xref: /openbmc/qemu/hw/block/fdc.c (revision c6bd8c70)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "hw/hw.h"
31 #include "hw/block/fdc.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "hw/isa/isa.h"
35 #include "hw/sysbus.h"
36 #include "sysemu/block-backend.h"
37 #include "sysemu/blockdev.h"
38 #include "sysemu/sysemu.h"
39 #include "qemu/log.h"
40 
41 /********************************************************/
42 /* debug Floppy devices */
43 //#define DEBUG_FLOPPY
44 
45 #ifdef DEBUG_FLOPPY
46 #define FLOPPY_DPRINTF(fmt, ...)                                \
47     do { printf("FLOPPY: " fmt , ## __VA_ARGS__); } while (0)
48 #else
49 #define FLOPPY_DPRINTF(fmt, ...)
50 #endif
51 
52 /********************************************************/
53 /* Floppy drive emulation                               */
54 
55 typedef enum FDriveRate {
56     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
57     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
58     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
59     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
60 } FDriveRate;
61 
62 typedef struct FDFormat {
63     FDriveType drive;
64     uint8_t last_sect;
65     uint8_t max_track;
66     uint8_t max_head;
67     FDriveRate rate;
68 } FDFormat;
69 
70 static const FDFormat fd_formats[] = {
71     /* First entry is default format */
72     /* 1.44 MB 3"1/2 floppy disks */
73     { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, },
74     { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, },
75     { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, },
76     { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, },
77     { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, },
78     { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, },
79     { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, },
80     { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, },
81     /* 2.88 MB 3"1/2 floppy disks */
82     { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, },
83     { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, },
84     { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, },
85     { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, },
86     { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, },
87     /* 720 kB 3"1/2 floppy disks */
88     { FDRIVE_DRV_144,  9, 80, 1, FDRIVE_RATE_250K, },
89     { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, },
90     { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, },
91     { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, },
92     { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, },
93     { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, },
94     /* 1.2 MB 5"1/4 floppy disks */
95     { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, },
96     { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, },
97     { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, },
98     { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, },
99     { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, },
100     /* 720 kB 5"1/4 floppy disks */
101     { FDRIVE_DRV_120,  9, 80, 1, FDRIVE_RATE_250K, },
102     { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, },
103     /* 360 kB 5"1/4 floppy disks */
104     { FDRIVE_DRV_120,  9, 40, 1, FDRIVE_RATE_300K, },
105     { FDRIVE_DRV_120,  9, 40, 0, FDRIVE_RATE_300K, },
106     { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, },
107     { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, },
108     /* 320 kB 5"1/4 floppy disks */
109     { FDRIVE_DRV_120,  8, 40, 1, FDRIVE_RATE_250K, },
110     { FDRIVE_DRV_120,  8, 40, 0, FDRIVE_RATE_250K, },
111     /* 360 kB must match 5"1/4 better than 3"1/2... */
112     { FDRIVE_DRV_144,  9, 80, 0, FDRIVE_RATE_250K, },
113     /* end */
114     { FDRIVE_DRV_NONE, -1, -1, 0, 0, },
115 };
116 
117 static void pick_geometry(BlockBackend *blk, int *nb_heads,
118                           int *max_track, int *last_sect,
119                           FDriveType drive_in, FDriveType *drive,
120                           FDriveRate *rate)
121 {
122     const FDFormat *parse;
123     uint64_t nb_sectors, size;
124     int i, first_match, match;
125 
126     blk_get_geometry(blk, &nb_sectors);
127     match = -1;
128     first_match = -1;
129     for (i = 0; ; i++) {
130         parse = &fd_formats[i];
131         if (parse->drive == FDRIVE_DRV_NONE) {
132             break;
133         }
134         if (drive_in == parse->drive ||
135             drive_in == FDRIVE_DRV_NONE) {
136             size = (parse->max_head + 1) * parse->max_track *
137                 parse->last_sect;
138             if (nb_sectors == size) {
139                 match = i;
140                 break;
141             }
142             if (first_match == -1) {
143                 first_match = i;
144             }
145         }
146     }
147     if (match == -1) {
148         if (first_match == -1) {
149             match = 1;
150         } else {
151             match = first_match;
152         }
153         parse = &fd_formats[match];
154     }
155     *nb_heads = parse->max_head + 1;
156     *max_track = parse->max_track;
157     *last_sect = parse->last_sect;
158     *drive = parse->drive;
159     *rate = parse->rate;
160 }
161 
162 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
163 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
164 
165 /* Will always be a fixed parameter for us */
166 #define FD_SECTOR_LEN          512
167 #define FD_SECTOR_SC           2   /* Sector size code */
168 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
169 
170 typedef struct FDCtrl FDCtrl;
171 
172 /* Floppy disk drive emulation */
173 typedef enum FDiskFlags {
174     FDISK_DBL_SIDES  = 0x01,
175 } FDiskFlags;
176 
177 typedef struct FDrive {
178     FDCtrl *fdctrl;
179     BlockBackend *blk;
180     /* Drive status */
181     FDriveType drive;
182     uint8_t perpendicular;    /* 2.88 MB access mode    */
183     /* Position */
184     uint8_t head;
185     uint8_t track;
186     uint8_t sect;
187     /* Media */
188     FDiskFlags flags;
189     uint8_t last_sect;        /* Nb sector per track    */
190     uint8_t max_track;        /* Nb of tracks           */
191     uint16_t bps;             /* Bytes per sector       */
192     uint8_t ro;               /* Is read-only           */
193     uint8_t media_changed;    /* Is media changed       */
194     uint8_t media_rate;       /* Data rate of medium    */
195 } FDrive;
196 
197 static void fd_init(FDrive *drv)
198 {
199     /* Drive */
200     drv->drive = FDRIVE_DRV_NONE;
201     drv->perpendicular = 0;
202     /* Disk */
203     drv->last_sect = 0;
204     drv->max_track = 0;
205 }
206 
207 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
208 
209 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
210                           uint8_t last_sect, uint8_t num_sides)
211 {
212     return (((track * num_sides) + head) * last_sect) + sect - 1;
213 }
214 
215 /* Returns current position, in sectors, for given drive */
216 static int fd_sector(FDrive *drv)
217 {
218     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
219                           NUM_SIDES(drv));
220 }
221 
222 /* Seek to a new position:
223  * returns 0 if already on right track
224  * returns 1 if track changed
225  * returns 2 if track is invalid
226  * returns 3 if sector is invalid
227  * returns 4 if seek is disabled
228  */
229 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
230                    int enable_seek)
231 {
232     uint32_t sector;
233     int ret;
234 
235     if (track > drv->max_track ||
236         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
237         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
238                        head, track, sect, 1,
239                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
240                        drv->max_track, drv->last_sect);
241         return 2;
242     }
243     if (sect > drv->last_sect) {
244         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
245                        head, track, sect, 1,
246                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
247                        drv->max_track, drv->last_sect);
248         return 3;
249     }
250     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
251     ret = 0;
252     if (sector != fd_sector(drv)) {
253 #if 0
254         if (!enable_seek) {
255             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
256                            " (max=%d %02x %02x)\n",
257                            head, track, sect, 1, drv->max_track,
258                            drv->last_sect);
259             return 4;
260         }
261 #endif
262         drv->head = head;
263         if (drv->track != track) {
264             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
265                 drv->media_changed = 0;
266             }
267             ret = 1;
268         }
269         drv->track = track;
270         drv->sect = sect;
271     }
272 
273     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
274         ret = 2;
275     }
276 
277     return ret;
278 }
279 
280 /* Set drive back to track 0 */
281 static void fd_recalibrate(FDrive *drv)
282 {
283     FLOPPY_DPRINTF("recalibrate\n");
284     fd_seek(drv, 0, 0, 1, 1);
285 }
286 
287 /* Revalidate a disk drive after a disk change */
288 static void fd_revalidate(FDrive *drv)
289 {
290     int nb_heads, max_track, last_sect, ro;
291     FDriveType drive;
292     FDriveRate rate;
293 
294     FLOPPY_DPRINTF("revalidate\n");
295     if (drv->blk != NULL) {
296         ro = blk_is_read_only(drv->blk);
297         pick_geometry(drv->blk, &nb_heads, &max_track,
298                       &last_sect, drv->drive, &drive, &rate);
299         if (!blk_is_inserted(drv->blk)) {
300             FLOPPY_DPRINTF("No disk in drive\n");
301         } else {
302             FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n", nb_heads,
303                            max_track, last_sect, ro ? "ro" : "rw");
304         }
305         if (nb_heads == 1) {
306             drv->flags &= ~FDISK_DBL_SIDES;
307         } else {
308             drv->flags |= FDISK_DBL_SIDES;
309         }
310         drv->max_track = max_track;
311         drv->last_sect = last_sect;
312         drv->ro = ro;
313         drv->drive = drive;
314         drv->media_rate = rate;
315     } else {
316         FLOPPY_DPRINTF("No drive connected\n");
317         drv->last_sect = 0;
318         drv->max_track = 0;
319         drv->flags &= ~FDISK_DBL_SIDES;
320     }
321 }
322 
323 /********************************************************/
324 /* Intel 82078 floppy disk controller emulation          */
325 
326 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
327 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
328 static int fdctrl_transfer_handler (void *opaque, int nchan,
329                                     int dma_pos, int dma_len);
330 static void fdctrl_raise_irq(FDCtrl *fdctrl);
331 static FDrive *get_cur_drv(FDCtrl *fdctrl);
332 
333 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
334 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
335 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
336 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
337 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
338 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
339 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
340 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
341 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
342 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
343 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
344 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
345 
346 enum {
347     FD_DIR_WRITE   = 0,
348     FD_DIR_READ    = 1,
349     FD_DIR_SCANE   = 2,
350     FD_DIR_SCANL   = 3,
351     FD_DIR_SCANH   = 4,
352     FD_DIR_VERIFY  = 5,
353 };
354 
355 enum {
356     FD_STATE_MULTI  = 0x01,	/* multi track flag */
357     FD_STATE_FORMAT = 0x02,	/* format flag */
358 };
359 
360 enum {
361     FD_REG_SRA = 0x00,
362     FD_REG_SRB = 0x01,
363     FD_REG_DOR = 0x02,
364     FD_REG_TDR = 0x03,
365     FD_REG_MSR = 0x04,
366     FD_REG_DSR = 0x04,
367     FD_REG_FIFO = 0x05,
368     FD_REG_DIR = 0x07,
369     FD_REG_CCR = 0x07,
370 };
371 
372 enum {
373     FD_CMD_READ_TRACK = 0x02,
374     FD_CMD_SPECIFY = 0x03,
375     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
376     FD_CMD_WRITE = 0x05,
377     FD_CMD_READ = 0x06,
378     FD_CMD_RECALIBRATE = 0x07,
379     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
380     FD_CMD_WRITE_DELETED = 0x09,
381     FD_CMD_READ_ID = 0x0a,
382     FD_CMD_READ_DELETED = 0x0c,
383     FD_CMD_FORMAT_TRACK = 0x0d,
384     FD_CMD_DUMPREG = 0x0e,
385     FD_CMD_SEEK = 0x0f,
386     FD_CMD_VERSION = 0x10,
387     FD_CMD_SCAN_EQUAL = 0x11,
388     FD_CMD_PERPENDICULAR_MODE = 0x12,
389     FD_CMD_CONFIGURE = 0x13,
390     FD_CMD_LOCK = 0x14,
391     FD_CMD_VERIFY = 0x16,
392     FD_CMD_POWERDOWN_MODE = 0x17,
393     FD_CMD_PART_ID = 0x18,
394     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
395     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
396     FD_CMD_SAVE = 0x2e,
397     FD_CMD_OPTION = 0x33,
398     FD_CMD_RESTORE = 0x4e,
399     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
400     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
401     FD_CMD_FORMAT_AND_WRITE = 0xcd,
402     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
403 };
404 
405 enum {
406     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
407     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
408     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
409     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
410     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
411 };
412 
413 enum {
414     FD_SR0_DS0      = 0x01,
415     FD_SR0_DS1      = 0x02,
416     FD_SR0_HEAD     = 0x04,
417     FD_SR0_EQPMT    = 0x10,
418     FD_SR0_SEEK     = 0x20,
419     FD_SR0_ABNTERM  = 0x40,
420     FD_SR0_INVCMD   = 0x80,
421     FD_SR0_RDYCHG   = 0xc0,
422 };
423 
424 enum {
425     FD_SR1_MA       = 0x01, /* Missing address mark */
426     FD_SR1_NW       = 0x02, /* Not writable */
427     FD_SR1_EC       = 0x80, /* End of cylinder */
428 };
429 
430 enum {
431     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
432     FD_SR2_SEH      = 0x08, /* Scan equal hit */
433 };
434 
435 enum {
436     FD_SRA_DIR      = 0x01,
437     FD_SRA_nWP      = 0x02,
438     FD_SRA_nINDX    = 0x04,
439     FD_SRA_HDSEL    = 0x08,
440     FD_SRA_nTRK0    = 0x10,
441     FD_SRA_STEP     = 0x20,
442     FD_SRA_nDRV2    = 0x40,
443     FD_SRA_INTPEND  = 0x80,
444 };
445 
446 enum {
447     FD_SRB_MTR0     = 0x01,
448     FD_SRB_MTR1     = 0x02,
449     FD_SRB_WGATE    = 0x04,
450     FD_SRB_RDATA    = 0x08,
451     FD_SRB_WDATA    = 0x10,
452     FD_SRB_DR0      = 0x20,
453 };
454 
455 enum {
456 #if MAX_FD == 4
457     FD_DOR_SELMASK  = 0x03,
458 #else
459     FD_DOR_SELMASK  = 0x01,
460 #endif
461     FD_DOR_nRESET   = 0x04,
462     FD_DOR_DMAEN    = 0x08,
463     FD_DOR_MOTEN0   = 0x10,
464     FD_DOR_MOTEN1   = 0x20,
465     FD_DOR_MOTEN2   = 0x40,
466     FD_DOR_MOTEN3   = 0x80,
467 };
468 
469 enum {
470 #if MAX_FD == 4
471     FD_TDR_BOOTSEL  = 0x0c,
472 #else
473     FD_TDR_BOOTSEL  = 0x04,
474 #endif
475 };
476 
477 enum {
478     FD_DSR_DRATEMASK= 0x03,
479     FD_DSR_PWRDOWN  = 0x40,
480     FD_DSR_SWRESET  = 0x80,
481 };
482 
483 enum {
484     FD_MSR_DRV0BUSY = 0x01,
485     FD_MSR_DRV1BUSY = 0x02,
486     FD_MSR_DRV2BUSY = 0x04,
487     FD_MSR_DRV3BUSY = 0x08,
488     FD_MSR_CMDBUSY  = 0x10,
489     FD_MSR_NONDMA   = 0x20,
490     FD_MSR_DIO      = 0x40,
491     FD_MSR_RQM      = 0x80,
492 };
493 
494 enum {
495     FD_DIR_DSKCHG   = 0x80,
496 };
497 
498 /*
499  * See chapter 5.0 "Controller phases" of the spec:
500  *
501  * Command phase:
502  * The host writes a command and its parameters into the FIFO. The command
503  * phase is completed when all parameters for the command have been supplied,
504  * and execution phase is entered.
505  *
506  * Execution phase:
507  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
508  * contains the payload now, otherwise it's unused. When all bytes of the
509  * required data have been transferred, the state is switched to either result
510  * phase (if the command produces status bytes) or directly back into the
511  * command phase for the next command.
512  *
513  * Result phase:
514  * The host reads out the FIFO, which contains one or more result bytes now.
515  */
516 enum {
517     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
518     FD_PHASE_RECONSTRUCT    = 0,
519 
520     FD_PHASE_COMMAND        = 1,
521     FD_PHASE_EXECUTION      = 2,
522     FD_PHASE_RESULT         = 3,
523 };
524 
525 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
526 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
527 
528 struct FDCtrl {
529     MemoryRegion iomem;
530     qemu_irq irq;
531     /* Controller state */
532     QEMUTimer *result_timer;
533     int dma_chann;
534     uint8_t phase;
535     /* Controller's identification */
536     uint8_t version;
537     /* HW */
538     uint8_t sra;
539     uint8_t srb;
540     uint8_t dor;
541     uint8_t dor_vmstate; /* only used as temp during vmstate */
542     uint8_t tdr;
543     uint8_t dsr;
544     uint8_t msr;
545     uint8_t cur_drv;
546     uint8_t status0;
547     uint8_t status1;
548     uint8_t status2;
549     /* Command FIFO */
550     uint8_t *fifo;
551     int32_t fifo_size;
552     uint32_t data_pos;
553     uint32_t data_len;
554     uint8_t data_state;
555     uint8_t data_dir;
556     uint8_t eot; /* last wanted sector */
557     /* States kept only to be returned back */
558     /* precompensation */
559     uint8_t precomp_trk;
560     uint8_t config;
561     uint8_t lock;
562     /* Power down config (also with status regB access mode */
563     uint8_t pwrd;
564     /* Floppy drives */
565     uint8_t num_floppies;
566     FDrive drives[MAX_FD];
567     int reset_sensei;
568     uint32_t check_media_rate;
569     /* Timers state */
570     uint8_t timer0;
571     uint8_t timer1;
572 };
573 
574 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
575 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
576 
577 typedef struct FDCtrlSysBus {
578     /*< private >*/
579     SysBusDevice parent_obj;
580     /*< public >*/
581 
582     struct FDCtrl state;
583 } FDCtrlSysBus;
584 
585 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
586 
587 typedef struct FDCtrlISABus {
588     ISADevice parent_obj;
589 
590     uint32_t iobase;
591     uint32_t irq;
592     uint32_t dma;
593     struct FDCtrl state;
594     int32_t bootindexA;
595     int32_t bootindexB;
596 } FDCtrlISABus;
597 
598 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
599 {
600     FDCtrl *fdctrl = opaque;
601     uint32_t retval;
602 
603     reg &= 7;
604     switch (reg) {
605     case FD_REG_SRA:
606         retval = fdctrl_read_statusA(fdctrl);
607         break;
608     case FD_REG_SRB:
609         retval = fdctrl_read_statusB(fdctrl);
610         break;
611     case FD_REG_DOR:
612         retval = fdctrl_read_dor(fdctrl);
613         break;
614     case FD_REG_TDR:
615         retval = fdctrl_read_tape(fdctrl);
616         break;
617     case FD_REG_MSR:
618         retval = fdctrl_read_main_status(fdctrl);
619         break;
620     case FD_REG_FIFO:
621         retval = fdctrl_read_data(fdctrl);
622         break;
623     case FD_REG_DIR:
624         retval = fdctrl_read_dir(fdctrl);
625         break;
626     default:
627         retval = (uint32_t)(-1);
628         break;
629     }
630     FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
631 
632     return retval;
633 }
634 
635 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
636 {
637     FDCtrl *fdctrl = opaque;
638 
639     FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
640 
641     reg &= 7;
642     switch (reg) {
643     case FD_REG_DOR:
644         fdctrl_write_dor(fdctrl, value);
645         break;
646     case FD_REG_TDR:
647         fdctrl_write_tape(fdctrl, value);
648         break;
649     case FD_REG_DSR:
650         fdctrl_write_rate(fdctrl, value);
651         break;
652     case FD_REG_FIFO:
653         fdctrl_write_data(fdctrl, value);
654         break;
655     case FD_REG_CCR:
656         fdctrl_write_ccr(fdctrl, value);
657         break;
658     default:
659         break;
660     }
661 }
662 
663 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
664                                  unsigned ize)
665 {
666     return fdctrl_read(opaque, (uint32_t)reg);
667 }
668 
669 static void fdctrl_write_mem (void *opaque, hwaddr reg,
670                               uint64_t value, unsigned size)
671 {
672     fdctrl_write(opaque, (uint32_t)reg, value);
673 }
674 
675 static const MemoryRegionOps fdctrl_mem_ops = {
676     .read = fdctrl_read_mem,
677     .write = fdctrl_write_mem,
678     .endianness = DEVICE_NATIVE_ENDIAN,
679 };
680 
681 static const MemoryRegionOps fdctrl_mem_strict_ops = {
682     .read = fdctrl_read_mem,
683     .write = fdctrl_write_mem,
684     .endianness = DEVICE_NATIVE_ENDIAN,
685     .valid = {
686         .min_access_size = 1,
687         .max_access_size = 1,
688     },
689 };
690 
691 static bool fdrive_media_changed_needed(void *opaque)
692 {
693     FDrive *drive = opaque;
694 
695     return (drive->blk != NULL && drive->media_changed != 1);
696 }
697 
698 static const VMStateDescription vmstate_fdrive_media_changed = {
699     .name = "fdrive/media_changed",
700     .version_id = 1,
701     .minimum_version_id = 1,
702     .needed = fdrive_media_changed_needed,
703     .fields = (VMStateField[]) {
704         VMSTATE_UINT8(media_changed, FDrive),
705         VMSTATE_END_OF_LIST()
706     }
707 };
708 
709 static bool fdrive_media_rate_needed(void *opaque)
710 {
711     FDrive *drive = opaque;
712 
713     return drive->fdctrl->check_media_rate;
714 }
715 
716 static const VMStateDescription vmstate_fdrive_media_rate = {
717     .name = "fdrive/media_rate",
718     .version_id = 1,
719     .minimum_version_id = 1,
720     .needed = fdrive_media_rate_needed,
721     .fields = (VMStateField[]) {
722         VMSTATE_UINT8(media_rate, FDrive),
723         VMSTATE_END_OF_LIST()
724     }
725 };
726 
727 static bool fdrive_perpendicular_needed(void *opaque)
728 {
729     FDrive *drive = opaque;
730 
731     return drive->perpendicular != 0;
732 }
733 
734 static const VMStateDescription vmstate_fdrive_perpendicular = {
735     .name = "fdrive/perpendicular",
736     .version_id = 1,
737     .minimum_version_id = 1,
738     .needed = fdrive_perpendicular_needed,
739     .fields = (VMStateField[]) {
740         VMSTATE_UINT8(perpendicular, FDrive),
741         VMSTATE_END_OF_LIST()
742     }
743 };
744 
745 static int fdrive_post_load(void *opaque, int version_id)
746 {
747     fd_revalidate(opaque);
748     return 0;
749 }
750 
751 static const VMStateDescription vmstate_fdrive = {
752     .name = "fdrive",
753     .version_id = 1,
754     .minimum_version_id = 1,
755     .post_load = fdrive_post_load,
756     .fields = (VMStateField[]) {
757         VMSTATE_UINT8(head, FDrive),
758         VMSTATE_UINT8(track, FDrive),
759         VMSTATE_UINT8(sect, FDrive),
760         VMSTATE_END_OF_LIST()
761     },
762     .subsections = (const VMStateDescription*[]) {
763         &vmstate_fdrive_media_changed,
764         &vmstate_fdrive_media_rate,
765         &vmstate_fdrive_perpendicular,
766         NULL
767     }
768 };
769 
770 /*
771  * Reconstructs the phase from register values according to the logic that was
772  * implemented in qemu 2.3. This is the default value that is used if the phase
773  * subsection is not present on migration.
774  *
775  * Don't change this function to reflect newer qemu versions, it is part of
776  * the migration ABI.
777  */
778 static int reconstruct_phase(FDCtrl *fdctrl)
779 {
780     if (fdctrl->msr & FD_MSR_NONDMA) {
781         return FD_PHASE_EXECUTION;
782     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
783         /* qemu 2.3 disabled RQM only during DMA transfers */
784         return FD_PHASE_EXECUTION;
785     } else if (fdctrl->msr & FD_MSR_DIO) {
786         return FD_PHASE_RESULT;
787     } else {
788         return FD_PHASE_COMMAND;
789     }
790 }
791 
792 static void fdc_pre_save(void *opaque)
793 {
794     FDCtrl *s = opaque;
795 
796     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
797 }
798 
799 static int fdc_pre_load(void *opaque)
800 {
801     FDCtrl *s = opaque;
802     s->phase = FD_PHASE_RECONSTRUCT;
803     return 0;
804 }
805 
806 static int fdc_post_load(void *opaque, int version_id)
807 {
808     FDCtrl *s = opaque;
809 
810     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
811     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
812 
813     if (s->phase == FD_PHASE_RECONSTRUCT) {
814         s->phase = reconstruct_phase(s);
815     }
816 
817     return 0;
818 }
819 
820 static bool fdc_reset_sensei_needed(void *opaque)
821 {
822     FDCtrl *s = opaque;
823 
824     return s->reset_sensei != 0;
825 }
826 
827 static const VMStateDescription vmstate_fdc_reset_sensei = {
828     .name = "fdc/reset_sensei",
829     .version_id = 1,
830     .minimum_version_id = 1,
831     .needed = fdc_reset_sensei_needed,
832     .fields = (VMStateField[]) {
833         VMSTATE_INT32(reset_sensei, FDCtrl),
834         VMSTATE_END_OF_LIST()
835     }
836 };
837 
838 static bool fdc_result_timer_needed(void *opaque)
839 {
840     FDCtrl *s = opaque;
841 
842     return timer_pending(s->result_timer);
843 }
844 
845 static const VMStateDescription vmstate_fdc_result_timer = {
846     .name = "fdc/result_timer",
847     .version_id = 1,
848     .minimum_version_id = 1,
849     .needed = fdc_result_timer_needed,
850     .fields = (VMStateField[]) {
851         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
852         VMSTATE_END_OF_LIST()
853     }
854 };
855 
856 static bool fdc_phase_needed(void *opaque)
857 {
858     FDCtrl *fdctrl = opaque;
859 
860     return reconstruct_phase(fdctrl) != fdctrl->phase;
861 }
862 
863 static const VMStateDescription vmstate_fdc_phase = {
864     .name = "fdc/phase",
865     .version_id = 1,
866     .minimum_version_id = 1,
867     .needed = fdc_phase_needed,
868     .fields = (VMStateField[]) {
869         VMSTATE_UINT8(phase, FDCtrl),
870         VMSTATE_END_OF_LIST()
871     }
872 };
873 
874 static const VMStateDescription vmstate_fdc = {
875     .name = "fdc",
876     .version_id = 2,
877     .minimum_version_id = 2,
878     .pre_save = fdc_pre_save,
879     .pre_load = fdc_pre_load,
880     .post_load = fdc_post_load,
881     .fields = (VMStateField[]) {
882         /* Controller State */
883         VMSTATE_UINT8(sra, FDCtrl),
884         VMSTATE_UINT8(srb, FDCtrl),
885         VMSTATE_UINT8(dor_vmstate, FDCtrl),
886         VMSTATE_UINT8(tdr, FDCtrl),
887         VMSTATE_UINT8(dsr, FDCtrl),
888         VMSTATE_UINT8(msr, FDCtrl),
889         VMSTATE_UINT8(status0, FDCtrl),
890         VMSTATE_UINT8(status1, FDCtrl),
891         VMSTATE_UINT8(status2, FDCtrl),
892         /* Command FIFO */
893         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
894                              uint8_t),
895         VMSTATE_UINT32(data_pos, FDCtrl),
896         VMSTATE_UINT32(data_len, FDCtrl),
897         VMSTATE_UINT8(data_state, FDCtrl),
898         VMSTATE_UINT8(data_dir, FDCtrl),
899         VMSTATE_UINT8(eot, FDCtrl),
900         /* States kept only to be returned back */
901         VMSTATE_UINT8(timer0, FDCtrl),
902         VMSTATE_UINT8(timer1, FDCtrl),
903         VMSTATE_UINT8(precomp_trk, FDCtrl),
904         VMSTATE_UINT8(config, FDCtrl),
905         VMSTATE_UINT8(lock, FDCtrl),
906         VMSTATE_UINT8(pwrd, FDCtrl),
907         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
908         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
909                              vmstate_fdrive, FDrive),
910         VMSTATE_END_OF_LIST()
911     },
912     .subsections = (const VMStateDescription*[]) {
913         &vmstate_fdc_reset_sensei,
914         &vmstate_fdc_result_timer,
915         &vmstate_fdc_phase,
916         NULL
917     }
918 };
919 
920 static void fdctrl_external_reset_sysbus(DeviceState *d)
921 {
922     FDCtrlSysBus *sys = SYSBUS_FDC(d);
923     FDCtrl *s = &sys->state;
924 
925     fdctrl_reset(s, 0);
926 }
927 
928 static void fdctrl_external_reset_isa(DeviceState *d)
929 {
930     FDCtrlISABus *isa = ISA_FDC(d);
931     FDCtrl *s = &isa->state;
932 
933     fdctrl_reset(s, 0);
934 }
935 
936 static void fdctrl_handle_tc(void *opaque, int irq, int level)
937 {
938     //FDCtrl *s = opaque;
939 
940     if (level) {
941         // XXX
942         FLOPPY_DPRINTF("TC pulsed\n");
943     }
944 }
945 
946 /* Change IRQ state */
947 static void fdctrl_reset_irq(FDCtrl *fdctrl)
948 {
949     fdctrl->status0 = 0;
950     if (!(fdctrl->sra & FD_SRA_INTPEND))
951         return;
952     FLOPPY_DPRINTF("Reset interrupt\n");
953     qemu_set_irq(fdctrl->irq, 0);
954     fdctrl->sra &= ~FD_SRA_INTPEND;
955 }
956 
957 static void fdctrl_raise_irq(FDCtrl *fdctrl)
958 {
959     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
960         qemu_set_irq(fdctrl->irq, 1);
961         fdctrl->sra |= FD_SRA_INTPEND;
962     }
963 
964     fdctrl->reset_sensei = 0;
965     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
966 }
967 
968 /* Reset controller */
969 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
970 {
971     int i;
972 
973     FLOPPY_DPRINTF("reset controller\n");
974     fdctrl_reset_irq(fdctrl);
975     /* Initialise controller */
976     fdctrl->sra = 0;
977     fdctrl->srb = 0xc0;
978     if (!fdctrl->drives[1].blk) {
979         fdctrl->sra |= FD_SRA_nDRV2;
980     }
981     fdctrl->cur_drv = 0;
982     fdctrl->dor = FD_DOR_nRESET;
983     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
984     fdctrl->msr = FD_MSR_RQM;
985     fdctrl->reset_sensei = 0;
986     timer_del(fdctrl->result_timer);
987     /* FIFO state */
988     fdctrl->data_pos = 0;
989     fdctrl->data_len = 0;
990     fdctrl->data_state = 0;
991     fdctrl->data_dir = FD_DIR_WRITE;
992     for (i = 0; i < MAX_FD; i++)
993         fd_recalibrate(&fdctrl->drives[i]);
994     fdctrl_to_command_phase(fdctrl);
995     if (do_irq) {
996         fdctrl->status0 |= FD_SR0_RDYCHG;
997         fdctrl_raise_irq(fdctrl);
998         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
999     }
1000 }
1001 
1002 static inline FDrive *drv0(FDCtrl *fdctrl)
1003 {
1004     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1005 }
1006 
1007 static inline FDrive *drv1(FDCtrl *fdctrl)
1008 {
1009     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1010         return &fdctrl->drives[1];
1011     else
1012         return &fdctrl->drives[0];
1013 }
1014 
1015 #if MAX_FD == 4
1016 static inline FDrive *drv2(FDCtrl *fdctrl)
1017 {
1018     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1019         return &fdctrl->drives[2];
1020     else
1021         return &fdctrl->drives[1];
1022 }
1023 
1024 static inline FDrive *drv3(FDCtrl *fdctrl)
1025 {
1026     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1027         return &fdctrl->drives[3];
1028     else
1029         return &fdctrl->drives[2];
1030 }
1031 #endif
1032 
1033 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1034 {
1035     switch (fdctrl->cur_drv) {
1036         case 0: return drv0(fdctrl);
1037         case 1: return drv1(fdctrl);
1038 #if MAX_FD == 4
1039         case 2: return drv2(fdctrl);
1040         case 3: return drv3(fdctrl);
1041 #endif
1042         default: return NULL;
1043     }
1044 }
1045 
1046 /* Status A register : 0x00 (read-only) */
1047 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1048 {
1049     uint32_t retval = fdctrl->sra;
1050 
1051     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1052 
1053     return retval;
1054 }
1055 
1056 /* Status B register : 0x01 (read-only) */
1057 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1058 {
1059     uint32_t retval = fdctrl->srb;
1060 
1061     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1062 
1063     return retval;
1064 }
1065 
1066 /* Digital output register : 0x02 */
1067 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1068 {
1069     uint32_t retval = fdctrl->dor;
1070 
1071     /* Selected drive */
1072     retval |= fdctrl->cur_drv;
1073     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1074 
1075     return retval;
1076 }
1077 
1078 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1079 {
1080     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1081 
1082     /* Motors */
1083     if (value & FD_DOR_MOTEN0)
1084         fdctrl->srb |= FD_SRB_MTR0;
1085     else
1086         fdctrl->srb &= ~FD_SRB_MTR0;
1087     if (value & FD_DOR_MOTEN1)
1088         fdctrl->srb |= FD_SRB_MTR1;
1089     else
1090         fdctrl->srb &= ~FD_SRB_MTR1;
1091 
1092     /* Drive */
1093     if (value & 1)
1094         fdctrl->srb |= FD_SRB_DR0;
1095     else
1096         fdctrl->srb &= ~FD_SRB_DR0;
1097 
1098     /* Reset */
1099     if (!(value & FD_DOR_nRESET)) {
1100         if (fdctrl->dor & FD_DOR_nRESET) {
1101             FLOPPY_DPRINTF("controller enter RESET state\n");
1102         }
1103     } else {
1104         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1105             FLOPPY_DPRINTF("controller out of RESET state\n");
1106             fdctrl_reset(fdctrl, 1);
1107             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1108         }
1109     }
1110     /* Selected drive */
1111     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1112 
1113     fdctrl->dor = value;
1114 }
1115 
1116 /* Tape drive register : 0x03 */
1117 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1118 {
1119     uint32_t retval = fdctrl->tdr;
1120 
1121     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1122 
1123     return retval;
1124 }
1125 
1126 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1127 {
1128     /* Reset mode */
1129     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1130         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1131         return;
1132     }
1133     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1134     /* Disk boot selection indicator */
1135     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1136     /* Tape indicators: never allow */
1137 }
1138 
1139 /* Main status register : 0x04 (read) */
1140 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1141 {
1142     uint32_t retval = fdctrl->msr;
1143 
1144     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1145     fdctrl->dor |= FD_DOR_nRESET;
1146 
1147     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1148 
1149     return retval;
1150 }
1151 
1152 /* Data select rate register : 0x04 (write) */
1153 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1154 {
1155     /* Reset mode */
1156     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1157         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1158         return;
1159     }
1160     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1161     /* Reset: autoclear */
1162     if (value & FD_DSR_SWRESET) {
1163         fdctrl->dor &= ~FD_DOR_nRESET;
1164         fdctrl_reset(fdctrl, 1);
1165         fdctrl->dor |= FD_DOR_nRESET;
1166     }
1167     if (value & FD_DSR_PWRDOWN) {
1168         fdctrl_reset(fdctrl, 1);
1169     }
1170     fdctrl->dsr = value;
1171 }
1172 
1173 /* Configuration control register: 0x07 (write) */
1174 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1175 {
1176     /* Reset mode */
1177     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1178         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1179         return;
1180     }
1181     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1182 
1183     /* Only the rate selection bits used in AT mode, and we
1184      * store those in the DSR.
1185      */
1186     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1187                   (value & FD_DSR_DRATEMASK);
1188 }
1189 
1190 static int fdctrl_media_changed(FDrive *drv)
1191 {
1192     return drv->media_changed;
1193 }
1194 
1195 /* Digital input register : 0x07 (read-only) */
1196 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1197 {
1198     uint32_t retval = 0;
1199 
1200     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1201         retval |= FD_DIR_DSKCHG;
1202     }
1203     if (retval != 0) {
1204         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1205     }
1206 
1207     return retval;
1208 }
1209 
1210 /* Clear the FIFO and update the state for receiving the next command */
1211 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1212 {
1213     fdctrl->phase = FD_PHASE_COMMAND;
1214     fdctrl->data_dir = FD_DIR_WRITE;
1215     fdctrl->data_pos = 0;
1216     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1217     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1218     fdctrl->msr |= FD_MSR_RQM;
1219 }
1220 
1221 /* Update the state to allow the guest to read out the command status.
1222  * @fifo_len is the number of result bytes to be read out. */
1223 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1224 {
1225     fdctrl->phase = FD_PHASE_RESULT;
1226     fdctrl->data_dir = FD_DIR_READ;
1227     fdctrl->data_len = fifo_len;
1228     fdctrl->data_pos = 0;
1229     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1230 }
1231 
1232 /* Set an error: unimplemented/unknown command */
1233 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1234 {
1235     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1236                   fdctrl->fifo[0]);
1237     fdctrl->fifo[0] = FD_SR0_INVCMD;
1238     fdctrl_to_result_phase(fdctrl, 1);
1239 }
1240 
1241 /* Seek to next sector
1242  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1243  * otherwise returns 1
1244  */
1245 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1246 {
1247     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1248                    cur_drv->head, cur_drv->track, cur_drv->sect,
1249                    fd_sector(cur_drv));
1250     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1251        error in fact */
1252     uint8_t new_head = cur_drv->head;
1253     uint8_t new_track = cur_drv->track;
1254     uint8_t new_sect = cur_drv->sect;
1255 
1256     int ret = 1;
1257 
1258     if (new_sect >= cur_drv->last_sect ||
1259         new_sect == fdctrl->eot) {
1260         new_sect = 1;
1261         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1262             if (new_head == 0 &&
1263                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1264                 new_head = 1;
1265             } else {
1266                 new_head = 0;
1267                 new_track++;
1268                 fdctrl->status0 |= FD_SR0_SEEK;
1269                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1270                     ret = 0;
1271                 }
1272             }
1273         } else {
1274             fdctrl->status0 |= FD_SR0_SEEK;
1275             new_track++;
1276             ret = 0;
1277         }
1278         if (ret == 1) {
1279             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1280                     new_head, new_track, new_sect, fd_sector(cur_drv));
1281         }
1282     } else {
1283         new_sect++;
1284     }
1285     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1286     return ret;
1287 }
1288 
1289 /* Callback for transfer end (stop or abort) */
1290 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1291                                  uint8_t status1, uint8_t status2)
1292 {
1293     FDrive *cur_drv;
1294     cur_drv = get_cur_drv(fdctrl);
1295 
1296     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1297     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1298     if (cur_drv->head) {
1299         fdctrl->status0 |= FD_SR0_HEAD;
1300     }
1301     fdctrl->status0 |= status0;
1302 
1303     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1304                    status0, status1, status2, fdctrl->status0);
1305     fdctrl->fifo[0] = fdctrl->status0;
1306     fdctrl->fifo[1] = status1;
1307     fdctrl->fifo[2] = status2;
1308     fdctrl->fifo[3] = cur_drv->track;
1309     fdctrl->fifo[4] = cur_drv->head;
1310     fdctrl->fifo[5] = cur_drv->sect;
1311     fdctrl->fifo[6] = FD_SECTOR_SC;
1312     fdctrl->data_dir = FD_DIR_READ;
1313     if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1314         DMA_release_DREQ(fdctrl->dma_chann);
1315     }
1316     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1317     fdctrl->msr &= ~FD_MSR_NONDMA;
1318 
1319     fdctrl_to_result_phase(fdctrl, 7);
1320     fdctrl_raise_irq(fdctrl);
1321 }
1322 
1323 /* Prepare a data transfer (either DMA or FIFO) */
1324 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1325 {
1326     FDrive *cur_drv;
1327     uint8_t kh, kt, ks;
1328 
1329     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1330     cur_drv = get_cur_drv(fdctrl);
1331     kt = fdctrl->fifo[2];
1332     kh = fdctrl->fifo[3];
1333     ks = fdctrl->fifo[4];
1334     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1335                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1336                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1337                                   NUM_SIDES(cur_drv)));
1338     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1339     case 2:
1340         /* sect too big */
1341         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1342         fdctrl->fifo[3] = kt;
1343         fdctrl->fifo[4] = kh;
1344         fdctrl->fifo[5] = ks;
1345         return;
1346     case 3:
1347         /* track too big */
1348         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1349         fdctrl->fifo[3] = kt;
1350         fdctrl->fifo[4] = kh;
1351         fdctrl->fifo[5] = ks;
1352         return;
1353     case 4:
1354         /* No seek enabled */
1355         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1356         fdctrl->fifo[3] = kt;
1357         fdctrl->fifo[4] = kh;
1358         fdctrl->fifo[5] = ks;
1359         return;
1360     case 1:
1361         fdctrl->status0 |= FD_SR0_SEEK;
1362         break;
1363     default:
1364         break;
1365     }
1366 
1367     /* Check the data rate. If the programmed data rate does not match
1368      * the currently inserted medium, the operation has to fail. */
1369     if (fdctrl->check_media_rate &&
1370         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1371         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1372                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1373         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1374         fdctrl->fifo[3] = kt;
1375         fdctrl->fifo[4] = kh;
1376         fdctrl->fifo[5] = ks;
1377         return;
1378     }
1379 
1380     /* Set the FIFO state */
1381     fdctrl->data_dir = direction;
1382     fdctrl->data_pos = 0;
1383     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1384     if (fdctrl->fifo[0] & 0x80)
1385         fdctrl->data_state |= FD_STATE_MULTI;
1386     else
1387         fdctrl->data_state &= ~FD_STATE_MULTI;
1388     if (fdctrl->fifo[5] == 0) {
1389         fdctrl->data_len = fdctrl->fifo[8];
1390     } else {
1391         int tmp;
1392         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1393         tmp = (fdctrl->fifo[6] - ks + 1);
1394         if (fdctrl->fifo[0] & 0x80)
1395             tmp += fdctrl->fifo[6];
1396         fdctrl->data_len *= tmp;
1397     }
1398     fdctrl->eot = fdctrl->fifo[6];
1399     if (fdctrl->dor & FD_DOR_DMAEN) {
1400         int dma_mode;
1401         /* DMA transfer are enabled. Check if DMA channel is well programmed */
1402         dma_mode = DMA_get_channel_mode(fdctrl->dma_chann);
1403         dma_mode = (dma_mode >> 2) & 3;
1404         FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1405                        dma_mode, direction,
1406                        (128 << fdctrl->fifo[5]) *
1407                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1408         if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
1409               direction == FD_DIR_SCANH) && dma_mode == 0) ||
1410             (direction == FD_DIR_WRITE && dma_mode == 2) ||
1411             (direction == FD_DIR_READ && dma_mode == 1) ||
1412             (direction == FD_DIR_VERIFY)) {
1413             /* No access is allowed until DMA transfer has completed */
1414             fdctrl->msr &= ~FD_MSR_RQM;
1415             if (direction != FD_DIR_VERIFY) {
1416                 /* Now, we just have to wait for the DMA controller to
1417                  * recall us...
1418                  */
1419                 DMA_hold_DREQ(fdctrl->dma_chann);
1420                 DMA_schedule(fdctrl->dma_chann);
1421             } else {
1422                 /* Start transfer */
1423                 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1424                                         fdctrl->data_len);
1425             }
1426             return;
1427         } else {
1428             FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1429                            direction);
1430         }
1431     }
1432     FLOPPY_DPRINTF("start non-DMA transfer\n");
1433     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1434     if (direction != FD_DIR_WRITE)
1435         fdctrl->msr |= FD_MSR_DIO;
1436     /* IO based transfer: calculate len */
1437     fdctrl_raise_irq(fdctrl);
1438 }
1439 
1440 /* Prepare a transfer of deleted data */
1441 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1442 {
1443     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1444 
1445     /* We don't handle deleted data,
1446      * so we don't return *ANYTHING*
1447      */
1448     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1449 }
1450 
1451 /* handlers for DMA transfers */
1452 static int fdctrl_transfer_handler (void *opaque, int nchan,
1453                                     int dma_pos, int dma_len)
1454 {
1455     FDCtrl *fdctrl;
1456     FDrive *cur_drv;
1457     int len, start_pos, rel_pos;
1458     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1459 
1460     fdctrl = opaque;
1461     if (fdctrl->msr & FD_MSR_RQM) {
1462         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1463         return 0;
1464     }
1465     cur_drv = get_cur_drv(fdctrl);
1466     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1467         fdctrl->data_dir == FD_DIR_SCANH)
1468         status2 = FD_SR2_SNS;
1469     if (dma_len > fdctrl->data_len)
1470         dma_len = fdctrl->data_len;
1471     if (cur_drv->blk == NULL) {
1472         if (fdctrl->data_dir == FD_DIR_WRITE)
1473             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1474         else
1475             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1476         len = 0;
1477         goto transfer_error;
1478     }
1479     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1480     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1481         len = dma_len - fdctrl->data_pos;
1482         if (len + rel_pos > FD_SECTOR_LEN)
1483             len = FD_SECTOR_LEN - rel_pos;
1484         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1485                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1486                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1487                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1488                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1489         if (fdctrl->data_dir != FD_DIR_WRITE ||
1490             len < FD_SECTOR_LEN || rel_pos != 0) {
1491             /* READ & SCAN commands and realign to a sector for WRITE */
1492             if (blk_read(cur_drv->blk, fd_sector(cur_drv),
1493                          fdctrl->fifo, 1) < 0) {
1494                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1495                                fd_sector(cur_drv));
1496                 /* Sure, image size is too small... */
1497                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1498             }
1499         }
1500         switch (fdctrl->data_dir) {
1501         case FD_DIR_READ:
1502             /* READ commands */
1503             DMA_write_memory (nchan, fdctrl->fifo + rel_pos,
1504                               fdctrl->data_pos, len);
1505             break;
1506         case FD_DIR_WRITE:
1507             /* WRITE commands */
1508             if (cur_drv->ro) {
1509                 /* Handle readonly medium early, no need to do DMA, touch the
1510                  * LED or attempt any writes. A real floppy doesn't attempt
1511                  * to write to readonly media either. */
1512                 fdctrl_stop_transfer(fdctrl,
1513                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1514                                      0x00);
1515                 goto transfer_error;
1516             }
1517 
1518             DMA_read_memory (nchan, fdctrl->fifo + rel_pos,
1519                              fdctrl->data_pos, len);
1520             if (blk_write(cur_drv->blk, fd_sector(cur_drv),
1521                           fdctrl->fifo, 1) < 0) {
1522                 FLOPPY_DPRINTF("error writing sector %d\n",
1523                                fd_sector(cur_drv));
1524                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1525                 goto transfer_error;
1526             }
1527             break;
1528         case FD_DIR_VERIFY:
1529             /* VERIFY commands */
1530             break;
1531         default:
1532             /* SCAN commands */
1533             {
1534                 uint8_t tmpbuf[FD_SECTOR_LEN];
1535                 int ret;
1536                 DMA_read_memory (nchan, tmpbuf, fdctrl->data_pos, len);
1537                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1538                 if (ret == 0) {
1539                     status2 = FD_SR2_SEH;
1540                     goto end_transfer;
1541                 }
1542                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1543                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1544                     status2 = 0x00;
1545                     goto end_transfer;
1546                 }
1547             }
1548             break;
1549         }
1550         fdctrl->data_pos += len;
1551         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1552         if (rel_pos == 0) {
1553             /* Seek to next sector */
1554             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1555                 break;
1556         }
1557     }
1558  end_transfer:
1559     len = fdctrl->data_pos - start_pos;
1560     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1561                    fdctrl->data_pos, len, fdctrl->data_len);
1562     if (fdctrl->data_dir == FD_DIR_SCANE ||
1563         fdctrl->data_dir == FD_DIR_SCANL ||
1564         fdctrl->data_dir == FD_DIR_SCANH)
1565         status2 = FD_SR2_SEH;
1566     fdctrl->data_len -= len;
1567     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1568  transfer_error:
1569 
1570     return len;
1571 }
1572 
1573 /* Data register : 0x05 */
1574 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1575 {
1576     FDrive *cur_drv;
1577     uint32_t retval = 0;
1578     uint32_t pos;
1579 
1580     cur_drv = get_cur_drv(fdctrl);
1581     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1582     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1583         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1584         return 0;
1585     }
1586 
1587     /* If data_len spans multiple sectors, the current position in the FIFO
1588      * wraps around while fdctrl->data_pos is the real position in the whole
1589      * request. */
1590     pos = fdctrl->data_pos;
1591     pos %= FD_SECTOR_LEN;
1592 
1593     switch (fdctrl->phase) {
1594     case FD_PHASE_EXECUTION:
1595         assert(fdctrl->msr & FD_MSR_NONDMA);
1596         if (pos == 0) {
1597             if (fdctrl->data_pos != 0)
1598                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1599                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1600                                    fd_sector(cur_drv));
1601                     return 0;
1602                 }
1603             if (blk_read(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
1604                 < 0) {
1605                 FLOPPY_DPRINTF("error getting sector %d\n",
1606                                fd_sector(cur_drv));
1607                 /* Sure, image size is too small... */
1608                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1609             }
1610         }
1611 
1612         if (++fdctrl->data_pos == fdctrl->data_len) {
1613             fdctrl->msr &= ~FD_MSR_RQM;
1614             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1615         }
1616         break;
1617 
1618     case FD_PHASE_RESULT:
1619         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1620         if (++fdctrl->data_pos == fdctrl->data_len) {
1621             fdctrl->msr &= ~FD_MSR_RQM;
1622             fdctrl_to_command_phase(fdctrl);
1623             fdctrl_reset_irq(fdctrl);
1624         }
1625         break;
1626 
1627     case FD_PHASE_COMMAND:
1628     default:
1629         abort();
1630     }
1631 
1632     retval = fdctrl->fifo[pos];
1633     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1634 
1635     return retval;
1636 }
1637 
1638 static void fdctrl_format_sector(FDCtrl *fdctrl)
1639 {
1640     FDrive *cur_drv;
1641     uint8_t kh, kt, ks;
1642 
1643     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1644     cur_drv = get_cur_drv(fdctrl);
1645     kt = fdctrl->fifo[6];
1646     kh = fdctrl->fifo[7];
1647     ks = fdctrl->fifo[8];
1648     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1649                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1650                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1651                                   NUM_SIDES(cur_drv)));
1652     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1653     case 2:
1654         /* sect too big */
1655         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1656         fdctrl->fifo[3] = kt;
1657         fdctrl->fifo[4] = kh;
1658         fdctrl->fifo[5] = ks;
1659         return;
1660     case 3:
1661         /* track too big */
1662         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1663         fdctrl->fifo[3] = kt;
1664         fdctrl->fifo[4] = kh;
1665         fdctrl->fifo[5] = ks;
1666         return;
1667     case 4:
1668         /* No seek enabled */
1669         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1670         fdctrl->fifo[3] = kt;
1671         fdctrl->fifo[4] = kh;
1672         fdctrl->fifo[5] = ks;
1673         return;
1674     case 1:
1675         fdctrl->status0 |= FD_SR0_SEEK;
1676         break;
1677     default:
1678         break;
1679     }
1680     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1681     if (cur_drv->blk == NULL ||
1682         blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
1683         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1684         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1685     } else {
1686         if (cur_drv->sect == cur_drv->last_sect) {
1687             fdctrl->data_state &= ~FD_STATE_FORMAT;
1688             /* Last sector done */
1689             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1690         } else {
1691             /* More to do */
1692             fdctrl->data_pos = 0;
1693             fdctrl->data_len = 4;
1694         }
1695     }
1696 }
1697 
1698 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1699 {
1700     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1701     fdctrl->fifo[0] = fdctrl->lock << 4;
1702     fdctrl_to_result_phase(fdctrl, 1);
1703 }
1704 
1705 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1706 {
1707     FDrive *cur_drv = get_cur_drv(fdctrl);
1708 
1709     /* Drives position */
1710     fdctrl->fifo[0] = drv0(fdctrl)->track;
1711     fdctrl->fifo[1] = drv1(fdctrl)->track;
1712 #if MAX_FD == 4
1713     fdctrl->fifo[2] = drv2(fdctrl)->track;
1714     fdctrl->fifo[3] = drv3(fdctrl)->track;
1715 #else
1716     fdctrl->fifo[2] = 0;
1717     fdctrl->fifo[3] = 0;
1718 #endif
1719     /* timers */
1720     fdctrl->fifo[4] = fdctrl->timer0;
1721     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1722     fdctrl->fifo[6] = cur_drv->last_sect;
1723     fdctrl->fifo[7] = (fdctrl->lock << 7) |
1724         (cur_drv->perpendicular << 2);
1725     fdctrl->fifo[8] = fdctrl->config;
1726     fdctrl->fifo[9] = fdctrl->precomp_trk;
1727     fdctrl_to_result_phase(fdctrl, 10);
1728 }
1729 
1730 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1731 {
1732     /* Controller's version */
1733     fdctrl->fifo[0] = fdctrl->version;
1734     fdctrl_to_result_phase(fdctrl, 1);
1735 }
1736 
1737 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1738 {
1739     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1740     fdctrl_to_result_phase(fdctrl, 1);
1741 }
1742 
1743 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1744 {
1745     FDrive *cur_drv = get_cur_drv(fdctrl);
1746 
1747     /* Drives position */
1748     drv0(fdctrl)->track = fdctrl->fifo[3];
1749     drv1(fdctrl)->track = fdctrl->fifo[4];
1750 #if MAX_FD == 4
1751     drv2(fdctrl)->track = fdctrl->fifo[5];
1752     drv3(fdctrl)->track = fdctrl->fifo[6];
1753 #endif
1754     /* timers */
1755     fdctrl->timer0 = fdctrl->fifo[7];
1756     fdctrl->timer1 = fdctrl->fifo[8];
1757     cur_drv->last_sect = fdctrl->fifo[9];
1758     fdctrl->lock = fdctrl->fifo[10] >> 7;
1759     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1760     fdctrl->config = fdctrl->fifo[11];
1761     fdctrl->precomp_trk = fdctrl->fifo[12];
1762     fdctrl->pwrd = fdctrl->fifo[13];
1763     fdctrl_to_command_phase(fdctrl);
1764 }
1765 
1766 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1767 {
1768     FDrive *cur_drv = get_cur_drv(fdctrl);
1769 
1770     fdctrl->fifo[0] = 0;
1771     fdctrl->fifo[1] = 0;
1772     /* Drives position */
1773     fdctrl->fifo[2] = drv0(fdctrl)->track;
1774     fdctrl->fifo[3] = drv1(fdctrl)->track;
1775 #if MAX_FD == 4
1776     fdctrl->fifo[4] = drv2(fdctrl)->track;
1777     fdctrl->fifo[5] = drv3(fdctrl)->track;
1778 #else
1779     fdctrl->fifo[4] = 0;
1780     fdctrl->fifo[5] = 0;
1781 #endif
1782     /* timers */
1783     fdctrl->fifo[6] = fdctrl->timer0;
1784     fdctrl->fifo[7] = fdctrl->timer1;
1785     fdctrl->fifo[8] = cur_drv->last_sect;
1786     fdctrl->fifo[9] = (fdctrl->lock << 7) |
1787         (cur_drv->perpendicular << 2);
1788     fdctrl->fifo[10] = fdctrl->config;
1789     fdctrl->fifo[11] = fdctrl->precomp_trk;
1790     fdctrl->fifo[12] = fdctrl->pwrd;
1791     fdctrl->fifo[13] = 0;
1792     fdctrl->fifo[14] = 0;
1793     fdctrl_to_result_phase(fdctrl, 15);
1794 }
1795 
1796 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1797 {
1798     FDrive *cur_drv = get_cur_drv(fdctrl);
1799 
1800     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1801     timer_mod(fdctrl->result_timer,
1802                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() / 50));
1803 }
1804 
1805 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1806 {
1807     FDrive *cur_drv;
1808 
1809     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1810     cur_drv = get_cur_drv(fdctrl);
1811     fdctrl->data_state |= FD_STATE_FORMAT;
1812     if (fdctrl->fifo[0] & 0x80)
1813         fdctrl->data_state |= FD_STATE_MULTI;
1814     else
1815         fdctrl->data_state &= ~FD_STATE_MULTI;
1816     cur_drv->bps =
1817         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1818 #if 0
1819     cur_drv->last_sect =
1820         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1821         fdctrl->fifo[3] / 2;
1822 #else
1823     cur_drv->last_sect = fdctrl->fifo[3];
1824 #endif
1825     /* TODO: implement format using DMA expected by the Bochs BIOS
1826      * and Linux fdformat (read 3 bytes per sector via DMA and fill
1827      * the sector with the specified fill byte
1828      */
1829     fdctrl->data_state &= ~FD_STATE_FORMAT;
1830     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1831 }
1832 
1833 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1834 {
1835     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1836     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1837     if (fdctrl->fifo[2] & 1)
1838         fdctrl->dor &= ~FD_DOR_DMAEN;
1839     else
1840         fdctrl->dor |= FD_DOR_DMAEN;
1841     /* No result back */
1842     fdctrl_to_command_phase(fdctrl);
1843 }
1844 
1845 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1846 {
1847     FDrive *cur_drv;
1848 
1849     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1850     cur_drv = get_cur_drv(fdctrl);
1851     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1852     /* 1 Byte status back */
1853     fdctrl->fifo[0] = (cur_drv->ro << 6) |
1854         (cur_drv->track == 0 ? 0x10 : 0x00) |
1855         (cur_drv->head << 2) |
1856         GET_CUR_DRV(fdctrl) |
1857         0x28;
1858     fdctrl_to_result_phase(fdctrl, 1);
1859 }
1860 
1861 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
1862 {
1863     FDrive *cur_drv;
1864 
1865     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1866     cur_drv = get_cur_drv(fdctrl);
1867     fd_recalibrate(cur_drv);
1868     fdctrl_to_command_phase(fdctrl);
1869     /* Raise Interrupt */
1870     fdctrl->status0 |= FD_SR0_SEEK;
1871     fdctrl_raise_irq(fdctrl);
1872 }
1873 
1874 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
1875 {
1876     FDrive *cur_drv = get_cur_drv(fdctrl);
1877 
1878     if (fdctrl->reset_sensei > 0) {
1879         fdctrl->fifo[0] =
1880             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
1881         fdctrl->reset_sensei--;
1882     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1883         fdctrl->fifo[0] = FD_SR0_INVCMD;
1884         fdctrl_to_result_phase(fdctrl, 1);
1885         return;
1886     } else {
1887         fdctrl->fifo[0] =
1888                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
1889                 | GET_CUR_DRV(fdctrl);
1890     }
1891 
1892     fdctrl->fifo[1] = cur_drv->track;
1893     fdctrl_to_result_phase(fdctrl, 2);
1894     fdctrl_reset_irq(fdctrl);
1895     fdctrl->status0 = FD_SR0_RDYCHG;
1896 }
1897 
1898 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
1899 {
1900     FDrive *cur_drv;
1901 
1902     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1903     cur_drv = get_cur_drv(fdctrl);
1904     fdctrl_to_command_phase(fdctrl);
1905     /* The seek command just sends step pulses to the drive and doesn't care if
1906      * there is a medium inserted of if it's banging the head against the drive.
1907      */
1908     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
1909     /* Raise Interrupt */
1910     fdctrl->status0 |= FD_SR0_SEEK;
1911     fdctrl_raise_irq(fdctrl);
1912 }
1913 
1914 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
1915 {
1916     FDrive *cur_drv = get_cur_drv(fdctrl);
1917 
1918     if (fdctrl->fifo[1] & 0x80)
1919         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
1920     /* No result back */
1921     fdctrl_to_command_phase(fdctrl);
1922 }
1923 
1924 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
1925 {
1926     fdctrl->config = fdctrl->fifo[2];
1927     fdctrl->precomp_trk =  fdctrl->fifo[3];
1928     /* No result back */
1929     fdctrl_to_command_phase(fdctrl);
1930 }
1931 
1932 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
1933 {
1934     fdctrl->pwrd = fdctrl->fifo[1];
1935     fdctrl->fifo[0] = fdctrl->fifo[1];
1936     fdctrl_to_result_phase(fdctrl, 1);
1937 }
1938 
1939 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
1940 {
1941     /* No result back */
1942     fdctrl_to_command_phase(fdctrl);
1943 }
1944 
1945 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
1946 {
1947     FDrive *cur_drv = get_cur_drv(fdctrl);
1948     uint32_t pos;
1949 
1950     pos = fdctrl->data_pos - 1;
1951     pos %= FD_SECTOR_LEN;
1952     if (fdctrl->fifo[pos] & 0x80) {
1953         /* Command parameters done */
1954         if (fdctrl->fifo[pos] & 0x40) {
1955             fdctrl->fifo[0] = fdctrl->fifo[1];
1956             fdctrl->fifo[2] = 0;
1957             fdctrl->fifo[3] = 0;
1958             fdctrl_to_result_phase(fdctrl, 4);
1959         } else {
1960             fdctrl_to_command_phase(fdctrl);
1961         }
1962     } else if (fdctrl->data_len > 7) {
1963         /* ERROR */
1964         fdctrl->fifo[0] = 0x80 |
1965             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
1966         fdctrl_to_result_phase(fdctrl, 1);
1967     }
1968 }
1969 
1970 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
1971 {
1972     FDrive *cur_drv;
1973 
1974     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1975     cur_drv = get_cur_drv(fdctrl);
1976     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
1977         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
1978                 cur_drv->sect, 1);
1979     } else {
1980         fd_seek(cur_drv, cur_drv->head,
1981                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
1982     }
1983     fdctrl_to_command_phase(fdctrl);
1984     /* Raise Interrupt */
1985     fdctrl->status0 |= FD_SR0_SEEK;
1986     fdctrl_raise_irq(fdctrl);
1987 }
1988 
1989 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
1990 {
1991     FDrive *cur_drv;
1992 
1993     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1994     cur_drv = get_cur_drv(fdctrl);
1995     if (fdctrl->fifo[2] > cur_drv->track) {
1996         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
1997     } else {
1998         fd_seek(cur_drv, cur_drv->head,
1999                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2000     }
2001     fdctrl_to_command_phase(fdctrl);
2002     /* Raise Interrupt */
2003     fdctrl->status0 |= FD_SR0_SEEK;
2004     fdctrl_raise_irq(fdctrl);
2005 }
2006 
2007 /*
2008  * Handlers for the execution phase of each command
2009  */
2010 typedef struct FDCtrlCommand {
2011     uint8_t value;
2012     uint8_t mask;
2013     const char* name;
2014     int parameters;
2015     void (*handler)(FDCtrl *fdctrl, int direction);
2016     int direction;
2017 } FDCtrlCommand;
2018 
2019 static const FDCtrlCommand handlers[] = {
2020     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2021     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2022     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2023     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2024     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2025     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2026     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2027     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2028     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2029     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2030     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2031     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2032     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2033     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2034     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2035     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2036     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2037     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2038     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2039     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2040     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2041     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2042     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2043     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2044     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2045     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2046     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2047     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2048     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2049     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2050     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2051     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2052 };
2053 /* Associate command to an index in the 'handlers' array */
2054 static uint8_t command_to_handler[256];
2055 
2056 static const FDCtrlCommand *get_command(uint8_t cmd)
2057 {
2058     int idx;
2059 
2060     idx = command_to_handler[cmd];
2061     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2062     return &handlers[idx];
2063 }
2064 
2065 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2066 {
2067     FDrive *cur_drv;
2068     const FDCtrlCommand *cmd;
2069     uint32_t pos;
2070 
2071     /* Reset mode */
2072     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2073         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2074         return;
2075     }
2076     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2077         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2078         return;
2079     }
2080     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2081 
2082     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2083 
2084     /* If data_len spans multiple sectors, the current position in the FIFO
2085      * wraps around while fdctrl->data_pos is the real position in the whole
2086      * request. */
2087     pos = fdctrl->data_pos++;
2088     pos %= FD_SECTOR_LEN;
2089     fdctrl->fifo[pos] = value;
2090 
2091     if (fdctrl->data_pos == fdctrl->data_len) {
2092         fdctrl->msr &= ~FD_MSR_RQM;
2093     }
2094 
2095     switch (fdctrl->phase) {
2096     case FD_PHASE_EXECUTION:
2097         /* For DMA requests, RQM should be cleared during execution phase, so
2098          * we would have errored out above. */
2099         assert(fdctrl->msr & FD_MSR_NONDMA);
2100 
2101         /* FIFO data write */
2102         if (pos == FD_SECTOR_LEN - 1 ||
2103             fdctrl->data_pos == fdctrl->data_len) {
2104             cur_drv = get_cur_drv(fdctrl);
2105             if (blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
2106                 < 0) {
2107                 FLOPPY_DPRINTF("error writing sector %d\n",
2108                                fd_sector(cur_drv));
2109                 break;
2110             }
2111             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2112                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2113                                fd_sector(cur_drv));
2114                 break;
2115             }
2116         }
2117 
2118         /* Switch to result phase when done with the transfer */
2119         if (fdctrl->data_pos == fdctrl->data_len) {
2120             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2121         }
2122         break;
2123 
2124     case FD_PHASE_COMMAND:
2125         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2126         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2127 
2128         if (pos == 0) {
2129             /* The first byte specifies the command. Now we start reading
2130              * as many parameters as this command requires. */
2131             cmd = get_command(value);
2132             fdctrl->data_len = cmd->parameters + 1;
2133             if (cmd->parameters) {
2134                 fdctrl->msr |= FD_MSR_RQM;
2135             }
2136             fdctrl->msr |= FD_MSR_CMDBUSY;
2137         }
2138 
2139         if (fdctrl->data_pos == fdctrl->data_len) {
2140             /* We have all parameters now, execute the command */
2141             fdctrl->phase = FD_PHASE_EXECUTION;
2142 
2143             if (fdctrl->data_state & FD_STATE_FORMAT) {
2144                 fdctrl_format_sector(fdctrl);
2145                 break;
2146             }
2147 
2148             cmd = get_command(fdctrl->fifo[0]);
2149             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2150             cmd->handler(fdctrl, cmd->direction);
2151         }
2152         break;
2153 
2154     case FD_PHASE_RESULT:
2155     default:
2156         abort();
2157     }
2158 }
2159 
2160 static void fdctrl_result_timer(void *opaque)
2161 {
2162     FDCtrl *fdctrl = opaque;
2163     FDrive *cur_drv = get_cur_drv(fdctrl);
2164 
2165     /* Pretend we are spinning.
2166      * This is needed for Coherent, which uses READ ID to check for
2167      * sector interleaving.
2168      */
2169     if (cur_drv->last_sect != 0) {
2170         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2171     }
2172     /* READ_ID can't automatically succeed! */
2173     if (fdctrl->check_media_rate &&
2174         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2175         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2176                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2177         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2178     } else {
2179         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2180     }
2181 }
2182 
2183 static void fdctrl_change_cb(void *opaque, bool load)
2184 {
2185     FDrive *drive = opaque;
2186 
2187     drive->media_changed = 1;
2188     fd_revalidate(drive);
2189 }
2190 
2191 static const BlockDevOps fdctrl_block_ops = {
2192     .change_media_cb = fdctrl_change_cb,
2193 };
2194 
2195 /* Init functions */
2196 static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp)
2197 {
2198     unsigned int i;
2199     FDrive *drive;
2200 
2201     for (i = 0; i < MAX_FD; i++) {
2202         drive = &fdctrl->drives[i];
2203         drive->fdctrl = fdctrl;
2204 
2205         if (drive->blk) {
2206             if (blk_get_on_error(drive->blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC) {
2207                 error_setg(errp, "fdc doesn't support drive option werror");
2208                 return;
2209             }
2210             if (blk_get_on_error(drive->blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
2211                 error_setg(errp, "fdc doesn't support drive option rerror");
2212                 return;
2213             }
2214         }
2215 
2216         fd_init(drive);
2217         fdctrl_change_cb(drive, 0);
2218         if (drive->blk) {
2219             blk_set_dev_ops(drive->blk, &fdctrl_block_ops, drive);
2220         }
2221     }
2222 }
2223 
2224 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2225 {
2226     DeviceState *dev;
2227     ISADevice *isadev;
2228 
2229     isadev = isa_try_create(bus, TYPE_ISA_FDC);
2230     if (!isadev) {
2231         return NULL;
2232     }
2233     dev = DEVICE(isadev);
2234 
2235     if (fds[0]) {
2236         qdev_prop_set_drive_nofail(dev, "driveA", blk_by_legacy_dinfo(fds[0]));
2237     }
2238     if (fds[1]) {
2239         qdev_prop_set_drive_nofail(dev, "driveB", blk_by_legacy_dinfo(fds[1]));
2240     }
2241     qdev_init_nofail(dev);
2242 
2243     return isadev;
2244 }
2245 
2246 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2247                         hwaddr mmio_base, DriveInfo **fds)
2248 {
2249     FDCtrl *fdctrl;
2250     DeviceState *dev;
2251     SysBusDevice *sbd;
2252     FDCtrlSysBus *sys;
2253 
2254     dev = qdev_create(NULL, "sysbus-fdc");
2255     sys = SYSBUS_FDC(dev);
2256     fdctrl = &sys->state;
2257     fdctrl->dma_chann = dma_chann; /* FIXME */
2258     if (fds[0]) {
2259         qdev_prop_set_drive_nofail(dev, "driveA", blk_by_legacy_dinfo(fds[0]));
2260     }
2261     if (fds[1]) {
2262         qdev_prop_set_drive_nofail(dev, "driveB", blk_by_legacy_dinfo(fds[1]));
2263     }
2264     qdev_init_nofail(dev);
2265     sbd = SYS_BUS_DEVICE(dev);
2266     sysbus_connect_irq(sbd, 0, irq);
2267     sysbus_mmio_map(sbd, 0, mmio_base);
2268 }
2269 
2270 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2271                        DriveInfo **fds, qemu_irq *fdc_tc)
2272 {
2273     DeviceState *dev;
2274     FDCtrlSysBus *sys;
2275 
2276     dev = qdev_create(NULL, "SUNW,fdtwo");
2277     if (fds[0]) {
2278         qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(fds[0]));
2279     }
2280     qdev_init_nofail(dev);
2281     sys = SYSBUS_FDC(dev);
2282     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2283     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2284     *fdc_tc = qdev_get_gpio_in(dev, 0);
2285 }
2286 
2287 static void fdctrl_realize_common(FDCtrl *fdctrl, Error **errp)
2288 {
2289     int i, j;
2290     static int command_tables_inited = 0;
2291 
2292     /* Fill 'command_to_handler' lookup table */
2293     if (!command_tables_inited) {
2294         command_tables_inited = 1;
2295         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2296             for (j = 0; j < sizeof(command_to_handler); j++) {
2297                 if ((j & handlers[i].mask) == handlers[i].value) {
2298                     command_to_handler[j] = i;
2299                 }
2300             }
2301         }
2302     }
2303 
2304     FLOPPY_DPRINTF("init controller\n");
2305     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2306     fdctrl->fifo_size = 512;
2307     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2308                                              fdctrl_result_timer, fdctrl);
2309 
2310     fdctrl->version = 0x90; /* Intel 82078 controller */
2311     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2312     fdctrl->num_floppies = MAX_FD;
2313 
2314     if (fdctrl->dma_chann != -1) {
2315         DMA_register_channel(fdctrl->dma_chann, &fdctrl_transfer_handler, fdctrl);
2316     }
2317     fdctrl_connect_drives(fdctrl, errp);
2318 }
2319 
2320 static const MemoryRegionPortio fdc_portio_list[] = {
2321     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2322     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2323     PORTIO_END_OF_LIST(),
2324 };
2325 
2326 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2327 {
2328     ISADevice *isadev = ISA_DEVICE(dev);
2329     FDCtrlISABus *isa = ISA_FDC(dev);
2330     FDCtrl *fdctrl = &isa->state;
2331     Error *err = NULL;
2332 
2333     isa_register_portio_list(isadev, isa->iobase, fdc_portio_list, fdctrl,
2334                              "fdc");
2335 
2336     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2337     fdctrl->dma_chann = isa->dma;
2338 
2339     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2340     fdctrl_realize_common(fdctrl, &err);
2341     if (err != NULL) {
2342         error_propagate(errp, err);
2343         return;
2344     }
2345 }
2346 
2347 static void sysbus_fdc_initfn(Object *obj)
2348 {
2349     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2350     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2351     FDCtrl *fdctrl = &sys->state;
2352 
2353     fdctrl->dma_chann = -1;
2354 
2355     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2356                           "fdc", 0x08);
2357     sysbus_init_mmio(sbd, &fdctrl->iomem);
2358 }
2359 
2360 static void sun4m_fdc_initfn(Object *obj)
2361 {
2362     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2363     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2364     FDCtrl *fdctrl = &sys->state;
2365 
2366     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2367                           fdctrl, "fdctrl", 0x08);
2368     sysbus_init_mmio(sbd, &fdctrl->iomem);
2369 }
2370 
2371 static void sysbus_fdc_common_initfn(Object *obj)
2372 {
2373     DeviceState *dev = DEVICE(obj);
2374     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2375     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2376     FDCtrl *fdctrl = &sys->state;
2377 
2378     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2379 
2380     sysbus_init_irq(sbd, &fdctrl->irq);
2381     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2382 }
2383 
2384 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2385 {
2386     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2387     FDCtrl *fdctrl = &sys->state;
2388 
2389     fdctrl_realize_common(fdctrl, errp);
2390 }
2391 
2392 FDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2393 {
2394     FDCtrlISABus *isa = ISA_FDC(fdc);
2395 
2396     return isa->state.drives[i].drive;
2397 }
2398 
2399 static const VMStateDescription vmstate_isa_fdc ={
2400     .name = "fdc",
2401     .version_id = 2,
2402     .minimum_version_id = 2,
2403     .fields = (VMStateField[]) {
2404         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2405         VMSTATE_END_OF_LIST()
2406     }
2407 };
2408 
2409 static Property isa_fdc_properties[] = {
2410     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2411     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2412     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2413     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.drives[0].blk),
2414     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.drives[1].blk),
2415     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2416                     0, true),
2417     DEFINE_PROP_END_OF_LIST(),
2418 };
2419 
2420 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2421 {
2422     DeviceClass *dc = DEVICE_CLASS(klass);
2423 
2424     dc->realize = isabus_fdc_realize;
2425     dc->fw_name = "fdc";
2426     dc->reset = fdctrl_external_reset_isa;
2427     dc->vmsd = &vmstate_isa_fdc;
2428     dc->props = isa_fdc_properties;
2429     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2430 }
2431 
2432 static void isabus_fdc_instance_init(Object *obj)
2433 {
2434     FDCtrlISABus *isa = ISA_FDC(obj);
2435 
2436     device_add_bootindex_property(obj, &isa->bootindexA,
2437                                   "bootindexA", "/floppy@0",
2438                                   DEVICE(obj), NULL);
2439     device_add_bootindex_property(obj, &isa->bootindexB,
2440                                   "bootindexB", "/floppy@1",
2441                                   DEVICE(obj), NULL);
2442 }
2443 
2444 static const TypeInfo isa_fdc_info = {
2445     .name          = TYPE_ISA_FDC,
2446     .parent        = TYPE_ISA_DEVICE,
2447     .instance_size = sizeof(FDCtrlISABus),
2448     .class_init    = isabus_fdc_class_init,
2449     .instance_init = isabus_fdc_instance_init,
2450 };
2451 
2452 static const VMStateDescription vmstate_sysbus_fdc ={
2453     .name = "fdc",
2454     .version_id = 2,
2455     .minimum_version_id = 2,
2456     .fields = (VMStateField[]) {
2457         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2458         VMSTATE_END_OF_LIST()
2459     }
2460 };
2461 
2462 static Property sysbus_fdc_properties[] = {
2463     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.drives[0].blk),
2464     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.drives[1].blk),
2465     DEFINE_PROP_END_OF_LIST(),
2466 };
2467 
2468 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2469 {
2470     DeviceClass *dc = DEVICE_CLASS(klass);
2471 
2472     dc->props = sysbus_fdc_properties;
2473     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2474 }
2475 
2476 static const TypeInfo sysbus_fdc_info = {
2477     .name          = "sysbus-fdc",
2478     .parent        = TYPE_SYSBUS_FDC,
2479     .instance_init = sysbus_fdc_initfn,
2480     .class_init    = sysbus_fdc_class_init,
2481 };
2482 
2483 static Property sun4m_fdc_properties[] = {
2484     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.drives[0].blk),
2485     DEFINE_PROP_END_OF_LIST(),
2486 };
2487 
2488 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2489 {
2490     DeviceClass *dc = DEVICE_CLASS(klass);
2491 
2492     dc->props = sun4m_fdc_properties;
2493     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2494 }
2495 
2496 static const TypeInfo sun4m_fdc_info = {
2497     .name          = "SUNW,fdtwo",
2498     .parent        = TYPE_SYSBUS_FDC,
2499     .instance_init = sun4m_fdc_initfn,
2500     .class_init    = sun4m_fdc_class_init,
2501 };
2502 
2503 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2504 {
2505     DeviceClass *dc = DEVICE_CLASS(klass);
2506 
2507     dc->realize = sysbus_fdc_common_realize;
2508     dc->reset = fdctrl_external_reset_sysbus;
2509     dc->vmsd = &vmstate_sysbus_fdc;
2510 }
2511 
2512 static const TypeInfo sysbus_fdc_type_info = {
2513     .name          = TYPE_SYSBUS_FDC,
2514     .parent        = TYPE_SYS_BUS_DEVICE,
2515     .instance_size = sizeof(FDCtrlSysBus),
2516     .instance_init = sysbus_fdc_common_initfn,
2517     .abstract      = true,
2518     .class_init    = sysbus_fdc_common_class_init,
2519 };
2520 
2521 static void fdc_register_types(void)
2522 {
2523     type_register_static(&isa_fdc_info);
2524     type_register_static(&sysbus_fdc_type_info);
2525     type_register_static(&sysbus_fdc_info);
2526     type_register_static(&sun4m_fdc_info);
2527 }
2528 
2529 type_init(fdc_register_types)
2530