xref: /openbmc/qemu/hw/block/fdc.c (revision bcad45de6a0b5bf10a274872d2e45da3403232da)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/blockdev.h"
40 #include "sysemu/sysemu.h"
41 #include "qemu/log.h"
42 
43 /********************************************************/
44 /* debug Floppy devices */
45 
46 #define DEBUG_FLOPPY 0
47 
48 #define FLOPPY_DPRINTF(fmt, ...)                                \
49     do {                                                        \
50         if (DEBUG_FLOPPY) {                                     \
51             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
52         }                                                       \
53     } while (0)
54 
55 /********************************************************/
56 /* Floppy drive emulation                               */
57 
58 typedef enum FDriveRate {
59     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
60     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
61     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
62     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
63 } FDriveRate;
64 
65 typedef enum FDriveSize {
66     FDRIVE_SIZE_UNKNOWN,
67     FDRIVE_SIZE_350,
68     FDRIVE_SIZE_525,
69 } FDriveSize;
70 
71 typedef struct FDFormat {
72     FloppyDriveType drive;
73     uint8_t last_sect;
74     uint8_t max_track;
75     uint8_t max_head;
76     FDriveRate rate;
77 } FDFormat;
78 
79 /* In many cases, the total sector size of a format is enough to uniquely
80  * identify it. However, there are some total sector collisions between
81  * formats of different physical size, and these are noted below by
82  * highlighting the total sector size for entries with collisions. */
83 static const FDFormat fd_formats[] = {
84     /* First entry is default format */
85     /* 1.44 MB 3"1/2 floppy disks */
86     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
87     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
88     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
89     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
90     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
91     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
92     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
93     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
94     /* 2.88 MB 3"1/2 floppy disks */
95     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
96     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
97     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
98     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
99     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
100     /* 720 kB 3"1/2 floppy disks */
101     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
102     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
103     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
104     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
105     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
106     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
107     /* 1.2 MB 5"1/4 floppy disks */
108     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
109     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
110     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
111     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
112     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
113     /* 720 kB 5"1/4 floppy disks */
114     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
115     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
116     /* 360 kB 5"1/4 floppy disks */
117     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
118     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
119     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
120     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
121     /* 320 kB 5"1/4 floppy disks */
122     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
123     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
124     /* 360 kB must match 5"1/4 better than 3"1/2... */
125     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
126     /* end */
127     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
128 };
129 
130 static FDriveSize drive_size(FloppyDriveType drive)
131 {
132     switch (drive) {
133     case FLOPPY_DRIVE_TYPE_120:
134         return FDRIVE_SIZE_525;
135     case FLOPPY_DRIVE_TYPE_144:
136     case FLOPPY_DRIVE_TYPE_288:
137         return FDRIVE_SIZE_350;
138     default:
139         return FDRIVE_SIZE_UNKNOWN;
140     }
141 }
142 
143 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
144 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
145 
146 /* Will always be a fixed parameter for us */
147 #define FD_SECTOR_LEN          512
148 #define FD_SECTOR_SC           2   /* Sector size code */
149 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
150 
151 typedef struct FDCtrl FDCtrl;
152 
153 /* Floppy disk drive emulation */
154 typedef enum FDiskFlags {
155     FDISK_DBL_SIDES  = 0x01,
156 } FDiskFlags;
157 
158 typedef struct FDrive {
159     FDCtrl *fdctrl;
160     BlockBackend *blk;
161     /* Drive status */
162     FloppyDriveType drive;    /* CMOS drive type        */
163     uint8_t perpendicular;    /* 2.88 MB access mode    */
164     /* Position */
165     uint8_t head;
166     uint8_t track;
167     uint8_t sect;
168     /* Media */
169     FloppyDriveType disk;     /* Current disk type      */
170     FDiskFlags flags;
171     uint8_t last_sect;        /* Nb sector per track    */
172     uint8_t max_track;        /* Nb of tracks           */
173     uint16_t bps;             /* Bytes per sector       */
174     uint8_t ro;               /* Is read-only           */
175     uint8_t media_changed;    /* Is media changed       */
176     uint8_t media_rate;       /* Data rate of medium    */
177 
178     bool media_validated;     /* Have we validated the media? */
179 } FDrive;
180 
181 
182 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
183 
184 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
185  * currently goes through some pains to keep seeks within the bounds
186  * established by last_sect and max_track. Correcting this is difficult,
187  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
188  *
189  * For now: allow empty drives to have large bounds so we can seek around,
190  * with the understanding that when a diskette is inserted, the bounds will
191  * properly tighten to match the geometry of that inserted medium.
192  */
193 static void fd_empty_seek_hack(FDrive *drv)
194 {
195     drv->last_sect = 0xFF;
196     drv->max_track = 0xFF;
197 }
198 
199 static void fd_init(FDrive *drv)
200 {
201     /* Drive */
202     drv->perpendicular = 0;
203     /* Disk */
204     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
205     drv->last_sect = 0;
206     drv->max_track = 0;
207     drv->ro = true;
208     drv->media_changed = 1;
209 }
210 
211 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
212 
213 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
214                           uint8_t last_sect, uint8_t num_sides)
215 {
216     return (((track * num_sides) + head) * last_sect) + sect - 1;
217 }
218 
219 /* Returns current position, in sectors, for given drive */
220 static int fd_sector(FDrive *drv)
221 {
222     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
223                           NUM_SIDES(drv));
224 }
225 
226 /* Returns current position, in bytes, for given drive */
227 static int fd_offset(FDrive *drv)
228 {
229     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
230     return fd_sector(drv) << BDRV_SECTOR_BITS;
231 }
232 
233 /* Seek to a new position:
234  * returns 0 if already on right track
235  * returns 1 if track changed
236  * returns 2 if track is invalid
237  * returns 3 if sector is invalid
238  * returns 4 if seek is disabled
239  */
240 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
241                    int enable_seek)
242 {
243     uint32_t sector;
244     int ret;
245 
246     if (track > drv->max_track ||
247         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
248         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
249                        head, track, sect, 1,
250                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
251                        drv->max_track, drv->last_sect);
252         return 2;
253     }
254     if (sect > drv->last_sect) {
255         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
256                        head, track, sect, 1,
257                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
258                        drv->max_track, drv->last_sect);
259         return 3;
260     }
261     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
262     ret = 0;
263     if (sector != fd_sector(drv)) {
264 #if 0
265         if (!enable_seek) {
266             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
267                            " (max=%d %02x %02x)\n",
268                            head, track, sect, 1, drv->max_track,
269                            drv->last_sect);
270             return 4;
271         }
272 #endif
273         drv->head = head;
274         if (drv->track != track) {
275             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
276                 drv->media_changed = 0;
277             }
278             ret = 1;
279         }
280         drv->track = track;
281         drv->sect = sect;
282     }
283 
284     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
285         ret = 2;
286     }
287 
288     return ret;
289 }
290 
291 /* Set drive back to track 0 */
292 static void fd_recalibrate(FDrive *drv)
293 {
294     FLOPPY_DPRINTF("recalibrate\n");
295     fd_seek(drv, 0, 0, 1, 1);
296 }
297 
298 /**
299  * Determine geometry based on inserted diskette.
300  * Will not operate on an empty drive.
301  *
302  * @return: 0 on success, -1 if the drive is empty.
303  */
304 static int pick_geometry(FDrive *drv)
305 {
306     BlockBackend *blk = drv->blk;
307     const FDFormat *parse;
308     uint64_t nb_sectors, size;
309     int i;
310     int match, size_match, type_match;
311     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
312 
313     /* We can only pick a geometry if we have a diskette. */
314     if (!drv->blk || !blk_is_inserted(drv->blk) ||
315         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
316     {
317         return -1;
318     }
319 
320     /* We need to determine the likely geometry of the inserted medium.
321      * In order of preference, we look for:
322      * (1) The same drive type and number of sectors,
323      * (2) The same diskette size and number of sectors,
324      * (3) The same drive type.
325      *
326      * In all cases, matches that occur higher in the drive table will take
327      * precedence over matches that occur later in the table.
328      */
329     blk_get_geometry(blk, &nb_sectors);
330     match = size_match = type_match = -1;
331     for (i = 0; ; i++) {
332         parse = &fd_formats[i];
333         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
334             break;
335         }
336         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
337         if (nb_sectors == size) {
338             if (magic || parse->drive == drv->drive) {
339                 /* (1) perfect match -- nb_sectors and drive type */
340                 goto out;
341             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
342                 /* (2) size match -- nb_sectors and physical medium size */
343                 match = (match == -1) ? i : match;
344             } else {
345                 /* This is suspicious -- Did the user misconfigure? */
346                 size_match = (size_match == -1) ? i : size_match;
347             }
348         } else if (type_match == -1) {
349             if ((parse->drive == drv->drive) ||
350                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
351                 /* (3) type match -- nb_sectors mismatch, but matches the type
352                  *     specified explicitly by the user, or matches the fallback
353                  *     default type when using the drive autodetect mechanism */
354                 type_match = i;
355             }
356         }
357     }
358 
359     /* No exact match found */
360     if (match == -1) {
361         if (size_match != -1) {
362             parse = &fd_formats[size_match];
363             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
364                            "but inserted medium appears to be a "
365                            "%"PRId64" sector '%s' type\n",
366                            FloppyDriveType_lookup[drv->drive],
367                            nb_sectors,
368                            FloppyDriveType_lookup[parse->drive]);
369         }
370         match = type_match;
371     }
372 
373     /* No match of any kind found -- fd_format is misconfigured, abort. */
374     if (match == -1) {
375         error_setg(&error_abort, "No candidate geometries present in table "
376                    " for floppy drive type '%s'",
377                    FloppyDriveType_lookup[drv->drive]);
378     }
379 
380     parse = &(fd_formats[match]);
381 
382  out:
383     if (parse->max_head == 0) {
384         drv->flags &= ~FDISK_DBL_SIDES;
385     } else {
386         drv->flags |= FDISK_DBL_SIDES;
387     }
388     drv->max_track = parse->max_track;
389     drv->last_sect = parse->last_sect;
390     drv->disk = parse->drive;
391     drv->media_rate = parse->rate;
392     return 0;
393 }
394 
395 static void pick_drive_type(FDrive *drv)
396 {
397     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
398         return;
399     }
400 
401     if (pick_geometry(drv) == 0) {
402         drv->drive = drv->disk;
403     } else {
404         drv->drive = get_fallback_drive_type(drv);
405     }
406 
407     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
408 }
409 
410 /* Revalidate a disk drive after a disk change */
411 static void fd_revalidate(FDrive *drv)
412 {
413     int rc;
414 
415     FLOPPY_DPRINTF("revalidate\n");
416     if (drv->blk != NULL) {
417         drv->ro = blk_is_read_only(drv->blk);
418         if (!blk_is_inserted(drv->blk)) {
419             FLOPPY_DPRINTF("No disk in drive\n");
420             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
421             fd_empty_seek_hack(drv);
422         } else if (!drv->media_validated) {
423             rc = pick_geometry(drv);
424             if (rc) {
425                 FLOPPY_DPRINTF("Could not validate floppy drive media");
426             } else {
427                 drv->media_validated = true;
428                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
429                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
430                                drv->max_track, drv->last_sect,
431                                drv->ro ? "ro" : "rw");
432             }
433         }
434     } else {
435         FLOPPY_DPRINTF("No drive connected\n");
436         drv->last_sect = 0;
437         drv->max_track = 0;
438         drv->flags &= ~FDISK_DBL_SIDES;
439         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
440         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
441     }
442 }
443 
444 /********************************************************/
445 /* Intel 82078 floppy disk controller emulation          */
446 
447 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
448 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
449 static int fdctrl_transfer_handler (void *opaque, int nchan,
450                                     int dma_pos, int dma_len);
451 static void fdctrl_raise_irq(FDCtrl *fdctrl);
452 static FDrive *get_cur_drv(FDCtrl *fdctrl);
453 
454 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
455 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
456 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
457 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
458 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
459 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
460 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
461 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
462 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
463 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
464 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
465 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
466 
467 enum {
468     FD_DIR_WRITE   = 0,
469     FD_DIR_READ    = 1,
470     FD_DIR_SCANE   = 2,
471     FD_DIR_SCANL   = 3,
472     FD_DIR_SCANH   = 4,
473     FD_DIR_VERIFY  = 5,
474 };
475 
476 enum {
477     FD_STATE_MULTI  = 0x01,	/* multi track flag */
478     FD_STATE_FORMAT = 0x02,	/* format flag */
479 };
480 
481 enum {
482     FD_REG_SRA = 0x00,
483     FD_REG_SRB = 0x01,
484     FD_REG_DOR = 0x02,
485     FD_REG_TDR = 0x03,
486     FD_REG_MSR = 0x04,
487     FD_REG_DSR = 0x04,
488     FD_REG_FIFO = 0x05,
489     FD_REG_DIR = 0x07,
490     FD_REG_CCR = 0x07,
491 };
492 
493 enum {
494     FD_CMD_READ_TRACK = 0x02,
495     FD_CMD_SPECIFY = 0x03,
496     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
497     FD_CMD_WRITE = 0x05,
498     FD_CMD_READ = 0x06,
499     FD_CMD_RECALIBRATE = 0x07,
500     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
501     FD_CMD_WRITE_DELETED = 0x09,
502     FD_CMD_READ_ID = 0x0a,
503     FD_CMD_READ_DELETED = 0x0c,
504     FD_CMD_FORMAT_TRACK = 0x0d,
505     FD_CMD_DUMPREG = 0x0e,
506     FD_CMD_SEEK = 0x0f,
507     FD_CMD_VERSION = 0x10,
508     FD_CMD_SCAN_EQUAL = 0x11,
509     FD_CMD_PERPENDICULAR_MODE = 0x12,
510     FD_CMD_CONFIGURE = 0x13,
511     FD_CMD_LOCK = 0x14,
512     FD_CMD_VERIFY = 0x16,
513     FD_CMD_POWERDOWN_MODE = 0x17,
514     FD_CMD_PART_ID = 0x18,
515     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
516     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
517     FD_CMD_SAVE = 0x2e,
518     FD_CMD_OPTION = 0x33,
519     FD_CMD_RESTORE = 0x4e,
520     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
521     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
522     FD_CMD_FORMAT_AND_WRITE = 0xcd,
523     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
524 };
525 
526 enum {
527     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
528     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
529     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
530     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
531     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
532 };
533 
534 enum {
535     FD_SR0_DS0      = 0x01,
536     FD_SR0_DS1      = 0x02,
537     FD_SR0_HEAD     = 0x04,
538     FD_SR0_EQPMT    = 0x10,
539     FD_SR0_SEEK     = 0x20,
540     FD_SR0_ABNTERM  = 0x40,
541     FD_SR0_INVCMD   = 0x80,
542     FD_SR0_RDYCHG   = 0xc0,
543 };
544 
545 enum {
546     FD_SR1_MA       = 0x01, /* Missing address mark */
547     FD_SR1_NW       = 0x02, /* Not writable */
548     FD_SR1_EC       = 0x80, /* End of cylinder */
549 };
550 
551 enum {
552     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
553     FD_SR2_SEH      = 0x08, /* Scan equal hit */
554 };
555 
556 enum {
557     FD_SRA_DIR      = 0x01,
558     FD_SRA_nWP      = 0x02,
559     FD_SRA_nINDX    = 0x04,
560     FD_SRA_HDSEL    = 0x08,
561     FD_SRA_nTRK0    = 0x10,
562     FD_SRA_STEP     = 0x20,
563     FD_SRA_nDRV2    = 0x40,
564     FD_SRA_INTPEND  = 0x80,
565 };
566 
567 enum {
568     FD_SRB_MTR0     = 0x01,
569     FD_SRB_MTR1     = 0x02,
570     FD_SRB_WGATE    = 0x04,
571     FD_SRB_RDATA    = 0x08,
572     FD_SRB_WDATA    = 0x10,
573     FD_SRB_DR0      = 0x20,
574 };
575 
576 enum {
577 #if MAX_FD == 4
578     FD_DOR_SELMASK  = 0x03,
579 #else
580     FD_DOR_SELMASK  = 0x01,
581 #endif
582     FD_DOR_nRESET   = 0x04,
583     FD_DOR_DMAEN    = 0x08,
584     FD_DOR_MOTEN0   = 0x10,
585     FD_DOR_MOTEN1   = 0x20,
586     FD_DOR_MOTEN2   = 0x40,
587     FD_DOR_MOTEN3   = 0x80,
588 };
589 
590 enum {
591 #if MAX_FD == 4
592     FD_TDR_BOOTSEL  = 0x0c,
593 #else
594     FD_TDR_BOOTSEL  = 0x04,
595 #endif
596 };
597 
598 enum {
599     FD_DSR_DRATEMASK= 0x03,
600     FD_DSR_PWRDOWN  = 0x40,
601     FD_DSR_SWRESET  = 0x80,
602 };
603 
604 enum {
605     FD_MSR_DRV0BUSY = 0x01,
606     FD_MSR_DRV1BUSY = 0x02,
607     FD_MSR_DRV2BUSY = 0x04,
608     FD_MSR_DRV3BUSY = 0x08,
609     FD_MSR_CMDBUSY  = 0x10,
610     FD_MSR_NONDMA   = 0x20,
611     FD_MSR_DIO      = 0x40,
612     FD_MSR_RQM      = 0x80,
613 };
614 
615 enum {
616     FD_DIR_DSKCHG   = 0x80,
617 };
618 
619 /*
620  * See chapter 5.0 "Controller phases" of the spec:
621  *
622  * Command phase:
623  * The host writes a command and its parameters into the FIFO. The command
624  * phase is completed when all parameters for the command have been supplied,
625  * and execution phase is entered.
626  *
627  * Execution phase:
628  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
629  * contains the payload now, otherwise it's unused. When all bytes of the
630  * required data have been transferred, the state is switched to either result
631  * phase (if the command produces status bytes) or directly back into the
632  * command phase for the next command.
633  *
634  * Result phase:
635  * The host reads out the FIFO, which contains one or more result bytes now.
636  */
637 enum {
638     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
639     FD_PHASE_RECONSTRUCT    = 0,
640 
641     FD_PHASE_COMMAND        = 1,
642     FD_PHASE_EXECUTION      = 2,
643     FD_PHASE_RESULT         = 3,
644 };
645 
646 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
647 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
648 
649 struct FDCtrl {
650     MemoryRegion iomem;
651     qemu_irq irq;
652     /* Controller state */
653     QEMUTimer *result_timer;
654     int dma_chann;
655     uint8_t phase;
656     IsaDma *dma;
657     /* Controller's identification */
658     uint8_t version;
659     /* HW */
660     uint8_t sra;
661     uint8_t srb;
662     uint8_t dor;
663     uint8_t dor_vmstate; /* only used as temp during vmstate */
664     uint8_t tdr;
665     uint8_t dsr;
666     uint8_t msr;
667     uint8_t cur_drv;
668     uint8_t status0;
669     uint8_t status1;
670     uint8_t status2;
671     /* Command FIFO */
672     uint8_t *fifo;
673     int32_t fifo_size;
674     uint32_t data_pos;
675     uint32_t data_len;
676     uint8_t data_state;
677     uint8_t data_dir;
678     uint8_t eot; /* last wanted sector */
679     /* States kept only to be returned back */
680     /* precompensation */
681     uint8_t precomp_trk;
682     uint8_t config;
683     uint8_t lock;
684     /* Power down config (also with status regB access mode */
685     uint8_t pwrd;
686     /* Floppy drives */
687     uint8_t num_floppies;
688     FDrive drives[MAX_FD];
689     int reset_sensei;
690     uint32_t check_media_rate;
691     FloppyDriveType fallback; /* type=auto failure fallback */
692     /* Timers state */
693     uint8_t timer0;
694     uint8_t timer1;
695     PortioList portio_list;
696 };
697 
698 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
699 {
700     return drv->fdctrl->fallback;
701 }
702 
703 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
704 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
705 
706 typedef struct FDCtrlSysBus {
707     /*< private >*/
708     SysBusDevice parent_obj;
709     /*< public >*/
710 
711     struct FDCtrl state;
712 } FDCtrlSysBus;
713 
714 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
715 
716 typedef struct FDCtrlISABus {
717     ISADevice parent_obj;
718 
719     uint32_t iobase;
720     uint32_t irq;
721     uint32_t dma;
722     struct FDCtrl state;
723     int32_t bootindexA;
724     int32_t bootindexB;
725 } FDCtrlISABus;
726 
727 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
728 {
729     FDCtrl *fdctrl = opaque;
730     uint32_t retval;
731 
732     reg &= 7;
733     switch (reg) {
734     case FD_REG_SRA:
735         retval = fdctrl_read_statusA(fdctrl);
736         break;
737     case FD_REG_SRB:
738         retval = fdctrl_read_statusB(fdctrl);
739         break;
740     case FD_REG_DOR:
741         retval = fdctrl_read_dor(fdctrl);
742         break;
743     case FD_REG_TDR:
744         retval = fdctrl_read_tape(fdctrl);
745         break;
746     case FD_REG_MSR:
747         retval = fdctrl_read_main_status(fdctrl);
748         break;
749     case FD_REG_FIFO:
750         retval = fdctrl_read_data(fdctrl);
751         break;
752     case FD_REG_DIR:
753         retval = fdctrl_read_dir(fdctrl);
754         break;
755     default:
756         retval = (uint32_t)(-1);
757         break;
758     }
759     FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
760 
761     return retval;
762 }
763 
764 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
765 {
766     FDCtrl *fdctrl = opaque;
767 
768     FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
769 
770     reg &= 7;
771     switch (reg) {
772     case FD_REG_DOR:
773         fdctrl_write_dor(fdctrl, value);
774         break;
775     case FD_REG_TDR:
776         fdctrl_write_tape(fdctrl, value);
777         break;
778     case FD_REG_DSR:
779         fdctrl_write_rate(fdctrl, value);
780         break;
781     case FD_REG_FIFO:
782         fdctrl_write_data(fdctrl, value);
783         break;
784     case FD_REG_CCR:
785         fdctrl_write_ccr(fdctrl, value);
786         break;
787     default:
788         break;
789     }
790 }
791 
792 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
793                                  unsigned ize)
794 {
795     return fdctrl_read(opaque, (uint32_t)reg);
796 }
797 
798 static void fdctrl_write_mem (void *opaque, hwaddr reg,
799                               uint64_t value, unsigned size)
800 {
801     fdctrl_write(opaque, (uint32_t)reg, value);
802 }
803 
804 static const MemoryRegionOps fdctrl_mem_ops = {
805     .read = fdctrl_read_mem,
806     .write = fdctrl_write_mem,
807     .endianness = DEVICE_NATIVE_ENDIAN,
808 };
809 
810 static const MemoryRegionOps fdctrl_mem_strict_ops = {
811     .read = fdctrl_read_mem,
812     .write = fdctrl_write_mem,
813     .endianness = DEVICE_NATIVE_ENDIAN,
814     .valid = {
815         .min_access_size = 1,
816         .max_access_size = 1,
817     },
818 };
819 
820 static bool fdrive_media_changed_needed(void *opaque)
821 {
822     FDrive *drive = opaque;
823 
824     return (drive->blk != NULL && drive->media_changed != 1);
825 }
826 
827 static const VMStateDescription vmstate_fdrive_media_changed = {
828     .name = "fdrive/media_changed",
829     .version_id = 1,
830     .minimum_version_id = 1,
831     .needed = fdrive_media_changed_needed,
832     .fields = (VMStateField[]) {
833         VMSTATE_UINT8(media_changed, FDrive),
834         VMSTATE_END_OF_LIST()
835     }
836 };
837 
838 static bool fdrive_media_rate_needed(void *opaque)
839 {
840     FDrive *drive = opaque;
841 
842     return drive->fdctrl->check_media_rate;
843 }
844 
845 static const VMStateDescription vmstate_fdrive_media_rate = {
846     .name = "fdrive/media_rate",
847     .version_id = 1,
848     .minimum_version_id = 1,
849     .needed = fdrive_media_rate_needed,
850     .fields = (VMStateField[]) {
851         VMSTATE_UINT8(media_rate, FDrive),
852         VMSTATE_END_OF_LIST()
853     }
854 };
855 
856 static bool fdrive_perpendicular_needed(void *opaque)
857 {
858     FDrive *drive = opaque;
859 
860     return drive->perpendicular != 0;
861 }
862 
863 static const VMStateDescription vmstate_fdrive_perpendicular = {
864     .name = "fdrive/perpendicular",
865     .version_id = 1,
866     .minimum_version_id = 1,
867     .needed = fdrive_perpendicular_needed,
868     .fields = (VMStateField[]) {
869         VMSTATE_UINT8(perpendicular, FDrive),
870         VMSTATE_END_OF_LIST()
871     }
872 };
873 
874 static int fdrive_post_load(void *opaque, int version_id)
875 {
876     fd_revalidate(opaque);
877     return 0;
878 }
879 
880 static const VMStateDescription vmstate_fdrive = {
881     .name = "fdrive",
882     .version_id = 1,
883     .minimum_version_id = 1,
884     .post_load = fdrive_post_load,
885     .fields = (VMStateField[]) {
886         VMSTATE_UINT8(head, FDrive),
887         VMSTATE_UINT8(track, FDrive),
888         VMSTATE_UINT8(sect, FDrive),
889         VMSTATE_END_OF_LIST()
890     },
891     .subsections = (const VMStateDescription*[]) {
892         &vmstate_fdrive_media_changed,
893         &vmstate_fdrive_media_rate,
894         &vmstate_fdrive_perpendicular,
895         NULL
896     }
897 };
898 
899 /*
900  * Reconstructs the phase from register values according to the logic that was
901  * implemented in qemu 2.3. This is the default value that is used if the phase
902  * subsection is not present on migration.
903  *
904  * Don't change this function to reflect newer qemu versions, it is part of
905  * the migration ABI.
906  */
907 static int reconstruct_phase(FDCtrl *fdctrl)
908 {
909     if (fdctrl->msr & FD_MSR_NONDMA) {
910         return FD_PHASE_EXECUTION;
911     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
912         /* qemu 2.3 disabled RQM only during DMA transfers */
913         return FD_PHASE_EXECUTION;
914     } else if (fdctrl->msr & FD_MSR_DIO) {
915         return FD_PHASE_RESULT;
916     } else {
917         return FD_PHASE_COMMAND;
918     }
919 }
920 
921 static void fdc_pre_save(void *opaque)
922 {
923     FDCtrl *s = opaque;
924 
925     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
926 }
927 
928 static int fdc_pre_load(void *opaque)
929 {
930     FDCtrl *s = opaque;
931     s->phase = FD_PHASE_RECONSTRUCT;
932     return 0;
933 }
934 
935 static int fdc_post_load(void *opaque, int version_id)
936 {
937     FDCtrl *s = opaque;
938 
939     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
940     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
941 
942     if (s->phase == FD_PHASE_RECONSTRUCT) {
943         s->phase = reconstruct_phase(s);
944     }
945 
946     return 0;
947 }
948 
949 static bool fdc_reset_sensei_needed(void *opaque)
950 {
951     FDCtrl *s = opaque;
952 
953     return s->reset_sensei != 0;
954 }
955 
956 static const VMStateDescription vmstate_fdc_reset_sensei = {
957     .name = "fdc/reset_sensei",
958     .version_id = 1,
959     .minimum_version_id = 1,
960     .needed = fdc_reset_sensei_needed,
961     .fields = (VMStateField[]) {
962         VMSTATE_INT32(reset_sensei, FDCtrl),
963         VMSTATE_END_OF_LIST()
964     }
965 };
966 
967 static bool fdc_result_timer_needed(void *opaque)
968 {
969     FDCtrl *s = opaque;
970 
971     return timer_pending(s->result_timer);
972 }
973 
974 static const VMStateDescription vmstate_fdc_result_timer = {
975     .name = "fdc/result_timer",
976     .version_id = 1,
977     .minimum_version_id = 1,
978     .needed = fdc_result_timer_needed,
979     .fields = (VMStateField[]) {
980         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
981         VMSTATE_END_OF_LIST()
982     }
983 };
984 
985 static bool fdc_phase_needed(void *opaque)
986 {
987     FDCtrl *fdctrl = opaque;
988 
989     return reconstruct_phase(fdctrl) != fdctrl->phase;
990 }
991 
992 static const VMStateDescription vmstate_fdc_phase = {
993     .name = "fdc/phase",
994     .version_id = 1,
995     .minimum_version_id = 1,
996     .needed = fdc_phase_needed,
997     .fields = (VMStateField[]) {
998         VMSTATE_UINT8(phase, FDCtrl),
999         VMSTATE_END_OF_LIST()
1000     }
1001 };
1002 
1003 static const VMStateDescription vmstate_fdc = {
1004     .name = "fdc",
1005     .version_id = 2,
1006     .minimum_version_id = 2,
1007     .pre_save = fdc_pre_save,
1008     .pre_load = fdc_pre_load,
1009     .post_load = fdc_post_load,
1010     .fields = (VMStateField[]) {
1011         /* Controller State */
1012         VMSTATE_UINT8(sra, FDCtrl),
1013         VMSTATE_UINT8(srb, FDCtrl),
1014         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1015         VMSTATE_UINT8(tdr, FDCtrl),
1016         VMSTATE_UINT8(dsr, FDCtrl),
1017         VMSTATE_UINT8(msr, FDCtrl),
1018         VMSTATE_UINT8(status0, FDCtrl),
1019         VMSTATE_UINT8(status1, FDCtrl),
1020         VMSTATE_UINT8(status2, FDCtrl),
1021         /* Command FIFO */
1022         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1023                              uint8_t),
1024         VMSTATE_UINT32(data_pos, FDCtrl),
1025         VMSTATE_UINT32(data_len, FDCtrl),
1026         VMSTATE_UINT8(data_state, FDCtrl),
1027         VMSTATE_UINT8(data_dir, FDCtrl),
1028         VMSTATE_UINT8(eot, FDCtrl),
1029         /* States kept only to be returned back */
1030         VMSTATE_UINT8(timer0, FDCtrl),
1031         VMSTATE_UINT8(timer1, FDCtrl),
1032         VMSTATE_UINT8(precomp_trk, FDCtrl),
1033         VMSTATE_UINT8(config, FDCtrl),
1034         VMSTATE_UINT8(lock, FDCtrl),
1035         VMSTATE_UINT8(pwrd, FDCtrl),
1036         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
1037         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1038                              vmstate_fdrive, FDrive),
1039         VMSTATE_END_OF_LIST()
1040     },
1041     .subsections = (const VMStateDescription*[]) {
1042         &vmstate_fdc_reset_sensei,
1043         &vmstate_fdc_result_timer,
1044         &vmstate_fdc_phase,
1045         NULL
1046     }
1047 };
1048 
1049 static void fdctrl_external_reset_sysbus(DeviceState *d)
1050 {
1051     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1052     FDCtrl *s = &sys->state;
1053 
1054     fdctrl_reset(s, 0);
1055 }
1056 
1057 static void fdctrl_external_reset_isa(DeviceState *d)
1058 {
1059     FDCtrlISABus *isa = ISA_FDC(d);
1060     FDCtrl *s = &isa->state;
1061 
1062     fdctrl_reset(s, 0);
1063 }
1064 
1065 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1066 {
1067     //FDCtrl *s = opaque;
1068 
1069     if (level) {
1070         // XXX
1071         FLOPPY_DPRINTF("TC pulsed\n");
1072     }
1073 }
1074 
1075 /* Change IRQ state */
1076 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1077 {
1078     fdctrl->status0 = 0;
1079     if (!(fdctrl->sra & FD_SRA_INTPEND))
1080         return;
1081     FLOPPY_DPRINTF("Reset interrupt\n");
1082     qemu_set_irq(fdctrl->irq, 0);
1083     fdctrl->sra &= ~FD_SRA_INTPEND;
1084 }
1085 
1086 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1087 {
1088     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1089         qemu_set_irq(fdctrl->irq, 1);
1090         fdctrl->sra |= FD_SRA_INTPEND;
1091     }
1092 
1093     fdctrl->reset_sensei = 0;
1094     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1095 }
1096 
1097 /* Reset controller */
1098 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1099 {
1100     int i;
1101 
1102     FLOPPY_DPRINTF("reset controller\n");
1103     fdctrl_reset_irq(fdctrl);
1104     /* Initialise controller */
1105     fdctrl->sra = 0;
1106     fdctrl->srb = 0xc0;
1107     if (!fdctrl->drives[1].blk) {
1108         fdctrl->sra |= FD_SRA_nDRV2;
1109     }
1110     fdctrl->cur_drv = 0;
1111     fdctrl->dor = FD_DOR_nRESET;
1112     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1113     fdctrl->msr = FD_MSR_RQM;
1114     fdctrl->reset_sensei = 0;
1115     timer_del(fdctrl->result_timer);
1116     /* FIFO state */
1117     fdctrl->data_pos = 0;
1118     fdctrl->data_len = 0;
1119     fdctrl->data_state = 0;
1120     fdctrl->data_dir = FD_DIR_WRITE;
1121     for (i = 0; i < MAX_FD; i++)
1122         fd_recalibrate(&fdctrl->drives[i]);
1123     fdctrl_to_command_phase(fdctrl);
1124     if (do_irq) {
1125         fdctrl->status0 |= FD_SR0_RDYCHG;
1126         fdctrl_raise_irq(fdctrl);
1127         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1128     }
1129 }
1130 
1131 static inline FDrive *drv0(FDCtrl *fdctrl)
1132 {
1133     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1134 }
1135 
1136 static inline FDrive *drv1(FDCtrl *fdctrl)
1137 {
1138     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1139         return &fdctrl->drives[1];
1140     else
1141         return &fdctrl->drives[0];
1142 }
1143 
1144 #if MAX_FD == 4
1145 static inline FDrive *drv2(FDCtrl *fdctrl)
1146 {
1147     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1148         return &fdctrl->drives[2];
1149     else
1150         return &fdctrl->drives[1];
1151 }
1152 
1153 static inline FDrive *drv3(FDCtrl *fdctrl)
1154 {
1155     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1156         return &fdctrl->drives[3];
1157     else
1158         return &fdctrl->drives[2];
1159 }
1160 #endif
1161 
1162 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1163 {
1164     switch (fdctrl->cur_drv) {
1165         case 0: return drv0(fdctrl);
1166         case 1: return drv1(fdctrl);
1167 #if MAX_FD == 4
1168         case 2: return drv2(fdctrl);
1169         case 3: return drv3(fdctrl);
1170 #endif
1171         default: return NULL;
1172     }
1173 }
1174 
1175 /* Status A register : 0x00 (read-only) */
1176 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1177 {
1178     uint32_t retval = fdctrl->sra;
1179 
1180     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1181 
1182     return retval;
1183 }
1184 
1185 /* Status B register : 0x01 (read-only) */
1186 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1187 {
1188     uint32_t retval = fdctrl->srb;
1189 
1190     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1191 
1192     return retval;
1193 }
1194 
1195 /* Digital output register : 0x02 */
1196 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1197 {
1198     uint32_t retval = fdctrl->dor;
1199 
1200     /* Selected drive */
1201     retval |= fdctrl->cur_drv;
1202     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1203 
1204     return retval;
1205 }
1206 
1207 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1208 {
1209     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1210 
1211     /* Motors */
1212     if (value & FD_DOR_MOTEN0)
1213         fdctrl->srb |= FD_SRB_MTR0;
1214     else
1215         fdctrl->srb &= ~FD_SRB_MTR0;
1216     if (value & FD_DOR_MOTEN1)
1217         fdctrl->srb |= FD_SRB_MTR1;
1218     else
1219         fdctrl->srb &= ~FD_SRB_MTR1;
1220 
1221     /* Drive */
1222     if (value & 1)
1223         fdctrl->srb |= FD_SRB_DR0;
1224     else
1225         fdctrl->srb &= ~FD_SRB_DR0;
1226 
1227     /* Reset */
1228     if (!(value & FD_DOR_nRESET)) {
1229         if (fdctrl->dor & FD_DOR_nRESET) {
1230             FLOPPY_DPRINTF("controller enter RESET state\n");
1231         }
1232     } else {
1233         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1234             FLOPPY_DPRINTF("controller out of RESET state\n");
1235             fdctrl_reset(fdctrl, 1);
1236             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1237         }
1238     }
1239     /* Selected drive */
1240     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1241 
1242     fdctrl->dor = value;
1243 }
1244 
1245 /* Tape drive register : 0x03 */
1246 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1247 {
1248     uint32_t retval = fdctrl->tdr;
1249 
1250     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1251 
1252     return retval;
1253 }
1254 
1255 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1256 {
1257     /* Reset mode */
1258     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1259         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1260         return;
1261     }
1262     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1263     /* Disk boot selection indicator */
1264     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1265     /* Tape indicators: never allow */
1266 }
1267 
1268 /* Main status register : 0x04 (read) */
1269 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1270 {
1271     uint32_t retval = fdctrl->msr;
1272 
1273     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1274     fdctrl->dor |= FD_DOR_nRESET;
1275 
1276     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1277 
1278     return retval;
1279 }
1280 
1281 /* Data select rate register : 0x04 (write) */
1282 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1283 {
1284     /* Reset mode */
1285     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1286         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1287         return;
1288     }
1289     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1290     /* Reset: autoclear */
1291     if (value & FD_DSR_SWRESET) {
1292         fdctrl->dor &= ~FD_DOR_nRESET;
1293         fdctrl_reset(fdctrl, 1);
1294         fdctrl->dor |= FD_DOR_nRESET;
1295     }
1296     if (value & FD_DSR_PWRDOWN) {
1297         fdctrl_reset(fdctrl, 1);
1298     }
1299     fdctrl->dsr = value;
1300 }
1301 
1302 /* Configuration control register: 0x07 (write) */
1303 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1304 {
1305     /* Reset mode */
1306     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1307         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1308         return;
1309     }
1310     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1311 
1312     /* Only the rate selection bits used in AT mode, and we
1313      * store those in the DSR.
1314      */
1315     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1316                   (value & FD_DSR_DRATEMASK);
1317 }
1318 
1319 static int fdctrl_media_changed(FDrive *drv)
1320 {
1321     return drv->media_changed;
1322 }
1323 
1324 /* Digital input register : 0x07 (read-only) */
1325 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1326 {
1327     uint32_t retval = 0;
1328 
1329     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1330         retval |= FD_DIR_DSKCHG;
1331     }
1332     if (retval != 0) {
1333         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1334     }
1335 
1336     return retval;
1337 }
1338 
1339 /* Clear the FIFO and update the state for receiving the next command */
1340 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1341 {
1342     fdctrl->phase = FD_PHASE_COMMAND;
1343     fdctrl->data_dir = FD_DIR_WRITE;
1344     fdctrl->data_pos = 0;
1345     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1346     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1347     fdctrl->msr |= FD_MSR_RQM;
1348 }
1349 
1350 /* Update the state to allow the guest to read out the command status.
1351  * @fifo_len is the number of result bytes to be read out. */
1352 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1353 {
1354     fdctrl->phase = FD_PHASE_RESULT;
1355     fdctrl->data_dir = FD_DIR_READ;
1356     fdctrl->data_len = fifo_len;
1357     fdctrl->data_pos = 0;
1358     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1359 }
1360 
1361 /* Set an error: unimplemented/unknown command */
1362 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1363 {
1364     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1365                   fdctrl->fifo[0]);
1366     fdctrl->fifo[0] = FD_SR0_INVCMD;
1367     fdctrl_to_result_phase(fdctrl, 1);
1368 }
1369 
1370 /* Seek to next sector
1371  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1372  * otherwise returns 1
1373  */
1374 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1375 {
1376     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1377                    cur_drv->head, cur_drv->track, cur_drv->sect,
1378                    fd_sector(cur_drv));
1379     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1380        error in fact */
1381     uint8_t new_head = cur_drv->head;
1382     uint8_t new_track = cur_drv->track;
1383     uint8_t new_sect = cur_drv->sect;
1384 
1385     int ret = 1;
1386 
1387     if (new_sect >= cur_drv->last_sect ||
1388         new_sect == fdctrl->eot) {
1389         new_sect = 1;
1390         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1391             if (new_head == 0 &&
1392                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1393                 new_head = 1;
1394             } else {
1395                 new_head = 0;
1396                 new_track++;
1397                 fdctrl->status0 |= FD_SR0_SEEK;
1398                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1399                     ret = 0;
1400                 }
1401             }
1402         } else {
1403             fdctrl->status0 |= FD_SR0_SEEK;
1404             new_track++;
1405             ret = 0;
1406         }
1407         if (ret == 1) {
1408             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1409                     new_head, new_track, new_sect, fd_sector(cur_drv));
1410         }
1411     } else {
1412         new_sect++;
1413     }
1414     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1415     return ret;
1416 }
1417 
1418 /* Callback for transfer end (stop or abort) */
1419 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1420                                  uint8_t status1, uint8_t status2)
1421 {
1422     FDrive *cur_drv;
1423     cur_drv = get_cur_drv(fdctrl);
1424 
1425     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1426     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1427     if (cur_drv->head) {
1428         fdctrl->status0 |= FD_SR0_HEAD;
1429     }
1430     fdctrl->status0 |= status0;
1431 
1432     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1433                    status0, status1, status2, fdctrl->status0);
1434     fdctrl->fifo[0] = fdctrl->status0;
1435     fdctrl->fifo[1] = status1;
1436     fdctrl->fifo[2] = status2;
1437     fdctrl->fifo[3] = cur_drv->track;
1438     fdctrl->fifo[4] = cur_drv->head;
1439     fdctrl->fifo[5] = cur_drv->sect;
1440     fdctrl->fifo[6] = FD_SECTOR_SC;
1441     fdctrl->data_dir = FD_DIR_READ;
1442     if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1443         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1444         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1445     }
1446     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1447     fdctrl->msr &= ~FD_MSR_NONDMA;
1448 
1449     fdctrl_to_result_phase(fdctrl, 7);
1450     fdctrl_raise_irq(fdctrl);
1451 }
1452 
1453 /* Prepare a data transfer (either DMA or FIFO) */
1454 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1455 {
1456     FDrive *cur_drv;
1457     uint8_t kh, kt, ks;
1458 
1459     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1460     cur_drv = get_cur_drv(fdctrl);
1461     kt = fdctrl->fifo[2];
1462     kh = fdctrl->fifo[3];
1463     ks = fdctrl->fifo[4];
1464     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1465                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1466                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1467                                   NUM_SIDES(cur_drv)));
1468     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1469     case 2:
1470         /* sect too big */
1471         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1472         fdctrl->fifo[3] = kt;
1473         fdctrl->fifo[4] = kh;
1474         fdctrl->fifo[5] = ks;
1475         return;
1476     case 3:
1477         /* track too big */
1478         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1479         fdctrl->fifo[3] = kt;
1480         fdctrl->fifo[4] = kh;
1481         fdctrl->fifo[5] = ks;
1482         return;
1483     case 4:
1484         /* No seek enabled */
1485         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1486         fdctrl->fifo[3] = kt;
1487         fdctrl->fifo[4] = kh;
1488         fdctrl->fifo[5] = ks;
1489         return;
1490     case 1:
1491         fdctrl->status0 |= FD_SR0_SEEK;
1492         break;
1493     default:
1494         break;
1495     }
1496 
1497     /* Check the data rate. If the programmed data rate does not match
1498      * the currently inserted medium, the operation has to fail. */
1499     if (fdctrl->check_media_rate &&
1500         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1501         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1502                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1503         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1504         fdctrl->fifo[3] = kt;
1505         fdctrl->fifo[4] = kh;
1506         fdctrl->fifo[5] = ks;
1507         return;
1508     }
1509 
1510     /* Set the FIFO state */
1511     fdctrl->data_dir = direction;
1512     fdctrl->data_pos = 0;
1513     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1514     if (fdctrl->fifo[0] & 0x80)
1515         fdctrl->data_state |= FD_STATE_MULTI;
1516     else
1517         fdctrl->data_state &= ~FD_STATE_MULTI;
1518     if (fdctrl->fifo[5] == 0) {
1519         fdctrl->data_len = fdctrl->fifo[8];
1520     } else {
1521         int tmp;
1522         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1523         tmp = (fdctrl->fifo[6] - ks + 1);
1524         if (fdctrl->fifo[0] & 0x80)
1525             tmp += fdctrl->fifo[6];
1526         fdctrl->data_len *= tmp;
1527     }
1528     fdctrl->eot = fdctrl->fifo[6];
1529     if (fdctrl->dor & FD_DOR_DMAEN) {
1530         IsaDmaTransferMode dma_mode;
1531         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1532         bool dma_mode_ok;
1533         /* DMA transfer are enabled. Check if DMA channel is well programmed */
1534         dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1535         FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1536                        dma_mode, direction,
1537                        (128 << fdctrl->fifo[5]) *
1538                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1539         switch (direction) {
1540         case FD_DIR_SCANE:
1541         case FD_DIR_SCANL:
1542         case FD_DIR_SCANH:
1543             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1544             break;
1545         case FD_DIR_WRITE:
1546             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1547             break;
1548         case FD_DIR_READ:
1549             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1550             break;
1551         case FD_DIR_VERIFY:
1552             dma_mode_ok = true;
1553             break;
1554         default:
1555             dma_mode_ok = false;
1556             break;
1557         }
1558         if (dma_mode_ok) {
1559             /* No access is allowed until DMA transfer has completed */
1560             fdctrl->msr &= ~FD_MSR_RQM;
1561             if (direction != FD_DIR_VERIFY) {
1562                 /* Now, we just have to wait for the DMA controller to
1563                  * recall us...
1564                  */
1565                 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1566                 k->schedule(fdctrl->dma);
1567             } else {
1568                 /* Start transfer */
1569                 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1570                                         fdctrl->data_len);
1571             }
1572             return;
1573         } else {
1574             FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1575                            direction);
1576         }
1577     }
1578     FLOPPY_DPRINTF("start non-DMA transfer\n");
1579     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1580     if (direction != FD_DIR_WRITE)
1581         fdctrl->msr |= FD_MSR_DIO;
1582     /* IO based transfer: calculate len */
1583     fdctrl_raise_irq(fdctrl);
1584 }
1585 
1586 /* Prepare a transfer of deleted data */
1587 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1588 {
1589     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1590 
1591     /* We don't handle deleted data,
1592      * so we don't return *ANYTHING*
1593      */
1594     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1595 }
1596 
1597 /* handlers for DMA transfers */
1598 static int fdctrl_transfer_handler (void *opaque, int nchan,
1599                                     int dma_pos, int dma_len)
1600 {
1601     FDCtrl *fdctrl;
1602     FDrive *cur_drv;
1603     int len, start_pos, rel_pos;
1604     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1605     IsaDmaClass *k;
1606 
1607     fdctrl = opaque;
1608     if (fdctrl->msr & FD_MSR_RQM) {
1609         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1610         return 0;
1611     }
1612     k = ISADMA_GET_CLASS(fdctrl->dma);
1613     cur_drv = get_cur_drv(fdctrl);
1614     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1615         fdctrl->data_dir == FD_DIR_SCANH)
1616         status2 = FD_SR2_SNS;
1617     if (dma_len > fdctrl->data_len)
1618         dma_len = fdctrl->data_len;
1619     if (cur_drv->blk == NULL) {
1620         if (fdctrl->data_dir == FD_DIR_WRITE)
1621             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1622         else
1623             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1624         len = 0;
1625         goto transfer_error;
1626     }
1627     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1628     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1629         len = dma_len - fdctrl->data_pos;
1630         if (len + rel_pos > FD_SECTOR_LEN)
1631             len = FD_SECTOR_LEN - rel_pos;
1632         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1633                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1634                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1635                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1636                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1637         if (fdctrl->data_dir != FD_DIR_WRITE ||
1638             len < FD_SECTOR_LEN || rel_pos != 0) {
1639             /* READ & SCAN commands and realign to a sector for WRITE */
1640             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1641                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1642                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1643                                fd_sector(cur_drv));
1644                 /* Sure, image size is too small... */
1645                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1646             }
1647         }
1648         switch (fdctrl->data_dir) {
1649         case FD_DIR_READ:
1650             /* READ commands */
1651             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1652                             fdctrl->data_pos, len);
1653             break;
1654         case FD_DIR_WRITE:
1655             /* WRITE commands */
1656             if (cur_drv->ro) {
1657                 /* Handle readonly medium early, no need to do DMA, touch the
1658                  * LED or attempt any writes. A real floppy doesn't attempt
1659                  * to write to readonly media either. */
1660                 fdctrl_stop_transfer(fdctrl,
1661                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1662                                      0x00);
1663                 goto transfer_error;
1664             }
1665 
1666             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1667                            fdctrl->data_pos, len);
1668             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1669                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1670                 FLOPPY_DPRINTF("error writing sector %d\n",
1671                                fd_sector(cur_drv));
1672                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1673                 goto transfer_error;
1674             }
1675             break;
1676         case FD_DIR_VERIFY:
1677             /* VERIFY commands */
1678             break;
1679         default:
1680             /* SCAN commands */
1681             {
1682                 uint8_t tmpbuf[FD_SECTOR_LEN];
1683                 int ret;
1684                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1685                                len);
1686                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1687                 if (ret == 0) {
1688                     status2 = FD_SR2_SEH;
1689                     goto end_transfer;
1690                 }
1691                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1692                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1693                     status2 = 0x00;
1694                     goto end_transfer;
1695                 }
1696             }
1697             break;
1698         }
1699         fdctrl->data_pos += len;
1700         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1701         if (rel_pos == 0) {
1702             /* Seek to next sector */
1703             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1704                 break;
1705         }
1706     }
1707  end_transfer:
1708     len = fdctrl->data_pos - start_pos;
1709     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1710                    fdctrl->data_pos, len, fdctrl->data_len);
1711     if (fdctrl->data_dir == FD_DIR_SCANE ||
1712         fdctrl->data_dir == FD_DIR_SCANL ||
1713         fdctrl->data_dir == FD_DIR_SCANH)
1714         status2 = FD_SR2_SEH;
1715     fdctrl->data_len -= len;
1716     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1717  transfer_error:
1718 
1719     return len;
1720 }
1721 
1722 /* Data register : 0x05 */
1723 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1724 {
1725     FDrive *cur_drv;
1726     uint32_t retval = 0;
1727     uint32_t pos;
1728 
1729     cur_drv = get_cur_drv(fdctrl);
1730     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1731     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1732         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1733         return 0;
1734     }
1735 
1736     /* If data_len spans multiple sectors, the current position in the FIFO
1737      * wraps around while fdctrl->data_pos is the real position in the whole
1738      * request. */
1739     pos = fdctrl->data_pos;
1740     pos %= FD_SECTOR_LEN;
1741 
1742     switch (fdctrl->phase) {
1743     case FD_PHASE_EXECUTION:
1744         assert(fdctrl->msr & FD_MSR_NONDMA);
1745         if (pos == 0) {
1746             if (fdctrl->data_pos != 0)
1747                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1748                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1749                                    fd_sector(cur_drv));
1750                     return 0;
1751                 }
1752             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1753                           BDRV_SECTOR_SIZE)
1754                 < 0) {
1755                 FLOPPY_DPRINTF("error getting sector %d\n",
1756                                fd_sector(cur_drv));
1757                 /* Sure, image size is too small... */
1758                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1759             }
1760         }
1761 
1762         if (++fdctrl->data_pos == fdctrl->data_len) {
1763             fdctrl->msr &= ~FD_MSR_RQM;
1764             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1765         }
1766         break;
1767 
1768     case FD_PHASE_RESULT:
1769         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1770         if (++fdctrl->data_pos == fdctrl->data_len) {
1771             fdctrl->msr &= ~FD_MSR_RQM;
1772             fdctrl_to_command_phase(fdctrl);
1773             fdctrl_reset_irq(fdctrl);
1774         }
1775         break;
1776 
1777     case FD_PHASE_COMMAND:
1778     default:
1779         abort();
1780     }
1781 
1782     retval = fdctrl->fifo[pos];
1783     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1784 
1785     return retval;
1786 }
1787 
1788 static void fdctrl_format_sector(FDCtrl *fdctrl)
1789 {
1790     FDrive *cur_drv;
1791     uint8_t kh, kt, ks;
1792 
1793     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1794     cur_drv = get_cur_drv(fdctrl);
1795     kt = fdctrl->fifo[6];
1796     kh = fdctrl->fifo[7];
1797     ks = fdctrl->fifo[8];
1798     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1799                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1800                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1801                                   NUM_SIDES(cur_drv)));
1802     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1803     case 2:
1804         /* sect too big */
1805         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1806         fdctrl->fifo[3] = kt;
1807         fdctrl->fifo[4] = kh;
1808         fdctrl->fifo[5] = ks;
1809         return;
1810     case 3:
1811         /* track too big */
1812         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1813         fdctrl->fifo[3] = kt;
1814         fdctrl->fifo[4] = kh;
1815         fdctrl->fifo[5] = ks;
1816         return;
1817     case 4:
1818         /* No seek enabled */
1819         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1820         fdctrl->fifo[3] = kt;
1821         fdctrl->fifo[4] = kh;
1822         fdctrl->fifo[5] = ks;
1823         return;
1824     case 1:
1825         fdctrl->status0 |= FD_SR0_SEEK;
1826         break;
1827     default:
1828         break;
1829     }
1830     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1831     if (cur_drv->blk == NULL ||
1832         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1833                    BDRV_SECTOR_SIZE, 0) < 0) {
1834         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1835         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1836     } else {
1837         if (cur_drv->sect == cur_drv->last_sect) {
1838             fdctrl->data_state &= ~FD_STATE_FORMAT;
1839             /* Last sector done */
1840             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1841         } else {
1842             /* More to do */
1843             fdctrl->data_pos = 0;
1844             fdctrl->data_len = 4;
1845         }
1846     }
1847 }
1848 
1849 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1850 {
1851     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1852     fdctrl->fifo[0] = fdctrl->lock << 4;
1853     fdctrl_to_result_phase(fdctrl, 1);
1854 }
1855 
1856 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1857 {
1858     FDrive *cur_drv = get_cur_drv(fdctrl);
1859 
1860     /* Drives position */
1861     fdctrl->fifo[0] = drv0(fdctrl)->track;
1862     fdctrl->fifo[1] = drv1(fdctrl)->track;
1863 #if MAX_FD == 4
1864     fdctrl->fifo[2] = drv2(fdctrl)->track;
1865     fdctrl->fifo[3] = drv3(fdctrl)->track;
1866 #else
1867     fdctrl->fifo[2] = 0;
1868     fdctrl->fifo[3] = 0;
1869 #endif
1870     /* timers */
1871     fdctrl->fifo[4] = fdctrl->timer0;
1872     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1873     fdctrl->fifo[6] = cur_drv->last_sect;
1874     fdctrl->fifo[7] = (fdctrl->lock << 7) |
1875         (cur_drv->perpendicular << 2);
1876     fdctrl->fifo[8] = fdctrl->config;
1877     fdctrl->fifo[9] = fdctrl->precomp_trk;
1878     fdctrl_to_result_phase(fdctrl, 10);
1879 }
1880 
1881 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1882 {
1883     /* Controller's version */
1884     fdctrl->fifo[0] = fdctrl->version;
1885     fdctrl_to_result_phase(fdctrl, 1);
1886 }
1887 
1888 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1889 {
1890     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1891     fdctrl_to_result_phase(fdctrl, 1);
1892 }
1893 
1894 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1895 {
1896     FDrive *cur_drv = get_cur_drv(fdctrl);
1897 
1898     /* Drives position */
1899     drv0(fdctrl)->track = fdctrl->fifo[3];
1900     drv1(fdctrl)->track = fdctrl->fifo[4];
1901 #if MAX_FD == 4
1902     drv2(fdctrl)->track = fdctrl->fifo[5];
1903     drv3(fdctrl)->track = fdctrl->fifo[6];
1904 #endif
1905     /* timers */
1906     fdctrl->timer0 = fdctrl->fifo[7];
1907     fdctrl->timer1 = fdctrl->fifo[8];
1908     cur_drv->last_sect = fdctrl->fifo[9];
1909     fdctrl->lock = fdctrl->fifo[10] >> 7;
1910     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1911     fdctrl->config = fdctrl->fifo[11];
1912     fdctrl->precomp_trk = fdctrl->fifo[12];
1913     fdctrl->pwrd = fdctrl->fifo[13];
1914     fdctrl_to_command_phase(fdctrl);
1915 }
1916 
1917 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1918 {
1919     FDrive *cur_drv = get_cur_drv(fdctrl);
1920 
1921     fdctrl->fifo[0] = 0;
1922     fdctrl->fifo[1] = 0;
1923     /* Drives position */
1924     fdctrl->fifo[2] = drv0(fdctrl)->track;
1925     fdctrl->fifo[3] = drv1(fdctrl)->track;
1926 #if MAX_FD == 4
1927     fdctrl->fifo[4] = drv2(fdctrl)->track;
1928     fdctrl->fifo[5] = drv3(fdctrl)->track;
1929 #else
1930     fdctrl->fifo[4] = 0;
1931     fdctrl->fifo[5] = 0;
1932 #endif
1933     /* timers */
1934     fdctrl->fifo[6] = fdctrl->timer0;
1935     fdctrl->fifo[7] = fdctrl->timer1;
1936     fdctrl->fifo[8] = cur_drv->last_sect;
1937     fdctrl->fifo[9] = (fdctrl->lock << 7) |
1938         (cur_drv->perpendicular << 2);
1939     fdctrl->fifo[10] = fdctrl->config;
1940     fdctrl->fifo[11] = fdctrl->precomp_trk;
1941     fdctrl->fifo[12] = fdctrl->pwrd;
1942     fdctrl->fifo[13] = 0;
1943     fdctrl->fifo[14] = 0;
1944     fdctrl_to_result_phase(fdctrl, 15);
1945 }
1946 
1947 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1948 {
1949     FDrive *cur_drv = get_cur_drv(fdctrl);
1950 
1951     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1952     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1953              (NANOSECONDS_PER_SECOND / 50));
1954 }
1955 
1956 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1957 {
1958     FDrive *cur_drv;
1959 
1960     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1961     cur_drv = get_cur_drv(fdctrl);
1962     fdctrl->data_state |= FD_STATE_FORMAT;
1963     if (fdctrl->fifo[0] & 0x80)
1964         fdctrl->data_state |= FD_STATE_MULTI;
1965     else
1966         fdctrl->data_state &= ~FD_STATE_MULTI;
1967     cur_drv->bps =
1968         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1969 #if 0
1970     cur_drv->last_sect =
1971         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1972         fdctrl->fifo[3] / 2;
1973 #else
1974     cur_drv->last_sect = fdctrl->fifo[3];
1975 #endif
1976     /* TODO: implement format using DMA expected by the Bochs BIOS
1977      * and Linux fdformat (read 3 bytes per sector via DMA and fill
1978      * the sector with the specified fill byte
1979      */
1980     fdctrl->data_state &= ~FD_STATE_FORMAT;
1981     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1982 }
1983 
1984 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1985 {
1986     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1987     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1988     if (fdctrl->fifo[2] & 1)
1989         fdctrl->dor &= ~FD_DOR_DMAEN;
1990     else
1991         fdctrl->dor |= FD_DOR_DMAEN;
1992     /* No result back */
1993     fdctrl_to_command_phase(fdctrl);
1994 }
1995 
1996 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1997 {
1998     FDrive *cur_drv;
1999 
2000     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2001     cur_drv = get_cur_drv(fdctrl);
2002     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2003     /* 1 Byte status back */
2004     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2005         (cur_drv->track == 0 ? 0x10 : 0x00) |
2006         (cur_drv->head << 2) |
2007         GET_CUR_DRV(fdctrl) |
2008         0x28;
2009     fdctrl_to_result_phase(fdctrl, 1);
2010 }
2011 
2012 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2013 {
2014     FDrive *cur_drv;
2015 
2016     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2017     cur_drv = get_cur_drv(fdctrl);
2018     fd_recalibrate(cur_drv);
2019     fdctrl_to_command_phase(fdctrl);
2020     /* Raise Interrupt */
2021     fdctrl->status0 |= FD_SR0_SEEK;
2022     fdctrl_raise_irq(fdctrl);
2023 }
2024 
2025 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2026 {
2027     FDrive *cur_drv = get_cur_drv(fdctrl);
2028 
2029     if (fdctrl->reset_sensei > 0) {
2030         fdctrl->fifo[0] =
2031             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2032         fdctrl->reset_sensei--;
2033     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2034         fdctrl->fifo[0] = FD_SR0_INVCMD;
2035         fdctrl_to_result_phase(fdctrl, 1);
2036         return;
2037     } else {
2038         fdctrl->fifo[0] =
2039                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2040                 | GET_CUR_DRV(fdctrl);
2041     }
2042 
2043     fdctrl->fifo[1] = cur_drv->track;
2044     fdctrl_to_result_phase(fdctrl, 2);
2045     fdctrl_reset_irq(fdctrl);
2046     fdctrl->status0 = FD_SR0_RDYCHG;
2047 }
2048 
2049 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2050 {
2051     FDrive *cur_drv;
2052 
2053     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2054     cur_drv = get_cur_drv(fdctrl);
2055     fdctrl_to_command_phase(fdctrl);
2056     /* The seek command just sends step pulses to the drive and doesn't care if
2057      * there is a medium inserted of if it's banging the head against the drive.
2058      */
2059     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2060     /* Raise Interrupt */
2061     fdctrl->status0 |= FD_SR0_SEEK;
2062     fdctrl_raise_irq(fdctrl);
2063 }
2064 
2065 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2066 {
2067     FDrive *cur_drv = get_cur_drv(fdctrl);
2068 
2069     if (fdctrl->fifo[1] & 0x80)
2070         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2071     /* No result back */
2072     fdctrl_to_command_phase(fdctrl);
2073 }
2074 
2075 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2076 {
2077     fdctrl->config = fdctrl->fifo[2];
2078     fdctrl->precomp_trk =  fdctrl->fifo[3];
2079     /* No result back */
2080     fdctrl_to_command_phase(fdctrl);
2081 }
2082 
2083 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2084 {
2085     fdctrl->pwrd = fdctrl->fifo[1];
2086     fdctrl->fifo[0] = fdctrl->fifo[1];
2087     fdctrl_to_result_phase(fdctrl, 1);
2088 }
2089 
2090 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2091 {
2092     /* No result back */
2093     fdctrl_to_command_phase(fdctrl);
2094 }
2095 
2096 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2097 {
2098     FDrive *cur_drv = get_cur_drv(fdctrl);
2099     uint32_t pos;
2100 
2101     pos = fdctrl->data_pos - 1;
2102     pos %= FD_SECTOR_LEN;
2103     if (fdctrl->fifo[pos] & 0x80) {
2104         /* Command parameters done */
2105         if (fdctrl->fifo[pos] & 0x40) {
2106             fdctrl->fifo[0] = fdctrl->fifo[1];
2107             fdctrl->fifo[2] = 0;
2108             fdctrl->fifo[3] = 0;
2109             fdctrl_to_result_phase(fdctrl, 4);
2110         } else {
2111             fdctrl_to_command_phase(fdctrl);
2112         }
2113     } else if (fdctrl->data_len > 7) {
2114         /* ERROR */
2115         fdctrl->fifo[0] = 0x80 |
2116             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2117         fdctrl_to_result_phase(fdctrl, 1);
2118     }
2119 }
2120 
2121 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2122 {
2123     FDrive *cur_drv;
2124 
2125     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2126     cur_drv = get_cur_drv(fdctrl);
2127     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2128         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2129                 cur_drv->sect, 1);
2130     } else {
2131         fd_seek(cur_drv, cur_drv->head,
2132                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2133     }
2134     fdctrl_to_command_phase(fdctrl);
2135     /* Raise Interrupt */
2136     fdctrl->status0 |= FD_SR0_SEEK;
2137     fdctrl_raise_irq(fdctrl);
2138 }
2139 
2140 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2141 {
2142     FDrive *cur_drv;
2143 
2144     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2145     cur_drv = get_cur_drv(fdctrl);
2146     if (fdctrl->fifo[2] > cur_drv->track) {
2147         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2148     } else {
2149         fd_seek(cur_drv, cur_drv->head,
2150                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2151     }
2152     fdctrl_to_command_phase(fdctrl);
2153     /* Raise Interrupt */
2154     fdctrl->status0 |= FD_SR0_SEEK;
2155     fdctrl_raise_irq(fdctrl);
2156 }
2157 
2158 /*
2159  * Handlers for the execution phase of each command
2160  */
2161 typedef struct FDCtrlCommand {
2162     uint8_t value;
2163     uint8_t mask;
2164     const char* name;
2165     int parameters;
2166     void (*handler)(FDCtrl *fdctrl, int direction);
2167     int direction;
2168 } FDCtrlCommand;
2169 
2170 static const FDCtrlCommand handlers[] = {
2171     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2172     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2173     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2174     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2175     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2176     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2177     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2178     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2179     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2180     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2181     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2182     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2183     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2184     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2185     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2186     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2187     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2188     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2189     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2190     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2191     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2192     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2193     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2194     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2195     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2196     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2197     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2198     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2199     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2200     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2201     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2202     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2203 };
2204 /* Associate command to an index in the 'handlers' array */
2205 static uint8_t command_to_handler[256];
2206 
2207 static const FDCtrlCommand *get_command(uint8_t cmd)
2208 {
2209     int idx;
2210 
2211     idx = command_to_handler[cmd];
2212     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2213     return &handlers[idx];
2214 }
2215 
2216 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2217 {
2218     FDrive *cur_drv;
2219     const FDCtrlCommand *cmd;
2220     uint32_t pos;
2221 
2222     /* Reset mode */
2223     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2224         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2225         return;
2226     }
2227     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2228         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2229         return;
2230     }
2231     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2232 
2233     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2234 
2235     /* If data_len spans multiple sectors, the current position in the FIFO
2236      * wraps around while fdctrl->data_pos is the real position in the whole
2237      * request. */
2238     pos = fdctrl->data_pos++;
2239     pos %= FD_SECTOR_LEN;
2240     fdctrl->fifo[pos] = value;
2241 
2242     if (fdctrl->data_pos == fdctrl->data_len) {
2243         fdctrl->msr &= ~FD_MSR_RQM;
2244     }
2245 
2246     switch (fdctrl->phase) {
2247     case FD_PHASE_EXECUTION:
2248         /* For DMA requests, RQM should be cleared during execution phase, so
2249          * we would have errored out above. */
2250         assert(fdctrl->msr & FD_MSR_NONDMA);
2251 
2252         /* FIFO data write */
2253         if (pos == FD_SECTOR_LEN - 1 ||
2254             fdctrl->data_pos == fdctrl->data_len) {
2255             cur_drv = get_cur_drv(fdctrl);
2256             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2257                            BDRV_SECTOR_SIZE, 0) < 0) {
2258                 FLOPPY_DPRINTF("error writing sector %d\n",
2259                                fd_sector(cur_drv));
2260                 break;
2261             }
2262             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2263                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2264                                fd_sector(cur_drv));
2265                 break;
2266             }
2267         }
2268 
2269         /* Switch to result phase when done with the transfer */
2270         if (fdctrl->data_pos == fdctrl->data_len) {
2271             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2272         }
2273         break;
2274 
2275     case FD_PHASE_COMMAND:
2276         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2277         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2278 
2279         if (pos == 0) {
2280             /* The first byte specifies the command. Now we start reading
2281              * as many parameters as this command requires. */
2282             cmd = get_command(value);
2283             fdctrl->data_len = cmd->parameters + 1;
2284             if (cmd->parameters) {
2285                 fdctrl->msr |= FD_MSR_RQM;
2286             }
2287             fdctrl->msr |= FD_MSR_CMDBUSY;
2288         }
2289 
2290         if (fdctrl->data_pos == fdctrl->data_len) {
2291             /* We have all parameters now, execute the command */
2292             fdctrl->phase = FD_PHASE_EXECUTION;
2293 
2294             if (fdctrl->data_state & FD_STATE_FORMAT) {
2295                 fdctrl_format_sector(fdctrl);
2296                 break;
2297             }
2298 
2299             cmd = get_command(fdctrl->fifo[0]);
2300             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2301             cmd->handler(fdctrl, cmd->direction);
2302         }
2303         break;
2304 
2305     case FD_PHASE_RESULT:
2306     default:
2307         abort();
2308     }
2309 }
2310 
2311 static void fdctrl_result_timer(void *opaque)
2312 {
2313     FDCtrl *fdctrl = opaque;
2314     FDrive *cur_drv = get_cur_drv(fdctrl);
2315 
2316     /* Pretend we are spinning.
2317      * This is needed for Coherent, which uses READ ID to check for
2318      * sector interleaving.
2319      */
2320     if (cur_drv->last_sect != 0) {
2321         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2322     }
2323     /* READ_ID can't automatically succeed! */
2324     if (fdctrl->check_media_rate &&
2325         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2326         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2327                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2328         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2329     } else {
2330         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2331     }
2332 }
2333 
2334 static void fdctrl_change_cb(void *opaque, bool load)
2335 {
2336     FDrive *drive = opaque;
2337 
2338     drive->media_changed = 1;
2339     drive->media_validated = false;
2340     fd_revalidate(drive);
2341 }
2342 
2343 static const BlockDevOps fdctrl_block_ops = {
2344     .change_media_cb = fdctrl_change_cb,
2345 };
2346 
2347 /* Init functions */
2348 static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp)
2349 {
2350     unsigned int i;
2351     FDrive *drive;
2352 
2353     for (i = 0; i < MAX_FD; i++) {
2354         drive = &fdctrl->drives[i];
2355         drive->fdctrl = fdctrl;
2356 
2357         if (drive->blk) {
2358             if (blk_get_on_error(drive->blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC) {
2359                 error_setg(errp, "fdc doesn't support drive option werror");
2360                 return;
2361             }
2362             if (blk_get_on_error(drive->blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
2363                 error_setg(errp, "fdc doesn't support drive option rerror");
2364                 return;
2365             }
2366         }
2367 
2368         fd_init(drive);
2369         if (drive->blk) {
2370             blk_set_dev_ops(drive->blk, &fdctrl_block_ops, drive);
2371             pick_drive_type(drive);
2372         }
2373         fd_revalidate(drive);
2374     }
2375 }
2376 
2377 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2378 {
2379     DeviceState *dev;
2380     ISADevice *isadev;
2381 
2382     isadev = isa_try_create(bus, TYPE_ISA_FDC);
2383     if (!isadev) {
2384         return NULL;
2385     }
2386     dev = DEVICE(isadev);
2387 
2388     if (fds[0]) {
2389         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2390                             &error_fatal);
2391     }
2392     if (fds[1]) {
2393         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2394                             &error_fatal);
2395     }
2396     qdev_init_nofail(dev);
2397 
2398     return isadev;
2399 }
2400 
2401 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2402                         hwaddr mmio_base, DriveInfo **fds)
2403 {
2404     FDCtrl *fdctrl;
2405     DeviceState *dev;
2406     SysBusDevice *sbd;
2407     FDCtrlSysBus *sys;
2408 
2409     dev = qdev_create(NULL, "sysbus-fdc");
2410     sys = SYSBUS_FDC(dev);
2411     fdctrl = &sys->state;
2412     fdctrl->dma_chann = dma_chann; /* FIXME */
2413     if (fds[0]) {
2414         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2415                             &error_fatal);
2416     }
2417     if (fds[1]) {
2418         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2419                             &error_fatal);
2420     }
2421     qdev_init_nofail(dev);
2422     sbd = SYS_BUS_DEVICE(dev);
2423     sysbus_connect_irq(sbd, 0, irq);
2424     sysbus_mmio_map(sbd, 0, mmio_base);
2425 }
2426 
2427 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2428                        DriveInfo **fds, qemu_irq *fdc_tc)
2429 {
2430     DeviceState *dev;
2431     FDCtrlSysBus *sys;
2432 
2433     dev = qdev_create(NULL, "SUNW,fdtwo");
2434     if (fds[0]) {
2435         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2436                             &error_fatal);
2437     }
2438     qdev_init_nofail(dev);
2439     sys = SYSBUS_FDC(dev);
2440     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2441     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2442     *fdc_tc = qdev_get_gpio_in(dev, 0);
2443 }
2444 
2445 static void fdctrl_realize_common(FDCtrl *fdctrl, Error **errp)
2446 {
2447     int i, j;
2448     static int command_tables_inited = 0;
2449 
2450     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2451         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2452     }
2453 
2454     /* Fill 'command_to_handler' lookup table */
2455     if (!command_tables_inited) {
2456         command_tables_inited = 1;
2457         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2458             for (j = 0; j < sizeof(command_to_handler); j++) {
2459                 if ((j & handlers[i].mask) == handlers[i].value) {
2460                     command_to_handler[j] = i;
2461                 }
2462             }
2463         }
2464     }
2465 
2466     FLOPPY_DPRINTF("init controller\n");
2467     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2468     fdctrl->fifo_size = 512;
2469     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2470                                              fdctrl_result_timer, fdctrl);
2471 
2472     fdctrl->version = 0x90; /* Intel 82078 controller */
2473     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2474     fdctrl->num_floppies = MAX_FD;
2475 
2476     if (fdctrl->dma_chann != -1) {
2477         IsaDmaClass *k;
2478         assert(fdctrl->dma);
2479         k = ISADMA_GET_CLASS(fdctrl->dma);
2480         k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2481                             &fdctrl_transfer_handler, fdctrl);
2482     }
2483     fdctrl_connect_drives(fdctrl, errp);
2484 }
2485 
2486 static const MemoryRegionPortio fdc_portio_list[] = {
2487     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2488     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2489     PORTIO_END_OF_LIST(),
2490 };
2491 
2492 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2493 {
2494     ISADevice *isadev = ISA_DEVICE(dev);
2495     FDCtrlISABus *isa = ISA_FDC(dev);
2496     FDCtrl *fdctrl = &isa->state;
2497     Error *err = NULL;
2498 
2499     isa_register_portio_list(isadev, &fdctrl->portio_list,
2500                              isa->iobase, fdc_portio_list, fdctrl,
2501                              "fdc");
2502 
2503     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2504     fdctrl->dma_chann = isa->dma;
2505     if (fdctrl->dma_chann != -1) {
2506         fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2507         assert(fdctrl->dma);
2508     }
2509 
2510     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2511     fdctrl_realize_common(fdctrl, &err);
2512     if (err != NULL) {
2513         error_propagate(errp, err);
2514         return;
2515     }
2516 }
2517 
2518 static void sysbus_fdc_initfn(Object *obj)
2519 {
2520     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2521     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2522     FDCtrl *fdctrl = &sys->state;
2523 
2524     fdctrl->dma_chann = -1;
2525 
2526     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2527                           "fdc", 0x08);
2528     sysbus_init_mmio(sbd, &fdctrl->iomem);
2529 }
2530 
2531 static void sun4m_fdc_initfn(Object *obj)
2532 {
2533     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2534     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2535     FDCtrl *fdctrl = &sys->state;
2536 
2537     fdctrl->dma_chann = -1;
2538 
2539     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2540                           fdctrl, "fdctrl", 0x08);
2541     sysbus_init_mmio(sbd, &fdctrl->iomem);
2542 }
2543 
2544 static void sysbus_fdc_common_initfn(Object *obj)
2545 {
2546     DeviceState *dev = DEVICE(obj);
2547     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2548     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2549     FDCtrl *fdctrl = &sys->state;
2550 
2551     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2552 
2553     sysbus_init_irq(sbd, &fdctrl->irq);
2554     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2555 }
2556 
2557 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2558 {
2559     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2560     FDCtrl *fdctrl = &sys->state;
2561 
2562     fdctrl_realize_common(fdctrl, errp);
2563 }
2564 
2565 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2566 {
2567     FDCtrlISABus *isa = ISA_FDC(fdc);
2568 
2569     return isa->state.drives[i].drive;
2570 }
2571 
2572 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2573                                uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2574 {
2575     const FDFormat *fdf;
2576 
2577     *maxc = *maxh = *maxs = 0;
2578     for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2579         if (fdf->drive != type) {
2580             continue;
2581         }
2582         if (*maxc < fdf->max_track) {
2583             *maxc = fdf->max_track;
2584         }
2585         if (*maxh < fdf->max_head) {
2586             *maxh = fdf->max_head;
2587         }
2588         if (*maxs < fdf->last_sect) {
2589             *maxs = fdf->last_sect;
2590         }
2591     }
2592     (*maxc)--;
2593 }
2594 
2595 static const VMStateDescription vmstate_isa_fdc ={
2596     .name = "fdc",
2597     .version_id = 2,
2598     .minimum_version_id = 2,
2599     .fields = (VMStateField[]) {
2600         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2601         VMSTATE_END_OF_LIST()
2602     }
2603 };
2604 
2605 static Property isa_fdc_properties[] = {
2606     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2607     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2608     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2609     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.drives[0].blk),
2610     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.drives[1].blk),
2611     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2612                     0, true),
2613     DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus, state.drives[0].drive,
2614                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2615                         FloppyDriveType),
2616     DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus, state.drives[1].drive,
2617                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2618                         FloppyDriveType),
2619     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2620                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2621                         FloppyDriveType),
2622     DEFINE_PROP_END_OF_LIST(),
2623 };
2624 
2625 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2626 {
2627     DeviceClass *dc = DEVICE_CLASS(klass);
2628 
2629     dc->realize = isabus_fdc_realize;
2630     dc->fw_name = "fdc";
2631     dc->reset = fdctrl_external_reset_isa;
2632     dc->vmsd = &vmstate_isa_fdc;
2633     dc->props = isa_fdc_properties;
2634     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2635 }
2636 
2637 static void isabus_fdc_instance_init(Object *obj)
2638 {
2639     FDCtrlISABus *isa = ISA_FDC(obj);
2640 
2641     device_add_bootindex_property(obj, &isa->bootindexA,
2642                                   "bootindexA", "/floppy@0",
2643                                   DEVICE(obj), NULL);
2644     device_add_bootindex_property(obj, &isa->bootindexB,
2645                                   "bootindexB", "/floppy@1",
2646                                   DEVICE(obj), NULL);
2647 }
2648 
2649 static const TypeInfo isa_fdc_info = {
2650     .name          = TYPE_ISA_FDC,
2651     .parent        = TYPE_ISA_DEVICE,
2652     .instance_size = sizeof(FDCtrlISABus),
2653     .class_init    = isabus_fdc_class_init,
2654     .instance_init = isabus_fdc_instance_init,
2655 };
2656 
2657 static const VMStateDescription vmstate_sysbus_fdc ={
2658     .name = "fdc",
2659     .version_id = 2,
2660     .minimum_version_id = 2,
2661     .fields = (VMStateField[]) {
2662         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2663         VMSTATE_END_OF_LIST()
2664     }
2665 };
2666 
2667 static Property sysbus_fdc_properties[] = {
2668     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.drives[0].blk),
2669     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.drives[1].blk),
2670     DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus, state.drives[0].drive,
2671                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2672                         FloppyDriveType),
2673     DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus, state.drives[1].drive,
2674                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2675                         FloppyDriveType),
2676     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2677                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2678                         FloppyDriveType),
2679     DEFINE_PROP_END_OF_LIST(),
2680 };
2681 
2682 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2683 {
2684     DeviceClass *dc = DEVICE_CLASS(klass);
2685 
2686     dc->props = sysbus_fdc_properties;
2687     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2688 }
2689 
2690 static const TypeInfo sysbus_fdc_info = {
2691     .name          = "sysbus-fdc",
2692     .parent        = TYPE_SYSBUS_FDC,
2693     .instance_init = sysbus_fdc_initfn,
2694     .class_init    = sysbus_fdc_class_init,
2695 };
2696 
2697 static Property sun4m_fdc_properties[] = {
2698     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.drives[0].blk),
2699     DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus, state.drives[0].drive,
2700                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2701                         FloppyDriveType),
2702     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2703                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2704                         FloppyDriveType),
2705     DEFINE_PROP_END_OF_LIST(),
2706 };
2707 
2708 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2709 {
2710     DeviceClass *dc = DEVICE_CLASS(klass);
2711 
2712     dc->props = sun4m_fdc_properties;
2713     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2714 }
2715 
2716 static const TypeInfo sun4m_fdc_info = {
2717     .name          = "SUNW,fdtwo",
2718     .parent        = TYPE_SYSBUS_FDC,
2719     .instance_init = sun4m_fdc_initfn,
2720     .class_init    = sun4m_fdc_class_init,
2721 };
2722 
2723 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2724 {
2725     DeviceClass *dc = DEVICE_CLASS(klass);
2726 
2727     dc->realize = sysbus_fdc_common_realize;
2728     dc->reset = fdctrl_external_reset_sysbus;
2729     dc->vmsd = &vmstate_sysbus_fdc;
2730 }
2731 
2732 static const TypeInfo sysbus_fdc_type_info = {
2733     .name          = TYPE_SYSBUS_FDC,
2734     .parent        = TYPE_SYS_BUS_DEVICE,
2735     .instance_size = sizeof(FDCtrlSysBus),
2736     .instance_init = sysbus_fdc_common_initfn,
2737     .abstract      = true,
2738     .class_init    = sysbus_fdc_common_class_init,
2739 };
2740 
2741 static void fdc_register_types(void)
2742 {
2743     type_register_static(&isa_fdc_info);
2744     type_register_static(&sysbus_fdc_type_info);
2745     type_register_static(&sysbus_fdc_info);
2746     type_register_static(&sun4m_fdc_info);
2747 }
2748 
2749 type_init(fdc_register_types)
2750