xref: /openbmc/qemu/hw/block/fdc.c (revision f76b348e)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/irq.h"
36 #include "hw/isa/isa.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/sysbus.h"
39 #include "migration/vmstate.h"
40 #include "hw/block/block.h"
41 #include "sysemu/block-backend.h"
42 #include "sysemu/blockdev.h"
43 #include "sysemu/sysemu.h"
44 #include "qemu/log.h"
45 #include "qemu/main-loop.h"
46 #include "qemu/module.h"
47 #include "trace.h"
48 
49 /********************************************************/
50 /* debug Floppy devices */
51 
52 #define DEBUG_FLOPPY 0
53 
54 #define FLOPPY_DPRINTF(fmt, ...)                                \
55     do {                                                        \
56         if (DEBUG_FLOPPY) {                                     \
57             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
58         }                                                       \
59     } while (0)
60 
61 
62 /********************************************************/
63 /* qdev floppy bus                                      */
64 
65 #define TYPE_FLOPPY_BUS "floppy-bus"
66 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
67 
68 typedef struct FDCtrl FDCtrl;
69 typedef struct FDrive FDrive;
70 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
71 
72 typedef struct FloppyBus {
73     BusState bus;
74     FDCtrl *fdc;
75 } FloppyBus;
76 
77 static const TypeInfo floppy_bus_info = {
78     .name = TYPE_FLOPPY_BUS,
79     .parent = TYPE_BUS,
80     .instance_size = sizeof(FloppyBus),
81 };
82 
83 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
84 {
85     qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
86     bus->fdc = fdc;
87 }
88 
89 
90 /********************************************************/
91 /* Floppy drive emulation                               */
92 
93 typedef enum FDriveRate {
94     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
95     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
96     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
97     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
98 } FDriveRate;
99 
100 typedef enum FDriveSize {
101     FDRIVE_SIZE_UNKNOWN,
102     FDRIVE_SIZE_350,
103     FDRIVE_SIZE_525,
104 } FDriveSize;
105 
106 typedef struct FDFormat {
107     FloppyDriveType drive;
108     uint8_t last_sect;
109     uint8_t max_track;
110     uint8_t max_head;
111     FDriveRate rate;
112 } FDFormat;
113 
114 /* In many cases, the total sector size of a format is enough to uniquely
115  * identify it. However, there are some total sector collisions between
116  * formats of different physical size, and these are noted below by
117  * highlighting the total sector size for entries with collisions. */
118 static const FDFormat fd_formats[] = {
119     /* First entry is default format */
120     /* 1.44 MB 3"1/2 floppy disks */
121     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
122     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
123     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
124     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
125     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
126     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
127     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
128     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
129     /* 2.88 MB 3"1/2 floppy disks */
130     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
131     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
132     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
133     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
134     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
135     /* 720 kB 3"1/2 floppy disks */
136     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
137     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
138     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
139     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
140     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
141     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
142     /* 1.2 MB 5"1/4 floppy disks */
143     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
144     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
145     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
146     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
147     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
148     /* 720 kB 5"1/4 floppy disks */
149     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
150     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
151     /* 360 kB 5"1/4 floppy disks */
152     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
153     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
154     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
155     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
156     /* 320 kB 5"1/4 floppy disks */
157     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
158     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
159     /* 360 kB must match 5"1/4 better than 3"1/2... */
160     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
161     /* end */
162     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
163 };
164 
165 static FDriveSize drive_size(FloppyDriveType drive)
166 {
167     switch (drive) {
168     case FLOPPY_DRIVE_TYPE_120:
169         return FDRIVE_SIZE_525;
170     case FLOPPY_DRIVE_TYPE_144:
171     case FLOPPY_DRIVE_TYPE_288:
172         return FDRIVE_SIZE_350;
173     default:
174         return FDRIVE_SIZE_UNKNOWN;
175     }
176 }
177 
178 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
179 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
180 
181 /* Will always be a fixed parameter for us */
182 #define FD_SECTOR_LEN          512
183 #define FD_SECTOR_SC           2   /* Sector size code */
184 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
185 
186 /* Floppy disk drive emulation */
187 typedef enum FDiskFlags {
188     FDISK_DBL_SIDES  = 0x01,
189 } FDiskFlags;
190 
191 struct FDrive {
192     FDCtrl *fdctrl;
193     BlockBackend *blk;
194     BlockConf *conf;
195     /* Drive status */
196     FloppyDriveType drive;    /* CMOS drive type        */
197     uint8_t perpendicular;    /* 2.88 MB access mode    */
198     /* Position */
199     uint8_t head;
200     uint8_t track;
201     uint8_t sect;
202     /* Media */
203     FloppyDriveType disk;     /* Current disk type      */
204     FDiskFlags flags;
205     uint8_t last_sect;        /* Nb sector per track    */
206     uint8_t max_track;        /* Nb of tracks           */
207     uint16_t bps;             /* Bytes per sector       */
208     uint8_t ro;               /* Is read-only           */
209     uint8_t media_changed;    /* Is media changed       */
210     uint8_t media_rate;       /* Data rate of medium    */
211 
212     bool media_validated;     /* Have we validated the media? */
213 };
214 
215 
216 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
217 
218 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
219  * currently goes through some pains to keep seeks within the bounds
220  * established by last_sect and max_track. Correcting this is difficult,
221  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
222  *
223  * For now: allow empty drives to have large bounds so we can seek around,
224  * with the understanding that when a diskette is inserted, the bounds will
225  * properly tighten to match the geometry of that inserted medium.
226  */
227 static void fd_empty_seek_hack(FDrive *drv)
228 {
229     drv->last_sect = 0xFF;
230     drv->max_track = 0xFF;
231 }
232 
233 static void fd_init(FDrive *drv)
234 {
235     /* Drive */
236     drv->perpendicular = 0;
237     /* Disk */
238     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
239     drv->last_sect = 0;
240     drv->max_track = 0;
241     drv->ro = true;
242     drv->media_changed = 1;
243 }
244 
245 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
246 
247 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
248                           uint8_t last_sect, uint8_t num_sides)
249 {
250     return (((track * num_sides) + head) * last_sect) + sect - 1;
251 }
252 
253 /* Returns current position, in sectors, for given drive */
254 static int fd_sector(FDrive *drv)
255 {
256     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
257                           NUM_SIDES(drv));
258 }
259 
260 /* Returns current position, in bytes, for given drive */
261 static int fd_offset(FDrive *drv)
262 {
263     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
264     return fd_sector(drv) << BDRV_SECTOR_BITS;
265 }
266 
267 /* Seek to a new position:
268  * returns 0 if already on right track
269  * returns 1 if track changed
270  * returns 2 if track is invalid
271  * returns 3 if sector is invalid
272  * returns 4 if seek is disabled
273  */
274 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
275                    int enable_seek)
276 {
277     uint32_t sector;
278     int ret;
279 
280     if (track > drv->max_track ||
281         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
282         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
283                        head, track, sect, 1,
284                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
285                        drv->max_track, drv->last_sect);
286         return 2;
287     }
288     if (sect > drv->last_sect) {
289         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
290                        head, track, sect, 1,
291                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
292                        drv->max_track, drv->last_sect);
293         return 3;
294     }
295     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
296     ret = 0;
297     if (sector != fd_sector(drv)) {
298 #if 0
299         if (!enable_seek) {
300             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
301                            " (max=%d %02x %02x)\n",
302                            head, track, sect, 1, drv->max_track,
303                            drv->last_sect);
304             return 4;
305         }
306 #endif
307         drv->head = head;
308         if (drv->track != track) {
309             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
310                 drv->media_changed = 0;
311             }
312             ret = 1;
313         }
314         drv->track = track;
315         drv->sect = sect;
316     }
317 
318     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
319         ret = 2;
320     }
321 
322     return ret;
323 }
324 
325 /* Set drive back to track 0 */
326 static void fd_recalibrate(FDrive *drv)
327 {
328     FLOPPY_DPRINTF("recalibrate\n");
329     fd_seek(drv, 0, 0, 1, 1);
330 }
331 
332 /**
333  * Determine geometry based on inserted diskette.
334  * Will not operate on an empty drive.
335  *
336  * @return: 0 on success, -1 if the drive is empty.
337  */
338 static int pick_geometry(FDrive *drv)
339 {
340     BlockBackend *blk = drv->blk;
341     const FDFormat *parse;
342     uint64_t nb_sectors, size;
343     int i;
344     int match, size_match, type_match;
345     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
346 
347     /* We can only pick a geometry if we have a diskette. */
348     if (!drv->blk || !blk_is_inserted(drv->blk) ||
349         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
350     {
351         return -1;
352     }
353 
354     /* We need to determine the likely geometry of the inserted medium.
355      * In order of preference, we look for:
356      * (1) The same drive type and number of sectors,
357      * (2) The same diskette size and number of sectors,
358      * (3) The same drive type.
359      *
360      * In all cases, matches that occur higher in the drive table will take
361      * precedence over matches that occur later in the table.
362      */
363     blk_get_geometry(blk, &nb_sectors);
364     match = size_match = type_match = -1;
365     for (i = 0; ; i++) {
366         parse = &fd_formats[i];
367         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
368             break;
369         }
370         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
371         if (nb_sectors == size) {
372             if (magic || parse->drive == drv->drive) {
373                 /* (1) perfect match -- nb_sectors and drive type */
374                 goto out;
375             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
376                 /* (2) size match -- nb_sectors and physical medium size */
377                 match = (match == -1) ? i : match;
378             } else {
379                 /* This is suspicious -- Did the user misconfigure? */
380                 size_match = (size_match == -1) ? i : size_match;
381             }
382         } else if (type_match == -1) {
383             if ((parse->drive == drv->drive) ||
384                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
385                 /* (3) type match -- nb_sectors mismatch, but matches the type
386                  *     specified explicitly by the user, or matches the fallback
387                  *     default type when using the drive autodetect mechanism */
388                 type_match = i;
389             }
390         }
391     }
392 
393     /* No exact match found */
394     if (match == -1) {
395         if (size_match != -1) {
396             parse = &fd_formats[size_match];
397             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
398                            "but inserted medium appears to be a "
399                            "%"PRId64" sector '%s' type\n",
400                            FloppyDriveType_str(drv->drive),
401                            nb_sectors,
402                            FloppyDriveType_str(parse->drive));
403         }
404         assert(type_match != -1 && "misconfigured fd_format");
405         match = type_match;
406     }
407     parse = &(fd_formats[match]);
408 
409  out:
410     if (parse->max_head == 0) {
411         drv->flags &= ~FDISK_DBL_SIDES;
412     } else {
413         drv->flags |= FDISK_DBL_SIDES;
414     }
415     drv->max_track = parse->max_track;
416     drv->last_sect = parse->last_sect;
417     drv->disk = parse->drive;
418     drv->media_rate = parse->rate;
419     return 0;
420 }
421 
422 static void pick_drive_type(FDrive *drv)
423 {
424     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
425         return;
426     }
427 
428     if (pick_geometry(drv) == 0) {
429         drv->drive = drv->disk;
430     } else {
431         drv->drive = get_fallback_drive_type(drv);
432     }
433 
434     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
435 }
436 
437 /* Revalidate a disk drive after a disk change */
438 static void fd_revalidate(FDrive *drv)
439 {
440     int rc;
441 
442     FLOPPY_DPRINTF("revalidate\n");
443     if (drv->blk != NULL) {
444         drv->ro = blk_is_read_only(drv->blk);
445         if (!blk_is_inserted(drv->blk)) {
446             FLOPPY_DPRINTF("No disk in drive\n");
447             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
448             fd_empty_seek_hack(drv);
449         } else if (!drv->media_validated) {
450             rc = pick_geometry(drv);
451             if (rc) {
452                 FLOPPY_DPRINTF("Could not validate floppy drive media");
453             } else {
454                 drv->media_validated = true;
455                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
456                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
457                                drv->max_track, drv->last_sect,
458                                drv->ro ? "ro" : "rw");
459             }
460         }
461     } else {
462         FLOPPY_DPRINTF("No drive connected\n");
463         drv->last_sect = 0;
464         drv->max_track = 0;
465         drv->flags &= ~FDISK_DBL_SIDES;
466         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
467         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
468     }
469 }
470 
471 static void fd_change_cb(void *opaque, bool load, Error **errp)
472 {
473     FDrive *drive = opaque;
474 
475     if (!load) {
476         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
477     } else {
478         if (!blkconf_apply_backend_options(drive->conf,
479                                            blk_is_read_only(drive->blk), false,
480                                            errp)) {
481             return;
482         }
483     }
484 
485     drive->media_changed = 1;
486     drive->media_validated = false;
487     fd_revalidate(drive);
488 }
489 
490 static const BlockDevOps fd_block_ops = {
491     .change_media_cb = fd_change_cb,
492 };
493 
494 
495 #define TYPE_FLOPPY_DRIVE "floppy"
496 #define FLOPPY_DRIVE(obj) \
497      OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
498 
499 typedef struct FloppyDrive {
500     DeviceState     qdev;
501     uint32_t        unit;
502     BlockConf       conf;
503     FloppyDriveType type;
504 } FloppyDrive;
505 
506 static Property floppy_drive_properties[] = {
507     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
508     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
509     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
510                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
511                         FloppyDriveType),
512     DEFINE_PROP_END_OF_LIST(),
513 };
514 
515 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
516 {
517     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
518     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
519     FDrive *drive;
520     bool read_only;
521     int ret;
522 
523     if (dev->unit == -1) {
524         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
525             drive = get_drv(bus->fdc, dev->unit);
526             if (!drive->blk) {
527                 break;
528             }
529         }
530     }
531 
532     if (dev->unit >= MAX_FD) {
533         error_setg(errp, "Can't create floppy unit %d, bus supports "
534                    "only %d units", dev->unit, MAX_FD);
535         return;
536     }
537 
538     drive = get_drv(bus->fdc, dev->unit);
539     if (drive->blk) {
540         error_setg(errp, "Floppy unit %d is in use", dev->unit);
541         return;
542     }
543 
544     if (!dev->conf.blk) {
545         /* Anonymous BlockBackend for an empty drive */
546         dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
547         ret = blk_attach_dev(dev->conf.blk, qdev);
548         assert(ret == 0);
549 
550         /* Don't take write permissions on an empty drive to allow attaching a
551          * read-only node later */
552         read_only = true;
553     } else {
554         read_only = !blk_bs(dev->conf.blk) || blk_is_read_only(dev->conf.blk);
555     }
556 
557     blkconf_blocksizes(&dev->conf);
558     if (dev->conf.logical_block_size != 512 ||
559         dev->conf.physical_block_size != 512)
560     {
561         error_setg(errp, "Physical and logical block size must "
562                    "be 512 for floppy");
563         return;
564     }
565 
566     /* rerror/werror aren't supported by fdc and therefore not even registered
567      * with qdev. So set the defaults manually before they are used in
568      * blkconf_apply_backend_options(). */
569     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
570     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
571 
572     if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
573         return;
574     }
575 
576     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
577      * for empty drives. */
578     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
579         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
580         error_setg(errp, "fdc doesn't support drive option werror");
581         return;
582     }
583     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
584         error_setg(errp, "fdc doesn't support drive option rerror");
585         return;
586     }
587 
588     drive->conf = &dev->conf;
589     drive->blk = dev->conf.blk;
590     drive->fdctrl = bus->fdc;
591 
592     fd_init(drive);
593     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
594 
595     /* Keep 'type' qdev property and FDrive->drive in sync */
596     drive->drive = dev->type;
597     pick_drive_type(drive);
598     dev->type = drive->drive;
599 
600     fd_revalidate(drive);
601 }
602 
603 static void floppy_drive_class_init(ObjectClass *klass, void *data)
604 {
605     DeviceClass *k = DEVICE_CLASS(klass);
606     k->realize = floppy_drive_realize;
607     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
608     k->bus_type = TYPE_FLOPPY_BUS;
609     device_class_set_props(k, floppy_drive_properties);
610     k->desc = "virtual floppy drive";
611 }
612 
613 static const TypeInfo floppy_drive_info = {
614     .name = TYPE_FLOPPY_DRIVE,
615     .parent = TYPE_DEVICE,
616     .instance_size = sizeof(FloppyDrive),
617     .class_init = floppy_drive_class_init,
618 };
619 
620 /********************************************************/
621 /* Intel 82078 floppy disk controller emulation          */
622 
623 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
624 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
625 static int fdctrl_transfer_handler (void *opaque, int nchan,
626                                     int dma_pos, int dma_len);
627 static void fdctrl_raise_irq(FDCtrl *fdctrl);
628 static FDrive *get_cur_drv(FDCtrl *fdctrl);
629 
630 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
631 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
632 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
633 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
634 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
635 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
636 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
637 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
638 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
639 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
640 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
641 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
642 
643 enum {
644     FD_DIR_WRITE   = 0,
645     FD_DIR_READ    = 1,
646     FD_DIR_SCANE   = 2,
647     FD_DIR_SCANL   = 3,
648     FD_DIR_SCANH   = 4,
649     FD_DIR_VERIFY  = 5,
650 };
651 
652 enum {
653     FD_STATE_MULTI  = 0x01,	/* multi track flag */
654     FD_STATE_FORMAT = 0x02,	/* format flag */
655 };
656 
657 enum {
658     FD_REG_SRA = 0x00,
659     FD_REG_SRB = 0x01,
660     FD_REG_DOR = 0x02,
661     FD_REG_TDR = 0x03,
662     FD_REG_MSR = 0x04,
663     FD_REG_DSR = 0x04,
664     FD_REG_FIFO = 0x05,
665     FD_REG_DIR = 0x07,
666     FD_REG_CCR = 0x07,
667 };
668 
669 enum {
670     FD_CMD_READ_TRACK = 0x02,
671     FD_CMD_SPECIFY = 0x03,
672     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
673     FD_CMD_WRITE = 0x05,
674     FD_CMD_READ = 0x06,
675     FD_CMD_RECALIBRATE = 0x07,
676     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
677     FD_CMD_WRITE_DELETED = 0x09,
678     FD_CMD_READ_ID = 0x0a,
679     FD_CMD_READ_DELETED = 0x0c,
680     FD_CMD_FORMAT_TRACK = 0x0d,
681     FD_CMD_DUMPREG = 0x0e,
682     FD_CMD_SEEK = 0x0f,
683     FD_CMD_VERSION = 0x10,
684     FD_CMD_SCAN_EQUAL = 0x11,
685     FD_CMD_PERPENDICULAR_MODE = 0x12,
686     FD_CMD_CONFIGURE = 0x13,
687     FD_CMD_LOCK = 0x14,
688     FD_CMD_VERIFY = 0x16,
689     FD_CMD_POWERDOWN_MODE = 0x17,
690     FD_CMD_PART_ID = 0x18,
691     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
692     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
693     FD_CMD_SAVE = 0x2e,
694     FD_CMD_OPTION = 0x33,
695     FD_CMD_RESTORE = 0x4e,
696     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
697     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
698     FD_CMD_FORMAT_AND_WRITE = 0xcd,
699     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
700 };
701 
702 enum {
703     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
704     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
705     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
706     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
707     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
708 };
709 
710 enum {
711     FD_SR0_DS0      = 0x01,
712     FD_SR0_DS1      = 0x02,
713     FD_SR0_HEAD     = 0x04,
714     FD_SR0_EQPMT    = 0x10,
715     FD_SR0_SEEK     = 0x20,
716     FD_SR0_ABNTERM  = 0x40,
717     FD_SR0_INVCMD   = 0x80,
718     FD_SR0_RDYCHG   = 0xc0,
719 };
720 
721 enum {
722     FD_SR1_MA       = 0x01, /* Missing address mark */
723     FD_SR1_NW       = 0x02, /* Not writable */
724     FD_SR1_EC       = 0x80, /* End of cylinder */
725 };
726 
727 enum {
728     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
729     FD_SR2_SEH      = 0x08, /* Scan equal hit */
730 };
731 
732 enum {
733     FD_SRA_DIR      = 0x01,
734     FD_SRA_nWP      = 0x02,
735     FD_SRA_nINDX    = 0x04,
736     FD_SRA_HDSEL    = 0x08,
737     FD_SRA_nTRK0    = 0x10,
738     FD_SRA_STEP     = 0x20,
739     FD_SRA_nDRV2    = 0x40,
740     FD_SRA_INTPEND  = 0x80,
741 };
742 
743 enum {
744     FD_SRB_MTR0     = 0x01,
745     FD_SRB_MTR1     = 0x02,
746     FD_SRB_WGATE    = 0x04,
747     FD_SRB_RDATA    = 0x08,
748     FD_SRB_WDATA    = 0x10,
749     FD_SRB_DR0      = 0x20,
750 };
751 
752 enum {
753 #if MAX_FD == 4
754     FD_DOR_SELMASK  = 0x03,
755 #else
756     FD_DOR_SELMASK  = 0x01,
757 #endif
758     FD_DOR_nRESET   = 0x04,
759     FD_DOR_DMAEN    = 0x08,
760     FD_DOR_MOTEN0   = 0x10,
761     FD_DOR_MOTEN1   = 0x20,
762     FD_DOR_MOTEN2   = 0x40,
763     FD_DOR_MOTEN3   = 0x80,
764 };
765 
766 enum {
767 #if MAX_FD == 4
768     FD_TDR_BOOTSEL  = 0x0c,
769 #else
770     FD_TDR_BOOTSEL  = 0x04,
771 #endif
772 };
773 
774 enum {
775     FD_DSR_DRATEMASK= 0x03,
776     FD_DSR_PWRDOWN  = 0x40,
777     FD_DSR_SWRESET  = 0x80,
778 };
779 
780 enum {
781     FD_MSR_DRV0BUSY = 0x01,
782     FD_MSR_DRV1BUSY = 0x02,
783     FD_MSR_DRV2BUSY = 0x04,
784     FD_MSR_DRV3BUSY = 0x08,
785     FD_MSR_CMDBUSY  = 0x10,
786     FD_MSR_NONDMA   = 0x20,
787     FD_MSR_DIO      = 0x40,
788     FD_MSR_RQM      = 0x80,
789 };
790 
791 enum {
792     FD_DIR_DSKCHG   = 0x80,
793 };
794 
795 /*
796  * See chapter 5.0 "Controller phases" of the spec:
797  *
798  * Command phase:
799  * The host writes a command and its parameters into the FIFO. The command
800  * phase is completed when all parameters for the command have been supplied,
801  * and execution phase is entered.
802  *
803  * Execution phase:
804  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
805  * contains the payload now, otherwise it's unused. When all bytes of the
806  * required data have been transferred, the state is switched to either result
807  * phase (if the command produces status bytes) or directly back into the
808  * command phase for the next command.
809  *
810  * Result phase:
811  * The host reads out the FIFO, which contains one or more result bytes now.
812  */
813 enum {
814     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
815     FD_PHASE_RECONSTRUCT    = 0,
816 
817     FD_PHASE_COMMAND        = 1,
818     FD_PHASE_EXECUTION      = 2,
819     FD_PHASE_RESULT         = 3,
820 };
821 
822 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
823 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
824 
825 struct FDCtrl {
826     MemoryRegion iomem;
827     qemu_irq irq;
828     /* Controller state */
829     QEMUTimer *result_timer;
830     int dma_chann;
831     uint8_t phase;
832     IsaDma *dma;
833     /* Controller's identification */
834     uint8_t version;
835     /* HW */
836     uint8_t sra;
837     uint8_t srb;
838     uint8_t dor;
839     uint8_t dor_vmstate; /* only used as temp during vmstate */
840     uint8_t tdr;
841     uint8_t dsr;
842     uint8_t msr;
843     uint8_t cur_drv;
844     uint8_t status0;
845     uint8_t status1;
846     uint8_t status2;
847     /* Command FIFO */
848     uint8_t *fifo;
849     int32_t fifo_size;
850     uint32_t data_pos;
851     uint32_t data_len;
852     uint8_t data_state;
853     uint8_t data_dir;
854     uint8_t eot; /* last wanted sector */
855     /* States kept only to be returned back */
856     /* precompensation */
857     uint8_t precomp_trk;
858     uint8_t config;
859     uint8_t lock;
860     /* Power down config (also with status regB access mode */
861     uint8_t pwrd;
862     /* Floppy drives */
863     FloppyBus bus;
864     uint8_t num_floppies;
865     FDrive drives[MAX_FD];
866     struct {
867         BlockBackend *blk;
868         FloppyDriveType type;
869     } qdev_for_drives[MAX_FD];
870     int reset_sensei;
871     uint32_t check_media_rate;
872     FloppyDriveType fallback; /* type=auto failure fallback */
873     /* Timers state */
874     uint8_t timer0;
875     uint8_t timer1;
876     PortioList portio_list;
877 };
878 
879 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
880 {
881     return drv->fdctrl->fallback;
882 }
883 
884 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
885 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
886 
887 typedef struct FDCtrlSysBus {
888     /*< private >*/
889     SysBusDevice parent_obj;
890     /*< public >*/
891 
892     struct FDCtrl state;
893 } FDCtrlSysBus;
894 
895 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
896 
897 typedef struct FDCtrlISABus {
898     ISADevice parent_obj;
899 
900     uint32_t iobase;
901     uint32_t irq;
902     uint32_t dma;
903     struct FDCtrl state;
904     int32_t bootindexA;
905     int32_t bootindexB;
906 } FDCtrlISABus;
907 
908 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
909 {
910     FDCtrl *fdctrl = opaque;
911     uint32_t retval;
912 
913     reg &= 7;
914     switch (reg) {
915     case FD_REG_SRA:
916         retval = fdctrl_read_statusA(fdctrl);
917         break;
918     case FD_REG_SRB:
919         retval = fdctrl_read_statusB(fdctrl);
920         break;
921     case FD_REG_DOR:
922         retval = fdctrl_read_dor(fdctrl);
923         break;
924     case FD_REG_TDR:
925         retval = fdctrl_read_tape(fdctrl);
926         break;
927     case FD_REG_MSR:
928         retval = fdctrl_read_main_status(fdctrl);
929         break;
930     case FD_REG_FIFO:
931         retval = fdctrl_read_data(fdctrl);
932         break;
933     case FD_REG_DIR:
934         retval = fdctrl_read_dir(fdctrl);
935         break;
936     default:
937         retval = (uint32_t)(-1);
938         break;
939     }
940     trace_fdc_ioport_read(reg, retval);
941 
942     return retval;
943 }
944 
945 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
946 {
947     FDCtrl *fdctrl = opaque;
948 
949     reg &= 7;
950     trace_fdc_ioport_write(reg, value);
951     switch (reg) {
952     case FD_REG_DOR:
953         fdctrl_write_dor(fdctrl, value);
954         break;
955     case FD_REG_TDR:
956         fdctrl_write_tape(fdctrl, value);
957         break;
958     case FD_REG_DSR:
959         fdctrl_write_rate(fdctrl, value);
960         break;
961     case FD_REG_FIFO:
962         fdctrl_write_data(fdctrl, value);
963         break;
964     case FD_REG_CCR:
965         fdctrl_write_ccr(fdctrl, value);
966         break;
967     default:
968         break;
969     }
970 }
971 
972 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
973                                  unsigned ize)
974 {
975     return fdctrl_read(opaque, (uint32_t)reg);
976 }
977 
978 static void fdctrl_write_mem (void *opaque, hwaddr reg,
979                               uint64_t value, unsigned size)
980 {
981     fdctrl_write(opaque, (uint32_t)reg, value);
982 }
983 
984 static const MemoryRegionOps fdctrl_mem_ops = {
985     .read = fdctrl_read_mem,
986     .write = fdctrl_write_mem,
987     .endianness = DEVICE_NATIVE_ENDIAN,
988 };
989 
990 static const MemoryRegionOps fdctrl_mem_strict_ops = {
991     .read = fdctrl_read_mem,
992     .write = fdctrl_write_mem,
993     .endianness = DEVICE_NATIVE_ENDIAN,
994     .valid = {
995         .min_access_size = 1,
996         .max_access_size = 1,
997     },
998 };
999 
1000 static bool fdrive_media_changed_needed(void *opaque)
1001 {
1002     FDrive *drive = opaque;
1003 
1004     return (drive->blk != NULL && drive->media_changed != 1);
1005 }
1006 
1007 static const VMStateDescription vmstate_fdrive_media_changed = {
1008     .name = "fdrive/media_changed",
1009     .version_id = 1,
1010     .minimum_version_id = 1,
1011     .needed = fdrive_media_changed_needed,
1012     .fields = (VMStateField[]) {
1013         VMSTATE_UINT8(media_changed, FDrive),
1014         VMSTATE_END_OF_LIST()
1015     }
1016 };
1017 
1018 static bool fdrive_media_rate_needed(void *opaque)
1019 {
1020     FDrive *drive = opaque;
1021 
1022     return drive->fdctrl->check_media_rate;
1023 }
1024 
1025 static const VMStateDescription vmstate_fdrive_media_rate = {
1026     .name = "fdrive/media_rate",
1027     .version_id = 1,
1028     .minimum_version_id = 1,
1029     .needed = fdrive_media_rate_needed,
1030     .fields = (VMStateField[]) {
1031         VMSTATE_UINT8(media_rate, FDrive),
1032         VMSTATE_END_OF_LIST()
1033     }
1034 };
1035 
1036 static bool fdrive_perpendicular_needed(void *opaque)
1037 {
1038     FDrive *drive = opaque;
1039 
1040     return drive->perpendicular != 0;
1041 }
1042 
1043 static const VMStateDescription vmstate_fdrive_perpendicular = {
1044     .name = "fdrive/perpendicular",
1045     .version_id = 1,
1046     .minimum_version_id = 1,
1047     .needed = fdrive_perpendicular_needed,
1048     .fields = (VMStateField[]) {
1049         VMSTATE_UINT8(perpendicular, FDrive),
1050         VMSTATE_END_OF_LIST()
1051     }
1052 };
1053 
1054 static int fdrive_post_load(void *opaque, int version_id)
1055 {
1056     fd_revalidate(opaque);
1057     return 0;
1058 }
1059 
1060 static const VMStateDescription vmstate_fdrive = {
1061     .name = "fdrive",
1062     .version_id = 1,
1063     .minimum_version_id = 1,
1064     .post_load = fdrive_post_load,
1065     .fields = (VMStateField[]) {
1066         VMSTATE_UINT8(head, FDrive),
1067         VMSTATE_UINT8(track, FDrive),
1068         VMSTATE_UINT8(sect, FDrive),
1069         VMSTATE_END_OF_LIST()
1070     },
1071     .subsections = (const VMStateDescription*[]) {
1072         &vmstate_fdrive_media_changed,
1073         &vmstate_fdrive_media_rate,
1074         &vmstate_fdrive_perpendicular,
1075         NULL
1076     }
1077 };
1078 
1079 /*
1080  * Reconstructs the phase from register values according to the logic that was
1081  * implemented in qemu 2.3. This is the default value that is used if the phase
1082  * subsection is not present on migration.
1083  *
1084  * Don't change this function to reflect newer qemu versions, it is part of
1085  * the migration ABI.
1086  */
1087 static int reconstruct_phase(FDCtrl *fdctrl)
1088 {
1089     if (fdctrl->msr & FD_MSR_NONDMA) {
1090         return FD_PHASE_EXECUTION;
1091     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1092         /* qemu 2.3 disabled RQM only during DMA transfers */
1093         return FD_PHASE_EXECUTION;
1094     } else if (fdctrl->msr & FD_MSR_DIO) {
1095         return FD_PHASE_RESULT;
1096     } else {
1097         return FD_PHASE_COMMAND;
1098     }
1099 }
1100 
1101 static int fdc_pre_save(void *opaque)
1102 {
1103     FDCtrl *s = opaque;
1104 
1105     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1106 
1107     return 0;
1108 }
1109 
1110 static int fdc_pre_load(void *opaque)
1111 {
1112     FDCtrl *s = opaque;
1113     s->phase = FD_PHASE_RECONSTRUCT;
1114     return 0;
1115 }
1116 
1117 static int fdc_post_load(void *opaque, int version_id)
1118 {
1119     FDCtrl *s = opaque;
1120 
1121     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1122     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1123 
1124     if (s->phase == FD_PHASE_RECONSTRUCT) {
1125         s->phase = reconstruct_phase(s);
1126     }
1127 
1128     return 0;
1129 }
1130 
1131 static bool fdc_reset_sensei_needed(void *opaque)
1132 {
1133     FDCtrl *s = opaque;
1134 
1135     return s->reset_sensei != 0;
1136 }
1137 
1138 static const VMStateDescription vmstate_fdc_reset_sensei = {
1139     .name = "fdc/reset_sensei",
1140     .version_id = 1,
1141     .minimum_version_id = 1,
1142     .needed = fdc_reset_sensei_needed,
1143     .fields = (VMStateField[]) {
1144         VMSTATE_INT32(reset_sensei, FDCtrl),
1145         VMSTATE_END_OF_LIST()
1146     }
1147 };
1148 
1149 static bool fdc_result_timer_needed(void *opaque)
1150 {
1151     FDCtrl *s = opaque;
1152 
1153     return timer_pending(s->result_timer);
1154 }
1155 
1156 static const VMStateDescription vmstate_fdc_result_timer = {
1157     .name = "fdc/result_timer",
1158     .version_id = 1,
1159     .minimum_version_id = 1,
1160     .needed = fdc_result_timer_needed,
1161     .fields = (VMStateField[]) {
1162         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1163         VMSTATE_END_OF_LIST()
1164     }
1165 };
1166 
1167 static bool fdc_phase_needed(void *opaque)
1168 {
1169     FDCtrl *fdctrl = opaque;
1170 
1171     return reconstruct_phase(fdctrl) != fdctrl->phase;
1172 }
1173 
1174 static const VMStateDescription vmstate_fdc_phase = {
1175     .name = "fdc/phase",
1176     .version_id = 1,
1177     .minimum_version_id = 1,
1178     .needed = fdc_phase_needed,
1179     .fields = (VMStateField[]) {
1180         VMSTATE_UINT8(phase, FDCtrl),
1181         VMSTATE_END_OF_LIST()
1182     }
1183 };
1184 
1185 static const VMStateDescription vmstate_fdc = {
1186     .name = "fdc",
1187     .version_id = 2,
1188     .minimum_version_id = 2,
1189     .pre_save = fdc_pre_save,
1190     .pre_load = fdc_pre_load,
1191     .post_load = fdc_post_load,
1192     .fields = (VMStateField[]) {
1193         /* Controller State */
1194         VMSTATE_UINT8(sra, FDCtrl),
1195         VMSTATE_UINT8(srb, FDCtrl),
1196         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1197         VMSTATE_UINT8(tdr, FDCtrl),
1198         VMSTATE_UINT8(dsr, FDCtrl),
1199         VMSTATE_UINT8(msr, FDCtrl),
1200         VMSTATE_UINT8(status0, FDCtrl),
1201         VMSTATE_UINT8(status1, FDCtrl),
1202         VMSTATE_UINT8(status2, FDCtrl),
1203         /* Command FIFO */
1204         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1205                              uint8_t),
1206         VMSTATE_UINT32(data_pos, FDCtrl),
1207         VMSTATE_UINT32(data_len, FDCtrl),
1208         VMSTATE_UINT8(data_state, FDCtrl),
1209         VMSTATE_UINT8(data_dir, FDCtrl),
1210         VMSTATE_UINT8(eot, FDCtrl),
1211         /* States kept only to be returned back */
1212         VMSTATE_UINT8(timer0, FDCtrl),
1213         VMSTATE_UINT8(timer1, FDCtrl),
1214         VMSTATE_UINT8(precomp_trk, FDCtrl),
1215         VMSTATE_UINT8(config, FDCtrl),
1216         VMSTATE_UINT8(lock, FDCtrl),
1217         VMSTATE_UINT8(pwrd, FDCtrl),
1218         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1219         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1220                              vmstate_fdrive, FDrive),
1221         VMSTATE_END_OF_LIST()
1222     },
1223     .subsections = (const VMStateDescription*[]) {
1224         &vmstate_fdc_reset_sensei,
1225         &vmstate_fdc_result_timer,
1226         &vmstate_fdc_phase,
1227         NULL
1228     }
1229 };
1230 
1231 static void fdctrl_external_reset_sysbus(DeviceState *d)
1232 {
1233     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1234     FDCtrl *s = &sys->state;
1235 
1236     fdctrl_reset(s, 0);
1237 }
1238 
1239 static void fdctrl_external_reset_isa(DeviceState *d)
1240 {
1241     FDCtrlISABus *isa = ISA_FDC(d);
1242     FDCtrl *s = &isa->state;
1243 
1244     fdctrl_reset(s, 0);
1245 }
1246 
1247 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1248 {
1249     //FDCtrl *s = opaque;
1250 
1251     if (level) {
1252         // XXX
1253         FLOPPY_DPRINTF("TC pulsed\n");
1254     }
1255 }
1256 
1257 /* Change IRQ state */
1258 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1259 {
1260     fdctrl->status0 = 0;
1261     if (!(fdctrl->sra & FD_SRA_INTPEND))
1262         return;
1263     FLOPPY_DPRINTF("Reset interrupt\n");
1264     qemu_set_irq(fdctrl->irq, 0);
1265     fdctrl->sra &= ~FD_SRA_INTPEND;
1266 }
1267 
1268 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1269 {
1270     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1271         qemu_set_irq(fdctrl->irq, 1);
1272         fdctrl->sra |= FD_SRA_INTPEND;
1273     }
1274 
1275     fdctrl->reset_sensei = 0;
1276     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1277 }
1278 
1279 /* Reset controller */
1280 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1281 {
1282     int i;
1283 
1284     FLOPPY_DPRINTF("reset controller\n");
1285     fdctrl_reset_irq(fdctrl);
1286     /* Initialise controller */
1287     fdctrl->sra = 0;
1288     fdctrl->srb = 0xc0;
1289     if (!fdctrl->drives[1].blk) {
1290         fdctrl->sra |= FD_SRA_nDRV2;
1291     }
1292     fdctrl->cur_drv = 0;
1293     fdctrl->dor = FD_DOR_nRESET;
1294     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1295     fdctrl->msr = FD_MSR_RQM;
1296     fdctrl->reset_sensei = 0;
1297     timer_del(fdctrl->result_timer);
1298     /* FIFO state */
1299     fdctrl->data_pos = 0;
1300     fdctrl->data_len = 0;
1301     fdctrl->data_state = 0;
1302     fdctrl->data_dir = FD_DIR_WRITE;
1303     for (i = 0; i < MAX_FD; i++)
1304         fd_recalibrate(&fdctrl->drives[i]);
1305     fdctrl_to_command_phase(fdctrl);
1306     if (do_irq) {
1307         fdctrl->status0 |= FD_SR0_RDYCHG;
1308         fdctrl_raise_irq(fdctrl);
1309         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1310     }
1311 }
1312 
1313 static inline FDrive *drv0(FDCtrl *fdctrl)
1314 {
1315     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1316 }
1317 
1318 static inline FDrive *drv1(FDCtrl *fdctrl)
1319 {
1320     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1321         return &fdctrl->drives[1];
1322     else
1323         return &fdctrl->drives[0];
1324 }
1325 
1326 #if MAX_FD == 4
1327 static inline FDrive *drv2(FDCtrl *fdctrl)
1328 {
1329     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1330         return &fdctrl->drives[2];
1331     else
1332         return &fdctrl->drives[1];
1333 }
1334 
1335 static inline FDrive *drv3(FDCtrl *fdctrl)
1336 {
1337     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1338         return &fdctrl->drives[3];
1339     else
1340         return &fdctrl->drives[2];
1341 }
1342 #endif
1343 
1344 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1345 {
1346     switch (unit) {
1347         case 0: return drv0(fdctrl);
1348         case 1: return drv1(fdctrl);
1349 #if MAX_FD == 4
1350         case 2: return drv2(fdctrl);
1351         case 3: return drv3(fdctrl);
1352 #endif
1353         default: return NULL;
1354     }
1355 }
1356 
1357 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1358 {
1359     return get_drv(fdctrl, fdctrl->cur_drv);
1360 }
1361 
1362 /* Status A register : 0x00 (read-only) */
1363 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1364 {
1365     uint32_t retval = fdctrl->sra;
1366 
1367     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1368 
1369     return retval;
1370 }
1371 
1372 /* Status B register : 0x01 (read-only) */
1373 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1374 {
1375     uint32_t retval = fdctrl->srb;
1376 
1377     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1378 
1379     return retval;
1380 }
1381 
1382 /* Digital output register : 0x02 */
1383 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1384 {
1385     uint32_t retval = fdctrl->dor;
1386 
1387     /* Selected drive */
1388     retval |= fdctrl->cur_drv;
1389     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1390 
1391     return retval;
1392 }
1393 
1394 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1395 {
1396     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1397 
1398     /* Motors */
1399     if (value & FD_DOR_MOTEN0)
1400         fdctrl->srb |= FD_SRB_MTR0;
1401     else
1402         fdctrl->srb &= ~FD_SRB_MTR0;
1403     if (value & FD_DOR_MOTEN1)
1404         fdctrl->srb |= FD_SRB_MTR1;
1405     else
1406         fdctrl->srb &= ~FD_SRB_MTR1;
1407 
1408     /* Drive */
1409     if (value & 1)
1410         fdctrl->srb |= FD_SRB_DR0;
1411     else
1412         fdctrl->srb &= ~FD_SRB_DR0;
1413 
1414     /* Reset */
1415     if (!(value & FD_DOR_nRESET)) {
1416         if (fdctrl->dor & FD_DOR_nRESET) {
1417             FLOPPY_DPRINTF("controller enter RESET state\n");
1418         }
1419     } else {
1420         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1421             FLOPPY_DPRINTF("controller out of RESET state\n");
1422             fdctrl_reset(fdctrl, 1);
1423             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1424         }
1425     }
1426     /* Selected drive */
1427     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1428 
1429     fdctrl->dor = value;
1430 }
1431 
1432 /* Tape drive register : 0x03 */
1433 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1434 {
1435     uint32_t retval = fdctrl->tdr;
1436 
1437     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1438 
1439     return retval;
1440 }
1441 
1442 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1443 {
1444     /* Reset mode */
1445     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1446         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1447         return;
1448     }
1449     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1450     /* Disk boot selection indicator */
1451     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1452     /* Tape indicators: never allow */
1453 }
1454 
1455 /* Main status register : 0x04 (read) */
1456 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1457 {
1458     uint32_t retval = fdctrl->msr;
1459 
1460     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1461     fdctrl->dor |= FD_DOR_nRESET;
1462 
1463     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1464 
1465     return retval;
1466 }
1467 
1468 /* Data select rate register : 0x04 (write) */
1469 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1470 {
1471     /* Reset mode */
1472     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1473         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1474         return;
1475     }
1476     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1477     /* Reset: autoclear */
1478     if (value & FD_DSR_SWRESET) {
1479         fdctrl->dor &= ~FD_DOR_nRESET;
1480         fdctrl_reset(fdctrl, 1);
1481         fdctrl->dor |= FD_DOR_nRESET;
1482     }
1483     if (value & FD_DSR_PWRDOWN) {
1484         fdctrl_reset(fdctrl, 1);
1485     }
1486     fdctrl->dsr = value;
1487 }
1488 
1489 /* Configuration control register: 0x07 (write) */
1490 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1491 {
1492     /* Reset mode */
1493     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1494         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1495         return;
1496     }
1497     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1498 
1499     /* Only the rate selection bits used in AT mode, and we
1500      * store those in the DSR.
1501      */
1502     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1503                   (value & FD_DSR_DRATEMASK);
1504 }
1505 
1506 static int fdctrl_media_changed(FDrive *drv)
1507 {
1508     return drv->media_changed;
1509 }
1510 
1511 /* Digital input register : 0x07 (read-only) */
1512 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1513 {
1514     uint32_t retval = 0;
1515 
1516     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1517         retval |= FD_DIR_DSKCHG;
1518     }
1519     if (retval != 0) {
1520         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1521     }
1522 
1523     return retval;
1524 }
1525 
1526 /* Clear the FIFO and update the state for receiving the next command */
1527 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1528 {
1529     fdctrl->phase = FD_PHASE_COMMAND;
1530     fdctrl->data_dir = FD_DIR_WRITE;
1531     fdctrl->data_pos = 0;
1532     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1533     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1534     fdctrl->msr |= FD_MSR_RQM;
1535 }
1536 
1537 /* Update the state to allow the guest to read out the command status.
1538  * @fifo_len is the number of result bytes to be read out. */
1539 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1540 {
1541     fdctrl->phase = FD_PHASE_RESULT;
1542     fdctrl->data_dir = FD_DIR_READ;
1543     fdctrl->data_len = fifo_len;
1544     fdctrl->data_pos = 0;
1545     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1546 }
1547 
1548 /* Set an error: unimplemented/unknown command */
1549 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1550 {
1551     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1552                   fdctrl->fifo[0]);
1553     fdctrl->fifo[0] = FD_SR0_INVCMD;
1554     fdctrl_to_result_phase(fdctrl, 1);
1555 }
1556 
1557 /* Seek to next sector
1558  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1559  * otherwise returns 1
1560  */
1561 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1562 {
1563     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1564                    cur_drv->head, cur_drv->track, cur_drv->sect,
1565                    fd_sector(cur_drv));
1566     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1567        error in fact */
1568     uint8_t new_head = cur_drv->head;
1569     uint8_t new_track = cur_drv->track;
1570     uint8_t new_sect = cur_drv->sect;
1571 
1572     int ret = 1;
1573 
1574     if (new_sect >= cur_drv->last_sect ||
1575         new_sect == fdctrl->eot) {
1576         new_sect = 1;
1577         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1578             if (new_head == 0 &&
1579                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1580                 new_head = 1;
1581             } else {
1582                 new_head = 0;
1583                 new_track++;
1584                 fdctrl->status0 |= FD_SR0_SEEK;
1585                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1586                     ret = 0;
1587                 }
1588             }
1589         } else {
1590             fdctrl->status0 |= FD_SR0_SEEK;
1591             new_track++;
1592             ret = 0;
1593         }
1594         if (ret == 1) {
1595             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1596                     new_head, new_track, new_sect, fd_sector(cur_drv));
1597         }
1598     } else {
1599         new_sect++;
1600     }
1601     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1602     return ret;
1603 }
1604 
1605 /* Callback for transfer end (stop or abort) */
1606 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1607                                  uint8_t status1, uint8_t status2)
1608 {
1609     FDrive *cur_drv;
1610     cur_drv = get_cur_drv(fdctrl);
1611 
1612     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1613     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1614     if (cur_drv->head) {
1615         fdctrl->status0 |= FD_SR0_HEAD;
1616     }
1617     fdctrl->status0 |= status0;
1618 
1619     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1620                    status0, status1, status2, fdctrl->status0);
1621     fdctrl->fifo[0] = fdctrl->status0;
1622     fdctrl->fifo[1] = status1;
1623     fdctrl->fifo[2] = status2;
1624     fdctrl->fifo[3] = cur_drv->track;
1625     fdctrl->fifo[4] = cur_drv->head;
1626     fdctrl->fifo[5] = cur_drv->sect;
1627     fdctrl->fifo[6] = FD_SECTOR_SC;
1628     fdctrl->data_dir = FD_DIR_READ;
1629     if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1630         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1631         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1632     }
1633     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1634     fdctrl->msr &= ~FD_MSR_NONDMA;
1635 
1636     fdctrl_to_result_phase(fdctrl, 7);
1637     fdctrl_raise_irq(fdctrl);
1638 }
1639 
1640 /* Prepare a data transfer (either DMA or FIFO) */
1641 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1642 {
1643     FDrive *cur_drv;
1644     uint8_t kh, kt, ks;
1645 
1646     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1647     cur_drv = get_cur_drv(fdctrl);
1648     kt = fdctrl->fifo[2];
1649     kh = fdctrl->fifo[3];
1650     ks = fdctrl->fifo[4];
1651     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1652                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1653                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1654                                   NUM_SIDES(cur_drv)));
1655     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1656     case 2:
1657         /* sect too big */
1658         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1659         fdctrl->fifo[3] = kt;
1660         fdctrl->fifo[4] = kh;
1661         fdctrl->fifo[5] = ks;
1662         return;
1663     case 3:
1664         /* track too big */
1665         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1666         fdctrl->fifo[3] = kt;
1667         fdctrl->fifo[4] = kh;
1668         fdctrl->fifo[5] = ks;
1669         return;
1670     case 4:
1671         /* No seek enabled */
1672         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1673         fdctrl->fifo[3] = kt;
1674         fdctrl->fifo[4] = kh;
1675         fdctrl->fifo[5] = ks;
1676         return;
1677     case 1:
1678         fdctrl->status0 |= FD_SR0_SEEK;
1679         break;
1680     default:
1681         break;
1682     }
1683 
1684     /* Check the data rate. If the programmed data rate does not match
1685      * the currently inserted medium, the operation has to fail. */
1686     if (fdctrl->check_media_rate &&
1687         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1688         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1689                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1690         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1691         fdctrl->fifo[3] = kt;
1692         fdctrl->fifo[4] = kh;
1693         fdctrl->fifo[5] = ks;
1694         return;
1695     }
1696 
1697     /* Set the FIFO state */
1698     fdctrl->data_dir = direction;
1699     fdctrl->data_pos = 0;
1700     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1701     if (fdctrl->fifo[0] & 0x80)
1702         fdctrl->data_state |= FD_STATE_MULTI;
1703     else
1704         fdctrl->data_state &= ~FD_STATE_MULTI;
1705     if (fdctrl->fifo[5] == 0) {
1706         fdctrl->data_len = fdctrl->fifo[8];
1707     } else {
1708         int tmp;
1709         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1710         tmp = (fdctrl->fifo[6] - ks + 1);
1711         if (fdctrl->fifo[0] & 0x80)
1712             tmp += fdctrl->fifo[6];
1713         fdctrl->data_len *= tmp;
1714     }
1715     fdctrl->eot = fdctrl->fifo[6];
1716     if (fdctrl->dor & FD_DOR_DMAEN) {
1717         /* DMA transfer is enabled. */
1718         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1719 
1720         FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1721                        direction, (128 << fdctrl->fifo[5]) *
1722                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1723 
1724         /* No access is allowed until DMA transfer has completed */
1725         fdctrl->msr &= ~FD_MSR_RQM;
1726         if (direction != FD_DIR_VERIFY) {
1727             /*
1728              * Now, we just have to wait for the DMA controller to
1729              * recall us...
1730              */
1731             k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1732             k->schedule(fdctrl->dma);
1733         } else {
1734             /* Start transfer */
1735             fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1736                     fdctrl->data_len);
1737         }
1738         return;
1739     }
1740     FLOPPY_DPRINTF("start non-DMA transfer\n");
1741     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1742     if (direction != FD_DIR_WRITE)
1743         fdctrl->msr |= FD_MSR_DIO;
1744     /* IO based transfer: calculate len */
1745     fdctrl_raise_irq(fdctrl);
1746 }
1747 
1748 /* Prepare a transfer of deleted data */
1749 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1750 {
1751     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1752 
1753     /* We don't handle deleted data,
1754      * so we don't return *ANYTHING*
1755      */
1756     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1757 }
1758 
1759 /* handlers for DMA transfers */
1760 static int fdctrl_transfer_handler (void *opaque, int nchan,
1761                                     int dma_pos, int dma_len)
1762 {
1763     FDCtrl *fdctrl;
1764     FDrive *cur_drv;
1765     int len, start_pos, rel_pos;
1766     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1767     IsaDmaClass *k;
1768 
1769     fdctrl = opaque;
1770     if (fdctrl->msr & FD_MSR_RQM) {
1771         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1772         return 0;
1773     }
1774     k = ISADMA_GET_CLASS(fdctrl->dma);
1775     cur_drv = get_cur_drv(fdctrl);
1776     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1777         fdctrl->data_dir == FD_DIR_SCANH)
1778         status2 = FD_SR2_SNS;
1779     if (dma_len > fdctrl->data_len)
1780         dma_len = fdctrl->data_len;
1781     if (cur_drv->blk == NULL) {
1782         if (fdctrl->data_dir == FD_DIR_WRITE)
1783             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1784         else
1785             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1786         len = 0;
1787         goto transfer_error;
1788     }
1789     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1790     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1791         len = dma_len - fdctrl->data_pos;
1792         if (len + rel_pos > FD_SECTOR_LEN)
1793             len = FD_SECTOR_LEN - rel_pos;
1794         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1795                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1796                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1797                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1798                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1799         if (fdctrl->data_dir != FD_DIR_WRITE ||
1800             len < FD_SECTOR_LEN || rel_pos != 0) {
1801             /* READ & SCAN commands and realign to a sector for WRITE */
1802             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1803                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1804                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1805                                fd_sector(cur_drv));
1806                 /* Sure, image size is too small... */
1807                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1808             }
1809         }
1810         switch (fdctrl->data_dir) {
1811         case FD_DIR_READ:
1812             /* READ commands */
1813             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1814                             fdctrl->data_pos, len);
1815             break;
1816         case FD_DIR_WRITE:
1817             /* WRITE commands */
1818             if (cur_drv->ro) {
1819                 /* Handle readonly medium early, no need to do DMA, touch the
1820                  * LED or attempt any writes. A real floppy doesn't attempt
1821                  * to write to readonly media either. */
1822                 fdctrl_stop_transfer(fdctrl,
1823                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1824                                      0x00);
1825                 goto transfer_error;
1826             }
1827 
1828             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1829                            fdctrl->data_pos, len);
1830             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1831                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1832                 FLOPPY_DPRINTF("error writing sector %d\n",
1833                                fd_sector(cur_drv));
1834                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1835                 goto transfer_error;
1836             }
1837             break;
1838         case FD_DIR_VERIFY:
1839             /* VERIFY commands */
1840             break;
1841         default:
1842             /* SCAN commands */
1843             {
1844                 uint8_t tmpbuf[FD_SECTOR_LEN];
1845                 int ret;
1846                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1847                                len);
1848                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1849                 if (ret == 0) {
1850                     status2 = FD_SR2_SEH;
1851                     goto end_transfer;
1852                 }
1853                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1854                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1855                     status2 = 0x00;
1856                     goto end_transfer;
1857                 }
1858             }
1859             break;
1860         }
1861         fdctrl->data_pos += len;
1862         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1863         if (rel_pos == 0) {
1864             /* Seek to next sector */
1865             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1866                 break;
1867         }
1868     }
1869  end_transfer:
1870     len = fdctrl->data_pos - start_pos;
1871     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1872                    fdctrl->data_pos, len, fdctrl->data_len);
1873     if (fdctrl->data_dir == FD_DIR_SCANE ||
1874         fdctrl->data_dir == FD_DIR_SCANL ||
1875         fdctrl->data_dir == FD_DIR_SCANH)
1876         status2 = FD_SR2_SEH;
1877     fdctrl->data_len -= len;
1878     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1879  transfer_error:
1880 
1881     return len;
1882 }
1883 
1884 /* Data register : 0x05 */
1885 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1886 {
1887     FDrive *cur_drv;
1888     uint32_t retval = 0;
1889     uint32_t pos;
1890 
1891     cur_drv = get_cur_drv(fdctrl);
1892     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1893     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1894         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1895         return 0;
1896     }
1897 
1898     /* If data_len spans multiple sectors, the current position in the FIFO
1899      * wraps around while fdctrl->data_pos is the real position in the whole
1900      * request. */
1901     pos = fdctrl->data_pos;
1902     pos %= FD_SECTOR_LEN;
1903 
1904     switch (fdctrl->phase) {
1905     case FD_PHASE_EXECUTION:
1906         assert(fdctrl->msr & FD_MSR_NONDMA);
1907         if (pos == 0) {
1908             if (fdctrl->data_pos != 0)
1909                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1910                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1911                                    fd_sector(cur_drv));
1912                     return 0;
1913                 }
1914             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1915                           BDRV_SECTOR_SIZE)
1916                 < 0) {
1917                 FLOPPY_DPRINTF("error getting sector %d\n",
1918                                fd_sector(cur_drv));
1919                 /* Sure, image size is too small... */
1920                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1921             }
1922         }
1923 
1924         if (++fdctrl->data_pos == fdctrl->data_len) {
1925             fdctrl->msr &= ~FD_MSR_RQM;
1926             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1927         }
1928         break;
1929 
1930     case FD_PHASE_RESULT:
1931         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1932         if (++fdctrl->data_pos == fdctrl->data_len) {
1933             fdctrl->msr &= ~FD_MSR_RQM;
1934             fdctrl_to_command_phase(fdctrl);
1935             fdctrl_reset_irq(fdctrl);
1936         }
1937         break;
1938 
1939     case FD_PHASE_COMMAND:
1940     default:
1941         abort();
1942     }
1943 
1944     retval = fdctrl->fifo[pos];
1945     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1946 
1947     return retval;
1948 }
1949 
1950 static void fdctrl_format_sector(FDCtrl *fdctrl)
1951 {
1952     FDrive *cur_drv;
1953     uint8_t kh, kt, ks;
1954 
1955     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1956     cur_drv = get_cur_drv(fdctrl);
1957     kt = fdctrl->fifo[6];
1958     kh = fdctrl->fifo[7];
1959     ks = fdctrl->fifo[8];
1960     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1961                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1962                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1963                                   NUM_SIDES(cur_drv)));
1964     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1965     case 2:
1966         /* sect too big */
1967         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1968         fdctrl->fifo[3] = kt;
1969         fdctrl->fifo[4] = kh;
1970         fdctrl->fifo[5] = ks;
1971         return;
1972     case 3:
1973         /* track too big */
1974         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1975         fdctrl->fifo[3] = kt;
1976         fdctrl->fifo[4] = kh;
1977         fdctrl->fifo[5] = ks;
1978         return;
1979     case 4:
1980         /* No seek enabled */
1981         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1982         fdctrl->fifo[3] = kt;
1983         fdctrl->fifo[4] = kh;
1984         fdctrl->fifo[5] = ks;
1985         return;
1986     case 1:
1987         fdctrl->status0 |= FD_SR0_SEEK;
1988         break;
1989     default:
1990         break;
1991     }
1992     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1993     if (cur_drv->blk == NULL ||
1994         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1995                    BDRV_SECTOR_SIZE, 0) < 0) {
1996         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1997         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1998     } else {
1999         if (cur_drv->sect == cur_drv->last_sect) {
2000             fdctrl->data_state &= ~FD_STATE_FORMAT;
2001             /* Last sector done */
2002             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2003         } else {
2004             /* More to do */
2005             fdctrl->data_pos = 0;
2006             fdctrl->data_len = 4;
2007         }
2008     }
2009 }
2010 
2011 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2012 {
2013     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2014     fdctrl->fifo[0] = fdctrl->lock << 4;
2015     fdctrl_to_result_phase(fdctrl, 1);
2016 }
2017 
2018 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2019 {
2020     FDrive *cur_drv = get_cur_drv(fdctrl);
2021 
2022     /* Drives position */
2023     fdctrl->fifo[0] = drv0(fdctrl)->track;
2024     fdctrl->fifo[1] = drv1(fdctrl)->track;
2025 #if MAX_FD == 4
2026     fdctrl->fifo[2] = drv2(fdctrl)->track;
2027     fdctrl->fifo[3] = drv3(fdctrl)->track;
2028 #else
2029     fdctrl->fifo[2] = 0;
2030     fdctrl->fifo[3] = 0;
2031 #endif
2032     /* timers */
2033     fdctrl->fifo[4] = fdctrl->timer0;
2034     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2035     fdctrl->fifo[6] = cur_drv->last_sect;
2036     fdctrl->fifo[7] = (fdctrl->lock << 7) |
2037         (cur_drv->perpendicular << 2);
2038     fdctrl->fifo[8] = fdctrl->config;
2039     fdctrl->fifo[9] = fdctrl->precomp_trk;
2040     fdctrl_to_result_phase(fdctrl, 10);
2041 }
2042 
2043 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2044 {
2045     /* Controller's version */
2046     fdctrl->fifo[0] = fdctrl->version;
2047     fdctrl_to_result_phase(fdctrl, 1);
2048 }
2049 
2050 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2051 {
2052     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2053     fdctrl_to_result_phase(fdctrl, 1);
2054 }
2055 
2056 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2057 {
2058     FDrive *cur_drv = get_cur_drv(fdctrl);
2059 
2060     /* Drives position */
2061     drv0(fdctrl)->track = fdctrl->fifo[3];
2062     drv1(fdctrl)->track = fdctrl->fifo[4];
2063 #if MAX_FD == 4
2064     drv2(fdctrl)->track = fdctrl->fifo[5];
2065     drv3(fdctrl)->track = fdctrl->fifo[6];
2066 #endif
2067     /* timers */
2068     fdctrl->timer0 = fdctrl->fifo[7];
2069     fdctrl->timer1 = fdctrl->fifo[8];
2070     cur_drv->last_sect = fdctrl->fifo[9];
2071     fdctrl->lock = fdctrl->fifo[10] >> 7;
2072     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2073     fdctrl->config = fdctrl->fifo[11];
2074     fdctrl->precomp_trk = fdctrl->fifo[12];
2075     fdctrl->pwrd = fdctrl->fifo[13];
2076     fdctrl_to_command_phase(fdctrl);
2077 }
2078 
2079 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2080 {
2081     FDrive *cur_drv = get_cur_drv(fdctrl);
2082 
2083     fdctrl->fifo[0] = 0;
2084     fdctrl->fifo[1] = 0;
2085     /* Drives position */
2086     fdctrl->fifo[2] = drv0(fdctrl)->track;
2087     fdctrl->fifo[3] = drv1(fdctrl)->track;
2088 #if MAX_FD == 4
2089     fdctrl->fifo[4] = drv2(fdctrl)->track;
2090     fdctrl->fifo[5] = drv3(fdctrl)->track;
2091 #else
2092     fdctrl->fifo[4] = 0;
2093     fdctrl->fifo[5] = 0;
2094 #endif
2095     /* timers */
2096     fdctrl->fifo[6] = fdctrl->timer0;
2097     fdctrl->fifo[7] = fdctrl->timer1;
2098     fdctrl->fifo[8] = cur_drv->last_sect;
2099     fdctrl->fifo[9] = (fdctrl->lock << 7) |
2100         (cur_drv->perpendicular << 2);
2101     fdctrl->fifo[10] = fdctrl->config;
2102     fdctrl->fifo[11] = fdctrl->precomp_trk;
2103     fdctrl->fifo[12] = fdctrl->pwrd;
2104     fdctrl->fifo[13] = 0;
2105     fdctrl->fifo[14] = 0;
2106     fdctrl_to_result_phase(fdctrl, 15);
2107 }
2108 
2109 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2110 {
2111     FDrive *cur_drv = get_cur_drv(fdctrl);
2112 
2113     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2114     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2115              (NANOSECONDS_PER_SECOND / 50));
2116 }
2117 
2118 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2119 {
2120     FDrive *cur_drv;
2121 
2122     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2123     cur_drv = get_cur_drv(fdctrl);
2124     fdctrl->data_state |= FD_STATE_FORMAT;
2125     if (fdctrl->fifo[0] & 0x80)
2126         fdctrl->data_state |= FD_STATE_MULTI;
2127     else
2128         fdctrl->data_state &= ~FD_STATE_MULTI;
2129     cur_drv->bps =
2130         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2131 #if 0
2132     cur_drv->last_sect =
2133         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2134         fdctrl->fifo[3] / 2;
2135 #else
2136     cur_drv->last_sect = fdctrl->fifo[3];
2137 #endif
2138     /* TODO: implement format using DMA expected by the Bochs BIOS
2139      * and Linux fdformat (read 3 bytes per sector via DMA and fill
2140      * the sector with the specified fill byte
2141      */
2142     fdctrl->data_state &= ~FD_STATE_FORMAT;
2143     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2144 }
2145 
2146 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2147 {
2148     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2149     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2150     if (fdctrl->fifo[2] & 1)
2151         fdctrl->dor &= ~FD_DOR_DMAEN;
2152     else
2153         fdctrl->dor |= FD_DOR_DMAEN;
2154     /* No result back */
2155     fdctrl_to_command_phase(fdctrl);
2156 }
2157 
2158 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2159 {
2160     FDrive *cur_drv;
2161 
2162     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2163     cur_drv = get_cur_drv(fdctrl);
2164     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2165     /* 1 Byte status back */
2166     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2167         (cur_drv->track == 0 ? 0x10 : 0x00) |
2168         (cur_drv->head << 2) |
2169         GET_CUR_DRV(fdctrl) |
2170         0x28;
2171     fdctrl_to_result_phase(fdctrl, 1);
2172 }
2173 
2174 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2175 {
2176     FDrive *cur_drv;
2177 
2178     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2179     cur_drv = get_cur_drv(fdctrl);
2180     fd_recalibrate(cur_drv);
2181     fdctrl_to_command_phase(fdctrl);
2182     /* Raise Interrupt */
2183     fdctrl->status0 |= FD_SR0_SEEK;
2184     fdctrl_raise_irq(fdctrl);
2185 }
2186 
2187 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2188 {
2189     FDrive *cur_drv = get_cur_drv(fdctrl);
2190 
2191     if (fdctrl->reset_sensei > 0) {
2192         fdctrl->fifo[0] =
2193             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2194         fdctrl->reset_sensei--;
2195     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2196         fdctrl->fifo[0] = FD_SR0_INVCMD;
2197         fdctrl_to_result_phase(fdctrl, 1);
2198         return;
2199     } else {
2200         fdctrl->fifo[0] =
2201                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2202                 | GET_CUR_DRV(fdctrl);
2203     }
2204 
2205     fdctrl->fifo[1] = cur_drv->track;
2206     fdctrl_to_result_phase(fdctrl, 2);
2207     fdctrl_reset_irq(fdctrl);
2208     fdctrl->status0 = FD_SR0_RDYCHG;
2209 }
2210 
2211 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2212 {
2213     FDrive *cur_drv;
2214 
2215     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2216     cur_drv = get_cur_drv(fdctrl);
2217     fdctrl_to_command_phase(fdctrl);
2218     /* The seek command just sends step pulses to the drive and doesn't care if
2219      * there is a medium inserted of if it's banging the head against the drive.
2220      */
2221     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2222     /* Raise Interrupt */
2223     fdctrl->status0 |= FD_SR0_SEEK;
2224     fdctrl_raise_irq(fdctrl);
2225 }
2226 
2227 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2228 {
2229     FDrive *cur_drv = get_cur_drv(fdctrl);
2230 
2231     if (fdctrl->fifo[1] & 0x80)
2232         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2233     /* No result back */
2234     fdctrl_to_command_phase(fdctrl);
2235 }
2236 
2237 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2238 {
2239     fdctrl->config = fdctrl->fifo[2];
2240     fdctrl->precomp_trk =  fdctrl->fifo[3];
2241     /* No result back */
2242     fdctrl_to_command_phase(fdctrl);
2243 }
2244 
2245 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2246 {
2247     fdctrl->pwrd = fdctrl->fifo[1];
2248     fdctrl->fifo[0] = fdctrl->fifo[1];
2249     fdctrl_to_result_phase(fdctrl, 1);
2250 }
2251 
2252 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2253 {
2254     /* No result back */
2255     fdctrl_to_command_phase(fdctrl);
2256 }
2257 
2258 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2259 {
2260     FDrive *cur_drv = get_cur_drv(fdctrl);
2261     uint32_t pos;
2262 
2263     pos = fdctrl->data_pos - 1;
2264     pos %= FD_SECTOR_LEN;
2265     if (fdctrl->fifo[pos] & 0x80) {
2266         /* Command parameters done */
2267         if (fdctrl->fifo[pos] & 0x40) {
2268             fdctrl->fifo[0] = fdctrl->fifo[1];
2269             fdctrl->fifo[2] = 0;
2270             fdctrl->fifo[3] = 0;
2271             fdctrl_to_result_phase(fdctrl, 4);
2272         } else {
2273             fdctrl_to_command_phase(fdctrl);
2274         }
2275     } else if (fdctrl->data_len > 7) {
2276         /* ERROR */
2277         fdctrl->fifo[0] = 0x80 |
2278             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2279         fdctrl_to_result_phase(fdctrl, 1);
2280     }
2281 }
2282 
2283 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2284 {
2285     FDrive *cur_drv;
2286 
2287     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2288     cur_drv = get_cur_drv(fdctrl);
2289     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2290         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2291                 cur_drv->sect, 1);
2292     } else {
2293         fd_seek(cur_drv, cur_drv->head,
2294                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2295     }
2296     fdctrl_to_command_phase(fdctrl);
2297     /* Raise Interrupt */
2298     fdctrl->status0 |= FD_SR0_SEEK;
2299     fdctrl_raise_irq(fdctrl);
2300 }
2301 
2302 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2303 {
2304     FDrive *cur_drv;
2305 
2306     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2307     cur_drv = get_cur_drv(fdctrl);
2308     if (fdctrl->fifo[2] > cur_drv->track) {
2309         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2310     } else {
2311         fd_seek(cur_drv, cur_drv->head,
2312                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2313     }
2314     fdctrl_to_command_phase(fdctrl);
2315     /* Raise Interrupt */
2316     fdctrl->status0 |= FD_SR0_SEEK;
2317     fdctrl_raise_irq(fdctrl);
2318 }
2319 
2320 /*
2321  * Handlers for the execution phase of each command
2322  */
2323 typedef struct FDCtrlCommand {
2324     uint8_t value;
2325     uint8_t mask;
2326     const char* name;
2327     int parameters;
2328     void (*handler)(FDCtrl *fdctrl, int direction);
2329     int direction;
2330 } FDCtrlCommand;
2331 
2332 static const FDCtrlCommand handlers[] = {
2333     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2334     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2335     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2336     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2337     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2338     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2339     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2340     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2341     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2342     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2343     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2344     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2345     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2346     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2347     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2348     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2349     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2350     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2351     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2352     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2353     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2354     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2355     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2356     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2357     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2358     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2359     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2360     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2361     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2362     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2363     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2364     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2365 };
2366 /* Associate command to an index in the 'handlers' array */
2367 static uint8_t command_to_handler[256];
2368 
2369 static const FDCtrlCommand *get_command(uint8_t cmd)
2370 {
2371     int idx;
2372 
2373     idx = command_to_handler[cmd];
2374     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2375     return &handlers[idx];
2376 }
2377 
2378 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2379 {
2380     FDrive *cur_drv;
2381     const FDCtrlCommand *cmd;
2382     uint32_t pos;
2383 
2384     /* Reset mode */
2385     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2386         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2387         return;
2388     }
2389     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2390         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2391         return;
2392     }
2393     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2394 
2395     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2396 
2397     /* If data_len spans multiple sectors, the current position in the FIFO
2398      * wraps around while fdctrl->data_pos is the real position in the whole
2399      * request. */
2400     pos = fdctrl->data_pos++;
2401     pos %= FD_SECTOR_LEN;
2402     fdctrl->fifo[pos] = value;
2403 
2404     if (fdctrl->data_pos == fdctrl->data_len) {
2405         fdctrl->msr &= ~FD_MSR_RQM;
2406     }
2407 
2408     switch (fdctrl->phase) {
2409     case FD_PHASE_EXECUTION:
2410         /* For DMA requests, RQM should be cleared during execution phase, so
2411          * we would have errored out above. */
2412         assert(fdctrl->msr & FD_MSR_NONDMA);
2413 
2414         /* FIFO data write */
2415         if (pos == FD_SECTOR_LEN - 1 ||
2416             fdctrl->data_pos == fdctrl->data_len) {
2417             cur_drv = get_cur_drv(fdctrl);
2418             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2419                            BDRV_SECTOR_SIZE, 0) < 0) {
2420                 FLOPPY_DPRINTF("error writing sector %d\n",
2421                                fd_sector(cur_drv));
2422                 break;
2423             }
2424             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2425                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2426                                fd_sector(cur_drv));
2427                 break;
2428             }
2429         }
2430 
2431         /* Switch to result phase when done with the transfer */
2432         if (fdctrl->data_pos == fdctrl->data_len) {
2433             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2434         }
2435         break;
2436 
2437     case FD_PHASE_COMMAND:
2438         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2439         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2440 
2441         if (pos == 0) {
2442             /* The first byte specifies the command. Now we start reading
2443              * as many parameters as this command requires. */
2444             cmd = get_command(value);
2445             fdctrl->data_len = cmd->parameters + 1;
2446             if (cmd->parameters) {
2447                 fdctrl->msr |= FD_MSR_RQM;
2448             }
2449             fdctrl->msr |= FD_MSR_CMDBUSY;
2450         }
2451 
2452         if (fdctrl->data_pos == fdctrl->data_len) {
2453             /* We have all parameters now, execute the command */
2454             fdctrl->phase = FD_PHASE_EXECUTION;
2455 
2456             if (fdctrl->data_state & FD_STATE_FORMAT) {
2457                 fdctrl_format_sector(fdctrl);
2458                 break;
2459             }
2460 
2461             cmd = get_command(fdctrl->fifo[0]);
2462             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2463             cmd->handler(fdctrl, cmd->direction);
2464         }
2465         break;
2466 
2467     case FD_PHASE_RESULT:
2468     default:
2469         abort();
2470     }
2471 }
2472 
2473 static void fdctrl_result_timer(void *opaque)
2474 {
2475     FDCtrl *fdctrl = opaque;
2476     FDrive *cur_drv = get_cur_drv(fdctrl);
2477 
2478     /* Pretend we are spinning.
2479      * This is needed for Coherent, which uses READ ID to check for
2480      * sector interleaving.
2481      */
2482     if (cur_drv->last_sect != 0) {
2483         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2484     }
2485     /* READ_ID can't automatically succeed! */
2486     if (fdctrl->check_media_rate &&
2487         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2488         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2489                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2490         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2491     } else {
2492         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2493     }
2494 }
2495 
2496 /* Init functions */
2497 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2498                                   Error **errp)
2499 {
2500     unsigned int i;
2501     FDrive *drive;
2502     DeviceState *dev;
2503     BlockBackend *blk;
2504     Error *local_err = NULL;
2505 
2506     for (i = 0; i < MAX_FD; i++) {
2507         drive = &fdctrl->drives[i];
2508         drive->fdctrl = fdctrl;
2509 
2510         /* If the drive is not present, we skip creating the qdev device, but
2511          * still have to initialise the controller. */
2512         blk = fdctrl->qdev_for_drives[i].blk;
2513         if (!blk) {
2514             fd_init(drive);
2515             fd_revalidate(drive);
2516             continue;
2517         }
2518 
2519         dev = qdev_new("floppy");
2520         qdev_prop_set_uint32(dev, "unit", i);
2521         qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2522 
2523         blk_ref(blk);
2524         blk_detach_dev(blk, fdc_dev);
2525         fdctrl->qdev_for_drives[i].blk = NULL;
2526         qdev_prop_set_drive(dev, "drive", blk, &local_err);
2527         blk_unref(blk);
2528 
2529         if (local_err) {
2530             error_propagate(errp, local_err);
2531             return;
2532         }
2533 
2534         qdev_realize_and_unref(dev, &fdctrl->bus.bus, &local_err);
2535         if (local_err) {
2536             error_propagate(errp, local_err);
2537             return;
2538         }
2539     }
2540 }
2541 
2542 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2543 {
2544     DeviceState *dev;
2545     ISADevice *isadev;
2546 
2547     isadev = isa_try_new(TYPE_ISA_FDC);
2548     if (!isadev) {
2549         return NULL;
2550     }
2551     dev = DEVICE(isadev);
2552 
2553     if (fds[0]) {
2554         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2555                             &error_fatal);
2556     }
2557     if (fds[1]) {
2558         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2559                             &error_fatal);
2560     }
2561     isa_realize_and_unref(isadev, bus, &error_fatal);
2562 
2563     return isadev;
2564 }
2565 
2566 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2567                         hwaddr mmio_base, DriveInfo **fds)
2568 {
2569     FDCtrl *fdctrl;
2570     DeviceState *dev;
2571     SysBusDevice *sbd;
2572     FDCtrlSysBus *sys;
2573 
2574     dev = qdev_new("sysbus-fdc");
2575     sys = SYSBUS_FDC(dev);
2576     fdctrl = &sys->state;
2577     fdctrl->dma_chann = dma_chann; /* FIXME */
2578     if (fds[0]) {
2579         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2580                             &error_fatal);
2581     }
2582     if (fds[1]) {
2583         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2584                             &error_fatal);
2585     }
2586     sbd = SYS_BUS_DEVICE(dev);
2587     sysbus_realize_and_unref(sbd, &error_fatal);
2588     sysbus_connect_irq(sbd, 0, irq);
2589     sysbus_mmio_map(sbd, 0, mmio_base);
2590 }
2591 
2592 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2593                        DriveInfo **fds, qemu_irq *fdc_tc)
2594 {
2595     DeviceState *dev;
2596     FDCtrlSysBus *sys;
2597 
2598     dev = qdev_new("SUNW,fdtwo");
2599     if (fds[0]) {
2600         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2601                             &error_fatal);
2602     }
2603     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2604     sys = SYSBUS_FDC(dev);
2605     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2606     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2607     *fdc_tc = qdev_get_gpio_in(dev, 0);
2608 }
2609 
2610 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2611                                   Error **errp)
2612 {
2613     int i, j;
2614     static int command_tables_inited = 0;
2615 
2616     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2617         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2618         return;
2619     }
2620 
2621     /* Fill 'command_to_handler' lookup table */
2622     if (!command_tables_inited) {
2623         command_tables_inited = 1;
2624         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2625             for (j = 0; j < sizeof(command_to_handler); j++) {
2626                 if ((j & handlers[i].mask) == handlers[i].value) {
2627                     command_to_handler[j] = i;
2628                 }
2629             }
2630         }
2631     }
2632 
2633     FLOPPY_DPRINTF("init controller\n");
2634     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2635     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2636     fdctrl->fifo_size = 512;
2637     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2638                                              fdctrl_result_timer, fdctrl);
2639 
2640     fdctrl->version = 0x90; /* Intel 82078 controller */
2641     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2642     fdctrl->num_floppies = MAX_FD;
2643 
2644     if (fdctrl->dma_chann != -1) {
2645         IsaDmaClass *k;
2646         assert(fdctrl->dma);
2647         k = ISADMA_GET_CLASS(fdctrl->dma);
2648         k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2649                             &fdctrl_transfer_handler, fdctrl);
2650     }
2651 
2652     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2653     fdctrl_connect_drives(fdctrl, dev, errp);
2654 }
2655 
2656 static const MemoryRegionPortio fdc_portio_list[] = {
2657     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2658     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2659     PORTIO_END_OF_LIST(),
2660 };
2661 
2662 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2663 {
2664     ISADevice *isadev = ISA_DEVICE(dev);
2665     FDCtrlISABus *isa = ISA_FDC(dev);
2666     FDCtrl *fdctrl = &isa->state;
2667     Error *err = NULL;
2668 
2669     isa_register_portio_list(isadev, &fdctrl->portio_list,
2670                              isa->iobase, fdc_portio_list, fdctrl,
2671                              "fdc");
2672 
2673     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2674     fdctrl->dma_chann = isa->dma;
2675     if (fdctrl->dma_chann != -1) {
2676         fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2677         if (!fdctrl->dma) {
2678             error_setg(errp, "ISA controller does not support DMA");
2679             return;
2680         }
2681     }
2682 
2683     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2684     fdctrl_realize_common(dev, fdctrl, &err);
2685     if (err != NULL) {
2686         error_propagate(errp, err);
2687         return;
2688     }
2689 }
2690 
2691 static void sysbus_fdc_initfn(Object *obj)
2692 {
2693     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2694     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2695     FDCtrl *fdctrl = &sys->state;
2696 
2697     fdctrl->dma_chann = -1;
2698 
2699     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2700                           "fdc", 0x08);
2701     sysbus_init_mmio(sbd, &fdctrl->iomem);
2702 }
2703 
2704 static void sun4m_fdc_initfn(Object *obj)
2705 {
2706     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2707     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2708     FDCtrl *fdctrl = &sys->state;
2709 
2710     fdctrl->dma_chann = -1;
2711 
2712     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2713                           fdctrl, "fdctrl", 0x08);
2714     sysbus_init_mmio(sbd, &fdctrl->iomem);
2715 }
2716 
2717 static void sysbus_fdc_common_initfn(Object *obj)
2718 {
2719     DeviceState *dev = DEVICE(obj);
2720     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2721     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2722     FDCtrl *fdctrl = &sys->state;
2723 
2724     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2725 
2726     sysbus_init_irq(sbd, &fdctrl->irq);
2727     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2728 }
2729 
2730 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2731 {
2732     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2733     FDCtrl *fdctrl = &sys->state;
2734 
2735     fdctrl_realize_common(dev, fdctrl, errp);
2736 }
2737 
2738 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2739 {
2740     FDCtrlISABus *isa = ISA_FDC(fdc);
2741 
2742     return isa->state.drives[i].drive;
2743 }
2744 
2745 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2746                                uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2747 {
2748     const FDFormat *fdf;
2749 
2750     *maxc = *maxh = *maxs = 0;
2751     for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2752         if (fdf->drive != type) {
2753             continue;
2754         }
2755         if (*maxc < fdf->max_track) {
2756             *maxc = fdf->max_track;
2757         }
2758         if (*maxh < fdf->max_head) {
2759             *maxh = fdf->max_head;
2760         }
2761         if (*maxs < fdf->last_sect) {
2762             *maxs = fdf->last_sect;
2763         }
2764     }
2765     (*maxc)--;
2766 }
2767 
2768 static const VMStateDescription vmstate_isa_fdc ={
2769     .name = "fdc",
2770     .version_id = 2,
2771     .minimum_version_id = 2,
2772     .fields = (VMStateField[]) {
2773         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2774         VMSTATE_END_OF_LIST()
2775     }
2776 };
2777 
2778 static Property isa_fdc_properties[] = {
2779     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2780     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2781     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2782     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2783     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2784     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2785                     0, true),
2786     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2787                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2788                         FloppyDriveType),
2789     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2790                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2791                         FloppyDriveType),
2792     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2793                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2794                         FloppyDriveType),
2795     DEFINE_PROP_END_OF_LIST(),
2796 };
2797 
2798 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2799 {
2800     DeviceClass *dc = DEVICE_CLASS(klass);
2801 
2802     dc->realize = isabus_fdc_realize;
2803     dc->fw_name = "fdc";
2804     dc->reset = fdctrl_external_reset_isa;
2805     dc->vmsd = &vmstate_isa_fdc;
2806     device_class_set_props(dc, isa_fdc_properties);
2807     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2808 }
2809 
2810 static void isabus_fdc_instance_init(Object *obj)
2811 {
2812     FDCtrlISABus *isa = ISA_FDC(obj);
2813 
2814     device_add_bootindex_property(obj, &isa->bootindexA,
2815                                   "bootindexA", "/floppy@0",
2816                                   DEVICE(obj));
2817     device_add_bootindex_property(obj, &isa->bootindexB,
2818                                   "bootindexB", "/floppy@1",
2819                                   DEVICE(obj));
2820 }
2821 
2822 static const TypeInfo isa_fdc_info = {
2823     .name          = TYPE_ISA_FDC,
2824     .parent        = TYPE_ISA_DEVICE,
2825     .instance_size = sizeof(FDCtrlISABus),
2826     .class_init    = isabus_fdc_class_init,
2827     .instance_init = isabus_fdc_instance_init,
2828 };
2829 
2830 static const VMStateDescription vmstate_sysbus_fdc ={
2831     .name = "fdc",
2832     .version_id = 2,
2833     .minimum_version_id = 2,
2834     .fields = (VMStateField[]) {
2835         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2836         VMSTATE_END_OF_LIST()
2837     }
2838 };
2839 
2840 static Property sysbus_fdc_properties[] = {
2841     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2842     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2843     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2844                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2845                         FloppyDriveType),
2846     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2847                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2848                         FloppyDriveType),
2849     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2850                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2851                         FloppyDriveType),
2852     DEFINE_PROP_END_OF_LIST(),
2853 };
2854 
2855 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2856 {
2857     DeviceClass *dc = DEVICE_CLASS(klass);
2858 
2859     device_class_set_props(dc, sysbus_fdc_properties);
2860     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2861 }
2862 
2863 static const TypeInfo sysbus_fdc_info = {
2864     .name          = "sysbus-fdc",
2865     .parent        = TYPE_SYSBUS_FDC,
2866     .instance_init = sysbus_fdc_initfn,
2867     .class_init    = sysbus_fdc_class_init,
2868 };
2869 
2870 static Property sun4m_fdc_properties[] = {
2871     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2872     DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2873                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2874                         FloppyDriveType),
2875     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2876                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2877                         FloppyDriveType),
2878     DEFINE_PROP_END_OF_LIST(),
2879 };
2880 
2881 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2882 {
2883     DeviceClass *dc = DEVICE_CLASS(klass);
2884 
2885     device_class_set_props(dc, sun4m_fdc_properties);
2886     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2887 }
2888 
2889 static const TypeInfo sun4m_fdc_info = {
2890     .name          = "SUNW,fdtwo",
2891     .parent        = TYPE_SYSBUS_FDC,
2892     .instance_init = sun4m_fdc_initfn,
2893     .class_init    = sun4m_fdc_class_init,
2894 };
2895 
2896 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2897 {
2898     DeviceClass *dc = DEVICE_CLASS(klass);
2899 
2900     dc->realize = sysbus_fdc_common_realize;
2901     dc->reset = fdctrl_external_reset_sysbus;
2902     dc->vmsd = &vmstate_sysbus_fdc;
2903 }
2904 
2905 static const TypeInfo sysbus_fdc_type_info = {
2906     .name          = TYPE_SYSBUS_FDC,
2907     .parent        = TYPE_SYS_BUS_DEVICE,
2908     .instance_size = sizeof(FDCtrlSysBus),
2909     .instance_init = sysbus_fdc_common_initfn,
2910     .abstract      = true,
2911     .class_init    = sysbus_fdc_common_class_init,
2912 };
2913 
2914 static void fdc_register_types(void)
2915 {
2916     type_register_static(&isa_fdc_info);
2917     type_register_static(&sysbus_fdc_type_info);
2918     type_register_static(&sysbus_fdc_info);
2919     type_register_static(&sun4m_fdc_info);
2920     type_register_static(&floppy_bus_info);
2921     type_register_static(&floppy_drive_info);
2922 }
2923 
2924 type_init(fdc_register_types)
2925