };
482 
483 enum {
484     FD_MSR_DRV0BUSY = 0x01,
485     FD_MSR_DRV1BUSY = 0x02,
486     FD_MSR_DRV2BUSY = 0x04,
487     FD_MSR_DRV3BUSY = 0x08,
488     FD_MSR_CMDBUSY  = 0x10,
489     FD_MSR_NONDMA   = 0x20,
490     FD_MSR_DIO      = 0x40,
491     FD_MSR_RQM      = 0x80,
492 };
493 
494 enum {
495     FD_DIR_DSKCHG   = 0x80,
496 };
497 
498 /*
499  * See chapter 5.0 "Controller phases" of the spec:
500  *
501  * Command phase:
502  * The host writes a command and its parameters into the FIFO. The command
503  * phase is completed when all parameters for the command have been supplied,
504  * and execution phase is entered.
505  *
506  * Execution phase:
507  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
508  * contains the payload now, otherwise it's unused. When all bytes of the
509  * required data have been transferred, the state is switched to either result
510  * phase (if the command produces status bytes) or directly back into the
511  * command phase for the next command.
512  *
513  * Result phase:
514  * The host reads out the FIFO, which contains one or more result bytes now.
515  */
516 enum {
517     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
518     FD_PHASE_RECONSTRUCT    = 0,
519 
520     FD_PHASE_COMMAND        = 1,
521     FD_PHASE_EXECUTION      = 2,
522     FD_PHASE_RESULT         = 3,
523 };
524 
525 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
526 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
527 
528 struct FDCtrl {
529     MemoryRegion iomem;
530     qemu_irq irq;
531     /* Controller state */
532     QEMUTimer *result_timer;
533     int dma_chann;
534     uint8_t phase;
535     /* Controller's identification */
536     uint8_t version;
537     /* HW */
538     uint8_t sra;
539     uint8_t srb;
540     uint8_t dor;
541     uint8_t dor_vmstate; /* only used as temp during vmstate */
542     uint8_t tdr;
543     uint8_t dsr;
544     uint8_t msr;
545     uint8_t cur_drv;
546     uint8_t status0;
547     uint8_t status1;
548     uint8_t status2;
549     /* Command FIFO */
550     uint8_t *fifo;
551     int32_t fifo_size;
552     uint32_t data_pos;
553     uint32_t data_len;
554     uint8_t data_state;
555     uint8_t data_dir;
556     uint8_t eot; /* last wanted sector */
557     /* States kept only to be returned back */
558     /* precompensation */
559     uint8_t precomp_trk;
560     uint8_t config;
561     uint8_t lock;
562     /* Power down config (also with status regB access mode */
563     uint8_t pwrd;
564     /* Floppy drives */
565     uint8_t num_floppies;
566     FDrive drives[MAX_FD];
567     int reset_sensei;
568     uint32_t check_media_rate;
569     /* Timers state */
570     uint8_t timer0;
571     uint8_t timer1;
572 };
573 
574 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
575 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
576 
577 typedef struct FDCtrlSysBus {
578     /*< private >*/
579     SysBusDevice parent_obj;
580     /*< public >*/
581 
582     struct FDCtrl state;
583 } FDCtrlSysBus;
584 
585 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
586 
587 typedef struct FDCtrlISABus {
588     ISADevice parent_obj;
589 
590     uint32_t iobase;
591     uint32_t irq;
592     uint32_t dma;
593     struct FDCtrl state;
594     int32_t bootindexA;
595     int32_t bootindexB;
596 } FDCtrlISABus;
597 
598 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
599 {
600     FDCtrl *fdctrl = opaque;
601     uint32_t retval;
602 
603     reg &= 7;
604     switch (reg) {
605     case FD_REG_SRA:
606         retval = fdctrl_read_statusA(fdctrl);
607         break;
608     case FD_REG_SRB:
609         retval = fdctrl_read_statusB(fdctrl);
610         break;
611     case FD_REG_DOR:
612         retval = fdctrl_read_dor(fdctrl);
613         break;
614     case FD_REG_TDR:
615         retval = fdctrl_read_tape(fdctrl);
616         break;
617     case FD_REG_MSR:
618         retval = fdctrl_read_main_status(fdctrl);
619         break;
620     case FD_REG_FIFO:
621         retval = fdctrl_read_data(fdctrl);
622         break;
623     case FD_REG_DIR:
624         retval = fdctrl_read_dir(fdctrl);
625         break;
626     default:
627         retval = (uint32_t)(-1);
628         break;
629     }
630     FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
631 
632     return retval;
633 }
634 
635 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
636 {
637     FDCtrl *fdctrl = opaque;
638 
639     FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
640 
641     reg &= 7;
642     switch (reg) {
643     case FD_REG_DOR:
644         fdctrl_write_dor(fdctrl, value);
645         break;
646     case FD_REG_TDR:
647         fdctrl_write_tape(fdctrl, value);
648         break;
649     case FD_REG_DSR:
650         fdctrl_write_rate(fdctrl, value);
651         break;
652     case FD_REG_FIFO:
653         fdctrl_write_data(fdctrl, value);
654         break;
655     case FD_REG_CCR:
656         fdctrl_write_ccr(fdctrl, value);
657         break;
658     default:
659         break;
660     }
661 }
662 
663 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
664                                  unsigned ize)
665 {
666     return fdctrl_read(opaque, (uint32_t)reg);
667 }
668 
669 static void fdctrl_write_mem (void *opaque, hwaddr reg,
670                               uint64_t value, unsigned size)
671 {
672     fdctrl_write(opaque, (uint32_t)reg, value);
673 }
674 
675 static const MemoryRegionOps fdctrl_mem_ops = {
676     .read = fdctrl_read_mem,
677     .write = fdctrl_write_mem,
678     .endianness = DEVICE_NATIVE_ENDIAN,
679 };
680 
681 static const MemoryRegionOps fdctrl_mem_strict_ops = {
682     .read = fdctrl_read_mem,
683     .write = fdctrl_write_mem,
684     .endianness = DEVICE_NATIVE_ENDIAN,
685     .valid = {
686         .min_access_size = 1,
687         .max_access_size = 1,
688     },
689 };
690 
691 static bool fdrive_media_changed_needed(void *opaque)
692 {
693     FDrive *drive = opaque;
694 
695     return (drive->blk != NULL && drive->media_changed != 1);
696 }
697 
698 static const VMStateDescription vmstate_fdrive_media_changed = {
699     .name = "fdrive/media_changed",
700     .version_id = 1,
701     .minimum_version_id = 1,
702     .fields = (VMStateField[]) {
703         VMSTATE_UINT8(media_changed, FDrive),
704         VMSTATE_END_OF_LIST()
705     }
706 };
707 
708 static bool fdrive_media_rate_needed(void *opaque)
709 {
710     FDrive *drive = opaque;
711 
712     return drive->fdctrl->check_media_rate;
713 }
714 
715 static const VMStateDescription vmstate_fdrive_media_rate = {
716     .name = "fdrive/media_rate",
717     .version_id = 1,
718     .minimum_version_id = 1,
719     .fields = (VMStateField[]) {
720         VMSTATE_UINT8(media_rate, FDrive),
721         VMSTATE_END_OF_LIST()
722     }
723 };
724 
725 static bool fdrive_perpendicular_needed(void *opaque)
726 {
727     FDrive *drive = opaque;
728 
729     return drive->perpendicular != 0;
730 }
731 
732 static const VMStateDescription vmstate_fdrive_perpendicular = {
733     .name = "fdrive/perpendicular",
734     .version_id = 1,
735     .minimum_version_id = 1,
736     .fields = (VMStateField[]) {
737         VMSTATE_UINT8(perpendicular, FDrive),
738         VMSTATE_END_OF_LIST()
739     }
740 };
741 
742 static int fdrive_post_load(void *opaque, int version_id)
743 {
744     fd_revalidate(opaque);
745     return 0;
746 }
747 
748 static const VMStateDescription vmstate_fdrive = {
749     .name = "fdrive",
750     .version_id = 1,
751     .minimum_version_id = 1,
752     .post_load = fdrive_post_load,
753     .fields = (VMStateField[]) {
754         VMSTATE_UINT8(head, FDrive),
755         VMSTATE_UINT8(track, FDrive),
756         VMSTATE_UINT8(sect, FDrive),
757         VMSTATE_END_OF_LIST()
758     },
759     .subsections = (VMStateSubsection[]) {
760         {
761             .vmsd = &vmstate_fdrive_media_changed,
762             .needed = &fdrive_media_changed_needed,
763         } , {
764             .vmsd = &vmstate_fdrive_media_rate,
765             .needed = &fdrive_media_rate_needed,
766         } , {
767             .vmsd = &vmstate_fdrive_perpendicular,
768             .needed = &fdrive_perpendicular_needed,
769         } , {
770             /* empty */
771         }
772     }
773 };
774 
775 /*
776  * Reconstructs the phase from register values according to the logic that was
777  * implemented in qemu 2.3. This is the default value that is used if the phase
778  * subsection is not present on migration.
779  *
780  * Don't change this function to reflect newer qemu versions, it is part of
781  * the migration ABI.
782  */
783 static int reconstruct_phase(FDCtrl *fdctrl)
784 {
785     if (fdctrl->msr & FD_MSR_NONDMA) {
786         return FD_PHASE_EXECUTION;
787     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
788         /* qemu 2.3 disabled RQM only during DMA transfers */
789         return FD_PHASE_EXECUTION;
790     } else if (fdctrl->msr & FD_MSR_DIO) {
791         return FD_PHASE_RESULT;
792     } else {
793         return FD_PHASE_COMMAND;
794     }
795 }
796 
797 static void fdc_pre_save(void *opaque)
798 {
799     FDCtrl *s = opaque;
800 
801     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
802 }
803 
804 static int fdc_pre_load(void *opaque)
805 {
806     FDCtrl *s = opaque;
807     s->phase = FD_PHASE_RECONSTRUCT;
808     return 0;
809 }
810 
811 static int fdc_post_load(void *opaque, int version_id)
812 {
813     FDCtrl *s = opaque;
814 
815     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
816     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
817 
818     if (s->phase == FD_PHASE_RECONSTRUCT) {
819         s->phase = reconstruct_phase(s);
820     }
821 
822     return 0;
823 }
824 
825 static bool fdc_reset_sensei_needed(void *opaque)
826 {
827     FDCtrl *s = opaque;
828 
829     return s->reset_sensei != 0;
830 }
831 
832 static const VMStateDescription vmstate_fdc_reset_sensei = {
833     .name = "fdc/reset_sensei",
834     .version_id = 1,
835     .minimum_version_id = 1,
836     .fields = (VMStateField[]) {
837         VMSTATE_INT32(reset_sensei, FDCtrl),
838         VMSTATE_END_OF_LIST()
839     }
840 };
841 
842 static bool fdc_result_timer_needed(void *opaque)
843 {
844     FDCtrl *s = opaque;
845 
846     return timer_pending(s->result_timer);
847 }
848 
849 static const VMStateDescription vmstate_fdc_result_timer = {
850     .name = "fdc/result_timer",
851     .version_id = 1,
852     .minimum_version_id = 1,
853     .fields = (VMStateField[]) {
854         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
855         VMSTATE_END_OF_LIST()
856     }
857 };
858 
859 static bool fdc_phase_needed(void *opaque)
860 {
861     FDCtrl *fdctrl = opaque;
862 
863     return reconstruct_phase(fdctrl) != fdctrl->phase;
864 }
865 
866 static const VMStateDescription vmstate_fdc_phase = {
867     .name = "fdc/phase",
868     .version_id = 1,
869     .minimum_version_id = 1,
870     .fields = (VMStateField[]) {
871         VMSTATE_UINT8(phase, FDCtrl),
872         VMSTATE_END_OF_LIST()
873     }
874 };
875 
876 static const VMStateDescription vmstate_fdc = {
877     .name = "fdc",
878     .version_id = 2,
879     .minimum_version_id = 2,
880     .pre_save = fdc_pre_save,
881     .pre_load = fdc_pre_load,
882     .post_load = fdc_post_load,
883     .fields = (VMStateField[]) {
884         /* Controller State */
885         VMSTATE_UINT8(sra, FDCtrl),
886         VMSTATE_UINT8(srb, FDCtrl),
887         VMSTATE_UINT8(dor_vmstate, FDCtrl),
888         VMSTATE_UINT8(tdr, FDCtrl),
889         VMSTATE_UINT8(dsr, FDCtrl),
890         VMSTATE_UINT8(msr, FDCtrl),
891         VMSTATE_UINT8(status0, FDCtrl),
892         VMSTATE_UINT8(status1, FDCtrl),
893         VMSTATE_UINT8(status2, FDCtrl),
894         /* Command FIFO */
895         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
896                              uint8_t),
897         VMSTATE_UINT32(data_pos, FDCtrl),
898         VMSTATE_UINT32(data_len, FDCtrl),
899         VMSTATE_UINT8(data_state, FDCtrl),
900         VMSTATE_UINT8(data_dir, FDCtrl),
901         VMSTATE_UINT8(eot, FDCtrl),
902         /* States kept only to be returned back */
903         VMSTATE_UINT8(timer0, FDCtrl),
904         VMSTATE_UINT8(timer1, FDCtrl),
905         VMSTATE_UINT8(precomp_trk, FDCtrl),
906         VMSTATE_UINT8(config, FDCtrl),
907         VMSTATE_UINT8(lock, FDCtrl),
908         VMSTATE_UINT8(pwrd, FDCtrl),
909         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
910         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
911                              vmstate_fdrive, FDrive),
912         VMSTATE_END_OF_LIST()
913     },
914     .subsections = (VMStateSubsection[]) {
915         {
916             .vmsd = &vmstate_fdc_reset_sensei,
917             .needed = fdc_reset_sensei_needed,
918         } , {
919             .vmsd = &vmstate_fdc_result_timer,
920             .needed = fdc_result_timer_needed,
921         } , {
922             .vmsd = &vmstate_fdc_phase,
923             .needed = fdc_phase_needed,
924         } , {
925             /* empty */
926         }
927     }
928 };
929 
930 static void fdctrl_external_reset_sysbus(DeviceState *d)
931 {
932     FDCtrlSysBus *sys = SYSBUS_FDC(d);
933     FDCtrl *s = &sys->state;
934 
935     fdctrl_reset(s, 0);
936 }
937 
938 static void fdctrl_external_reset_isa(DeviceState *d)
939 {
940     FDCtrlISABus *isa = ISA_FDC(d);
941     FDCtrl *s = &isa->state;
942 
943     fdctrl_reset(s, 0);
944 }
945 
946 static void fdctrl_handle_tc(void *opaque, int irq, int level)
947 {
948     //FDCtrl *s = opaque;
949 
950     if (level) {
951         // XXX
952         FLOPPY_DPRINTF("TC pulsed\n");
953     }
954 }
955 
956 /* Change IRQ state */
957 static void fdctrl_reset_irq(FDCtrl *fdctrl)
958 {
959     fdctrl->status0 = 0;
960     if (!(fdctrl->sra & FD_SRA_INTPEND))
961         return;
962     FLOPPY_DPRINTF("Reset interrupt\n");
963     qemu_set_irq(fdctrl->irq, 0);
964     fdctrl->sra &= ~FD_SRA_INTPEND;
965 }
966 
967 static void fdctrl_raise_irq(FDCtrl *fdctrl)
968 {
969     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
970         qemu_set_irq(fdctrl->irq, 1);
971         fdctrl->sra |= FD_SRA_INTPEND;
972     }
973 
974     fdctrl->reset_sensei = 0;
975     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
976 }
977 
978 /* Reset controller */
979 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
980 {
981     int i;
982 
983     FLOPPY_DPRINTF("reset controller\n");
984     fdctrl_reset_irq(fdctrl);
985     /* Initialise controller */
986     fdctrl->sra = 0;
987     fdctrl->srb = 0xc0;
988     if (!fdctrl->drives[1].blk) {
989         fdctrl->sra |= FD_SRA_nDRV2;
990     }
991     fdctrl->cur_drv = 0;
992     fdctrl->dor = FD_DOR_nRESET;
993     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
994     fdctrl->msr = FD_MSR_RQM;
995     fdctrl->reset_sensei = 0;
996     timer_del(fdctrl->result_timer);
997     /* FIFO state */
998     fdctrl->data_pos = 0;
999     fdctrl->data_len = 0;
1000     fdctrl->data_state = 0;
1001     fdctrl->data_dir = FD_DIR_WRITE;
1002     for (i = 0; i < MAX_FD; i++)
1003         fd_recalibrate(&fdctrl->drives[i]);
1004     fdctrl_to_command_phase(fdctrl);
1005     if (do_irq) {
1006         fdctrl->status0 |= FD_SR0_RDYCHG;
1007         fdctrl_raise_irq(fdctrl);
1008         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1009     }
1010 }
1011 
1012 static inline FDrive *drv0(FDCtrl *fdctrl)
1013 {
1014     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1015 }
1016 
1017 static inline FDrive *drv1(FDCtrl *fdctrl)
1018 {
1019     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1020         return &fdctrl->drives[1];
1021     else
1022         return &fdctrl->drives[0];
1023 }
1024 
1025 #if MAX_FD == 4
1026 static inline FDrive *drv2(FDCtrl *fdctrl)
1027 {
1028     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1029         return &fdctrl->drives[2];
1030     else
1031         return &fdctrl->drives[1];
1032 }
1033 
1034 static inline FDrive *drv3(FDCtrl *fdctrl)
1035 {
1036     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1037         return &fdctrl->drives[3];
1038     else
1039         return &fdctrl->drives[2];
1040 }
1041 #endif
1042 
1043 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1044 {
1045     switch (fdctrl->cur_drv) {
1046         case 0: return drv0(fdctrl);
1047         case 1: return drv1(fdctrl);
1048 #if MAX_FD == 4
1049         case 2: return drv2(fdctrl);
1050         case 3: return drv3(fdctrl);
1051 #endif
1052         default: return NULL;
1053     }
1054 }
1055 
1056 /* Status A register : 0x00 (read-only) */
1057 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1058 {
1059     uint32_t retval = fdctrl->sra;
1060 
1061     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1062 
1063     return retval;
1064 }
1065 
1066 /* Status B register : 0x01 (read-only) */
1067 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1068 {
1069     uint32_t retval = fdctrl->srb;
1070 
1071     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1072 
1073     return retval;
1074 }
1075 
1076 /* Digital output register : 0x02 */
1077 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1078 {
1079     uint32_t retval = fdctrl->dor;
1080 
1081     /* Selected drive */
1082     retval |= fdctrl->cur_drv;
1083     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1084 
1085     return retval;
1086 }
1087 
1088 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1089 {
1090     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1091 
1092     /* Motors */
1093     if (value & FD_DOR_MOTEN0)
1094         fdctrl->srb |= FD_SRB_MTR0;
1095     else
1096         fdctrl->srb &= ~FD_SRB_MTR0;
1097     if (value & FD_DOR_MOTEN1)
1098         fdctrl->srb |= FD_SRB_MTR1;
1099     else
1100         fdctrl->srb &= ~FD_SRB_MTR1;
1101 
1102     /* Drive */
1103     if (value & 1)
1104         fdctrl->srb |= FD_SRB_DR0;
1105     else
1106         fdctrl->srb &= ~FD_SRB_DR0;
1107 
1108     /* Reset */
1109     if (!(value & FD_DOR_nRESET)) {
1110         if (fdctrl->dor & FD_DOR_nRESET) {
1111             FLOPPY_DPRINTF("controller enter RESET state\n");
1112         }
1113     } else {
1114         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1115             FLOPPY_DPRINTF("controller out of RESET state\n");
1116             fdctrl_reset(fdctrl, 1);
1117             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1118         }
1119     }
1120     /* Selected drive */
1121     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1122 
1123     fdctrl->dor = value;
1124 }
1125 
1126 /* Tape drive register : 0x03 */
1127 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1128 {
1129     uint32_t retval = fdctrl->tdr;
1130 
1131     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1132 
1133     return retval;
1134 }
1135 
1136 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1137 {
1138     /* Reset mode */
1139     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1140         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1141         return;
1142     }
1143     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1144     /* Disk boot selection indicator */
1145     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1146     /* Tape indicators: never allow */
1147 }
1148 
1149 /* Main status register : 0x04 (read) */
1150 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1151 {
1152     uint32_t retval = fdctrl->msr;
1153 
1154     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1155     fdctrl->dor |= FD_DOR_nRESET;
1156 
1157     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1158 
1159     return retval;
1160 }
1161 
1162 /* Data select rate register : 0x04 (write) */
1163 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1164 {
1165     /* Reset mode */
1166     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1167         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1168         return;
1169     }
1170     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1171     /* Reset: autoclear */
1172     if (value & FD_DSR_SWRESET) {
1173         fdctrl->dor &= ~FD_DOR_nRESET;
1174         fdctrl_reset(fdctrl, 1);
1175         fdctrl->dor |= FD_DOR_nRESET;
1176     }
1177     if (value & FD_DSR_PWRDOWN) {
1178         fdctrl_reset(fdctrl, 1);
1179     }
1180     fdctrl->dsr = value;
1181 }
1182 
1183 /* Configuration control register: 0x07 (write) */
1184 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1185 {
1186     /* Reset mode */
1187     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1188         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1189         return;
1190     }
1191     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1192 
1193     /* Only the rate selection bits used in AT mode, and we
1194      * store those in the DSR.
1195      */
1196     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1197                   (value & FD_DSR_DRATEMASK);
1198 }
1199 
1200 static int fdctrl_media_changed(FDrive *drv)
1201 {
1202     return drv->media_changed;
1203 }
1204 
1205 /* Digital input register : 0x07 (read-only) */
1206 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1207 {
1208     uint32_t retval = 0;
1209 
1210     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1211         retval |= FD_DIR_DSKCHG;
1212     }
1213     if (retval != 0) {
1214         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1215     }
1216 
1217     return retval;
1218 }
1219 
1220 /* Clear the FIFO and update the state for receiving the next command */
1221 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1222 {
1223     fdctrl->phase = FD_PHASE_COMMAND;
1224     fdctrl->data_dir = FD_DIR_WRITE;
1225     fdctrl->data_pos = 0;
1226     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1227     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1228     fdctrl->msr |= FD_MSR_RQM;
1229 }
1230 
1231 /* Update the state to allow the guest to read out the command status.
1232  * @fifo_len is the number of result bytes to be read out. */
1233 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1234 {
1235     fdctrl->phase = FD_PHASE_RESULT;
1236     fdctrl->data_dir = FD_DIR_READ;
1237     fdctrl->data_len = fifo_len;
1238     fdctrl->data_pos = 0;
1239     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1240 }
1241 
1242 /* Set an error: unimplemented/unknown command */
1243 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1244 {
1245     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1246                   fdctrl->fifo[0]);
1247     fdctrl->fifo[0] = FD_SR0_INVCMD;
1248     fdctrl_to_result_phase(fdctrl, 1);
1249 }
1250 
1251 /* Seek to next sector
1252  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1253  * otherwise returns 1
1254  */
1255 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1256 {
1257     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1258                    cur_drv->head, cur_drv->track, cur_drv->sect,
1259                    fd_sector(cur_drv));
1260     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1261        error in fact */
1262     uint8_t new_head = cur_drv->head;
1263     uint8_t new_track = cur_drv->track;
1264     uint8_t new_sect = cur_drv->sect;
1265 
1266     int ret = 1;
1267 
1268     if (new_sect >= cur_drv->last_sect ||
1269         new_sect == fdctrl->eot) {
1270         new_sect = 1;
1271         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1272             if (new_head == 0 &&
1273                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1274                 new_head = 1;
1275             } else {
1276                 new_head = 0;
1277                 new_track++;
1278                 fdctrl->status0 |= FD_SR0_SEEK;
1279                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1280                     ret = 0;
1281                 }
1282             }
1283         } else {
1284             fdctrl->status0 |= FD_SR0_SEEK;
1285             new_track++;
1286             ret = 0;
1287         }
1288         if (ret == 1) {
1289             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1290                     new_head, new_track, new_sect, fd_sector(cur_drv));
1291         }
1292     } else {
1293         new_sect++;
1294     }
1295     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1296     return ret;
1297 }
1298 
1299 /* Callback for transfer end (stop or abort) */
1300 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1301                                  uint8_t status1, uint8_t status2)
1302 {
1303     FDrive *cur_drv;
1304     cur_drv = get_cur_drv(fdctrl);
1305 
1306     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1307     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1308     if (cur_drv->head) {
1309         fdctrl->status0 |= FD_SR0_HEAD;
1310     }
1311     fdctrl->status0 |= status0;
1312 
1313     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1314                    status0, status1, status2, fdctrl->status0);
1315     fdctrl->fifo[0] = fdctrl->status0;
1316     fdctrl->fifo[1] = status1;
1317     fdctrl->fifo[2] = status2;
1318     fdctrl->fifo[3] = cur_drv->track;
1319     fdctrl->fifo[4] = cur_drv->head;
1320     fdctrl->fifo[5] = cur_drv->sect;
1321     fdctrl->fifo[6] = FD_SECTOR_SC;
1322     fdctrl->data_dir = FD_DIR_READ;
1323     if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1324         DMA_release_DREQ(fdctrl->dma_chann);
1325     }
1326     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1327     fdctrl->msr &= ~FD_MSR_NONDMA;
1328 
1329     fdctrl_to_result_phase(fdctrl, 7);
1330     fdctrl_raise_irq(fdctrl);
1331 }
1332 
1333 /* Prepare a data transfer (either DMA or FIFO) */
1334 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1335 {
1336     FDrive *cur_drv;
1337     uint8_t kh, kt, ks;
1338 
1339     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1340     cur_drv = get_cur_drv(fdctrl);
1341     kt = fdctrl->fifo[2];
1342     kh = fdctrl->fifo[3];
1343     ks = fdctrl->fifo[4];
1344     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1345                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1346                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1347                                   NUM_SIDES(cur_drv)));
1348     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1349     case 2:
1350         /* sect too big */
1351         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1352         fdctrl->fifo[3] = kt;
1353         fdctrl->fifo[4] = kh;
1354         fdctrl->fifo[5] = ks;
1355         return;
1356     case 3:
1357         /* track too big */
1358         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1359         fdctrl->fifo[3] = kt;
1360         fdctrl->fifo[4] = kh;
1361         fdctrl->fifo[5] = ks;
1362         return;
1363     case 4:
1364         /* No seek enabled */
1365         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1366         fdctrl->fifo[3] = kt;
1367         fdctrl->fifo[4] = kh;
1368         fdctrl->fifo[5] = ks;
1369         return;
1370     case 1:
1371         fdctrl->status0 |= FD_SR0_SEEK;
1372         break;
1373     default:
1374         break;
1375     }
1376 
1377     /* Check the data rate. If the programmed data rate does not match
1378      * the currently inserted medium, the operation has to fail. */
1379     if (fdctrl->check_media_rate &&
1380         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1381         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1382                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1383         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1384         fdctrl->fifo[3] = kt;
1385         fdctrl->fifo[4] = kh;
1386         fdctrl->fifo[5] = ks;
1387         return;
1388     }
1389 
1390     /* Set the FIFO state */
1391     fdctrl->data_dir = direction;
1392     fdctrl->data_pos = 0;
1393     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1394     if (fdctrl->fifo[0] & 0x80)
1395         fdctrl->data_state |= FD_STATE_MULTI;
1396     else
1397         fdctrl->data_state &= ~FD_STATE_MULTI;
1398     if (fdctrl->fifo[5] == 0) {
1399         fdctrl->data_len = fdctrl->fifo[8];
1400     } else {
1401         int tmp;
1402         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1403         tmp = (fdctrl->fifo[6] - ks + 1);
1404         if (fdctrl->fifo[0] & 0x80)
1405             tmp += fdctrl->fifo[6];
1406         fdctrl->data_len *= tmp;
1407     }
1408     fdctrl->eot = fdctrl->fifo[6];
1409     if (fdctrl->dor & FD_DOR_DMAEN) {
1410         int dma_mode;
1411         /* DMA transfer are enabled. Check if DMA channel is well programmed */
1412         dma_mode = DMA_get_channel_mode(fdctrl->dma_chann);
1413         dma_mode = (dma_mode >> 2) & 3;
1414         FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1415                        dma_mode, direction,
1416                        (128 << fdctrl->fifo[5]) *
1417                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1418         if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
1419               direction == FD_DIR_SCANH) && dma_mode == 0) ||
1420             (direction == FD_DIR_WRITE && dma_mode == 2) ||
1421             (direction == FD_DIR_READ && dma_mode == 1) ||
1422             (direction == FD_DIR_VERIFY)) {
1423             /* No access is allowed until DMA transfer has completed */
1424             fdctrl->msr &= ~FD_MSR_RQM;
1425             if (direction != FD_DIR_VERIFY) {
1426                 /* Now, we just have to wait for the DMA controller to
1427                  * recall us...
1428                  */
1429                 DMA_hold_DREQ(fdctrl->dma_chann);
1430                 DMA_schedule(fdctrl->dma_chann);
1431             } else {
1432                 /* Start transfer */
1433                 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1434                                         fdctrl->data_len);
1435             }
1436             return;
1437         } else {
1438             FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1439                            direction);
1440         }
1441     }
1442     FLOPPY_DPRINTF("start non-DMA transfer\n");
1443     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1444     if (direction != FD_DIR_WRITE)
1445         fdctrl->msr |= FD_MSR_DIO;
1446     /* IO based transfer: calculate len */
1447     fdctrl_raise_irq(fdctrl);
1448 }
1449 
1450 /* Prepare a transfer of deleted data */
1451 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1452 {
1453     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1454 
1455     /* We don't handle deleted data,
1456      * so we don't return *ANYTHING*
1457      */
1458     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1459 }
1460 
1461 /* handlers for DMA transfers */
1462 static int fdctrl_transfer_handler (void *opaque, int nchan,
1463                                     int dma_pos, int dma_len)
1464 {
1465     FDCtrl *fdctrl;
1466     FDrive *cur_drv;
1467     int len, start_pos, rel_pos;
1468     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1469 
1470     fdctrl = opaque;
1471     if (fdctrl->msr & FD_MSR_RQM) {
1472         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1473         return 0;
1474     }
1475     cur_drv = get_cur_drv(fdctrl);
1476     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1477         fdctrl->data_dir == FD_DIR_SCANH)
1478         status2 = FD_SR2_SNS;
1479     if (dma_len > fdctrl->data_len)
1480         dma_len = fdctrl->data_len;
1481     if (cur_drv->blk == NULL) {
1482         if (fdctrl->data_dir == FD_DIR_WRITE)
1483             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1484         else
1485             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1486         len = 0;
1487         goto transfer_error;
1488     }
1489     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1490     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1491         len = dma_len - fdctrl->data_pos;
1492         if (len + rel_pos > FD_SECTOR_LEN)
1493             len = FD_SECTOR_LEN - rel_pos;
1494         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1495                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1496                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1497                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1498                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1499         if (fdctrl->data_dir != FD_DIR_WRITE ||
1500             len < FD_SECTOR_LEN || rel_pos != 0) {
1501             /* READ & SCAN commands and realign to a sector for WRITE */
1502             if (blk_read(cur_drv->blk, fd_sector(cur_drv),
1503                          fdctrl->fifo, 1) < 0) {
1504                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1505                                fd_sector(cur_drv));
1506                 /* Sure, image size is too small... */
1507                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1508             }
1509         }
1510         switch (fdctrl->data_dir) {
1511         case FD_DIR_READ:
1512             /* READ commands */
1513             DMA_write_memory (nchan, fdctrl->fifo + rel_pos,
1514                               fdctrl->data_pos, len);
1515             break;
1516         case FD_DIR_WRITE:
1517             /* WRITE commands */
1518             if (cur_drv->ro) {
1519                 /* Handle readonly medium early, no need to do DMA, touch the
1520                  * LED or attempt any writes. A real floppy doesn't attempt
1521                  * to write to readonly media either. */
1522                 fdctrl_stop_transfer(fdctrl,
1523                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1524                                      0x00);
1525                 goto transfer_error;
1526             }
1527 
1528             DMA_read_memory (nchan, fdctrl->fifo + rel_pos,
1529                              fdctrl->data_pos, len);
1530             if (blk_write(cur_drv->blk, fd_sector(cur_drv),
1531                           fdctrl->fifo, 1) < 0) {
1532                 FLOPPY_DPRINTF("error writing sector %d\n",
1533                                fd_sector(cur_drv));
1534                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1535                 goto transfer_error;
1536             }
1537             break;
1538         case FD_DIR_VERIFY:
1539             /* VERIFY commands */
1540             break;
1541         default:
1542             /* SCAN commands */
1543             {
1544                 uint8_t tmpbuf[FD_SECTOR_LEN];
1545                 int ret;
1546                 DMA_read_memory (nchan, tmpbuf, fdctrl->data_pos, len);
1547                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1548                 if (ret == 0) {
1549                     status2 = FD_SR2_SEH;
1550                     goto end_transfer;
1551                 }
1552                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1553                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1554                     status2 = 0x00;
1555                     goto end_transfer;
1556                 }
1557             }
1558             break;
1559         }
1560         fdctrl->data_pos += len;
1561         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1562         if (rel_pos == 0) {
1563             /* Seek to next sector */
1564             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1565                 break;
1566         }
1567     }
1568  end_transfer:
1569     len = fdctrl->data_pos - start_pos;
1570     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1571                    fdctrl->data_pos, len, fdctrl->data_len);
1572     if (fdctrl->data_dir == FD_DIR_SCANE ||
1573         fdctrl->data_dir == FD_DIR_SCANL ||
1574         fdctrl->data_dir == FD_DIR_SCANH)
1575         status2 = FD_SR2_SEH;
1576     fdctrl->data_len -= len;
1577     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1578  transfer_error:
1579 
1580     return len;
1581 }
1582 
1583 /* Data register : 0x05 */
1584 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1585 {
1586     FDrive *cur_drv;
1587     uint32_t retval = 0;
1588     uint32_t pos;
1589 
1590     cur_drv = get_cur_drv(fdctrl);
1591     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1592     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1593         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1594         return 0;
1595     }
1596 
1597     /* If data_len spans multiple sectors, the current position in the FIFO
1598      * wraps around while fdctrl->data_pos is the real position in the whole
1599      * request. */
1600     pos = fdctrl->data_pos;
1601     pos %= FD_SECTOR_LEN;
1602 
1603     switch (fdctrl->phase) {
1604     case FD_PHASE_EXECUTION:
1605         assert(fdctrl->msr & FD_MSR_NONDMA);
1606         if (pos == 0) {
1607             if (fdctrl->data_pos != 0)
1608                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1609                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1610                                    fd_sector(cur_drv));
1611                     return 0;
1612                 }
1613             if (blk_read(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
1614                 < 0) {
1615                 FLOPPY_DPRINTF("error getting sector %d\n",
1616                                fd_sector(cur_drv));
1617                 /* Sure, image size is too small... */
1618                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1619             }
1620         }
1621 
1622         if (++fdctrl->data_pos == fdctrl->data_len) {
1623             fdctrl->msr &= ~FD_MSR_RQM;
1624             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1625         }
1626         break;
1627 
1628     case FD_PHASE_RESULT:
1629         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1630         if (++fdctrl->data_pos == fdctrl->data_len) {
1631             fdctrl->msr &= ~FD_MSR_RQM;
1632             fdctrl_to_command_phase(fdctrl);
1633             fdctrl_reset_irq(fdctrl);
1634         }
1635         break;
1636 
1637     case FD_PHASE_COMMAND:
1638     default:
1639         abort();
1640     }
1641 
1642     retval = fdctrl->fifo[pos];
1643     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1644 
1645     return retval;
1646 }
1647 
1648 static void fdctrl_format_sector(FDCtrl *fdctrl)
1649 {
1650     FDrive *cur_drv;
1651     uint8_t kh, kt, ks;
1652 
1653     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1654     cur_drv = get_cur_drv(fdctrl);
1655     kt = fdctrl->fifo[6];
1656     kh = fdctrl->fifo[7];
1657     ks = fdctrl->fifo[8];
1658     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1659                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1660                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1661                                   NUM_SIDES(cur_drv)));
1662     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1663     case 2:
1664         /* sect too big */
1665         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1666         fdctrl->fifo[3] = kt;
1667         fdctrl->fifo[4] = kh;
1668         fdctrl->fifo[5] = ks;
1669         return;
1670     case 3:
1671         /* track too big */
1672         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1673         fdctrl->fifo[3] = kt;
1674         fdctrl->fifo[4] = kh;
1675         fdctrl->fifo[5] = ks;
1676         return;
1677     case 4:
1678         /* No seek enabled */
1679         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1680         fdctrl->fifo[3] = kt;
1681         fdctrl->fifo[4] = kh;
1682         fdctrl->fifo[5] = ks;
1683         return;
1684     case 1:
1685         fdctrl->status0 |= FD_SR0_SEEK;
1686         break;
1687     default:
1688         break;
1689     }
1690     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1691     if (cur_drv->blk == NULL ||
1692         blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
1693         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1694         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1695     } else {
1696         if (cur_drv->sect == cur_drv->last_sect) {
1697             fdctrl->data_state &= ~FD_STATE_FORMAT;
1698             /* Last sector done */
1699             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1700         } else {
1701             /* More to do */
1702             fdctrl->data_pos = 0;
1703             fdctrl->data_len = 4;
1704         }
1705     }
1706 }
1707 
1708 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1709 {
1710     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1711     fdctrl->fifo[0] = fdctrl->lock << 4;
1712     fdctrl_to_result_phase(fdctrl, 1);
1713 }
1714 
1715 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1716 {
1717     FDrive *cur_drv = get_cur_drv(fdctrl);
1718 
1719     /* Drives position */
1720     fdctrl->fifo[0] = drv0(fdctrl)->track;
1721     fdctrl->fifo[1] = drv1(fdctrl)->track;
1722 #if MAX_FD == 4
1723     fdctrl->fifo[2] = drv2(fdctrl)->track;
1724     fdctrl->fifo[3] = drv3(fdctrl)->track;
1725 #else
1726     fdctrl->fifo[2] = 0;
1727     fdctrl->fifo[3] = 0;
1728 #endif
1729     /* timers */
1730     fdctrl->fifo[4] = fdctrl->timer0;
1731     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1732     fdctrl->fifo[6] = cur_drv->last_sect;
1733     fdctrl->fifo[7] = (fdctrl->lock << 7) |
1734         (cur_drv->perpendicular << 2);
1735     fdctrl->fifo[8] = fdctrl->config;
1736     fdctrl->fifo[9] = fdctrl->precomp_trk;
1737     fdctrl_to_result_phase(fdctrl, 10);
1738 }
1739 
1740 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1741 {
1742     /* Controller's version */
1743     fdctrl->fifo[0] = fdctrl->version;
1744     fdctrl_to_result_phase(fdctrl, 1);
1745 }
1746 
1747 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1748 {
1749     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1750     fdctrl_to_result_phase(fdctrl, 1);
1751 }
1752 
1753 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1754 {
1755     FDrive *cur_drv = get_cur_drv(fdctrl);
1756 
1757     /* Drives position */
1758     drv0(fdctrl)->track = fdctrl->fifo[3];
1759     drv1(fdctrl)->track = fdctrl->fifo[4];
1760 #if MAX_FD == 4
1761     drv2(fdctrl)->track = fdctrl->fifo[5];
1762     drv3(fdctrl)->track = fdctrl->fifo[6];
1763 #endif
1764     /* timers */
1765     fdctrl->timer0 = fdctrl->fifo[7];
1766     fdctrl->timer1 = fdctrl->fifo[8];
1767     cur_drv->last_sect = fdctrl->fifo[9];
1768     fdctrl->lock = fdctrl->fifo[10] >> 7;
1769     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1770     fdctrl->config = fdctrl->fifo[11];
1771     fdctrl->precomp_trk = fdctrl->fifo[12];
1772     fdctrl->pwrd = fdctrl->fifo[13];
1773     fdctrl_to_command_phase(fdctrl);
1774 }
1775 
1776 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1777 {
1778     FDrive *cur_drv = get_cur_drv(fdctrl);
1779 
1780     fdctrl->fifo[0] = 0;
1781     fdctrl->fifo[1] = 0;
1782     /* Drives position */
1783     fdctrl->fifo[2] = drv0(fdctrl)->track;
1784     fdctrl->fifo[3] = drv1(fdctrl)->track;
1785 #if MAX_FD == 4
1786     fdctrl->fifo[4] = drv2(fdctrl)->track;
1787     fdctrl->fifo[5] = drv3(fdctrl)->track;
1788 #else
1789     fdctrl->fifo[4] = 0;
1790     fdctrl->fifo[5] = 0;
1791 #endif
1792     /* timers */
1793     fdctrl->fifo[6] = fdctrl->timer0;
1794     fdctrl->fifo[7] = fdctrl->timer1;
1795     fdctrl->fifo[8] = cur_drv->last_sect;
1796     fdctrl->fifo[9] = (fdctrl->lock << 7) |
1797         (cur_drv->perpendicular << 2);
1798     fdctrl->fifo[10] = fdctrl->config;
1799     fdctrl->fifo[11] = fdctrl->precomp_trk;
1800     fdctrl->fifo[12] = fdctrl->pwrd;
1801     fdctrl->fifo[13] = 0;
1802     fdctrl->fifo[14] = 0;
1803     fdctrl_to_result_phase(fdctrl, 15);
1804 }
1805 
1806 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1807 {
1808     FDrive *cur_drv = get_cur_drv(fdctrl);
1809 
1810     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1811     timer_mod(fdctrl->result_timer,
1812                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() / 50));
1813 }
1814 
1815 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1816 {
1817     FDrive *cur_drv;
1818 
1819     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1820     cur_drv = get_cur_drv(fdctrl);
1821     fdctrl->data_state |= FD_STATE_FORMAT;
1822     if (fdctrl->fifo[0] & 0x80)
1823         fdctrl->data_state |= FD_STATE_MULTI;
1824     else
1825         fdctrl->data_state &= ~FD_STATE_MULTI;
1826     cur_drv->bps =
1827         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1828 #if 0
1829     cur_drv->last_sect =
1830         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1831         fdctrl->fifo[3] / 2;
1832 #else
1833     cur_drv->last_sect = fdctrl->fifo[3];
1834 #endif
1835     /* TODO: implement format using DMA expected by the Bochs BIOS
1836      * and Linux fdformat (read 3 bytes per sector via DMA and fill
1837      * the sector with the specified fill byte
1838      */
1839     fdctrl->data_state &= ~FD_STATE_FORMAT;
1840     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1841 }
1842 
1843 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1844 {
1845     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1846     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1847     if (fdctrl->fifo[2] & 1)
1848         fdctrl->dor &= ~FD_DOR_DMAEN;
1849     else
1850         fdctrl->dor |= FD_DOR_DMAEN;
1851     /* No result back */
1852     fdctrl_to_command_phase(fdctrl);
1853 }
1854 
1855 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1856 {
1857     FDrive *cur_drv;
1858 
1859     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1860     cur_drv = get_cur_drv(fdctrl);
1861     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1862     /* 1 Byte status back */
1863     fdctrl->fifo[0] = (cur_drv->ro << 6) |
1864         (cur_drv->track == 0 ? 0x10 : 0x00) |
1865         (cur_drv->head << 2) |
1866         GET_CUR_DRV(fdctrl) |
1867         0x28;
1868     fdctrl_to_result_phase(fdctrl, 1);
1869 }
1870 
1871 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
1872 {
1873     FDrive *cur_drv;
1874 
1875     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1876     cur_drv = get_cur_drv(fdctrl);
1877     fd_recalibrate(cur_drv);
1878     fdctrl_to_command_phase(fdctrl);
1879     /* Raise Interrupt */
1880     fdctrl->status0 |= FD_SR0_SEEK;
1881     fdctrl_raise_irq(fdctrl);
1882 }
1883 
1884 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
1885 {
1886     FDrive *cur_drv = get_cur_drv(fdctrl);
1887 
1888     if (fdctrl->reset_sensei > 0) {
1889         fdctrl->fifo[0] =
1890             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
1891         fdctrl->reset_sensei--;
1892     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1893         fdctrl->fifo[0] = FD_SR0_INVCMD;
1894         fdctrl_to_result_phase(fdctrl, 1);
1895         return;
1896     } else {
1897         fdctrl->fifo[0] =
1898                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
1899                 | GET_CUR_DRV(fdctrl);
1900     }
1901 
1902     fdctrl->fifo[1] = cur_drv->track;
1903     fdctrl_to_result_phase(fdctrl, 2);
1904     fdctrl_reset_irq(fdctrl);
1905     fdctrl->status0 = FD_SR0_RDYCHG;
1906 }
1907 
1908 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
1909 {
1910     FDrive *cur_drv;
1911 
1912     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1913     cur_drv = get_cur_drv(fdctrl);
1914     fdctrl_to_command_phase(fdctrl);
1915     /* The seek command just sends step pulses to the drive and doesn't care if
1916      * there is a medium inserted of if it's banging the head against the drive.
1917      */
1918     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
1919     /* Raise Interrupt */
1920     fdctrl->status0 |= FD_SR0_SEEK;
1921     fdctrl_raise_irq(fdctrl);
1922 }
1923 
1924 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
1925 {
1926     FDrive *cur_drv = get_cur_drv(fdctrl);
1927 
1928     if (fdctrl->fifo[1] & 0x80)
1929         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
1930     /* No result back */
1931     fdctrl_to_command_phase(fdctrl);
1932 }
1933 
1934 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
1935 {
1936     fdctrl->config = fdctrl->fifo[2];
1937     fdctrl->precomp_trk =  fdctrl->fifo[3];
1938     /* No result back */
1939     fdctrl_to_command_phase(fdctrl);
1940 }
1941 
1942 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
1943 {
1944     fdctrl->pwrd = fdctrl->fifo[1];
1945     fdctrl->fifo[0] = fdctrl->fifo[1];
1946     fdctrl_to_result_phase(fdctrl, 1);
1947 }
1948 
1949 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
1950 {
1951     /* No result back */
1952     fdctrl_to_command_phase(fdctrl);
1953 }
1954 
1955 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
1956 {
1957     FDrive *cur_drv = get_cur_drv(fdctrl);
1958     uint32_t pos;
1959 
1960     pos = fdctrl->data_pos - 1;
1961     pos %= FD_SECTOR_LEN;
1962     if (fdctrl->fifo[pos] & 0x80) {
1963         /* Command parameters done */
1964         if (fdctrl->fifo[pos] & 0x40) {
1965             fdctrl->fifo[0] = fdctrl->fifo[1];
1966             fdctrl->fifo[2] = 0;
1967             fdctrl->fifo[3] = 0;
1968             fdctrl_to_result_phase(fdctrl, 4);
1969         } else {
1970             fdctrl_to_command_phase(fdctrl);
1971         }
1972     } else if (fdctrl->data_len > 7) {
1973         /* ERROR */
1974         fdctrl->fifo[0] = 0x80 |
1975             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
1976         fdctrl_to_result_phase(fdctrl, 1);
1977     }
1978 }
1979 
1980 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
1981 {
1982     FDrive *cur_drv;
1983 
1984     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1985     cur_drv = get_cur_drv(fdctrl);
1986     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
1987         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
1988                 cur_drv->sect, 1);
1989     } else {
1990         fd_seek(cur_drv, cur_drv->head,
1991                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
1992     }
1993     fdctrl_to_command_phase(fdctrl);
1994     /* Raise Interrupt */
1995     fdctrl->status0 |= FD_SR0_SEEK;
1996     fdctrl_raise_irq(fdctrl);
1997 }
1998 
1999 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2000 {
2001     FDrive *cur_drv;
2002 
2003     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2004     cur_drv = get_cur_drv(fdctrl);
2005     if (fdctrl->fifo[2] > cur_drv->track) {
2006         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2007     } else {
2008         fd_seek(cur_drv, cur_drv->head,
2009                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2010     }
2011     fdctrl_to_command_phase(fdctrl);
2012     /* Raise Interrupt */
2013     fdctrl->status0 |= FD_SR0_SEEK;
2014     fdctrl_raise_irq(fdctrl);
2015 }
2016 
2017 /*
2018  * Handlers for the execution phase of each command
2019  */
2020 typedef struct FDCtrlCommand {
2021     uint8_t value;
2022     uint8_t mask;
2023     const char* name;
2024     int parameters;
2025     void (*handler)(FDCtrl *fdctrl, int direction);
2026     int direction;
2027 } FDCtrlCommand;
2028 
2029 static const FDCtrlCommand handlers[] = {
2030     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2031     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2032     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2033     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2034     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2035     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2036     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2037     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2038     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2039     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2040     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2041     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2042     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2043     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2044     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2045     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2046     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2047     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2048     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2049     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2050     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2051     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2052     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2053     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2054     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2055     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2056     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2057     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2058     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2059     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2060     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2061     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2062 };
2063 /* Associate command to an index in the 'handlers' array */
2064 static uint8_t command_to_handler[256];
2065 
2066 static const FDCtrlCommand *get_command(uint8_t cmd)
2067 {
2068     int idx;
2069 
2070     idx = command_to_handler[cmd];
2071     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2072     return &handlers[idx];
2073 }
2074 
2075 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2076 {
2077     FDrive *cur_drv;
2078     const FDCtrlCommand *cmd;
2079     uint32_t pos;
2080 
2081     /* Reset mode */
2082     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2083         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2084         return;
2085     }
2086     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2087         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2088         return;
2089     }
2090     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2091 
2092     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2093 
2094     /* If data_len spans multiple sectors, the current position in the FIFO
2095      * wraps around while fdctrl->data_pos is the real position in the whole
2096      * request. */
2097     pos = fdctrl->data_pos++;
2098     pos %= FD_SECTOR_LEN;
2099     fdctrl->fifo[pos] = value;
2100 
2101     if (fdctrl->data_pos == fdctrl->data_len) {
2102         fdctrl->msr &= ~FD_MSR_RQM;
2103     }
2104 
2105     switch (fdctrl->phase) {
2106     case FD_PHASE_EXECUTION:
2107         /* For DMA requests, RQM should be cleared during execution phase, so
2108          * we would have errored out above. */
2109         assert(fdctrl->msr & FD_MSR_NONDMA);
2110 
2111         /* FIFO data write */
2112         if (pos == FD_SECTOR_LEN - 1 ||
2113             fdctrl->data_pos == fdctrl->data_len) {
2114             cur_drv = get_cur_drv(fdctrl);
2115             if (blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
2116                 < 0) {
2117                 FLOPPY_DPRINTF("error writing sector %d\n",
2118                                fd_sector(cur_drv));
2119                 break;
2120             }
2121             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2122                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2123                                fd_sector(cur_drv));
2124                 break;
2125             }
2126         }
2127 
2128         /* Switch to result phase when done with the transfer */
2129         if (fdctrl->data_pos == fdctrl->data_len) {
2130             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2131         }
2132         break;
2133 
2134     case FD_PHASE_COMMAND:
2135         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2136         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2137 
2138         if (pos == 0) {
2139             /* The first byte specifies the command. Now we start reading
2140              * as many parameters as this command requires. */
2141             cmd = get_command(value);
2142             fdctrl->data_len = cmd->parameters + 1;
2143             if (cmd->parameters) {
2144                 fdctrl->msr |= FD_MSR_RQM;
2145             }
2146             fdctrl->msr |= FD_MSR_CMDBUSY;
2147         }
2148 
2149         if (fdctrl->data_pos == fdctrl->data_len) {
2150             /* We have all parameters now, execute the command */
2151             fdctrl->phase = FD_PHASE_EXECUTION;
2152 
2153             if (fdctrl->data_state & FD_STATE_FORMAT) {
2154                 fdctrl_format_sector(fdctrl);
2155                 break;
2156             }
2157 
2158             cmd = get_command(fdctrl->fifo[0]);
2159             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2160             cmd->handler(fdctrl, cmd->direction);
2161         }
2162         break;
2163 
2164     case FD_PHASE_RESULT:
2165     default:
2166         abort();
2167     }
2168 }
2169 
2170 static void fdctrl_result_timer(void *opaque)
2171 {
2172     FDCtrl *fdctrl = opaque;
2173     FDrive *cur_drv = get_cur_drv(fdctrl);
2174 
2175     /* Pretend we are spinning.
2176      * This is needed for Coherent, which uses READ ID to check for
2177      * sector interleaving.
2178      */
2179     if (cur_drv->last_sect != 0) {
2180         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2181     }
2182     /* READ_ID can't automatically succeed! */
2183     if (fdctrl->check_media_rate &&
2184         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2185         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2186                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2187         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2188     } else {
2189         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2190     }
2191 }
2192 
2193 static void fdctrl_change_cb(void *opaque, bool load)
2194 {
2195     FDrive *drive = opaque;
2196 
2197     drive->media_changed = 1;
2198     fd_revalidate(drive);
2199 }
2200 
2201 static const BlockDevOps fdctrl_block_ops = {
2202     .change_media_cb = fdctrl_change_cb,
2203 };
2204 
2205 /* Init functions */
2206 static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp)
2207 {
2208     unsigned int i;
2209     FDrive *drive;
2210 
2211     for (i = 0; i < MAX_FD; i++) {
2212         drive = &fdctrl->drives[i];
2213         drive->fdctrl = fdctrl;
2214 
2215         if (drive->blk) {
2216             if (blk_get_on_error(drive->blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC) {
2217                 error_setg(errp, "fdc doesn't support drive option werror");
2218                 return;
2219             }
2220             if (blk_get_on_error(drive->blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
2221                 error_setg(errp, "fdc doesn't support drive option rerror");
2222                 return;
2223             }
2224         }
2225 
2226         fd_init(drive);
2227         fdctrl_change_cb(drive, 0);
2228         if (drive->blk) {
2229             blk_set_dev_ops(drive->blk, &fdctrl_block_ops, drive);
2230         }
2231     }
2232 }
2233 
2234 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2235 {
2236     DeviceState *dev;
2237     ISADevice *isadev;
2238 
2239     isadev = isa_try_create(bus, TYPE_ISA_FDC);
2240     if (!isadev) {
2241         return NULL;
2242     }
2243     dev = DEVICE(isadev);
2244 
2245     if (fds[0]) {
2246         qdev_prop_set_drive_nofail(dev, "driveA", blk_by_legacy_dinfo(fds[0]));
2247     }
2248     if (fds[1]) {
2249         qdev_prop_set_drive_nofail(dev, "driveB", blk_by_legacy_dinfo(fds[1]));
2250     }
2251     qdev_init_nofail(dev);
2252 
2253     return isadev;
2254 }
2255 
2256 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2257                         hwaddr mmio_base, DriveInfo **fds)
2258 {
2259     FDCtrl *fdctrl;
2260     DeviceState *dev;
2261     SysBusDevice *sbd;
2262     FDCtrlSysBus *sys;
2263 
2264     dev = qdev_create(NULL, "sysbus-fdc");
2265     sys = SYSBUS_FDC(dev);
2266     fdctrl = &sys->state;
2267     fdctrl->dma_chann = dma_chann; /* FIXME */
2268     if (fds[0]) {
2269         qdev_prop_set_drive_nofail(dev, "driveA", blk_by_legacy_dinfo(fds[0]));
2270     }
2271     if (fds[1]) {
2272         qdev_prop_set_drive_nofail(dev, "driveB", blk_by_legacy_dinfo(fds[1]));
2273     }
2274     qdev_init_nofail(dev);
2275     sbd = SYS_BUS_DEVICE(dev);
2276     sysbus_connect_irq(sbd, 0, irq);
2277     sysbus_mmio_map(sbd, 0, mmio_base);
2278 }
2279 
2280 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2281                        DriveInfo **fds, qemu_irq *fdc_tc)
2282 {
2283     DeviceState *dev;
2284     FDCtrlSysBus *sys;
2285 
2286     dev = qdev_create(NULL, "SUNW,fdtwo");
2287     if (fds[0]) {
2288         qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(fds[0]));
2289     }
2290     qdev_init_nofail(dev);
2291     sys = SYSBUS_FDC(dev);
2292     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2293     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2294     *fdc_tc = qdev_get_gpio_in(dev, 0);
2295 }
2296 
2297 static void fdctrl_realize_common(FDCtrl *fdctrl, Error **errp)
2298 {
2299     int i, j;
2300     static int command_tables_inited = 0;
2301 
2302     /* Fill 'command_to_handler' lookup table */
2303     if (!command_tables_inited) {
2304         command_tables_inited = 1;
2305         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2306             for (j = 0; j < sizeof(command_to_handler); j++) {
2307                 if ((j & handlers[i].mask) == handlers[i].value) {
2308                     command_to_handler[j] = i;
2309                 }
2310             }
2311         }
2312     }
2313 
2314     FLOPPY_DPRINTF("init controller\n");
2315     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2316     fdctrl->fifo_size = 512;
2317     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2318                                              fdctrl_result_timer, fdctrl);
2319 
2320     fdctrl->version = 0x90; /* Intel 82078 controller */
2321     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2322     fdctrl->num_floppies = MAX_FD;
2323 
2324     if (fdctrl->dma_chann != -1) {
2325         DMA_register_channel(fdctrl->dma_chann, &fdctrl_transfer_handler, fdctrl);
2326     }
2327     fdctrl_connect_drives(fdctrl, errp);
2328 }
2329 
2330 static const MemoryRegionPortio fdc_portio_list[] = {
2331     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2332     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2333     PORTIO_END_OF_LIST(),
2334 };
2335 
2336 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2337 {
2338     ISADevice *isadev = ISA_DEVICE(dev);
2339     FDCtrlISABus *isa = ISA_FDC(dev);
2340     FDCtrl *fdctrl = &isa->state;
2341     Error *err = NULL;
2342 
2343     isa_register_portio_list(isadev, isa->iobase, fdc_portio_list, fdctrl,
2344                              "fdc");
2345 
2346     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2347     fdctrl->dma_chann = isa->dma;
2348 
2349     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2350     fdctrl_realize_common(fdctrl, &err);
2351     if (err != NULL) {
2352         error_propagate(errp, err);
2353         return;
2354     }
2355 }
2356 
2357 static void sysbus_fdc_initfn(Object *obj)
2358 {
2359     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2360     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2361     FDCtrl *fdctrl = &sys->state;
2362 
2363     fdctrl->dma_chann = -1;
2364 
2365     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2366                           "fdc", 0x08);
2367     sysbus_init_mmio(sbd, &fdctrl->iomem);
2368 }
2369 
2370 static void sun4m_fdc_initfn(Object *obj)
2371 {
2372     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2373     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2374     FDCtrl *fdctrl = &sys->state;
2375 
2376     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2377                           fdctrl, "fdctrl", 0x08);
2378     sysbus_init_mmio(sbd, &fdctrl->iomem);
2379 }
2380 
2381 static void sysbus_fdc_common_initfn(Object *obj)
2382 {
2383     DeviceState *dev = DEVICE(obj);
2384     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2385     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2386     FDCtrl *fdctrl = &sys->state;
2387 
2388     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2389 
2390     sysbus_init_irq(sbd, &fdctrl->irq);
2391     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2392 }
2393 
2394 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2395 {
2396     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2397     FDCtrl *fdctrl = &sys->state;
2398 
2399     fdctrl_realize_common(fdctrl, errp);
2400 }
2401 
2402 FDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2403 {
2404     FDCtrlISABus *isa = ISA_FDC(fdc);
2405 
2406     return isa->state.drives[i].drive;
2407 }
2408 
2409 static const VMStateDescription vmstate_isa_fdc ={
2410     .name = "fdc",
2411     .version_id = 2,
2412     .minimum_version_id = 2,
2413     .fields = (VMStateField[]) {
2414         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2415         VMSTATE_END_OF_LIST()
2416     }
2417 };
2418 
2419 static Property isa_fdc_properties[] = {
2420     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2421     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2422     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2423     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.drives[0].blk),
2424     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.drives[1].blk),
2425     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2426                     0, true),
2427     DEFINE_PROP_END_OF_LIST(),
2428 };
2429 
2430 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2431 {
2432     DeviceClass *dc = DEVICE_CLASS(klass);
2433 
2434     dc->realize = isabus_fdc_realize;
2435     dc->fw_name = "fdc";
2436     dc->reset = fdctrl_external_reset_isa;
2437     dc->vmsd = &vmstate_isa_fdc;
2438     dc->props = isa_fdc_properties;
2439     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2440 }
2441 
2442 static void isabus_fdc_instance_init(Object *obj)
2443 {
2444     FDCtrlISABus *isa = ISA_FDC(obj);
2445 
2446     device_add_bootindex_property(obj, &isa->bootindexA,
2447                                   "bootindexA", "/floppy@0",
2448                                   DEVICE(obj), NULL);
2449     device_add_bootindex_property(obj, &isa->bootindexB,
2450                                   "bootindexB", "/floppy@1",
2451                                   DEVICE(obj), NULL);
2452 }
2453 
2454 static const TypeInfo isa_fdc_info = {
2455     .name          = TYPE_ISA_FDC,
2456     .parent        = TYPE_ISA_DEVICE,
2457     .instance_size = sizeof(FDCtrlISABus),
2458     .class_init    = isabus_fdc_class_init,
2459     .instance_init = isabus_fdc_instance_init,
2460 };
2461 
2462 static const VMStateDescription vmstate_sysbus_fdc ={
2463     .name = "fdc",
2464     .version_id = 2,
2465     .minimum_version_id = 2,
2466     .fields = (VMStateField[]) {
2467         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2468         VMSTATE_END_OF_LIST()
2469     }
2470 };
2471 
2472 static Property sysbus_fdc_properties[] = {
2473     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.drives[0].blk),
2474     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.drives[1].blk),
2475     DEFINE_PROP_END_OF_LIST(),
2476 };
2477 
2478 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2479 {
2480     DeviceClass *dc = DEVICE_CLASS(klass);
2481 
2482     dc->props = sysbus_fdc_properties;
2483     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2484 }
2485 
2486 static const TypeInfo sysbus_fdc_info = {
2487     .name          = "sysbus-fdc",
2488     .parent        = TYPE_SYSBUS_FDC,
2489     .instance_init = sysbus_fdc_initfn,
2490     .class_init    = sysbus_fdc_class_init,
2491 };
2492 
2493 static Property sun4m_fdc_properties[] = {
2494     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.drives[0].blk),
2495     DEFINE_PROP_END_OF_LIST(),
2496 };
2497 
2498 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2499 {
2500     DeviceClass *dc = DEVICE_CLASS(klass);
2501 
2502     dc->props = sun4m_fdc_properties;
2503     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2504 }
2505 
2506 static const TypeInfo sun4m_fdc_info = {
2507     .name          = "SUNW,fdtwo",
2508     .parent        = TYPE_SYSBUS_FDC,
2509     .instance_init = sun4m_fdc_initfn,
2510     .class_init    = sun4m_fdc_class_init,
2511 };
2512 
2513 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2514 {
2515     DeviceClass *dc = DEVICE_CLASS(klass);
2516 
2517     dc->realize = sysbus_fdc_common_realize;
2518     dc->reset = fdctrl_external_reset_sysbus;
2519     dc->vmsd = &vmstate_sysbus_fdc;
2520 }
2521 
2522 static const TypeInfo sysbus_fdc_type_info = {
2523     .name          = TYPE_SYSBUS_FDC,
2524     .parent        = TYPE_SYS_BUS_DEVICE,
2525     .instance_size = sizeof(FDCtrlSysBus),
2526     .instance_init = sysbus_fdc_common_initfn,
2527     .abstract      = true,
2528     .class_init    = sysbus_fdc_common_class_init,
2529 };
2530 
2531 static void fdc_register_types(void)
2532 {
2533     type_register_static(&isa_fdc_info);
2534     type_register_static(&sysbus_fdc_type_info);
2535     type_register_static(&sysbus_fdc_info);
2536     type_register_static(&sun4m_fdc_info);
2537 }
2538 
2539 type_init(fdc_register_types)
2540