xref: /openbmc/qemu/hw/block/fdc.c (revision ed7f5f1d)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/isa/isa.h"
36 #include "hw/sysbus.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/blockdev.h"
39 #include "sysemu/sysemu.h"
40 #include "qemu/log.h"
41 
42 /********************************************************/
43 /* debug Floppy devices */
44 //#define DEBUG_FLOPPY
45 
46 #ifdef DEBUG_FLOPPY
47 #define FLOPPY_DPRINTF(fmt, ...)                                \
48     do { printf("FLOPPY: " fmt , ## __VA_ARGS__); } while (0)
49 #else
50 #define FLOPPY_DPRINTF(fmt, ...)
51 #endif
52 
53 /********************************************************/
54 /* Floppy drive emulation                               */
55 
56 typedef enum FDriveRate {
57     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
58     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
59     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
60     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
61 } FDriveRate;
62 
63 typedef enum FDriveSize {
64     FDRIVE_SIZE_UNKNOWN,
65     FDRIVE_SIZE_350,
66     FDRIVE_SIZE_525,
67 } FDriveSize;
68 
69 typedef struct FDFormat {
70     FloppyDriveType drive;
71     uint8_t last_sect;
72     uint8_t max_track;
73     uint8_t max_head;
74     FDriveRate rate;
75 } FDFormat;
76 
77 /* In many cases, the total sector size of a format is enough to uniquely
78  * identify it. However, there are some total sector collisions between
79  * formats of different physical size, and these are noted below by
80  * highlighting the total sector size for entries with collisions. */
81 static const FDFormat fd_formats[] = {
82     /* First entry is default format */
83     /* 1.44 MB 3"1/2 floppy disks */
84     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
85     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
86     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
87     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
88     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
89     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
90     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
91     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
92     /* 2.88 MB 3"1/2 floppy disks */
93     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
94     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
95     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
96     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
97     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
98     /* 720 kB 3"1/2 floppy disks */
99     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
100     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
101     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
102     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
103     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
104     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
105     /* 1.2 MB 5"1/4 floppy disks */
106     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
107     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
108     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
109     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
110     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
111     /* 720 kB 5"1/4 floppy disks */
112     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
113     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
114     /* 360 kB 5"1/4 floppy disks */
115     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
116     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
117     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
118     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
119     /* 320 kB 5"1/4 floppy disks */
120     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
121     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
122     /* 360 kB must match 5"1/4 better than 3"1/2... */
123     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
124     /* end */
125     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
126 };
127 
128 static FDriveSize drive_size(FloppyDriveType drive)
129 {
130     switch (drive) {
131     case FLOPPY_DRIVE_TYPE_120:
132         return FDRIVE_SIZE_525;
133     case FLOPPY_DRIVE_TYPE_144:
134     case FLOPPY_DRIVE_TYPE_288:
135         return FDRIVE_SIZE_350;
136     default:
137         return FDRIVE_SIZE_UNKNOWN;
138     }
139 }
140 
141 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
142 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
143 
144 /* Will always be a fixed parameter for us */
145 #define FD_SECTOR_LEN          512
146 #define FD_SECTOR_SC           2   /* Sector size code */
147 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
148 
149 typedef struct FDCtrl FDCtrl;
150 
151 /* Floppy disk drive emulation */
152 typedef enum FDiskFlags {
153     FDISK_DBL_SIDES  = 0x01,
154 } FDiskFlags;
155 
156 typedef struct FDrive {
157     FDCtrl *fdctrl;
158     BlockBackend *blk;
159     /* Drive status */
160     FloppyDriveType drive;    /* CMOS drive type        */
161     uint8_t perpendicular;    /* 2.88 MB access mode    */
162     /* Position */
163     uint8_t head;
164     uint8_t track;
165     uint8_t sect;
166     /* Media */
167     FloppyDriveType disk;     /* Current disk type      */
168     FDiskFlags flags;
169     uint8_t last_sect;        /* Nb sector per track    */
170     uint8_t max_track;        /* Nb of tracks           */
171     uint16_t bps;             /* Bytes per sector       */
172     uint8_t ro;               /* Is read-only           */
173     uint8_t media_changed;    /* Is media changed       */
174     uint8_t media_rate;       /* Data rate of medium    */
175 
176     bool media_validated;     /* Have we validated the media? */
177 } FDrive;
178 
179 
180 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
181 
182 static void fd_init(FDrive *drv)
183 {
184     /* Drive */
185     drv->perpendicular = 0;
186     /* Disk */
187     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
188     drv->last_sect = 0;
189     drv->max_track = 0;
190     drv->ro = true;
191     drv->media_changed = 1;
192 }
193 
194 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
195 
196 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
197                           uint8_t last_sect, uint8_t num_sides)
198 {
199     return (((track * num_sides) + head) * last_sect) + sect - 1;
200 }
201 
202 /* Returns current position, in sectors, for given drive */
203 static int fd_sector(FDrive *drv)
204 {
205     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
206                           NUM_SIDES(drv));
207 }
208 
209 /* Seek to a new position:
210  * returns 0 if already on right track
211  * returns 1 if track changed
212  * returns 2 if track is invalid
213  * returns 3 if sector is invalid
214  * returns 4 if seek is disabled
215  */
216 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
217                    int enable_seek)
218 {
219     uint32_t sector;
220     int ret;
221 
222     if (track > drv->max_track ||
223         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
224         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
225                        head, track, sect, 1,
226                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
227                        drv->max_track, drv->last_sect);
228         return 2;
229     }
230     if (sect > drv->last_sect) {
231         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
232                        head, track, sect, 1,
233                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
234                        drv->max_track, drv->last_sect);
235         return 3;
236     }
237     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
238     ret = 0;
239     if (sector != fd_sector(drv)) {
240 #if 0
241         if (!enable_seek) {
242             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
243                            " (max=%d %02x %02x)\n",
244                            head, track, sect, 1, drv->max_track,
245                            drv->last_sect);
246             return 4;
247         }
248 #endif
249         drv->head = head;
250         if (drv->track != track) {
251             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
252                 drv->media_changed = 0;
253             }
254             ret = 1;
255         }
256         drv->track = track;
257         drv->sect = sect;
258     }
259 
260     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
261         ret = 2;
262     }
263 
264     return ret;
265 }
266 
267 /* Set drive back to track 0 */
268 static void fd_recalibrate(FDrive *drv)
269 {
270     FLOPPY_DPRINTF("recalibrate\n");
271     fd_seek(drv, 0, 0, 1, 1);
272 }
273 
274 /**
275  * Determine geometry based on inserted diskette.
276  * Will not operate on an empty drive.
277  *
278  * @return: 0 on success, -1 if the drive is empty.
279  */
280 static int pick_geometry(FDrive *drv)
281 {
282     BlockBackend *blk = drv->blk;
283     const FDFormat *parse;
284     uint64_t nb_sectors, size;
285     int i;
286     int match, size_match, type_match;
287     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
288 
289     /* We can only pick a geometry if we have a diskette. */
290     if (!drv->blk || !blk_is_inserted(drv->blk) ||
291         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
292     {
293         return -1;
294     }
295 
296     /* We need to determine the likely geometry of the inserted medium.
297      * In order of preference, we look for:
298      * (1) The same drive type and number of sectors,
299      * (2) The same diskette size and number of sectors,
300      * (3) The same drive type.
301      *
302      * In all cases, matches that occur higher in the drive table will take
303      * precedence over matches that occur later in the table.
304      */
305     blk_get_geometry(blk, &nb_sectors);
306     match = size_match = type_match = -1;
307     for (i = 0; ; i++) {
308         parse = &fd_formats[i];
309         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
310             break;
311         }
312         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
313         if (nb_sectors == size) {
314             if (magic || parse->drive == drv->drive) {
315                 /* (1) perfect match -- nb_sectors and drive type */
316                 goto out;
317             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
318                 /* (2) size match -- nb_sectors and physical medium size */
319                 match = (match == -1) ? i : match;
320             } else {
321                 /* This is suspicious -- Did the user misconfigure? */
322                 size_match = (size_match == -1) ? i : size_match;
323             }
324         } else if (type_match == -1) {
325             if ((parse->drive == drv->drive) ||
326                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
327                 /* (3) type match -- nb_sectors mismatch, but matches the type
328                  *     specified explicitly by the user, or matches the fallback
329                  *     default type when using the drive autodetect mechanism */
330                 type_match = i;
331             }
332         }
333     }
334 
335     /* No exact match found */
336     if (match == -1) {
337         if (size_match != -1) {
338             parse = &fd_formats[size_match];
339             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
340                            "but inserted medium appears to be a "
341                            "%d sector '%s' type\n",
342                            FloppyDriveType_lookup[drv->drive],
343                            nb_sectors,
344                            FloppyDriveType_lookup[parse->drive]);
345         }
346         match = type_match;
347     }
348 
349     /* No match of any kind found -- fd_format is misconfigured, abort. */
350     if (match == -1) {
351         error_setg(&error_abort, "No candidate geometries present in table "
352                    " for floppy drive type '%s'",
353                    FloppyDriveType_lookup[drv->drive]);
354     }
355 
356     parse = &(fd_formats[match]);
357 
358  out:
359     if (parse->max_head == 0) {
360         drv->flags &= ~FDISK_DBL_SIDES;
361     } else {
362         drv->flags |= FDISK_DBL_SIDES;
363     }
364     drv->max_track = parse->max_track;
365     drv->last_sect = parse->last_sect;
366     drv->disk = parse->drive;
367     drv->media_rate = parse->rate;
368     return 0;
369 }
370 
371 static void pick_drive_type(FDrive *drv)
372 {
373     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
374         return;
375     }
376 
377     if (pick_geometry(drv) == 0) {
378         drv->drive = drv->disk;
379     } else {
380         drv->drive = get_fallback_drive_type(drv);
381     }
382 
383     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
384 }
385 
386 /* Revalidate a disk drive after a disk change */
387 static void fd_revalidate(FDrive *drv)
388 {
389     int rc;
390 
391     FLOPPY_DPRINTF("revalidate\n");
392     if (drv->blk != NULL) {
393         drv->ro = blk_is_read_only(drv->blk);
394         if (!blk_is_inserted(drv->blk)) {
395             FLOPPY_DPRINTF("No disk in drive\n");
396             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
397         } else if (!drv->media_validated) {
398             rc = pick_geometry(drv);
399             if (rc) {
400                 FLOPPY_DPRINTF("Could not validate floppy drive media");
401             } else {
402                 drv->media_validated = true;
403                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
404                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
405                                drv->max_track, drv->last_sect,
406                                drv->ro ? "ro" : "rw");
407             }
408         }
409     } else {
410         FLOPPY_DPRINTF("No drive connected\n");
411         drv->last_sect = 0;
412         drv->max_track = 0;
413         drv->flags &= ~FDISK_DBL_SIDES;
414         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
415         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
416     }
417 }
418 
419 /********************************************************/
420 /* Intel 82078 floppy disk controller emulation          */
421 
422 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
423 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
424 static int fdctrl_transfer_handler (void *opaque, int nchan,
425                                     int dma_pos, int dma_len);
426 static void fdctrl_raise_irq(FDCtrl *fdctrl);
427 static FDrive *get_cur_drv(FDCtrl *fdctrl);
428 
429 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
430 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
431 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
432 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
433 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
434 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
435 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
436 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
437 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
438 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
439 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
440 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
441 
442 enum {
443     FD_DIR_WRITE   = 0,
444     FD_DIR_READ    = 1,
445     FD_DIR_SCANE   = 2,
446     FD_DIR_SCANL   = 3,
447     FD_DIR_SCANH   = 4,
448     FD_DIR_VERIFY  = 5,
449 };
450 
451 enum {
452     FD_STATE_MULTI  = 0x01,	/* multi track flag */
453     FD_STATE_FORMAT = 0x02,	/* format flag */
454 };
455 
456 enum {
457     FD_REG_SRA = 0x00,
458     FD_REG_SRB = 0x01,
459     FD_REG_DOR = 0x02,
460     FD_REG_TDR = 0x03,
461     FD_REG_MSR = 0x04,
462     FD_REG_DSR = 0x04,
463     FD_REG_FIFO = 0x05,
464     FD_REG_DIR = 0x07,
465     FD_REG_CCR = 0x07,
466 };
467 
468 enum {
469     FD_CMD_READ_TRACK = 0x02,
470     FD_CMD_SPECIFY = 0x03,
471     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
472     FD_CMD_WRITE = 0x05,
473     FD_CMD_READ = 0x06,
474     FD_CMD_RECALIBRATE = 0x07,
475     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
476     FD_CMD_WRITE_DELETED = 0x09,
477     FD_CMD_READ_ID = 0x0a,
478     FD_CMD_READ_DELETED = 0x0c,
479     FD_CMD_FORMAT_TRACK = 0x0d,
480     FD_CMD_DUMPREG = 0x0e,
481     FD_CMD_SEEK = 0x0f,
482     FD_CMD_VERSION = 0x10,
483     FD_CMD_SCAN_EQUAL = 0x11,
484     FD_CMD_PERPENDICULAR_MODE = 0x12,
485     FD_CMD_CONFIGURE = 0x13,
486     FD_CMD_LOCK = 0x14,
487     FD_CMD_VERIFY = 0x16,
488     FD_CMD_POWERDOWN_MODE = 0x17,
489     FD_CMD_PART_ID = 0x18,
490     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
491     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
492     FD_CMD_SAVE = 0x2e,
493     FD_CMD_OPTION = 0x33,
494     FD_CMD_RESTORE = 0x4e,
495     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
496     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
497     FD_CMD_FORMAT_AND_WRITE = 0xcd,
498     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
499 };
500 
501 enum {
502     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
503     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
504     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
505     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
506     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
507 };
508 
509 enum {
510     FD_SR0_DS0      = 0x01,
511     FD_SR0_DS1      = 0x02,
512     FD_SR0_HEAD     = 0x04,
513     FD_SR0_EQPMT    = 0x10,
514     FD_SR0_SEEK     = 0x20,
515     FD_SR0_ABNTERM  = 0x40,
516     FD_SR0_INVCMD   = 0x80,
517     FD_SR0_RDYCHG   = 0xc0,
518 };
519 
520 enum {
521     FD_SR1_MA       = 0x01, /* Missing address mark */
522     FD_SR1_NW       = 0x02, /* Not writable */
523     FD_SR1_EC       = 0x80, /* End of cylinder */
524 };
525 
526 enum {
527     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
528     FD_SR2_SEH      = 0x08, /* Scan equal hit */
529 };
530 
531 enum {
532     FD_SRA_DIR      = 0x01,
533     FD_SRA_nWP      = 0x02,
534     FD_SRA_nINDX    = 0x04,
535     FD_SRA_HDSEL    = 0x08,
536     FD_SRA_nTRK0    = 0x10,
537     FD_SRA_STEP     = 0x20,
538     FD_SRA_nDRV2    = 0x40,
539     FD_SRA_INTPEND  = 0x80,
540 };
541 
542 enum {
543     FD_SRB_MTR0     = 0x01,
544     FD_SRB_MTR1     = 0x02,
545     FD_SRB_WGATE    = 0x04,
546     FD_SRB_RDATA    = 0x08,
547     FD_SRB_WDATA    = 0x10,
548     FD_SRB_DR0      = 0x20,
549 };
550 
551 enum {
552 #if MAX_FD == 4
553     FD_DOR_SELMASK  = 0x03,
554 #else
555     FD_DOR_SELMASK  = 0x01,
556 #endif
557     FD_DOR_nRESET   = 0x04,
558     FD_DOR_DMAEN    = 0x08,
559     FD_DOR_MOTEN0   = 0x10,
560     FD_DOR_MOTEN1   = 0x20,
561     FD_DOR_MOTEN2   = 0x40,
562     FD_DOR_MOTEN3   = 0x80,
563 };
564 
565 enum {
566 #if MAX_FD == 4
567     FD_TDR_BOOTSEL  = 0x0c,
568 #else
569     FD_TDR_BOOTSEL  = 0x04,
570 #endif
571 };
572 
573 enum {
574     FD_DSR_DRATEMASK= 0x03,
575     FD_DSR_PWRDOWN  = 0x40,
576     FD_DSR_SWRESET  = 0x80,
577 };
578 
579 enum {
580     FD_MSR_DRV0BUSY = 0x01,
581     FD_MSR_DRV1BUSY = 0x02,
582     FD_MSR_DRV2BUSY = 0x04,
583     FD_MSR_DRV3BUSY = 0x08,
584     FD_MSR_CMDBUSY  = 0x10,
585     FD_MSR_NONDMA   = 0x20,
586     FD_MSR_DIO      = 0x40,
587     FD_MSR_RQM      = 0x80,
588 };
589 
590 enum {
591     FD_DIR_DSKCHG   = 0x80,
592 };
593 
594 /*
595  * See chapter 5.0 "Controller phases" of the spec:
596  *
597  * Command phase:
598  * The host writes a command and its parameters into the FIFO. The command
599  * phase is completed when all parameters for the command have been supplied,
600  * and execution phase is entered.
601  *
602  * Execution phase:
603  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
604  * contains the payload now, otherwise it's unused. When all bytes of the
605  * required data have been transferred, the state is switched to either result
606  * phase (if the command produces status bytes) or directly back into the
607  * command phase for the next command.
608  *
609  * Result phase:
610  * The host reads out the FIFO, which contains one or more result bytes now.
611  */
612 enum {
613     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
614     FD_PHASE_RECONSTRUCT    = 0,
615 
616     FD_PHASE_COMMAND        = 1,
617     FD_PHASE_EXECUTION      = 2,
618     FD_PHASE_RESULT         = 3,
619 };
620 
621 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
622 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
623 
624 struct FDCtrl {
625     MemoryRegion iomem;
626     qemu_irq irq;
627     /* Controller state */
628     QEMUTimer *result_timer;
629     int dma_chann;
630     uint8_t phase;
631     /* Controller's identification */
632     uint8_t version;
633     /* HW */
634     uint8_t sra;
635     uint8_t srb;
636     uint8_t dor;
637     uint8_t dor_vmstate; /* only used as temp during vmstate */
638     uint8_t tdr;
639     uint8_t dsr;
640     uint8_t msr;
641     uint8_t cur_drv;
642     uint8_t status0;
643     uint8_t status1;
644     uint8_t status2;
645     /* Command FIFO */
646     uint8_t *fifo;
647     int32_t fifo_size;
648     uint32_t data_pos;
649     uint32_t data_len;
650     uint8_t data_state;
651     uint8_t data_dir;
652     uint8_t eot; /* last wanted sector */
653     /* States kept only to be returned back */
654     /* precompensation */
655     uint8_t precomp_trk;
656     uint8_t config;
657     uint8_t lock;
658     /* Power down config (also with status regB access mode */
659     uint8_t pwrd;
660     /* Floppy drives */
661     uint8_t num_floppies;
662     FDrive drives[MAX_FD];
663     int reset_sensei;
664     uint32_t check_media_rate;
665     FloppyDriveType fallback; /* type=auto failure fallback */
666     /* Timers state */
667     uint8_t timer0;
668     uint8_t timer1;
669 };
670 
671 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
672 {
673     return drv->fdctrl->fallback;
674 }
675 
676 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
677 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
678 
679 typedef struct FDCtrlSysBus {
680     /*< private >*/
681     SysBusDevice parent_obj;
682     /*< public >*/
683 
684     struct FDCtrl state;
685 } FDCtrlSysBus;
686 
687 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
688 
689 typedef struct FDCtrlISABus {
690     ISADevice parent_obj;
691 
692     uint32_t iobase;
693     uint32_t irq;
694     uint32_t dma;
695     struct FDCtrl state;
696     int32_t bootindexA;
697     int32_t bootindexB;
698 } FDCtrlISABus;
699 
700 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
701 {
702     FDCtrl *fdctrl = opaque;
703     uint32_t retval;
704 
705     reg &= 7;
706     switch (reg) {
707     case FD_REG_SRA:
708         retval = fdctrl_read_statusA(fdctrl);
709         break;
710     case FD_REG_SRB:
711         retval = fdctrl_read_statusB(fdctrl);
712         break;
713     case FD_REG_DOR:
714         retval = fdctrl_read_dor(fdctrl);
715         break;
716     case FD_REG_TDR:
717         retval = fdctrl_read_tape(fdctrl);
718         break;
719     case FD_REG_MSR:
720         retval = fdctrl_read_main_status(fdctrl);
721         break;
722     case FD_REG_FIFO:
723         retval = fdctrl_read_data(fdctrl);
724         break;
725     case FD_REG_DIR:
726         retval = fdctrl_read_dir(fdctrl);
727         break;
728     default:
729         retval = (uint32_t)(-1);
730         break;
731     }
732     FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
733 
734     return retval;
735 }
736 
737 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
738 {
739     FDCtrl *fdctrl = opaque;
740 
741     FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
742 
743     reg &= 7;
744     switch (reg) {
745     case FD_REG_DOR:
746         fdctrl_write_dor(fdctrl, value);
747         break;
748     case FD_REG_TDR:
749         fdctrl_write_tape(fdctrl, value);
750         break;
751     case FD_REG_DSR:
752         fdctrl_write_rate(fdctrl, value);
753         break;
754     case FD_REG_FIFO:
755         fdctrl_write_data(fdctrl, value);
756         break;
757     case FD_REG_CCR:
758         fdctrl_write_ccr(fdctrl, value);
759         break;
760     default:
761         break;
762     }
763 }
764 
765 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
766                                  unsigned ize)
767 {
768     return fdctrl_read(opaque, (uint32_t)reg);
769 }
770 
771 static void fdctrl_write_mem (void *opaque, hwaddr reg,
772                               uint64_t value, unsigned size)
773 {
774     fdctrl_write(opaque, (uint32_t)reg, value);
775 }
776 
777 static const MemoryRegionOps fdctrl_mem_ops = {
778     .read = fdctrl_read_mem,
779     .write = fdctrl_write_mem,
780     .endianness = DEVICE_NATIVE_ENDIAN,
781 };
782 
783 static const MemoryRegionOps fdctrl_mem_strict_ops = {
784     .read = fdctrl_read_mem,
785     .write = fdctrl_write_mem,
786     .endianness = DEVICE_NATIVE_ENDIAN,
787     .valid = {
788         .min_access_size = 1,
789         .max_access_size = 1,
790     },
791 };
792 
793 static bool fdrive_media_changed_needed(void *opaque)
794 {
795     FDrive *drive = opaque;
796 
797     return (drive->blk != NULL && drive->media_changed != 1);
798 }
799 
800 static const VMStateDescription vmstate_fdrive_media_changed = {
801     .name = "fdrive/media_changed",
802     .version_id = 1,
803     .minimum_version_id = 1,
804     .needed = fdrive_media_changed_needed,
805     .fields = (VMStateField[]) {
806         VMSTATE_UINT8(media_changed, FDrive),
807         VMSTATE_END_OF_LIST()
808     }
809 };
810 
811 static bool fdrive_media_rate_needed(void *opaque)
812 {
813     FDrive *drive = opaque;
814 
815     return drive->fdctrl->check_media_rate;
816 }
817 
818 static const VMStateDescription vmstate_fdrive_media_rate = {
819     .name = "fdrive/media_rate",
820     .version_id = 1,
821     .minimum_version_id = 1,
822     .needed = fdrive_media_rate_needed,
823     .fields = (VMStateField[]) {
824         VMSTATE_UINT8(media_rate, FDrive),
825         VMSTATE_END_OF_LIST()
826     }
827 };
828 
829 static bool fdrive_perpendicular_needed(void *opaque)
830 {
831     FDrive *drive = opaque;
832 
833     return drive->perpendicular != 0;
834 }
835 
836 static const VMStateDescription vmstate_fdrive_perpendicular = {
837     .name = "fdrive/perpendicular",
838     .version_id = 1,
839     .minimum_version_id = 1,
840     .needed = fdrive_perpendicular_needed,
841     .fields = (VMStateField[]) {
842         VMSTATE_UINT8(perpendicular, FDrive),
843         VMSTATE_END_OF_LIST()
844     }
845 };
846 
847 static int fdrive_post_load(void *opaque, int version_id)
848 {
849     fd_revalidate(opaque);
850     return 0;
851 }
852 
853 static const VMStateDescription vmstate_fdrive = {
854     .name = "fdrive",
855     .version_id = 1,
856     .minimum_version_id = 1,
857     .post_load = fdrive_post_load,
858     .fields = (VMStateField[]) {
859         VMSTATE_UINT8(head, FDrive),
860         VMSTATE_UINT8(track, FDrive),
861         VMSTATE_UINT8(sect, FDrive),
862         VMSTATE_END_OF_LIST()
863     },
864     .subsections = (const VMStateDescription*[]) {
865         &vmstate_fdrive_media_changed,
866         &vmstate_fdrive_media_rate,
867         &vmstate_fdrive_perpendicular,
868         NULL
869     }
870 };
871 
872 /*
873  * Reconstructs the phase from register values according to the logic that was
874  * implemented in qemu 2.3. This is the default value that is used if the phase
875  * subsection is not present on migration.
876  *
877  * Don't change this function to reflect newer qemu versions, it is part of
878  * the migration ABI.
879  */
880 static int reconstruct_phase(FDCtrl *fdctrl)
881 {
882     if (fdctrl->msr & FD_MSR_NONDMA) {
883         return FD_PHASE_EXECUTION;
884     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
885         /* qemu 2.3 disabled RQM only during DMA transfers */
886         return FD_PHASE_EXECUTION;
887     } else if (fdctrl->msr & FD_MSR_DIO) {
888         return FD_PHASE_RESULT;
889     } else {
890         return FD_PHASE_COMMAND;
891     }
892 }
893 
894 static void fdc_pre_save(void *opaque)
895 {
896     FDCtrl *s = opaque;
897 
898     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
899 }
900 
901 static int fdc_pre_load(void *opaque)
902 {
903     FDCtrl *s = opaque;
904     s->phase = FD_PHASE_RECONSTRUCT;
905     return 0;
906 }
907 
908 static int fdc_post_load(void *opaque, int version_id)
909 {
910     FDCtrl *s = opaque;
911 
912     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
913     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
914 
915     if (s->phase == FD_PHASE_RECONSTRUCT) {
916         s->phase = reconstruct_phase(s);
917     }
918 
919     return 0;
920 }
921 
922 static bool fdc_reset_sensei_needed(void *opaque)
923 {
924     FDCtrl *s = opaque;
925 
926     return s->reset_sensei != 0;
927 }
928 
929 static const VMStateDescription vmstate_fdc_reset_sensei = {
930     .name = "fdc/reset_sensei",
931     .version_id = 1,
932     .minimum_version_id = 1,
933     .needed = fdc_reset_sensei_needed,
934     .fields = (VMStateField[]) {
935         VMSTATE_INT32(reset_sensei, FDCtrl),
936         VMSTATE_END_OF_LIST()
937     }
938 };
939 
940 static bool fdc_result_timer_needed(void *opaque)
941 {
942     FDCtrl *s = opaque;
943 
944     return timer_pending(s->result_timer);
945 }
946 
947 static const VMStateDescription vmstate_fdc_result_timer = {
948     .name = "fdc/result_timer",
949     .version_id = 1,
950     .minimum_version_id = 1,
951     .needed = fdc_result_timer_needed,
952     .fields = (VMStateField[]) {
953         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
954         VMSTATE_END_OF_LIST()
955     }
956 };
957 
958 static bool fdc_phase_needed(void *opaque)
959 {
960     FDCtrl *fdctrl = opaque;
961 
962     return reconstruct_phase(fdctrl) != fdctrl->phase;
963 }
964 
965 static const VMStateDescription vmstate_fdc_phase = {
966     .name = "fdc/phase",
967     .version_id = 1,
968     .minimum_version_id = 1,
969     .needed = fdc_phase_needed,
970     .fields = (VMStateField[]) {
971         VMSTATE_UINT8(phase, FDCtrl),
972         VMSTATE_END_OF_LIST()
973     }
974 };
975 
976 static const VMStateDescription vmstate_fdc = {
977     .name = "fdc",
978     .version_id = 2,
979     .minimum_version_id = 2,
980     .pre_save = fdc_pre_save,
981     .pre_load = fdc_pre_load,
982     .post_load = fdc_post_load,
983     .fields = (VMStateField[]) {
984         /* Controller State */
985         VMSTATE_UINT8(sra, FDCtrl),
986         VMSTATE_UINT8(srb, FDCtrl),
987         VMSTATE_UINT8(dor_vmstate, FDCtrl),
988         VMSTATE_UINT8(tdr, FDCtrl),
989         VMSTATE_UINT8(dsr, FDCtrl),
990         VMSTATE_UINT8(msr, FDCtrl),
991         VMSTATE_UINT8(status0, FDCtrl),
992         VMSTATE_UINT8(status1, FDCtrl),
993         VMSTATE_UINT8(status2, FDCtrl),
994         /* Command FIFO */
995         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
996                              uint8_t),
997         VMSTATE_UINT32(data_pos, FDCtrl),
998         VMSTATE_UINT32(data_len, FDCtrl),
999         VMSTATE_UINT8(data_state, FDCtrl),
1000         VMSTATE_UINT8(data_dir, FDCtrl),
1001         VMSTATE_UINT8(eot, FDCtrl),
1002         /* States kept only to be returned back */
1003         VMSTATE_UINT8(timer0, FDCtrl),
1004         VMSTATE_UINT8(timer1, FDCtrl),
1005         VMSTATE_UINT8(precomp_trk, FDCtrl),
1006         VMSTATE_UINT8(config, FDCtrl),
1007         VMSTATE_UINT8(lock, FDCtrl),
1008         VMSTATE_UINT8(pwrd, FDCtrl),
1009         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
1010         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1011                              vmstate_fdrive, FDrive),
1012         VMSTATE_END_OF_LIST()
1013     },
1014     .subsections = (const VMStateDescription*[]) {
1015         &vmstate_fdc_reset_sensei,
1016         &vmstate_fdc_result_timer,
1017         &vmstate_fdc_phase,
1018         NULL
1019     }
1020 };
1021 
1022 static void fdctrl_external_reset_sysbus(DeviceState *d)
1023 {
1024     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1025     FDCtrl *s = &sys->state;
1026 
1027     fdctrl_reset(s, 0);
1028 }
1029 
1030 static void fdctrl_external_reset_isa(DeviceState *d)
1031 {
1032     FDCtrlISABus *isa = ISA_FDC(d);
1033     FDCtrl *s = &isa->state;
1034 
1035     fdctrl_reset(s, 0);
1036 }
1037 
1038 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1039 {
1040     //FDCtrl *s = opaque;
1041 
1042     if (level) {
1043         // XXX
1044         FLOPPY_DPRINTF("TC pulsed\n");
1045     }
1046 }
1047 
1048 /* Change IRQ state */
1049 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1050 {
1051     fdctrl->status0 = 0;
1052     if (!(fdctrl->sra & FD_SRA_INTPEND))
1053         return;
1054     FLOPPY_DPRINTF("Reset interrupt\n");
1055     qemu_set_irq(fdctrl->irq, 0);
1056     fdctrl->sra &= ~FD_SRA_INTPEND;
1057 }
1058 
1059 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1060 {
1061     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1062         qemu_set_irq(fdctrl->irq, 1);
1063         fdctrl->sra |= FD_SRA_INTPEND;
1064     }
1065 
1066     fdctrl->reset_sensei = 0;
1067     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1068 }
1069 
1070 /* Reset controller */
1071 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1072 {
1073     int i;
1074 
1075     FLOPPY_DPRINTF("reset controller\n");
1076     fdctrl_reset_irq(fdctrl);
1077     /* Initialise controller */
1078     fdctrl->sra = 0;
1079     fdctrl->srb = 0xc0;
1080     if (!fdctrl->drives[1].blk) {
1081         fdctrl->sra |= FD_SRA_nDRV2;
1082     }
1083     fdctrl->cur_drv = 0;
1084     fdctrl->dor = FD_DOR_nRESET;
1085     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1086     fdctrl->msr = FD_MSR_RQM;
1087     fdctrl->reset_sensei = 0;
1088     timer_del(fdctrl->result_timer);
1089     /* FIFO state */
1090     fdctrl->data_pos = 0;
1091     fdctrl->data_len = 0;
1092     fdctrl->data_state = 0;
1093     fdctrl->data_dir = FD_DIR_WRITE;
1094     for (i = 0; i < MAX_FD; i++)
1095         fd_recalibrate(&fdctrl->drives[i]);
1096     fdctrl_to_command_phase(fdctrl);
1097     if (do_irq) {
1098         fdctrl->status0 |= FD_SR0_RDYCHG;
1099         fdctrl_raise_irq(fdctrl);
1100         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1101     }
1102 }
1103 
1104 static inline FDrive *drv0(FDCtrl *fdctrl)
1105 {
1106     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1107 }
1108 
1109 static inline FDrive *drv1(FDCtrl *fdctrl)
1110 {
1111     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1112         return &fdctrl->drives[1];
1113     else
1114         return &fdctrl->drives[0];
1115 }
1116 
1117 #if MAX_FD == 4
1118 static inline FDrive *drv2(FDCtrl *fdctrl)
1119 {
1120     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1121         return &fdctrl->drives[2];
1122     else
1123         return &fdctrl->drives[1];
1124 }
1125 
1126 static inline FDrive *drv3(FDCtrl *fdctrl)
1127 {
1128     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1129         return &fdctrl->drives[3];
1130     else
1131         return &fdctrl->drives[2];
1132 }
1133 #endif
1134 
1135 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1136 {
1137     switch (fdctrl->cur_drv) {
1138         case 0: return drv0(fdctrl);
1139         case 1: return drv1(fdctrl);
1140 #if MAX_FD == 4
1141         case 2: return drv2(fdctrl);
1142         case 3: return drv3(fdctrl);
1143 #endif
1144         default: return NULL;
1145     }
1146 }
1147 
1148 /* Status A register : 0x00 (read-only) */
1149 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1150 {
1151     uint32_t retval = fdctrl->sra;
1152 
1153     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1154 
1155     return retval;
1156 }
1157 
1158 /* Status B register : 0x01 (read-only) */
1159 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1160 {
1161     uint32_t retval = fdctrl->srb;
1162 
1163     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1164 
1165     return retval;
1166 }
1167 
1168 /* Digital output register : 0x02 */
1169 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1170 {
1171     uint32_t retval = fdctrl->dor;
1172 
1173     /* Selected drive */
1174     retval |= fdctrl->cur_drv;
1175     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1176 
1177     return retval;
1178 }
1179 
1180 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1181 {
1182     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1183 
1184     /* Motors */
1185     if (value & FD_DOR_MOTEN0)
1186         fdctrl->srb |= FD_SRB_MTR0;
1187     else
1188         fdctrl->srb &= ~FD_SRB_MTR0;
1189     if (value & FD_DOR_MOTEN1)
1190         fdctrl->srb |= FD_SRB_MTR1;
1191     else
1192         fdctrl->srb &= ~FD_SRB_MTR1;
1193 
1194     /* Drive */
1195     if (value & 1)
1196         fdctrl->srb |= FD_SRB_DR0;
1197     else
1198         fdctrl->srb &= ~FD_SRB_DR0;
1199 
1200     /* Reset */
1201     if (!(value & FD_DOR_nRESET)) {
1202         if (fdctrl->dor & FD_DOR_nRESET) {
1203             FLOPPY_DPRINTF("controller enter RESET state\n");
1204         }
1205     } else {
1206         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1207             FLOPPY_DPRINTF("controller out of RESET state\n");
1208             fdctrl_reset(fdctrl, 1);
1209             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1210         }
1211     }
1212     /* Selected drive */
1213     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1214 
1215     fdctrl->dor = value;
1216 }
1217 
1218 /* Tape drive register : 0x03 */
1219 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1220 {
1221     uint32_t retval = fdctrl->tdr;
1222 
1223     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1224 
1225     return retval;
1226 }
1227 
1228 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1229 {
1230     /* Reset mode */
1231     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1232         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1233         return;
1234     }
1235     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1236     /* Disk boot selection indicator */
1237     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1238     /* Tape indicators: never allow */
1239 }
1240 
1241 /* Main status register : 0x04 (read) */
1242 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1243 {
1244     uint32_t retval = fdctrl->msr;
1245 
1246     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1247     fdctrl->dor |= FD_DOR_nRESET;
1248 
1249     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1250 
1251     return retval;
1252 }
1253 
1254 /* Data select rate register : 0x04 (write) */
1255 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1256 {
1257     /* Reset mode */
1258     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1259         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1260         return;
1261     }
1262     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1263     /* Reset: autoclear */
1264     if (value & FD_DSR_SWRESET) {
1265         fdctrl->dor &= ~FD_DOR_nRESET;
1266         fdctrl_reset(fdctrl, 1);
1267         fdctrl->dor |= FD_DOR_nRESET;
1268     }
1269     if (value & FD_DSR_PWRDOWN) {
1270         fdctrl_reset(fdctrl, 1);
1271     }
1272     fdctrl->dsr = value;
1273 }
1274 
1275 /* Configuration control register: 0x07 (write) */
1276 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1277 {
1278     /* Reset mode */
1279     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1280         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1281         return;
1282     }
1283     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1284 
1285     /* Only the rate selection bits used in AT mode, and we
1286      * store those in the DSR.
1287      */
1288     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1289                   (value & FD_DSR_DRATEMASK);
1290 }
1291 
1292 static int fdctrl_media_changed(FDrive *drv)
1293 {
1294     return drv->media_changed;
1295 }
1296 
1297 /* Digital input register : 0x07 (read-only) */
1298 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1299 {
1300     uint32_t retval = 0;
1301 
1302     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1303         retval |= FD_DIR_DSKCHG;
1304     }
1305     if (retval != 0) {
1306         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1307     }
1308 
1309     return retval;
1310 }
1311 
1312 /* Clear the FIFO and update the state for receiving the next command */
1313 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1314 {
1315     fdctrl->phase = FD_PHASE_COMMAND;
1316     fdctrl->data_dir = FD_DIR_WRITE;
1317     fdctrl->data_pos = 0;
1318     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1319     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1320     fdctrl->msr |= FD_MSR_RQM;
1321 }
1322 
1323 /* Update the state to allow the guest to read out the command status.
1324  * @fifo_len is the number of result bytes to be read out. */
1325 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1326 {
1327     fdctrl->phase = FD_PHASE_RESULT;
1328     fdctrl->data_dir = FD_DIR_READ;
1329     fdctrl->data_len = fifo_len;
1330     fdctrl->data_pos = 0;
1331     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1332 }
1333 
1334 /* Set an error: unimplemented/unknown command */
1335 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1336 {
1337     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1338                   fdctrl->fifo[0]);
1339     fdctrl->fifo[0] = FD_SR0_INVCMD;
1340     fdctrl_to_result_phase(fdctrl, 1);
1341 }
1342 
1343 /* Seek to next sector
1344  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1345  * otherwise returns 1
1346  */
1347 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1348 {
1349     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1350                    cur_drv->head, cur_drv->track, cur_drv->sect,
1351                    fd_sector(cur_drv));
1352     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1353        error in fact */
1354     uint8_t new_head = cur_drv->head;
1355     uint8_t new_track = cur_drv->track;
1356     uint8_t new_sect = cur_drv->sect;
1357 
1358     int ret = 1;
1359 
1360     if (new_sect >= cur_drv->last_sect ||
1361         new_sect == fdctrl->eot) {
1362         new_sect = 1;
1363         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1364             if (new_head == 0 &&
1365                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1366                 new_head = 1;
1367             } else {
1368                 new_head = 0;
1369                 new_track++;
1370                 fdctrl->status0 |= FD_SR0_SEEK;
1371                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1372                     ret = 0;
1373                 }
1374             }
1375         } else {
1376             fdctrl->status0 |= FD_SR0_SEEK;
1377             new_track++;
1378             ret = 0;
1379         }
1380         if (ret == 1) {
1381             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1382                     new_head, new_track, new_sect, fd_sector(cur_drv));
1383         }
1384     } else {
1385         new_sect++;
1386     }
1387     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1388     return ret;
1389 }
1390 
1391 /* Callback for transfer end (stop or abort) */
1392 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1393                                  uint8_t status1, uint8_t status2)
1394 {
1395     FDrive *cur_drv;
1396     cur_drv = get_cur_drv(fdctrl);
1397 
1398     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1399     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1400     if (cur_drv->head) {
1401         fdctrl->status0 |= FD_SR0_HEAD;
1402     }
1403     fdctrl->status0 |= status0;
1404 
1405     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1406                    status0, status1, status2, fdctrl->status0);
1407     fdctrl->fifo[0] = fdctrl->status0;
1408     fdctrl->fifo[1] = status1;
1409     fdctrl->fifo[2] = status2;
1410     fdctrl->fifo[3] = cur_drv->track;
1411     fdctrl->fifo[4] = cur_drv->head;
1412     fdctrl->fifo[5] = cur_drv->sect;
1413     fdctrl->fifo[6] = FD_SECTOR_SC;
1414     fdctrl->data_dir = FD_DIR_READ;
1415     if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1416         DMA_release_DREQ(fdctrl->dma_chann);
1417     }
1418     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1419     fdctrl->msr &= ~FD_MSR_NONDMA;
1420 
1421     fdctrl_to_result_phase(fdctrl, 7);
1422     fdctrl_raise_irq(fdctrl);
1423 }
1424 
1425 /* Prepare a data transfer (either DMA or FIFO) */
1426 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1427 {
1428     FDrive *cur_drv;
1429     uint8_t kh, kt, ks;
1430 
1431     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1432     cur_drv = get_cur_drv(fdctrl);
1433     kt = fdctrl->fifo[2];
1434     kh = fdctrl->fifo[3];
1435     ks = fdctrl->fifo[4];
1436     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1437                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1438                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1439                                   NUM_SIDES(cur_drv)));
1440     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1441     case 2:
1442         /* sect too big */
1443         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1444         fdctrl->fifo[3] = kt;
1445         fdctrl->fifo[4] = kh;
1446         fdctrl->fifo[5] = ks;
1447         return;
1448     case 3:
1449         /* track too big */
1450         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1451         fdctrl->fifo[3] = kt;
1452         fdctrl->fifo[4] = kh;
1453         fdctrl->fifo[5] = ks;
1454         return;
1455     case 4:
1456         /* No seek enabled */
1457         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1458         fdctrl->fifo[3] = kt;
1459         fdctrl->fifo[4] = kh;
1460         fdctrl->fifo[5] = ks;
1461         return;
1462     case 1:
1463         fdctrl->status0 |= FD_SR0_SEEK;
1464         break;
1465     default:
1466         break;
1467     }
1468 
1469     /* Check the data rate. If the programmed data rate does not match
1470      * the currently inserted medium, the operation has to fail. */
1471     if (fdctrl->check_media_rate &&
1472         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1473         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1474                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1475         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1476         fdctrl->fifo[3] = kt;
1477         fdctrl->fifo[4] = kh;
1478         fdctrl->fifo[5] = ks;
1479         return;
1480     }
1481 
1482     /* Set the FIFO state */
1483     fdctrl->data_dir = direction;
1484     fdctrl->data_pos = 0;
1485     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1486     if (fdctrl->fifo[0] & 0x80)
1487         fdctrl->data_state |= FD_STATE_MULTI;
1488     else
1489         fdctrl->data_state &= ~FD_STATE_MULTI;
1490     if (fdctrl->fifo[5] == 0) {
1491         fdctrl->data_len = fdctrl->fifo[8];
1492     } else {
1493         int tmp;
1494         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1495         tmp = (fdctrl->fifo[6] - ks + 1);
1496         if (fdctrl->fifo[0] & 0x80)
1497             tmp += fdctrl->fifo[6];
1498         fdctrl->data_len *= tmp;
1499     }
1500     fdctrl->eot = fdctrl->fifo[6];
1501     if (fdctrl->dor & FD_DOR_DMAEN) {
1502         int dma_mode;
1503         /* DMA transfer are enabled. Check if DMA channel is well programmed */
1504         dma_mode = DMA_get_channel_mode(fdctrl->dma_chann);
1505         dma_mode = (dma_mode >> 2) & 3;
1506         FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1507                        dma_mode, direction,
1508                        (128 << fdctrl->fifo[5]) *
1509                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1510         if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
1511               direction == FD_DIR_SCANH) && dma_mode == 0) ||
1512             (direction == FD_DIR_WRITE && dma_mode == 2) ||
1513             (direction == FD_DIR_READ && dma_mode == 1) ||
1514             (direction == FD_DIR_VERIFY)) {
1515             /* No access is allowed until DMA transfer has completed */
1516             fdctrl->msr &= ~FD_MSR_RQM;
1517             if (direction != FD_DIR_VERIFY) {
1518                 /* Now, we just have to wait for the DMA controller to
1519                  * recall us...
1520                  */
1521                 DMA_hold_DREQ(fdctrl->dma_chann);
1522                 DMA_schedule();
1523             } else {
1524                 /* Start transfer */
1525                 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1526                                         fdctrl->data_len);
1527             }
1528             return;
1529         } else {
1530             FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1531                            direction);
1532         }
1533     }
1534     FLOPPY_DPRINTF("start non-DMA transfer\n");
1535     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1536     if (direction != FD_DIR_WRITE)
1537         fdctrl->msr |= FD_MSR_DIO;
1538     /* IO based transfer: calculate len */
1539     fdctrl_raise_irq(fdctrl);
1540 }
1541 
1542 /* Prepare a transfer of deleted data */
1543 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1544 {
1545     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1546 
1547     /* We don't handle deleted data,
1548      * so we don't return *ANYTHING*
1549      */
1550     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1551 }
1552 
1553 /* handlers for DMA transfers */
1554 static int fdctrl_transfer_handler (void *opaque, int nchan,
1555                                     int dma_pos, int dma_len)
1556 {
1557     FDCtrl *fdctrl;
1558     FDrive *cur_drv;
1559     int len, start_pos, rel_pos;
1560     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1561 
1562     fdctrl = opaque;
1563     if (fdctrl->msr & FD_MSR_RQM) {
1564         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1565         return 0;
1566     }
1567     cur_drv = get_cur_drv(fdctrl);
1568     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1569         fdctrl->data_dir == FD_DIR_SCANH)
1570         status2 = FD_SR2_SNS;
1571     if (dma_len > fdctrl->data_len)
1572         dma_len = fdctrl->data_len;
1573     if (cur_drv->blk == NULL) {
1574         if (fdctrl->data_dir == FD_DIR_WRITE)
1575             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1576         else
1577             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1578         len = 0;
1579         goto transfer_error;
1580     }
1581     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1582     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1583         len = dma_len - fdctrl->data_pos;
1584         if (len + rel_pos > FD_SECTOR_LEN)
1585             len = FD_SECTOR_LEN - rel_pos;
1586         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1587                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1588                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1589                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1590                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1591         if (fdctrl->data_dir != FD_DIR_WRITE ||
1592             len < FD_SECTOR_LEN || rel_pos != 0) {
1593             /* READ & SCAN commands and realign to a sector for WRITE */
1594             if (blk_read(cur_drv->blk, fd_sector(cur_drv),
1595                          fdctrl->fifo, 1) < 0) {
1596                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1597                                fd_sector(cur_drv));
1598                 /* Sure, image size is too small... */
1599                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1600             }
1601         }
1602         switch (fdctrl->data_dir) {
1603         case FD_DIR_READ:
1604             /* READ commands */
1605             DMA_write_memory (nchan, fdctrl->fifo + rel_pos,
1606                               fdctrl->data_pos, len);
1607             break;
1608         case FD_DIR_WRITE:
1609             /* WRITE commands */
1610             if (cur_drv->ro) {
1611                 /* Handle readonly medium early, no need to do DMA, touch the
1612                  * LED or attempt any writes. A real floppy doesn't attempt
1613                  * to write to readonly media either. */
1614                 fdctrl_stop_transfer(fdctrl,
1615                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1616                                      0x00);
1617                 goto transfer_error;
1618             }
1619 
1620             DMA_read_memory (nchan, fdctrl->fifo + rel_pos,
1621                              fdctrl->data_pos, len);
1622             if (blk_write(cur_drv->blk, fd_sector(cur_drv),
1623                           fdctrl->fifo, 1) < 0) {
1624                 FLOPPY_DPRINTF("error writing sector %d\n",
1625                                fd_sector(cur_drv));
1626                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1627                 goto transfer_error;
1628             }
1629             break;
1630         case FD_DIR_VERIFY:
1631             /* VERIFY commands */
1632             break;
1633         default:
1634             /* SCAN commands */
1635             {
1636                 uint8_t tmpbuf[FD_SECTOR_LEN];
1637                 int ret;
1638                 DMA_read_memory (nchan, tmpbuf, fdctrl->data_pos, len);
1639                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1640                 if (ret == 0) {
1641                     status2 = FD_SR2_SEH;
1642                     goto end_transfer;
1643                 }
1644                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1645                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1646                     status2 = 0x00;
1647                     goto end_transfer;
1648                 }
1649             }
1650             break;
1651         }
1652         fdctrl->data_pos += len;
1653         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1654         if (rel_pos == 0) {
1655             /* Seek to next sector */
1656             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1657                 break;
1658         }
1659     }
1660  end_transfer:
1661     len = fdctrl->data_pos - start_pos;
1662     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1663                    fdctrl->data_pos, len, fdctrl->data_len);
1664     if (fdctrl->data_dir == FD_DIR_SCANE ||
1665         fdctrl->data_dir == FD_DIR_SCANL ||
1666         fdctrl->data_dir == FD_DIR_SCANH)
1667         status2 = FD_SR2_SEH;
1668     fdctrl->data_len -= len;
1669     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1670  transfer_error:
1671 
1672     return len;
1673 }
1674 
1675 /* Data register : 0x05 */
1676 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1677 {
1678     FDrive *cur_drv;
1679     uint32_t retval = 0;
1680     uint32_t pos;
1681 
1682     cur_drv = get_cur_drv(fdctrl);
1683     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1684     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1685         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1686         return 0;
1687     }
1688 
1689     /* If data_len spans multiple sectors, the current position in the FIFO
1690      * wraps around while fdctrl->data_pos is the real position in the whole
1691      * request. */
1692     pos = fdctrl->data_pos;
1693     pos %= FD_SECTOR_LEN;
1694 
1695     switch (fdctrl->phase) {
1696     case FD_PHASE_EXECUTION:
1697         assert(fdctrl->msr & FD_MSR_NONDMA);
1698         if (pos == 0) {
1699             if (fdctrl->data_pos != 0)
1700                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1701                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1702                                    fd_sector(cur_drv));
1703                     return 0;
1704                 }
1705             if (blk_read(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
1706                 < 0) {
1707                 FLOPPY_DPRINTF("error getting sector %d\n",
1708                                fd_sector(cur_drv));
1709                 /* Sure, image size is too small... */
1710                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1711             }
1712         }
1713 
1714         if (++fdctrl->data_pos == fdctrl->data_len) {
1715             fdctrl->msr &= ~FD_MSR_RQM;
1716             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1717         }
1718         break;
1719 
1720     case FD_PHASE_RESULT:
1721         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1722         if (++fdctrl->data_pos == fdctrl->data_len) {
1723             fdctrl->msr &= ~FD_MSR_RQM;
1724             fdctrl_to_command_phase(fdctrl);
1725             fdctrl_reset_irq(fdctrl);
1726         }
1727         break;
1728 
1729     case FD_PHASE_COMMAND:
1730     default:
1731         abort();
1732     }
1733 
1734     retval = fdctrl->fifo[pos];
1735     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1736 
1737     return retval;
1738 }
1739 
1740 static void fdctrl_format_sector(FDCtrl *fdctrl)
1741 {
1742     FDrive *cur_drv;
1743     uint8_t kh, kt, ks;
1744 
1745     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1746     cur_drv = get_cur_drv(fdctrl);
1747     kt = fdctrl->fifo[6];
1748     kh = fdctrl->fifo[7];
1749     ks = fdctrl->fifo[8];
1750     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1751                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1752                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1753                                   NUM_SIDES(cur_drv)));
1754     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1755     case 2:
1756         /* sect too big */
1757         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1758         fdctrl->fifo[3] = kt;
1759         fdctrl->fifo[4] = kh;
1760         fdctrl->fifo[5] = ks;
1761         return;
1762     case 3:
1763         /* track too big */
1764         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1765         fdctrl->fifo[3] = kt;
1766         fdctrl->fifo[4] = kh;
1767         fdctrl->fifo[5] = ks;
1768         return;
1769     case 4:
1770         /* No seek enabled */
1771         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1772         fdctrl->fifo[3] = kt;
1773         fdctrl->fifo[4] = kh;
1774         fdctrl->fifo[5] = ks;
1775         return;
1776     case 1:
1777         fdctrl->status0 |= FD_SR0_SEEK;
1778         break;
1779     default:
1780         break;
1781     }
1782     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1783     if (cur_drv->blk == NULL ||
1784         blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
1785         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1786         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1787     } else {
1788         if (cur_drv->sect == cur_drv->last_sect) {
1789             fdctrl->data_state &= ~FD_STATE_FORMAT;
1790             /* Last sector done */
1791             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1792         } else {
1793             /* More to do */
1794             fdctrl->data_pos = 0;
1795             fdctrl->data_len = 4;
1796         }
1797     }
1798 }
1799 
1800 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1801 {
1802     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1803     fdctrl->fifo[0] = fdctrl->lock << 4;
1804     fdctrl_to_result_phase(fdctrl, 1);
1805 }
1806 
1807 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1808 {
1809     FDrive *cur_drv = get_cur_drv(fdctrl);
1810 
1811     /* Drives position */
1812     fdctrl->fifo[0] = drv0(fdctrl)->track;
1813     fdctrl->fifo[1] = drv1(fdctrl)->track;
1814 #if MAX_FD == 4
1815     fdctrl->fifo[2] = drv2(fdctrl)->track;
1816     fdctrl->fifo[3] = drv3(fdctrl)->track;
1817 #else
1818     fdctrl->fifo[2] = 0;
1819     fdctrl->fifo[3] = 0;
1820 #endif
1821     /* timers */
1822     fdctrl->fifo[4] = fdctrl->timer0;
1823     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1824     fdctrl->fifo[6] = cur_drv->last_sect;
1825     fdctrl->fifo[7] = (fdctrl->lock << 7) |
1826         (cur_drv->perpendicular << 2);
1827     fdctrl->fifo[8] = fdctrl->config;
1828     fdctrl->fifo[9] = fdctrl->precomp_trk;
1829     fdctrl_to_result_phase(fdctrl, 10);
1830 }
1831 
1832 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1833 {
1834     /* Controller's version */
1835     fdctrl->fifo[0] = fdctrl->version;
1836     fdctrl_to_result_phase(fdctrl, 1);
1837 }
1838 
1839 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1840 {
1841     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1842     fdctrl_to_result_phase(fdctrl, 1);
1843 }
1844 
1845 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1846 {
1847     FDrive *cur_drv = get_cur_drv(fdctrl);
1848 
1849     /* Drives position */
1850     drv0(fdctrl)->track = fdctrl->fifo[3];
1851     drv1(fdctrl)->track = fdctrl->fifo[4];
1852 #if MAX_FD == 4
1853     drv2(fdctrl)->track = fdctrl->fifo[5];
1854     drv3(fdctrl)->track = fdctrl->fifo[6];
1855 #endif
1856     /* timers */
1857     fdctrl->timer0 = fdctrl->fifo[7];
1858     fdctrl->timer1 = fdctrl->fifo[8];
1859     cur_drv->last_sect = fdctrl->fifo[9];
1860     fdctrl->lock = fdctrl->fifo[10] >> 7;
1861     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1862     fdctrl->config = fdctrl->fifo[11];
1863     fdctrl->precomp_trk = fdctrl->fifo[12];
1864     fdctrl->pwrd = fdctrl->fifo[13];
1865     fdctrl_to_command_phase(fdctrl);
1866 }
1867 
1868 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1869 {
1870     FDrive *cur_drv = get_cur_drv(fdctrl);
1871 
1872     fdctrl->fifo[0] = 0;
1873     fdctrl->fifo[1] = 0;
1874     /* Drives position */
1875     fdctrl->fifo[2] = drv0(fdctrl)->track;
1876     fdctrl->fifo[3] = drv1(fdctrl)->track;
1877 #if MAX_FD == 4
1878     fdctrl->fifo[4] = drv2(fdctrl)->track;
1879     fdctrl->fifo[5] = drv3(fdctrl)->track;
1880 #else
1881     fdctrl->fifo[4] = 0;
1882     fdctrl->fifo[5] = 0;
1883 #endif
1884     /* timers */
1885     fdctrl->fifo[6] = fdctrl->timer0;
1886     fdctrl->fifo[7] = fdctrl->timer1;
1887     fdctrl->fifo[8] = cur_drv->last_sect;
1888     fdctrl->fifo[9] = (fdctrl->lock << 7) |
1889         (cur_drv->perpendicular << 2);
1890     fdctrl->fifo[10] = fdctrl->config;
1891     fdctrl->fifo[11] = fdctrl->precomp_trk;
1892     fdctrl->fifo[12] = fdctrl->pwrd;
1893     fdctrl->fifo[13] = 0;
1894     fdctrl->fifo[14] = 0;
1895     fdctrl_to_result_phase(fdctrl, 15);
1896 }
1897 
1898 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1899 {
1900     FDrive *cur_drv = get_cur_drv(fdctrl);
1901 
1902     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1903     timer_mod(fdctrl->result_timer,
1904                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() / 50));
1905 }
1906 
1907 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1908 {
1909     FDrive *cur_drv;
1910 
1911     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1912     cur_drv = get_cur_drv(fdctrl);
1913     fdctrl->data_state |= FD_STATE_FORMAT;
1914     if (fdctrl->fifo[0] & 0x80)
1915         fdctrl->data_state |= FD_STATE_MULTI;
1916     else
1917         fdctrl->data_state &= ~FD_STATE_MULTI;
1918     cur_drv->bps =
1919         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1920 #if 0
1921     cur_drv->last_sect =
1922         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1923         fdctrl->fifo[3] / 2;
1924 #else
1925     cur_drv->last_sect = fdctrl->fifo[3];
1926 #endif
1927     /* TODO: implement format using DMA expected by the Bochs BIOS
1928      * and Linux fdformat (read 3 bytes per sector via DMA and fill
1929      * the sector with the specified fill byte
1930      */
1931     fdctrl->data_state &= ~FD_STATE_FORMAT;
1932     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1933 }
1934 
1935 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1936 {
1937     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1938     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1939     if (fdctrl->fifo[2] & 1)
1940         fdctrl->dor &= ~FD_DOR_DMAEN;
1941     else
1942         fdctrl->dor |= FD_DOR_DMAEN;
1943     /* No result back */
1944     fdctrl_to_command_phase(fdctrl);
1945 }
1946 
1947 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1948 {
1949     FDrive *cur_drv;
1950 
1951     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1952     cur_drv = get_cur_drv(fdctrl);
1953     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1954     /* 1 Byte status back */
1955     fdctrl->fifo[0] = (cur_drv->ro << 6) |
1956         (cur_drv->track == 0 ? 0x10 : 0x00) |
1957         (cur_drv->head << 2) |
1958         GET_CUR_DRV(fdctrl) |
1959         0x28;
1960     fdctrl_to_result_phase(fdctrl, 1);
1961 }
1962 
1963 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
1964 {
1965     FDrive *cur_drv;
1966 
1967     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1968     cur_drv = get_cur_drv(fdctrl);
1969     fd_recalibrate(cur_drv);
1970     fdctrl_to_command_phase(fdctrl);
1971     /* Raise Interrupt */
1972     fdctrl->status0 |= FD_SR0_SEEK;
1973     fdctrl_raise_irq(fdctrl);
1974 }
1975 
1976 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
1977 {
1978     FDrive *cur_drv = get_cur_drv(fdctrl);
1979 
1980     if (fdctrl->reset_sensei > 0) {
1981         fdctrl->fifo[0] =
1982             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
1983         fdctrl->reset_sensei--;
1984     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1985         fdctrl->fifo[0] = FD_SR0_INVCMD;
1986         fdctrl_to_result_phase(fdctrl, 1);
1987         return;
1988     } else {
1989         fdctrl->fifo[0] =
1990                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
1991                 | GET_CUR_DRV(fdctrl);
1992     }
1993 
1994     fdctrl->fifo[1] = cur_drv->track;
1995     fdctrl_to_result_phase(fdctrl, 2);
1996     fdctrl_reset_irq(fdctrl);
1997     fdctrl->status0 = FD_SR0_RDYCHG;
1998 }
1999 
2000 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2001 {
2002     FDrive *cur_drv;
2003 
2004     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2005     cur_drv = get_cur_drv(fdctrl);
2006     fdctrl_to_command_phase(fdctrl);
2007     /* The seek command just sends step pulses to the drive and doesn't care if
2008      * there is a medium inserted of if it's banging the head against the drive.
2009      */
2010     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2011     /* Raise Interrupt */
2012     fdctrl->status0 |= FD_SR0_SEEK;
2013     fdctrl_raise_irq(fdctrl);
2014 }
2015 
2016 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2017 {
2018     FDrive *cur_drv = get_cur_drv(fdctrl);
2019 
2020     if (fdctrl->fifo[1] & 0x80)
2021         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2022     /* No result back */
2023     fdctrl_to_command_phase(fdctrl);
2024 }
2025 
2026 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2027 {
2028     fdctrl->config = fdctrl->fifo[2];
2029     fdctrl->precomp_trk =  fdctrl->fifo[3];
2030     /* No result back */
2031     fdctrl_to_command_phase(fdctrl);
2032 }
2033 
2034 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2035 {
2036     fdctrl->pwrd = fdctrl->fifo[1];
2037     fdctrl->fifo[0] = fdctrl->fifo[1];
2038     fdctrl_to_result_phase(fdctrl, 1);
2039 }
2040 
2041 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2042 {
2043     /* No result back */
2044     fdctrl_to_command_phase(fdctrl);
2045 }
2046 
2047 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2048 {
2049     FDrive *cur_drv = get_cur_drv(fdctrl);
2050     uint32_t pos;
2051 
2052     pos = fdctrl->data_pos - 1;
2053     pos %= FD_SECTOR_LEN;
2054     if (fdctrl->fifo[pos] & 0x80) {
2055         /* Command parameters done */
2056         if (fdctrl->fifo[pos] & 0x40) {
2057             fdctrl->fifo[0] = fdctrl->fifo[1];
2058             fdctrl->fifo[2] = 0;
2059             fdctrl->fifo[3] = 0;
2060             fdctrl_to_result_phase(fdctrl, 4);
2061         } else {
2062             fdctrl_to_command_phase(fdctrl);
2063         }
2064     } else if (fdctrl->data_len > 7) {
2065         /* ERROR */
2066         fdctrl->fifo[0] = 0x80 |
2067             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2068         fdctrl_to_result_phase(fdctrl, 1);
2069     }
2070 }
2071 
2072 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2073 {
2074     FDrive *cur_drv;
2075 
2076     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2077     cur_drv = get_cur_drv(fdctrl);
2078     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2079         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2080                 cur_drv->sect, 1);
2081     } else {
2082         fd_seek(cur_drv, cur_drv->head,
2083                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2084     }
2085     fdctrl_to_command_phase(fdctrl);
2086     /* Raise Interrupt */
2087     fdctrl->status0 |= FD_SR0_SEEK;
2088     fdctrl_raise_irq(fdctrl);
2089 }
2090 
2091 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2092 {
2093     FDrive *cur_drv;
2094 
2095     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2096     cur_drv = get_cur_drv(fdctrl);
2097     if (fdctrl->fifo[2] > cur_drv->track) {
2098         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2099     } else {
2100         fd_seek(cur_drv, cur_drv->head,
2101                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2102     }
2103     fdctrl_to_command_phase(fdctrl);
2104     /* Raise Interrupt */
2105     fdctrl->status0 |= FD_SR0_SEEK;
2106     fdctrl_raise_irq(fdctrl);
2107 }
2108 
2109 /*
2110  * Handlers for the execution phase of each command
2111  */
2112 typedef struct FDCtrlCommand {
2113     uint8_t value;
2114     uint8_t mask;
2115     const char* name;
2116     int parameters;
2117     void (*handler)(FDCtrl *fdctrl, int direction);
2118     int direction;
2119 } FDCtrlCommand;
2120 
2121 static const FDCtrlCommand handlers[] = {
2122     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2123     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2124     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2125     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2126     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2127     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2128     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2129     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2130     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2131     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2132     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2133     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2134     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2135     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2136     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2137     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2138     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2139     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2140     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2141     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2142     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2143     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2144     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2145     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2146     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2147     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2148     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2149     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2150     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2151     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2152     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2153     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2154 };
2155 /* Associate command to an index in the 'handlers' array */
2156 static uint8_t command_to_handler[256];
2157 
2158 static const FDCtrlCommand *get_command(uint8_t cmd)
2159 {
2160     int idx;
2161 
2162     idx = command_to_handler[cmd];
2163     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2164     return &handlers[idx];
2165 }
2166 
2167 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2168 {
2169     FDrive *cur_drv;
2170     const FDCtrlCommand *cmd;
2171     uint32_t pos;
2172 
2173     /* Reset mode */
2174     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2175         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2176         return;
2177     }
2178     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2179         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2180         return;
2181     }
2182     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2183 
2184     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2185 
2186     /* If data_len spans multiple sectors, the current position in the FIFO
2187      * wraps around while fdctrl->data_pos is the real position in the whole
2188      * request. */
2189     pos = fdctrl->data_pos++;
2190     pos %= FD_SECTOR_LEN;
2191     fdctrl->fifo[pos] = value;
2192 
2193     if (fdctrl->data_pos == fdctrl->data_len) {
2194         fdctrl->msr &= ~FD_MSR_RQM;
2195     }
2196 
2197     switch (fdctrl->phase) {
2198     case FD_PHASE_EXECUTION:
2199         /* For DMA requests, RQM should be cleared during execution phase, so
2200          * we would have errored out above. */
2201         assert(fdctrl->msr & FD_MSR_NONDMA);
2202 
2203         /* FIFO data write */
2204         if (pos == FD_SECTOR_LEN - 1 ||
2205             fdctrl->data_pos == fdctrl->data_len) {
2206             cur_drv = get_cur_drv(fdctrl);
2207             if (blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
2208                 < 0) {
2209                 FLOPPY_DPRINTF("error writing sector %d\n",
2210                                fd_sector(cur_drv));
2211                 break;
2212             }
2213             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2214                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2215                                fd_sector(cur_drv));
2216                 break;
2217             }
2218         }
2219 
2220         /* Switch to result phase when done with the transfer */
2221         if (fdctrl->data_pos == fdctrl->data_len) {
2222             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2223         }
2224         break;
2225 
2226     case FD_PHASE_COMMAND:
2227         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2228         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2229 
2230         if (pos == 0) {
2231             /* The first byte specifies the command. Now we start reading
2232              * as many parameters as this command requires. */
2233             cmd = get_command(value);
2234             fdctrl->data_len = cmd->parameters + 1;
2235             if (cmd->parameters) {
2236                 fdctrl->msr |= FD_MSR_RQM;
2237             }
2238             fdctrl->msr |= FD_MSR_CMDBUSY;
2239         }
2240 
2241         if (fdctrl->data_pos == fdctrl->data_len) {
2242             /* We have all parameters now, execute the command */
2243             fdctrl->phase = FD_PHASE_EXECUTION;
2244 
2245             if (fdctrl->data_state & FD_STATE_FORMAT) {
2246                 fdctrl_format_sector(fdctrl);
2247                 break;
2248             }
2249 
2250             cmd = get_command(fdctrl->fifo[0]);
2251             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2252             cmd->handler(fdctrl, cmd->direction);
2253         }
2254         break;
2255 
2256     case FD_PHASE_RESULT:
2257     default:
2258         abort();
2259     }
2260 }
2261 
2262 static void fdctrl_result_timer(void *opaque)
2263 {
2264     FDCtrl *fdctrl = opaque;
2265     FDrive *cur_drv = get_cur_drv(fdctrl);
2266 
2267     /* Pretend we are spinning.
2268      * This is needed for Coherent, which uses READ ID to check for
2269      * sector interleaving.
2270      */
2271     if (cur_drv->last_sect != 0) {
2272         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2273     }
2274     /* READ_ID can't automatically succeed! */
2275     if (fdctrl->check_media_rate &&
2276         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2277         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2278                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2279         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2280     } else {
2281         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2282     }
2283 }
2284 
2285 static void fdctrl_change_cb(void *opaque, bool load)
2286 {
2287     FDrive *drive = opaque;
2288 
2289     drive->media_changed = 1;
2290     drive->media_validated = false;
2291     fd_revalidate(drive);
2292 }
2293 
2294 static const BlockDevOps fdctrl_block_ops = {
2295     .change_media_cb = fdctrl_change_cb,
2296 };
2297 
2298 /* Init functions */
2299 static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp)
2300 {
2301     unsigned int i;
2302     FDrive *drive;
2303 
2304     for (i = 0; i < MAX_FD; i++) {
2305         drive = &fdctrl->drives[i];
2306         drive->fdctrl = fdctrl;
2307 
2308         if (drive->blk) {
2309             if (blk_get_on_error(drive->blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC) {
2310                 error_setg(errp, "fdc doesn't support drive option werror");
2311                 return;
2312             }
2313             if (blk_get_on_error(drive->blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
2314                 error_setg(errp, "fdc doesn't support drive option rerror");
2315                 return;
2316             }
2317         }
2318 
2319         fd_init(drive);
2320         if (drive->blk) {
2321             blk_set_dev_ops(drive->blk, &fdctrl_block_ops, drive);
2322             pick_drive_type(drive);
2323         }
2324         fd_revalidate(drive);
2325     }
2326 }
2327 
2328 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2329 {
2330     DeviceState *dev;
2331     ISADevice *isadev;
2332 
2333     isadev = isa_try_create(bus, TYPE_ISA_FDC);
2334     if (!isadev) {
2335         return NULL;
2336     }
2337     dev = DEVICE(isadev);
2338 
2339     if (fds[0]) {
2340         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2341                             &error_fatal);
2342     }
2343     if (fds[1]) {
2344         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2345                             &error_fatal);
2346     }
2347     qdev_init_nofail(dev);
2348 
2349     return isadev;
2350 }
2351 
2352 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2353                         hwaddr mmio_base, DriveInfo **fds)
2354 {
2355     FDCtrl *fdctrl;
2356     DeviceState *dev;
2357     SysBusDevice *sbd;
2358     FDCtrlSysBus *sys;
2359 
2360     dev = qdev_create(NULL, "sysbus-fdc");
2361     sys = SYSBUS_FDC(dev);
2362     fdctrl = &sys->state;
2363     fdctrl->dma_chann = dma_chann; /* FIXME */
2364     if (fds[0]) {
2365         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2366                             &error_fatal);
2367     }
2368     if (fds[1]) {
2369         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2370                             &error_fatal);
2371     }
2372     qdev_init_nofail(dev);
2373     sbd = SYS_BUS_DEVICE(dev);
2374     sysbus_connect_irq(sbd, 0, irq);
2375     sysbus_mmio_map(sbd, 0, mmio_base);
2376 }
2377 
2378 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2379                        DriveInfo **fds, qemu_irq *fdc_tc)
2380 {
2381     DeviceState *dev;
2382     FDCtrlSysBus *sys;
2383 
2384     dev = qdev_create(NULL, "SUNW,fdtwo");
2385     if (fds[0]) {
2386         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2387                             &error_fatal);
2388     }
2389     qdev_init_nofail(dev);
2390     sys = SYSBUS_FDC(dev);
2391     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2392     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2393     *fdc_tc = qdev_get_gpio_in(dev, 0);
2394 }
2395 
2396 static void fdctrl_realize_common(FDCtrl *fdctrl, Error **errp)
2397 {
2398     int i, j;
2399     static int command_tables_inited = 0;
2400 
2401     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2402         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2403     }
2404 
2405     /* Fill 'command_to_handler' lookup table */
2406     if (!command_tables_inited) {
2407         command_tables_inited = 1;
2408         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2409             for (j = 0; j < sizeof(command_to_handler); j++) {
2410                 if ((j & handlers[i].mask) == handlers[i].value) {
2411                     command_to_handler[j] = i;
2412                 }
2413             }
2414         }
2415     }
2416 
2417     FLOPPY_DPRINTF("init controller\n");
2418     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2419     fdctrl->fifo_size = 512;
2420     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2421                                              fdctrl_result_timer, fdctrl);
2422 
2423     fdctrl->version = 0x90; /* Intel 82078 controller */
2424     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2425     fdctrl->num_floppies = MAX_FD;
2426 
2427     if (fdctrl->dma_chann != -1) {
2428         DMA_register_channel(fdctrl->dma_chann, &fdctrl_transfer_handler, fdctrl);
2429     }
2430     fdctrl_connect_drives(fdctrl, errp);
2431 }
2432 
2433 static const MemoryRegionPortio fdc_portio_list[] = {
2434     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2435     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2436     PORTIO_END_OF_LIST(),
2437 };
2438 
2439 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2440 {
2441     ISADevice *isadev = ISA_DEVICE(dev);
2442     FDCtrlISABus *isa = ISA_FDC(dev);
2443     FDCtrl *fdctrl = &isa->state;
2444     Error *err = NULL;
2445 
2446     isa_register_portio_list(isadev, isa->iobase, fdc_portio_list, fdctrl,
2447                              "fdc");
2448 
2449     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2450     fdctrl->dma_chann = isa->dma;
2451 
2452     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2453     fdctrl_realize_common(fdctrl, &err);
2454     if (err != NULL) {
2455         error_propagate(errp, err);
2456         return;
2457     }
2458 }
2459 
2460 static void sysbus_fdc_initfn(Object *obj)
2461 {
2462     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2463     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2464     FDCtrl *fdctrl = &sys->state;
2465 
2466     fdctrl->dma_chann = -1;
2467 
2468     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2469                           "fdc", 0x08);
2470     sysbus_init_mmio(sbd, &fdctrl->iomem);
2471 }
2472 
2473 static void sun4m_fdc_initfn(Object *obj)
2474 {
2475     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2476     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2477     FDCtrl *fdctrl = &sys->state;
2478 
2479     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2480                           fdctrl, "fdctrl", 0x08);
2481     sysbus_init_mmio(sbd, &fdctrl->iomem);
2482 }
2483 
2484 static void sysbus_fdc_common_initfn(Object *obj)
2485 {
2486     DeviceState *dev = DEVICE(obj);
2487     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2488     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2489     FDCtrl *fdctrl = &sys->state;
2490 
2491     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2492 
2493     sysbus_init_irq(sbd, &fdctrl->irq);
2494     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2495 }
2496 
2497 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2498 {
2499     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2500     FDCtrl *fdctrl = &sys->state;
2501 
2502     fdctrl_realize_common(fdctrl, errp);
2503 }
2504 
2505 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2506 {
2507     FDCtrlISABus *isa = ISA_FDC(fdc);
2508 
2509     return isa->state.drives[i].drive;
2510 }
2511 
2512 static const VMStateDescription vmstate_isa_fdc ={
2513     .name = "fdc",
2514     .version_id = 2,
2515     .minimum_version_id = 2,
2516     .fields = (VMStateField[]) {
2517         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2518         VMSTATE_END_OF_LIST()
2519     }
2520 };
2521 
2522 static Property isa_fdc_properties[] = {
2523     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2524     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2525     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2526     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.drives[0].blk),
2527     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.drives[1].blk),
2528     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2529                     0, true),
2530     DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus, state.drives[0].drive,
2531                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2532                         FloppyDriveType),
2533     DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus, state.drives[1].drive,
2534                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2535                         FloppyDriveType),
2536     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2537                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2538                         FloppyDriveType),
2539     DEFINE_PROP_END_OF_LIST(),
2540 };
2541 
2542 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2543 {
2544     DeviceClass *dc = DEVICE_CLASS(klass);
2545 
2546     dc->realize = isabus_fdc_realize;
2547     dc->fw_name = "fdc";
2548     dc->reset = fdctrl_external_reset_isa;
2549     dc->vmsd = &vmstate_isa_fdc;
2550     dc->props = isa_fdc_properties;
2551     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2552 }
2553 
2554 static void isabus_fdc_instance_init(Object *obj)
2555 {
2556     FDCtrlISABus *isa = ISA_FDC(obj);
2557 
2558     device_add_bootindex_property(obj, &isa->bootindexA,
2559                                   "bootindexA", "/floppy@0",
2560                                   DEVICE(obj), NULL);
2561     device_add_bootindex_property(obj, &isa->bootindexB,
2562                                   "bootindexB", "/floppy@1",
2563                                   DEVICE(obj), NULL);
2564 }
2565 
2566 static const TypeInfo isa_fdc_info = {
2567     .name          = TYPE_ISA_FDC,
2568     .parent        = TYPE_ISA_DEVICE,
2569     .instance_size = sizeof(FDCtrlISABus),
2570     .class_init    = isabus_fdc_class_init,
2571     .instance_init = isabus_fdc_instance_init,
2572 };
2573 
2574 static const VMStateDescription vmstate_sysbus_fdc ={
2575     .name = "fdc",
2576     .version_id = 2,
2577     .minimum_version_id = 2,
2578     .fields = (VMStateField[]) {
2579         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2580         VMSTATE_END_OF_LIST()
2581     }
2582 };
2583 
2584 static Property sysbus_fdc_properties[] = {
2585     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.drives[0].blk),
2586     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.drives[1].blk),
2587     DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus, state.drives[0].drive,
2588                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2589                         FloppyDriveType),
2590     DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus, state.drives[1].drive,
2591                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2592                         FloppyDriveType),
2593     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2594                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2595                         FloppyDriveType),
2596     DEFINE_PROP_END_OF_LIST(),
2597 };
2598 
2599 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2600 {
2601     DeviceClass *dc = DEVICE_CLASS(klass);
2602 
2603     dc->props = sysbus_fdc_properties;
2604     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2605 }
2606 
2607 static const TypeInfo sysbus_fdc_info = {
2608     .name          = "sysbus-fdc",
2609     .parent        = TYPE_SYSBUS_FDC,
2610     .instance_init = sysbus_fdc_initfn,
2611     .class_init    = sysbus_fdc_class_init,
2612 };
2613 
2614 static Property sun4m_fdc_properties[] = {
2615     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.drives[0].blk),
2616     DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus, state.drives[0].drive,
2617                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2618                         FloppyDriveType),
2619     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2620                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2621                         FloppyDriveType),
2622     DEFINE_PROP_END_OF_LIST(),
2623 };
2624 
2625 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2626 {
2627     DeviceClass *dc = DEVICE_CLASS(klass);
2628 
2629     dc->props = sun4m_fdc_properties;
2630     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2631 }
2632 
2633 static const TypeInfo sun4m_fdc_info = {
2634     .name          = "SUNW,fdtwo",
2635     .parent        = TYPE_SYSBUS_FDC,
2636     .instance_init = sun4m_fdc_initfn,
2637     .class_init    = sun4m_fdc_class_init,
2638 };
2639 
2640 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2641 {
2642     DeviceClass *dc = DEVICE_CLASS(klass);
2643 
2644     dc->realize = sysbus_fdc_common_realize;
2645     dc->reset = fdctrl_external_reset_sysbus;
2646     dc->vmsd = &vmstate_sysbus_fdc;
2647 }
2648 
2649 static const TypeInfo sysbus_fdc_type_info = {
2650     .name          = TYPE_SYSBUS_FDC,
2651     .parent        = TYPE_SYS_BUS_DEVICE,
2652     .instance_size = sizeof(FDCtrlSysBus),
2653     .instance_init = sysbus_fdc_common_initfn,
2654     .abstract      = true,
2655     .class_init    = sysbus_fdc_common_class_init,
2656 };
2657 
2658 static void fdc_register_types(void)
2659 {
2660     type_register_static(&isa_fdc_info);
2661     type_register_static(&sysbus_fdc_type_info);
2662     type_register_static(&sysbus_fdc_info);
2663     type_register_static(&sun4m_fdc_info);
2664 }
2665 
2666 type_init(fdc_register_types)
2667