xref: /openbmc/qemu/hw/block/fdc.c (revision b6a0aa053711e27e1a7825c1fca662beb05bee6f)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/isa/isa.h"
36 #include "hw/sysbus.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/blockdev.h"
39 #include "sysemu/sysemu.h"
40 #include "qemu/log.h"
41 
42 /********************************************************/
43 /* debug Floppy devices */
44 //#define DEBUG_FLOPPY
45 
46 #ifdef DEBUG_FLOPPY
47 #define FLOPPY_DPRINTF(fmt, ...)                                \
48     do { printf("FLOPPY: " fmt , ## __VA_ARGS__); } while (0)
49 #else
50 #define FLOPPY_DPRINTF(fmt, ...)
51 #endif
52 
53 /********************************************************/
54 /* Floppy drive emulation                               */
55 
56 typedef enum FDriveRate {
57     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
58     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
59     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
60     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
61 } FDriveRate;
62 
63 typedef enum FDriveSize {
64     FDRIVE_SIZE_UNKNOWN,
65     FDRIVE_SIZE_350,
66     FDRIVE_SIZE_525,
67 } FDriveSize;
68 
69 typedef struct FDFormat {
70     FloppyDriveType drive;
71     uint8_t last_sect;
72     uint8_t max_track;
73     uint8_t max_head;
74     FDriveRate rate;
75 } FDFormat;
76 
77 /* In many cases, the total sector size of a format is enough to uniquely
78  * identify it. However, there are some total sector collisions between
79  * formats of different physical size, and these are noted below by
80  * highlighting the total sector size for entries with collisions. */
81 static const FDFormat fd_formats[] = {
82     /* First entry is default format */
83     /* 1.44 MB 3"1/2 floppy disks */
84     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
85     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
86     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
87     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
88     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
89     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
90     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
91     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
92     /* 2.88 MB 3"1/2 floppy disks */
93     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
94     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
95     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
96     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
97     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
98     /* 720 kB 3"1/2 floppy disks */
99     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
100     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
101     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
102     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
103     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
104     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
105     /* 1.2 MB 5"1/4 floppy disks */
106     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
107     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
108     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
109     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
110     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
111     /* 720 kB 5"1/4 floppy disks */
112     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
113     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
114     /* 360 kB 5"1/4 floppy disks */
115     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
116     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
117     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
118     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
119     /* 320 kB 5"1/4 floppy disks */
120     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
121     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
122     /* 360 kB must match 5"1/4 better than 3"1/2... */
123     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
124     /* end */
125     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
126 };
127 
128 static FDriveSize drive_size(FloppyDriveType drive)
129 {
130     switch (drive) {
131     case FLOPPY_DRIVE_TYPE_120:
132         return FDRIVE_SIZE_525;
133     case FLOPPY_DRIVE_TYPE_144:
134     case FLOPPY_DRIVE_TYPE_288:
135         return FDRIVE_SIZE_350;
136     default:
137         return FDRIVE_SIZE_UNKNOWN;
138     }
139 }
140 
141 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
142 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
143 
144 /* Will always be a fixed parameter for us */
145 #define FD_SECTOR_LEN          512
146 #define FD_SECTOR_SC           2   /* Sector size code */
147 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
148 
149 typedef struct FDCtrl FDCtrl;
150 
151 /* Floppy disk drive emulation */
152 typedef enum FDiskFlags {
153     FDISK_DBL_SIDES  = 0x01,
154 } FDiskFlags;
155 
156 typedef struct FDrive {
157     FDCtrl *fdctrl;
158     BlockBackend *blk;
159     /* Drive status */
160     FloppyDriveType drive;    /* CMOS drive type        */
161     uint8_t perpendicular;    /* 2.88 MB access mode    */
162     /* Position */
163     uint8_t head;
164     uint8_t track;
165     uint8_t sect;
166     /* Media */
167     FloppyDriveType disk;     /* Current disk type      */
168     FDiskFlags flags;
169     uint8_t last_sect;        /* Nb sector per track    */
170     uint8_t max_track;        /* Nb of tracks           */
171     uint16_t bps;             /* Bytes per sector       */
172     uint8_t ro;               /* Is read-only           */
173     uint8_t media_changed;    /* Is media changed       */
174     uint8_t media_rate;       /* Data rate of medium    */
175 
176     bool media_inserted;      /* Is there a medium in the tray */
177     bool media_validated;     /* Have we validated the media? */
178 } FDrive;
179 
180 
181 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
182 
183 static void fd_init(FDrive *drv)
184 {
185     /* Drive */
186     drv->perpendicular = 0;
187     /* Disk */
188     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
189     drv->last_sect = 0;
190     drv->max_track = 0;
191     drv->ro = true;
192     drv->media_changed = 1;
193 }
194 
195 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
196 
197 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
198                           uint8_t last_sect, uint8_t num_sides)
199 {
200     return (((track * num_sides) + head) * last_sect) + sect - 1;
201 }
202 
203 /* Returns current position, in sectors, for given drive */
204 static int fd_sector(FDrive *drv)
205 {
206     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
207                           NUM_SIDES(drv));
208 }
209 
210 /* Seek to a new position:
211  * returns 0 if already on right track
212  * returns 1 if track changed
213  * returns 2 if track is invalid
214  * returns 3 if sector is invalid
215  * returns 4 if seek is disabled
216  */
217 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
218                    int enable_seek)
219 {
220     uint32_t sector;
221     int ret;
222 
223     if (track > drv->max_track ||
224         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
225         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
226                        head, track, sect, 1,
227                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
228                        drv->max_track, drv->last_sect);
229         return 2;
230     }
231     if (sect > drv->last_sect) {
232         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
233                        head, track, sect, 1,
234                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
235                        drv->max_track, drv->last_sect);
236         return 3;
237     }
238     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
239     ret = 0;
240     if (sector != fd_sector(drv)) {
241 #if 0
242         if (!enable_seek) {
243             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
244                            " (max=%d %02x %02x)\n",
245                            head, track, sect, 1, drv->max_track,
246                            drv->last_sect);
247             return 4;
248         }
249 #endif
250         drv->head = head;
251         if (drv->track != track) {
252             if (drv->media_inserted) {
253                 drv->media_changed = 0;
254             }
255             ret = 1;
256         }
257         drv->track = track;
258         drv->sect = sect;
259     }
260 
261     if (!drv->media_inserted) {
262         ret = 2;
263     }
264 
265     return ret;
266 }
267 
268 /* Set drive back to track 0 */
269 static void fd_recalibrate(FDrive *drv)
270 {
271     FLOPPY_DPRINTF("recalibrate\n");
272     fd_seek(drv, 0, 0, 1, 1);
273 }
274 
275 /**
276  * Determine geometry based on inserted diskette.
277  * Will not operate on an empty drive.
278  *
279  * @return: 0 on success, -1 if the drive is empty.
280  */
281 static int pick_geometry(FDrive *drv)
282 {
283     BlockBackend *blk = drv->blk;
284     const FDFormat *parse;
285     uint64_t nb_sectors, size;
286     int i;
287     int match, size_match, type_match;
288     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
289 
290     /* We can only pick a geometry if we have a diskette. */
291     if (!drv->media_inserted || drv->drive == FLOPPY_DRIVE_TYPE_NONE) {
292         return -1;
293     }
294 
295     /* We need to determine the likely geometry of the inserted medium.
296      * In order of preference, we look for:
297      * (1) The same drive type and number of sectors,
298      * (2) The same diskette size and number of sectors,
299      * (3) The same drive type.
300      *
301      * In all cases, matches that occur higher in the drive table will take
302      * precedence over matches that occur later in the table.
303      */
304     blk_get_geometry(blk, &nb_sectors);
305     match = size_match = type_match = -1;
306     for (i = 0; ; i++) {
307         parse = &fd_formats[i];
308         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
309             break;
310         }
311         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
312         if (nb_sectors == size) {
313             if (magic || parse->drive == drv->drive) {
314                 /* (1) perfect match -- nb_sectors and drive type */
315                 goto out;
316             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
317                 /* (2) size match -- nb_sectors and physical medium size */
318                 match = (match == -1) ? i : match;
319             } else {
320                 /* This is suspicious -- Did the user misconfigure? */
321                 size_match = (size_match == -1) ? i : size_match;
322             }
323         } else if (type_match == -1) {
324             if ((parse->drive == drv->drive) ||
325                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
326                 /* (3) type match -- nb_sectors mismatch, but matches the type
327                  *     specified explicitly by the user, or matches the fallback
328                  *     default type when using the drive autodetect mechanism */
329                 type_match = i;
330             }
331         }
332     }
333 
334     /* No exact match found */
335     if (match == -1) {
336         if (size_match != -1) {
337             parse = &fd_formats[size_match];
338             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
339                            "but inserted medium appears to be a "
340                            "%d sector '%s' type\n",
341                            FloppyDriveType_lookup[drv->drive],
342                            nb_sectors,
343                            FloppyDriveType_lookup[parse->drive]);
344         }
345         match = type_match;
346     }
347 
348     /* No match of any kind found -- fd_format is misconfigured, abort. */
349     if (match == -1) {
350         error_setg(&error_abort, "No candidate geometries present in table "
351                    " for floppy drive type '%s'",
352                    FloppyDriveType_lookup[drv->drive]);
353     }
354 
355     parse = &(fd_formats[match]);
356 
357  out:
358     if (parse->max_head == 0) {
359         drv->flags &= ~FDISK_DBL_SIDES;
360     } else {
361         drv->flags |= FDISK_DBL_SIDES;
362     }
363     drv->max_track = parse->max_track;
364     drv->last_sect = parse->last_sect;
365     drv->disk = parse->drive;
366     drv->media_rate = parse->rate;
367     return 0;
368 }
369 
370 static void pick_drive_type(FDrive *drv)
371 {
372     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
373         return;
374     }
375 
376     if (pick_geometry(drv) == 0) {
377         drv->drive = drv->disk;
378     } else {
379         drv->drive = get_fallback_drive_type(drv);
380     }
381 
382     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
383 }
384 
385 /* Revalidate a disk drive after a disk change */
386 static void fd_revalidate(FDrive *drv)
387 {
388     int rc;
389 
390     FLOPPY_DPRINTF("revalidate\n");
391     if (drv->blk != NULL) {
392         drv->ro = blk_is_read_only(drv->blk);
393         if (!drv->media_inserted) {
394             FLOPPY_DPRINTF("No disk in drive\n");
395             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
396         } else if (!drv->media_validated) {
397             rc = pick_geometry(drv);
398             if (rc) {
399                 FLOPPY_DPRINTF("Could not validate floppy drive media");
400             } else {
401                 drv->media_validated = true;
402                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
403                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
404                                drv->max_track, drv->last_sect,
405                                drv->ro ? "ro" : "rw");
406             }
407         }
408     } else {
409         FLOPPY_DPRINTF("No drive connected\n");
410         drv->last_sect = 0;
411         drv->max_track = 0;
412         drv->flags &= ~FDISK_DBL_SIDES;
413         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
414         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
415     }
416 }
417 
418 /********************************************************/
419 /* Intel 82078 floppy disk controller emulation          */
420 
421 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
422 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
423 static int fdctrl_transfer_handler (void *opaque, int nchan,
424                                     int dma_pos, int dma_len);
425 static void fdctrl_raise_irq(FDCtrl *fdctrl);
426 static FDrive *get_cur_drv(FDCtrl *fdctrl);
427 
428 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
429 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
430 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
431 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
432 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
433 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
434 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
435 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
436 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
437 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
438 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
439 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
440 
441 enum {
442     FD_DIR_WRITE   = 0,
443     FD_DIR_READ    = 1,
444     FD_DIR_SCANE   = 2,
445     FD_DIR_SCANL   = 3,
446     FD_DIR_SCANH   = 4,
447     FD_DIR_VERIFY  = 5,
448 };
449 
450 enum {
451     FD_STATE_MULTI  = 0x01,	/* multi track flag */
452     FD_STATE_FORMAT = 0x02,	/* format flag */
453 };
454 
455 enum {
456     FD_REG_SRA = 0x00,
457     FD_REG_SRB = 0x01,
458     FD_REG_DOR = 0x02,
459     FD_REG_TDR = 0x03,
460     FD_REG_MSR = 0x04,
461     FD_REG_DSR = 0x04,
462     FD_REG_FIFO = 0x05,
463     FD_REG_DIR = 0x07,
464     FD_REG_CCR = 0x07,
465 };
466 
467 enum {
468     FD_CMD_READ_TRACK = 0x02,
469     FD_CMD_SPECIFY = 0x03,
470     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
471     FD_CMD_WRITE = 0x05,
472     FD_CMD_READ = 0x06,
473     FD_CMD_RECALIBRATE = 0x07,
474     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
475     FD_CMD_WRITE_DELETED = 0x09,
476     FD_CMD_READ_ID = 0x0a,
477     FD_CMD_READ_DELETED = 0x0c,
478     FD_CMD_FORMAT_TRACK = 0x0d,
479     FD_CMD_DUMPREG = 0x0e,
480     FD_CMD_SEEK = 0x0f,
481     FD_CMD_VERSION = 0x10,
482     FD_CMD_SCAN_EQUAL = 0x11,
483     FD_CMD_PERPENDICULAR_MODE = 0x12,
484     FD_CMD_CONFIGURE = 0x13,
485     FD_CMD_LOCK = 0x14,
486     FD_CMD_VERIFY = 0x16,
487     FD_CMD_POWERDOWN_MODE = 0x17,
488     FD_CMD_PART_ID = 0x18,
489     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
490     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
491     FD_CMD_SAVE = 0x2e,
492     FD_CMD_OPTION = 0x33,
493     FD_CMD_RESTORE = 0x4e,
494     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
495     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
496     FD_CMD_FORMAT_AND_WRITE = 0xcd,
497     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
498 };
499 
500 enum {
501     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
502     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
503     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
504     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
505     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
506 };
507 
508 enum {
509     FD_SR0_DS0      = 0x01,
510     FD_SR0_DS1      = 0x02,
511     FD_SR0_HEAD     = 0x04,
512     FD_SR0_EQPMT    = 0x10,
513     FD_SR0_SEEK     = 0x20,
514     FD_SR0_ABNTERM  = 0x40,
515     FD_SR0_INVCMD   = 0x80,
516     FD_SR0_RDYCHG   = 0xc0,
517 };
518 
519 enum {
520     FD_SR1_MA       = 0x01, /* Missing address mark */
521     FD_SR1_NW       = 0x02, /* Not writable */
522     FD_SR1_EC       = 0x80, /* End of cylinder */
523 };
524 
525 enum {
526     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
527     FD_SR2_SEH      = 0x08, /* Scan equal hit */
528 };
529 
530 enum {
531     FD_SRA_DIR      = 0x01,
532     FD_SRA_nWP      = 0x02,
533     FD_SRA_nINDX    = 0x04,
534     FD_SRA_HDSEL    = 0x08,
535     FD_SRA_nTRK0    = 0x10,
536     FD_SRA_STEP     = 0x20,
537     FD_SRA_nDRV2    = 0x40,
538     FD_SRA_INTPEND  = 0x80,
539 };
540 
541 enum {
542     FD_SRB_MTR0     = 0x01,
543     FD_SRB_MTR1     = 0x02,
544     FD_SRB_WGATE    = 0x04,
545     FD_SRB_RDATA    = 0x08,
546     FD_SRB_WDATA    = 0x10,
547     FD_SRB_DR0      = 0x20,
548 };
549 
550 enum {
551 #if MAX_FD == 4
552     FD_DOR_SELMASK  = 0x03,
553 #else
554     FD_DOR_SELMASK  = 0x01,
555 #endif
556     FD_DOR_nRESET   = 0x04,
557     FD_DOR_DMAEN    = 0x08,
558     FD_DOR_MOTEN0   = 0x10,
559     FD_DOR_MOTEN1   = 0x20,
560     FD_DOR_MOTEN2   = 0x40,
561     FD_DOR_MOTEN3   = 0x80,
562 };
563 
564 enum {
565 #if MAX_FD == 4
566     FD_TDR_BOOTSEL  = 0x0c,
567 #else
568     FD_TDR_BOOTSEL  = 0x04,
569 #endif
570 };
571 
572 enum {
573     FD_DSR_DRATEMASK= 0x03,
574     FD_DSR_PWRDOWN  = 0x40,
575     FD_DSR_SWRESET  = 0x80,
576 };
577 
578 enum {
579     FD_MSR_DRV0BUSY = 0x01,
580     FD_MSR_DRV1BUSY = 0x02,
581     FD_MSR_DRV2BUSY = 0x04,
582     FD_MSR_DRV3BUSY = 0x08,
583     FD_MSR_CMDBUSY  = 0x10,
584     FD_MSR_NONDMA   = 0x20,
585     FD_MSR_DIO      = 0x40,
586     FD_MSR_RQM      = 0x80,
587 };
588 
589 enum {
590     FD_DIR_DSKCHG   = 0x80,
591 };
592 
593 /*
594  * See chapter 5.0 "Controller phases" of the spec:
595  *
596  * Command phase:
597  * The host writes a command and its parameters into the FIFO. The command
598  * phase is completed when all parameters for the command have been supplied,
599  * and execution phase is entered.
600  *
601  * Execution phase:
602  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
603  * contains the payload now, otherwise it's unused. When all bytes of the
604  * required data have been transferred, the state is switched to either result
605  * phase (if the command produces status bytes) or directly back into the
606  * command phase for the next command.
607  *
608  * Result phase:
609  * The host reads out the FIFO, which contains one or more result bytes now.
610  */
611 enum {
612     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
613     FD_PHASE_RECONSTRUCT    = 0,
614 
615     FD_PHASE_COMMAND        = 1,
616     FD_PHASE_EXECUTION      = 2,
617     FD_PHASE_RESULT         = 3,
618 };
619 
620 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
621 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
622 
623 struct FDCtrl {
624     MemoryRegion iomem;
625     qemu_irq irq;
626     /* Controller state */
627     QEMUTimer *result_timer;
628     int dma_chann;
629     uint8_t phase;
630     /* Controller's identification */
631     uint8_t version;
632     /* HW */
633     uint8_t sra;
634     uint8_t srb;
635     uint8_t dor;
636     uint8_t dor_vmstate; /* only used as temp during vmstate */
637     uint8_t tdr;
638     uint8_t dsr;
639     uint8_t msr;
640     uint8_t cur_drv;
641     uint8_t status0;
642     uint8_t status1;
643     uint8_t status2;
644     /* Command FIFO */
645     uint8_t *fifo;
646     int32_t fifo_size;
647     uint32_t data_pos;
648     uint32_t data_len;
649     uint8_t data_state;
650     uint8_t data_dir;
651     uint8_t eot; /* last wanted sector */
652     /* States kept only to be returned back */
653     /* precompensation */
654     uint8_t precomp_trk;
655     uint8_t config;
656     uint8_t lock;
657     /* Power down config (also with status regB access mode */
658     uint8_t pwrd;
659     /* Floppy drives */
660     uint8_t num_floppies;
661     FDrive drives[MAX_FD];
662     int reset_sensei;
663     uint32_t check_media_rate;
664     FloppyDriveType fallback; /* type=auto failure fallback */
665     /* Timers state */
666     uint8_t timer0;
667     uint8_t timer1;
668 };
669 
670 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
671 {
672     return drv->fdctrl->fallback;
673 }
674 
675 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
676 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
677 
678 typedef struct FDCtrlSysBus {
679     /*< private >*/
680     SysBusDevice parent_obj;
681     /*< public >*/
682 
683     struct FDCtrl state;
684 } FDCtrlSysBus;
685 
686 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
687 
688 typedef struct FDCtrlISABus {
689     ISADevice parent_obj;
690 
691     uint32_t iobase;
692     uint32_t irq;
693     uint32_t dma;
694     struct FDCtrl state;
695     int32_t bootindexA;
696     int32_t bootindexB;
697 } FDCtrlISABus;
698 
699 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
700 {
701     FDCtrl *fdctrl = opaque;
702     uint32_t retval;
703 
704     reg &= 7;
705     switch (reg) {
706     case FD_REG_SRA:
707         retval = fdctrl_read_statusA(fdctrl);
708         break;
709     case FD_REG_SRB:
710         retval = fdctrl_read_statusB(fdctrl);
711         break;
712     case FD_REG_DOR:
713         retval = fdctrl_read_dor(fdctrl);
714         break;
715     case FD_REG_TDR:
716         retval = fdctrl_read_tape(fdctrl);
717         break;
718     case FD_REG_MSR:
719         retval = fdctrl_read_main_status(fdctrl);
720         break;
721     case FD_REG_FIFO:
722         retval = fdctrl_read_data(fdctrl);
723         break;
724     case FD_REG_DIR:
725         retval = fdctrl_read_dir(fdctrl);
726         break;
727     default:
728         retval = (uint32_t)(-1);
729         break;
730     }
731     FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
732 
733     return retval;
734 }
735 
736 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
737 {
738     FDCtrl *fdctrl = opaque;
739 
740     FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
741 
742     reg &= 7;
743     switch (reg) {
744     case FD_REG_DOR:
745         fdctrl_write_dor(fdctrl, value);
746         break;
747     case FD_REG_TDR:
748         fdctrl_write_tape(fdctrl, value);
749         break;
750     case FD_REG_DSR:
751         fdctrl_write_rate(fdctrl, value);
752         break;
753     case FD_REG_FIFO:
754         fdctrl_write_data(fdctrl, value);
755         break;
756     case FD_REG_CCR:
757         fdctrl_write_ccr(fdctrl, value);
758         break;
759     default:
760         break;
761     }
762 }
763 
764 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
765                                  unsigned ize)
766 {
767     return fdctrl_read(opaque, (uint32_t)reg);
768 }
769 
770 static void fdctrl_write_mem (void *opaque, hwaddr reg,
771                               uint64_t value, unsigned size)
772 {
773     fdctrl_write(opaque, (uint32_t)reg, value);
774 }
775 
776 static const MemoryRegionOps fdctrl_mem_ops = {
777     .read = fdctrl_read_mem,
778     .write = fdctrl_write_mem,
779     .endianness = DEVICE_NATIVE_ENDIAN,
780 };
781 
782 static const MemoryRegionOps fdctrl_mem_strict_ops = {
783     .read = fdctrl_read_mem,
784     .write = fdctrl_write_mem,
785     .endianness = DEVICE_NATIVE_ENDIAN,
786     .valid = {
787         .min_access_size = 1,
788         .max_access_size = 1,
789     },
790 };
791 
792 static bool fdrive_media_changed_needed(void *opaque)
793 {
794     FDrive *drive = opaque;
795 
796     return (drive->media_inserted && drive->media_changed != 1);
797 }
798 
799 static const VMStateDescription vmstate_fdrive_media_changed = {
800     .name = "fdrive/media_changed",
801     .version_id = 1,
802     .minimum_version_id = 1,
803     .needed = fdrive_media_changed_needed,
804     .fields = (VMStateField[]) {
805         VMSTATE_UINT8(media_changed, FDrive),
806         VMSTATE_END_OF_LIST()
807     }
808 };
809 
810 static bool fdrive_media_rate_needed(void *opaque)
811 {
812     FDrive *drive = opaque;
813 
814     return drive->fdctrl->check_media_rate;
815 }
816 
817 static const VMStateDescription vmstate_fdrive_media_rate = {
818     .name = "fdrive/media_rate",
819     .version_id = 1,
820     .minimum_version_id = 1,
821     .needed = fdrive_media_rate_needed,
822     .fields = (VMStateField[]) {
823         VMSTATE_UINT8(media_rate, FDrive),
824         VMSTATE_END_OF_LIST()
825     }
826 };
827 
828 static bool fdrive_perpendicular_needed(void *opaque)
829 {
830     FDrive *drive = opaque;
831 
832     return drive->perpendicular != 0;
833 }
834 
835 static const VMStateDescription vmstate_fdrive_perpendicular = {
836     .name = "fdrive/perpendicular",
837     .version_id = 1,
838     .minimum_version_id = 1,
839     .needed = fdrive_perpendicular_needed,
840     .fields = (VMStateField[]) {
841         VMSTATE_UINT8(perpendicular, FDrive),
842         VMSTATE_END_OF_LIST()
843     }
844 };
845 
846 static int fdrive_post_load(void *opaque, int version_id)
847 {
848     fd_revalidate(opaque);
849     return 0;
850 }
851 
852 static const VMStateDescription vmstate_fdrive = {
853     .name = "fdrive",
854     .version_id = 1,
855     .minimum_version_id = 1,
856     .post_load = fdrive_post_load,
857     .fields = (VMStateField[]) {
858         VMSTATE_UINT8(head, FDrive),
859         VMSTATE_UINT8(track, FDrive),
860         VMSTATE_UINT8(sect, FDrive),
861         VMSTATE_END_OF_LIST()
862     },
863     .subsections = (const VMStateDescription*[]) {
864         &vmstate_fdrive_media_changed,
865         &vmstate_fdrive_media_rate,
866         &vmstate_fdrive_perpendicular,
867         NULL
868     }
869 };
870 
871 /*
872  * Reconstructs the phase from register values according to the logic that was
873  * implemented in qemu 2.3. This is the default value that is used if the phase
874  * subsection is not present on migration.
875  *
876  * Don't change this function to reflect newer qemu versions, it is part of
877  * the migration ABI.
878  */
879 static int reconstruct_phase(FDCtrl *fdctrl)
880 {
881     if (fdctrl->msr & FD_MSR_NONDMA) {
882         return FD_PHASE_EXECUTION;
883     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
884         /* qemu 2.3 disabled RQM only during DMA transfers */
885         return FD_PHASE_EXECUTION;
886     } else if (fdctrl->msr & FD_MSR_DIO) {
887         return FD_PHASE_RESULT;
888     } else {
889         return FD_PHASE_COMMAND;
890     }
891 }
892 
893 static void fdc_pre_save(void *opaque)
894 {
895     FDCtrl *s = opaque;
896 
897     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
898 }
899 
900 static int fdc_pre_load(void *opaque)
901 {
902     FDCtrl *s = opaque;
903     s->phase = FD_PHASE_RECONSTRUCT;
904     return 0;
905 }
906 
907 static int fdc_post_load(void *opaque, int version_id)
908 {
909     FDCtrl *s = opaque;
910 
911     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
912     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
913 
914     if (s->phase == FD_PHASE_RECONSTRUCT) {
915         s->phase = reconstruct_phase(s);
916     }
917 
918     return 0;
919 }
920 
921 static bool fdc_reset_sensei_needed(void *opaque)
922 {
923     FDCtrl *s = opaque;
924 
925     return s->reset_sensei != 0;
926 }
927 
928 static const VMStateDescription vmstate_fdc_reset_sensei = {
929     .name = "fdc/reset_sensei",
930     .version_id = 1,
931     .minimum_version_id = 1,
932     .needed = fdc_reset_sensei_needed,
933     .fields = (VMStateField[]) {
934         VMSTATE_INT32(reset_sensei, FDCtrl),
935         VMSTATE_END_OF_LIST()
936     }
937 };
938 
939 static bool fdc_result_timer_needed(void *opaque)
940 {
941     FDCtrl *s = opaque;
942 
943     return timer_pending(s->result_timer);
944 }
945 
946 static const VMStateDescription vmstate_fdc_result_timer = {
947     .name = "fdc/result_timer",
948     .version_id = 1,
949     .minimum_version_id = 1,
950     .needed = fdc_result_timer_needed,
951     .fields = (VMStateField[]) {
952         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
953         VMSTATE_END_OF_LIST()
954     }
955 };
956 
957 static bool fdc_phase_needed(void *opaque)
958 {
959     FDCtrl *fdctrl = opaque;
960 
961     return reconstruct_phase(fdctrl) != fdctrl->phase;
962 }
963 
964 static const VMStateDescription vmstate_fdc_phase = {
965     .name = "fdc/phase",
966     .version_id = 1,
967     .minimum_version_id = 1,
968     .needed = fdc_phase_needed,
969     .fields = (VMStateField[]) {
970         VMSTATE_UINT8(phase, FDCtrl),
971         VMSTATE_END_OF_LIST()
972     }
973 };
974 
975 static const VMStateDescription vmstate_fdc = {
976     .name = "fdc",
977     .version_id = 2,
978     .minimum_version_id = 2,
979     .pre_save = fdc_pre_save,
980     .pre_load = fdc_pre_load,
981     .post_load = fdc_post_load,
982     .fields = (VMStateField[]) {
983         /* Controller State */
984         VMSTATE_UINT8(sra, FDCtrl),
985         VMSTATE_UINT8(srb, FDCtrl),
986         VMSTATE_UINT8(dor_vmstate, FDCtrl),
987         VMSTATE_UINT8(tdr, FDCtrl),
988         VMSTATE_UINT8(dsr, FDCtrl),
989         VMSTATE_UINT8(msr, FDCtrl),
990         VMSTATE_UINT8(status0, FDCtrl),
991         VMSTATE_UINT8(status1, FDCtrl),
992         VMSTATE_UINT8(status2, FDCtrl),
993         /* Command FIFO */
994         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
995                              uint8_t),
996         VMSTATE_UINT32(data_pos, FDCtrl),
997         VMSTATE_UINT32(data_len, FDCtrl),
998         VMSTATE_UINT8(data_state, FDCtrl),
999         VMSTATE_UINT8(data_dir, FDCtrl),
1000         VMSTATE_UINT8(eot, FDCtrl),
1001         /* States kept only to be returned back */
1002         VMSTATE_UINT8(timer0, FDCtrl),
1003         VMSTATE_UINT8(timer1, FDCtrl),
1004         VMSTATE_UINT8(precomp_trk, FDCtrl),
1005         VMSTATE_UINT8(config, FDCtrl),
1006         VMSTATE_UINT8(lock, FDCtrl),
1007         VMSTATE_UINT8(pwrd, FDCtrl),
1008         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
1009         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1010                              vmstate_fdrive, FDrive),
1011         VMSTATE_END_OF_LIST()
1012     },
1013     .subsections = (const VMStateDescription*[]) {
1014         &vmstate_fdc_reset_sensei,
1015         &vmstate_fdc_result_timer,
1016         &vmstate_fdc_phase,
1017         NULL
1018     }
1019 };
1020 
1021 static void fdctrl_external_reset_sysbus(DeviceState *d)
1022 {
1023     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1024     FDCtrl *s = &sys->state;
1025 
1026     fdctrl_reset(s, 0);
1027 }
1028 
1029 static void fdctrl_external_reset_isa(DeviceState *d)
1030 {
1031     FDCtrlISABus *isa = ISA_FDC(d);
1032     FDCtrl *s = &isa->state;
1033 
1034     fdctrl_reset(s, 0);
1035 }
1036 
1037 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1038 {
1039     //FDCtrl *s = opaque;
1040 
1041     if (level) {
1042         // XXX
1043         FLOPPY_DPRINTF("TC pulsed\n");
1044     }
1045 }
1046 
1047 /* Change IRQ state */
1048 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1049 {
1050     fdctrl->status0 = 0;
1051     if (!(fdctrl->sra & FD_SRA_INTPEND))
1052         return;
1053     FLOPPY_DPRINTF("Reset interrupt\n");
1054     qemu_set_irq(fdctrl->irq, 0);
1055     fdctrl->sra &= ~FD_SRA_INTPEND;
1056 }
1057 
1058 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1059 {
1060     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1061         qemu_set_irq(fdctrl->irq, 1);
1062         fdctrl->sra |= FD_SRA_INTPEND;
1063     }
1064 
1065     fdctrl->reset_sensei = 0;
1066     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1067 }
1068 
1069 /* Reset controller */
1070 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1071 {
1072     int i;
1073 
1074     FLOPPY_DPRINTF("reset controller\n");
1075     fdctrl_reset_irq(fdctrl);
1076     /* Initialise controller */
1077     fdctrl->sra = 0;
1078     fdctrl->srb = 0xc0;
1079     if (!fdctrl->drives[1].blk) {
1080         fdctrl->sra |= FD_SRA_nDRV2;
1081     }
1082     fdctrl->cur_drv = 0;
1083     fdctrl->dor = FD_DOR_nRESET;
1084     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1085     fdctrl->msr = FD_MSR_RQM;
1086     fdctrl->reset_sensei = 0;
1087     timer_del(fdctrl->result_timer);
1088     /* FIFO state */
1089     fdctrl->data_pos = 0;
1090     fdctrl->data_len = 0;
1091     fdctrl->data_state = 0;
1092     fdctrl->data_dir = FD_DIR_WRITE;
1093     for (i = 0; i < MAX_FD; i++)
1094         fd_recalibrate(&fdctrl->drives[i]);
1095     fdctrl_to_command_phase(fdctrl);
1096     if (do_irq) {
1097         fdctrl->status0 |= FD_SR0_RDYCHG;
1098         fdctrl_raise_irq(fdctrl);
1099         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1100     }
1101 }
1102 
1103 static inline FDrive *drv0(FDCtrl *fdctrl)
1104 {
1105     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1106 }
1107 
1108 static inline FDrive *drv1(FDCtrl *fdctrl)
1109 {
1110     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1111         return &fdctrl->drives[1];
1112     else
1113         return &fdctrl->drives[0];
1114 }
1115 
1116 #if MAX_FD == 4
1117 static inline FDrive *drv2(FDCtrl *fdctrl)
1118 {
1119     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1120         return &fdctrl->drives[2];
1121     else
1122         return &fdctrl->drives[1];
1123 }
1124 
1125 static inline FDrive *drv3(FDCtrl *fdctrl)
1126 {
1127     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1128         return &fdctrl->drives[3];
1129     else
1130         return &fdctrl->drives[2];
1131 }
1132 #endif
1133 
1134 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1135 {
1136     switch (fdctrl->cur_drv) {
1137         case 0: return drv0(fdctrl);
1138         case 1: return drv1(fdctrl);
1139 #if MAX_FD == 4
1140         case 2: return drv2(fdctrl);
1141         case 3: return drv3(fdctrl);
1142 #endif
1143         default: return NULL;
1144     }
1145 }
1146 
1147 /* Status A register : 0x00 (read-only) */
1148 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1149 {
1150     uint32_t retval = fdctrl->sra;
1151 
1152     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1153 
1154     return retval;
1155 }
1156 
1157 /* Status B register : 0x01 (read-only) */
1158 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1159 {
1160     uint32_t retval = fdctrl->srb;
1161 
1162     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1163 
1164     return retval;
1165 }
1166 
1167 /* Digital output register : 0x02 */
1168 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1169 {
1170     uint32_t retval = fdctrl->dor;
1171 
1172     /* Selected drive */
1173     retval |= fdctrl->cur_drv;
1174     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1175 
1176     return retval;
1177 }
1178 
1179 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1180 {
1181     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1182 
1183     /* Motors */
1184     if (value & FD_DOR_MOTEN0)
1185         fdctrl->srb |= FD_SRB_MTR0;
1186     else
1187         fdctrl->srb &= ~FD_SRB_MTR0;
1188     if (value & FD_DOR_MOTEN1)
1189         fdctrl->srb |= FD_SRB_MTR1;
1190     else
1191         fdctrl->srb &= ~FD_SRB_MTR1;
1192 
1193     /* Drive */
1194     if (value & 1)
1195         fdctrl->srb |= FD_SRB_DR0;
1196     else
1197         fdctrl->srb &= ~FD_SRB_DR0;
1198 
1199     /* Reset */
1200     if (!(value & FD_DOR_nRESET)) {
1201         if (fdctrl->dor & FD_DOR_nRESET) {
1202             FLOPPY_DPRINTF("controller enter RESET state\n");
1203         }
1204     } else {
1205         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1206             FLOPPY_DPRINTF("controller out of RESET state\n");
1207             fdctrl_reset(fdctrl, 1);
1208             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1209         }
1210     }
1211     /* Selected drive */
1212     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1213 
1214     fdctrl->dor = value;
1215 }
1216 
1217 /* Tape drive register : 0x03 */
1218 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1219 {
1220     uint32_t retval = fdctrl->tdr;
1221 
1222     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1223 
1224     return retval;
1225 }
1226 
1227 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1228 {
1229     /* Reset mode */
1230     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1231         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1232         return;
1233     }
1234     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1235     /* Disk boot selection indicator */
1236     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1237     /* Tape indicators: never allow */
1238 }
1239 
1240 /* Main status register : 0x04 (read) */
1241 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1242 {
1243     uint32_t retval = fdctrl->msr;
1244 
1245     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1246     fdctrl->dor |= FD_DOR_nRESET;
1247 
1248     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1249 
1250     return retval;
1251 }
1252 
1253 /* Data select rate register : 0x04 (write) */
1254 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1255 {
1256     /* Reset mode */
1257     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1258         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1259         return;
1260     }
1261     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1262     /* Reset: autoclear */
1263     if (value & FD_DSR_SWRESET) {
1264         fdctrl->dor &= ~FD_DOR_nRESET;
1265         fdctrl_reset(fdctrl, 1);
1266         fdctrl->dor |= FD_DOR_nRESET;
1267     }
1268     if (value & FD_DSR_PWRDOWN) {
1269         fdctrl_reset(fdctrl, 1);
1270     }
1271     fdctrl->dsr = value;
1272 }
1273 
1274 /* Configuration control register: 0x07 (write) */
1275 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1276 {
1277     /* Reset mode */
1278     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1279         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1280         return;
1281     }
1282     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1283 
1284     /* Only the rate selection bits used in AT mode, and we
1285      * store those in the DSR.
1286      */
1287     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1288                   (value & FD_DSR_DRATEMASK);
1289 }
1290 
1291 static int fdctrl_media_changed(FDrive *drv)
1292 {
1293     return drv->media_changed;
1294 }
1295 
1296 /* Digital input register : 0x07 (read-only) */
1297 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1298 {
1299     uint32_t retval = 0;
1300 
1301     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1302         retval |= FD_DIR_DSKCHG;
1303     }
1304     if (retval != 0) {
1305         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1306     }
1307 
1308     return retval;
1309 }
1310 
1311 /* Clear the FIFO and update the state for receiving the next command */
1312 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1313 {
1314     fdctrl->phase = FD_PHASE_COMMAND;
1315     fdctrl->data_dir = FD_DIR_WRITE;
1316     fdctrl->data_pos = 0;
1317     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1318     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1319     fdctrl->msr |= FD_MSR_RQM;
1320 }
1321 
1322 /* Update the state to allow the guest to read out the command status.
1323  * @fifo_len is the number of result bytes to be read out. */
1324 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1325 {
1326     fdctrl->phase = FD_PHASE_RESULT;
1327     fdctrl->data_dir = FD_DIR_READ;
1328     fdctrl->data_len = fifo_len;
1329     fdctrl->data_pos = 0;
1330     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1331 }
1332 
1333 /* Set an error: unimplemented/unknown command */
1334 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1335 {
1336     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1337                   fdctrl->fifo[0]);
1338     fdctrl->fifo[0] = FD_SR0_INVCMD;
1339     fdctrl_to_result_phase(fdctrl, 1);
1340 }
1341 
1342 /* Seek to next sector
1343  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1344  * otherwise returns 1
1345  */
1346 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1347 {
1348     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1349                    cur_drv->head, cur_drv->track, cur_drv->sect,
1350                    fd_sector(cur_drv));
1351     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1352        error in fact */
1353     uint8_t new_head = cur_drv->head;
1354     uint8_t new_track = cur_drv->track;
1355     uint8_t new_sect = cur_drv->sect;
1356 
1357     int ret = 1;
1358 
1359     if (new_sect >= cur_drv->last_sect ||
1360         new_sect == fdctrl->eot) {
1361         new_sect = 1;
1362         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1363             if (new_head == 0 &&
1364                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1365                 new_head = 1;
1366             } else {
1367                 new_head = 0;
1368                 new_track++;
1369                 fdctrl->status0 |= FD_SR0_SEEK;
1370                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1371                     ret = 0;
1372                 }
1373             }
1374         } else {
1375             fdctrl->status0 |= FD_SR0_SEEK;
1376             new_track++;
1377             ret = 0;
1378         }
1379         if (ret == 1) {
1380             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1381                     new_head, new_track, new_sect, fd_sector(cur_drv));
1382         }
1383     } else {
1384         new_sect++;
1385     }
1386     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1387     return ret;
1388 }
1389 
1390 /* Callback for transfer end (stop or abort) */
1391 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1392                                  uint8_t status1, uint8_t status2)
1393 {
1394     FDrive *cur_drv;
1395     cur_drv = get_cur_drv(fdctrl);
1396 
1397     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1398     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1399     if (cur_drv->head) {
1400         fdctrl->status0 |= FD_SR0_HEAD;
1401     }
1402     fdctrl->status0 |= status0;
1403 
1404     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1405                    status0, status1, status2, fdctrl->status0);
1406     fdctrl->fifo[0] = fdctrl->status0;
1407     fdctrl->fifo[1] = status1;
1408     fdctrl->fifo[2] = status2;
1409     fdctrl->fifo[3] = cur_drv->track;
1410     fdctrl->fifo[4] = cur_drv->head;
1411     fdctrl->fifo[5] = cur_drv->sect;
1412     fdctrl->fifo[6] = FD_SECTOR_SC;
1413     fdctrl->data_dir = FD_DIR_READ;
1414     if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1415         DMA_release_DREQ(fdctrl->dma_chann);
1416     }
1417     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1418     fdctrl->msr &= ~FD_MSR_NONDMA;
1419 
1420     fdctrl_to_result_phase(fdctrl, 7);
1421     fdctrl_raise_irq(fdctrl);
1422 }
1423 
1424 /* Prepare a data transfer (either DMA or FIFO) */
1425 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1426 {
1427     FDrive *cur_drv;
1428     uint8_t kh, kt, ks;
1429 
1430     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1431     cur_drv = get_cur_drv(fdctrl);
1432     kt = fdctrl->fifo[2];
1433     kh = fdctrl->fifo[3];
1434     ks = fdctrl->fifo[4];
1435     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1436                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1437                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1438                                   NUM_SIDES(cur_drv)));
1439     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1440     case 2:
1441         /* sect too big */
1442         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1443         fdctrl->fifo[3] = kt;
1444         fdctrl->fifo[4] = kh;
1445         fdctrl->fifo[5] = ks;
1446         return;
1447     case 3:
1448         /* track too big */
1449         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1450         fdctrl->fifo[3] = kt;
1451         fdctrl->fifo[4] = kh;
1452         fdctrl->fifo[5] = ks;
1453         return;
1454     case 4:
1455         /* No seek enabled */
1456         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1457         fdctrl->fifo[3] = kt;
1458         fdctrl->fifo[4] = kh;
1459         fdctrl->fifo[5] = ks;
1460         return;
1461     case 1:
1462         fdctrl->status0 |= FD_SR0_SEEK;
1463         break;
1464     default:
1465         break;
1466     }
1467 
1468     /* Check the data rate. If the programmed data rate does not match
1469      * the currently inserted medium, the operation has to fail. */
1470     if (fdctrl->check_media_rate &&
1471         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1472         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1473                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1474         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1475         fdctrl->fifo[3] = kt;
1476         fdctrl->fifo[4] = kh;
1477         fdctrl->fifo[5] = ks;
1478         return;
1479     }
1480 
1481     /* Set the FIFO state */
1482     fdctrl->data_dir = direction;
1483     fdctrl->data_pos = 0;
1484     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1485     if (fdctrl->fifo[0] & 0x80)
1486         fdctrl->data_state |= FD_STATE_MULTI;
1487     else
1488         fdctrl->data_state &= ~FD_STATE_MULTI;
1489     if (fdctrl->fifo[5] == 0) {
1490         fdctrl->data_len = fdctrl->fifo[8];
1491     } else {
1492         int tmp;
1493         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1494         tmp = (fdctrl->fifo[6] - ks + 1);
1495         if (fdctrl->fifo[0] & 0x80)
1496             tmp += fdctrl->fifo[6];
1497         fdctrl->data_len *= tmp;
1498     }
1499     fdctrl->eot = fdctrl->fifo[6];
1500     if (fdctrl->dor & FD_DOR_DMAEN) {
1501         int dma_mode;
1502         /* DMA transfer are enabled. Check if DMA channel is well programmed */
1503         dma_mode = DMA_get_channel_mode(fdctrl->dma_chann);
1504         dma_mode = (dma_mode >> 2) & 3;
1505         FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1506                        dma_mode, direction,
1507                        (128 << fdctrl->fifo[5]) *
1508                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1509         if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
1510               direction == FD_DIR_SCANH) && dma_mode == 0) ||
1511             (direction == FD_DIR_WRITE && dma_mode == 2) ||
1512             (direction == FD_DIR_READ && dma_mode == 1) ||
1513             (direction == FD_DIR_VERIFY)) {
1514             /* No access is allowed until DMA transfer has completed */
1515             fdctrl->msr &= ~FD_MSR_RQM;
1516             if (direction != FD_DIR_VERIFY) {
1517                 /* Now, we just have to wait for the DMA controller to
1518                  * recall us...
1519                  */
1520                 DMA_hold_DREQ(fdctrl->dma_chann);
1521                 DMA_schedule();
1522             } else {
1523                 /* Start transfer */
1524                 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1525                                         fdctrl->data_len);
1526             }
1527             return;
1528         } else {
1529             FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1530                            direction);
1531         }
1532     }
1533     FLOPPY_DPRINTF("start non-DMA transfer\n");
1534     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1535     if (direction != FD_DIR_WRITE)
1536         fdctrl->msr |= FD_MSR_DIO;
1537     /* IO based transfer: calculate len */
1538     fdctrl_raise_irq(fdctrl);
1539 }
1540 
1541 /* Prepare a transfer of deleted data */
1542 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1543 {
1544     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1545 
1546     /* We don't handle deleted data,
1547      * so we don't return *ANYTHING*
1548      */
1549     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1550 }
1551 
1552 /* handlers for DMA transfers */
1553 static int fdctrl_transfer_handler (void *opaque, int nchan,
1554                                     int dma_pos, int dma_len)
1555 {
1556     FDCtrl *fdctrl;
1557     FDrive *cur_drv;
1558     int len, start_pos, rel_pos;
1559     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1560 
1561     fdctrl = opaque;
1562     if (fdctrl->msr & FD_MSR_RQM) {
1563         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1564         return 0;
1565     }
1566     cur_drv = get_cur_drv(fdctrl);
1567     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1568         fdctrl->data_dir == FD_DIR_SCANH)
1569         status2 = FD_SR2_SNS;
1570     if (dma_len > fdctrl->data_len)
1571         dma_len = fdctrl->data_len;
1572     if (cur_drv->blk == NULL) {
1573         if (fdctrl->data_dir == FD_DIR_WRITE)
1574             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1575         else
1576             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1577         len = 0;
1578         goto transfer_error;
1579     }
1580     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1581     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1582         len = dma_len - fdctrl->data_pos;
1583         if (len + rel_pos > FD_SECTOR_LEN)
1584             len = FD_SECTOR_LEN - rel_pos;
1585         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1586                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1587                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1588                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1589                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1590         if (fdctrl->data_dir != FD_DIR_WRITE ||
1591             len < FD_SECTOR_LEN || rel_pos != 0) {
1592             /* READ & SCAN commands and realign to a sector for WRITE */
1593             if (blk_read(cur_drv->blk, fd_sector(cur_drv),
1594                          fdctrl->fifo, 1) < 0) {
1595                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1596                                fd_sector(cur_drv));
1597                 /* Sure, image size is too small... */
1598                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1599             }
1600         }
1601         switch (fdctrl->data_dir) {
1602         case FD_DIR_READ:
1603             /* READ commands */
1604             DMA_write_memory (nchan, fdctrl->fifo + rel_pos,
1605                               fdctrl->data_pos, len);
1606             break;
1607         case FD_DIR_WRITE:
1608             /* WRITE commands */
1609             if (cur_drv->ro) {
1610                 /* Handle readonly medium early, no need to do DMA, touch the
1611                  * LED or attempt any writes. A real floppy doesn't attempt
1612                  * to write to readonly media either. */
1613                 fdctrl_stop_transfer(fdctrl,
1614                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1615                                      0x00);
1616                 goto transfer_error;
1617             }
1618 
1619             DMA_read_memory (nchan, fdctrl->fifo + rel_pos,
1620                              fdctrl->data_pos, len);
1621             if (blk_write(cur_drv->blk, fd_sector(cur_drv),
1622                           fdctrl->fifo, 1) < 0) {
1623                 FLOPPY_DPRINTF("error writing sector %d\n",
1624                                fd_sector(cur_drv));
1625                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1626                 goto transfer_error;
1627             }
1628             break;
1629         case FD_DIR_VERIFY:
1630             /* VERIFY commands */
1631             break;
1632         default:
1633             /* SCAN commands */
1634             {
1635                 uint8_t tmpbuf[FD_SECTOR_LEN];
1636                 int ret;
1637                 DMA_read_memory (nchan, tmpbuf, fdctrl->data_pos, len);
1638                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1639                 if (ret == 0) {
1640                     status2 = FD_SR2_SEH;
1641                     goto end_transfer;
1642                 }
1643                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1644                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1645                     status2 = 0x00;
1646                     goto end_transfer;
1647                 }
1648             }
1649             break;
1650         }
1651         fdctrl->data_pos += len;
1652         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1653         if (rel_pos == 0) {
1654             /* Seek to next sector */
1655             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1656                 break;
1657         }
1658     }
1659  end_transfer:
1660     len = fdctrl->data_pos - start_pos;
1661     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1662                    fdctrl->data_pos, len, fdctrl->data_len);
1663     if (fdctrl->data_dir == FD_DIR_SCANE ||
1664         fdctrl->data_dir == FD_DIR_SCANL ||
1665         fdctrl->data_dir == FD_DIR_SCANH)
1666         status2 = FD_SR2_SEH;
1667     fdctrl->data_len -= len;
1668     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1669  transfer_error:
1670 
1671     return len;
1672 }
1673 
1674 /* Data register : 0x05 */
1675 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1676 {
1677     FDrive *cur_drv;
1678     uint32_t retval = 0;
1679     uint32_t pos;
1680 
1681     cur_drv = get_cur_drv(fdctrl);
1682     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1683     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1684         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1685         return 0;
1686     }
1687 
1688     /* If data_len spans multiple sectors, the current position in the FIFO
1689      * wraps around while fdctrl->data_pos is the real position in the whole
1690      * request. */
1691     pos = fdctrl->data_pos;
1692     pos %= FD_SECTOR_LEN;
1693 
1694     switch (fdctrl->phase) {
1695     case FD_PHASE_EXECUTION:
1696         assert(fdctrl->msr & FD_MSR_NONDMA);
1697         if (pos == 0) {
1698             if (fdctrl->data_pos != 0)
1699                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1700                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1701                                    fd_sector(cur_drv));
1702                     return 0;
1703                 }
1704             if (blk_read(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
1705                 < 0) {
1706                 FLOPPY_DPRINTF("error getting sector %d\n",
1707                                fd_sector(cur_drv));
1708                 /* Sure, image size is too small... */
1709                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1710             }
1711         }
1712 
1713         if (++fdctrl->data_pos == fdctrl->data_len) {
1714             fdctrl->msr &= ~FD_MSR_RQM;
1715             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1716         }
1717         break;
1718 
1719     case FD_PHASE_RESULT:
1720         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1721         if (++fdctrl->data_pos == fdctrl->data_len) {
1722             fdctrl->msr &= ~FD_MSR_RQM;
1723             fdctrl_to_command_phase(fdctrl);
1724             fdctrl_reset_irq(fdctrl);
1725         }
1726         break;
1727 
1728     case FD_PHASE_COMMAND:
1729     default:
1730         abort();
1731     }
1732 
1733     retval = fdctrl->fifo[pos];
1734     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1735 
1736     return retval;
1737 }
1738 
1739 static void fdctrl_format_sector(FDCtrl *fdctrl)
1740 {
1741     FDrive *cur_drv;
1742     uint8_t kh, kt, ks;
1743 
1744     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1745     cur_drv = get_cur_drv(fdctrl);
1746     kt = fdctrl->fifo[6];
1747     kh = fdctrl->fifo[7];
1748     ks = fdctrl->fifo[8];
1749     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1750                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1751                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1752                                   NUM_SIDES(cur_drv)));
1753     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1754     case 2:
1755         /* sect too big */
1756         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1757         fdctrl->fifo[3] = kt;
1758         fdctrl->fifo[4] = kh;
1759         fdctrl->fifo[5] = ks;
1760         return;
1761     case 3:
1762         /* track too big */
1763         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1764         fdctrl->fifo[3] = kt;
1765         fdctrl->fifo[4] = kh;
1766         fdctrl->fifo[5] = ks;
1767         return;
1768     case 4:
1769         /* No seek enabled */
1770         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1771         fdctrl->fifo[3] = kt;
1772         fdctrl->fifo[4] = kh;
1773         fdctrl->fifo[5] = ks;
1774         return;
1775     case 1:
1776         fdctrl->status0 |= FD_SR0_SEEK;
1777         break;
1778     default:
1779         break;
1780     }
1781     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1782     if (cur_drv->blk == NULL ||
1783         blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
1784         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1785         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1786     } else {
1787         if (cur_drv->sect == cur_drv->last_sect) {
1788             fdctrl->data_state &= ~FD_STATE_FORMAT;
1789             /* Last sector done */
1790             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1791         } else {
1792             /* More to do */
1793             fdctrl->data_pos = 0;
1794             fdctrl->data_len = 4;
1795         }
1796     }
1797 }
1798 
1799 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1800 {
1801     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1802     fdctrl->fifo[0] = fdctrl->lock << 4;
1803     fdctrl_to_result_phase(fdctrl, 1);
1804 }
1805 
1806 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1807 {
1808     FDrive *cur_drv = get_cur_drv(fdctrl);
1809 
1810     /* Drives position */
1811     fdctrl->fifo[0] = drv0(fdctrl)->track;
1812     fdctrl->fifo[1] = drv1(fdctrl)->track;
1813 #if MAX_FD == 4
1814     fdctrl->fifo[2] = drv2(fdctrl)->track;
1815     fdctrl->fifo[3] = drv3(fdctrl)->track;
1816 #else
1817     fdctrl->fifo[2] = 0;
1818     fdctrl->fifo[3] = 0;
1819 #endif
1820     /* timers */
1821     fdctrl->fifo[4] = fdctrl->timer0;
1822     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1823     fdctrl->fifo[6] = cur_drv->last_sect;
1824     fdctrl->fifo[7] = (fdctrl->lock << 7) |
1825         (cur_drv->perpendicular << 2);
1826     fdctrl->fifo[8] = fdctrl->config;
1827     fdctrl->fifo[9] = fdctrl->precomp_trk;
1828     fdctrl_to_result_phase(fdctrl, 10);
1829 }
1830 
1831 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1832 {
1833     /* Controller's version */
1834     fdctrl->fifo[0] = fdctrl->version;
1835     fdctrl_to_result_phase(fdctrl, 1);
1836 }
1837 
1838 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1839 {
1840     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1841     fdctrl_to_result_phase(fdctrl, 1);
1842 }
1843 
1844 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1845 {
1846     FDrive *cur_drv = get_cur_drv(fdctrl);
1847 
1848     /* Drives position */
1849     drv0(fdctrl)->track = fdctrl->fifo[3];
1850     drv1(fdctrl)->track = fdctrl->fifo[4];
1851 #if MAX_FD == 4
1852     drv2(fdctrl)->track = fdctrl->fifo[5];
1853     drv3(fdctrl)->track = fdctrl->fifo[6];
1854 #endif
1855     /* timers */
1856     fdctrl->timer0 = fdctrl->fifo[7];
1857     fdctrl->timer1 = fdctrl->fifo[8];
1858     cur_drv->last_sect = fdctrl->fifo[9];
1859     fdctrl->lock = fdctrl->fifo[10] >> 7;
1860     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1861     fdctrl->config = fdctrl->fifo[11];
1862     fdctrl->precomp_trk = fdctrl->fifo[12];
1863     fdctrl->pwrd = fdctrl->fifo[13];
1864     fdctrl_to_command_phase(fdctrl);
1865 }
1866 
1867 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1868 {
1869     FDrive *cur_drv = get_cur_drv(fdctrl);
1870 
1871     fdctrl->fifo[0] = 0;
1872     fdctrl->fifo[1] = 0;
1873     /* Drives position */
1874     fdctrl->fifo[2] = drv0(fdctrl)->track;
1875     fdctrl->fifo[3] = drv1(fdctrl)->track;
1876 #if MAX_FD == 4
1877     fdctrl->fifo[4] = drv2(fdctrl)->track;
1878     fdctrl->fifo[5] = drv3(fdctrl)->track;
1879 #else
1880     fdctrl->fifo[4] = 0;
1881     fdctrl->fifo[5] = 0;
1882 #endif
1883     /* timers */
1884     fdctrl->fifo[6] = fdctrl->timer0;
1885     fdctrl->fifo[7] = fdctrl->timer1;
1886     fdctrl->fifo[8] = cur_drv->last_sect;
1887     fdctrl->fifo[9] = (fdctrl->lock << 7) |
1888         (cur_drv->perpendicular << 2);
1889     fdctrl->fifo[10] = fdctrl->config;
1890     fdctrl->fifo[11] = fdctrl->precomp_trk;
1891     fdctrl->fifo[12] = fdctrl->pwrd;
1892     fdctrl->fifo[13] = 0;
1893     fdctrl->fifo[14] = 0;
1894     fdctrl_to_result_phase(fdctrl, 15);
1895 }
1896 
1897 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1898 {
1899     FDrive *cur_drv = get_cur_drv(fdctrl);
1900 
1901     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1902     timer_mod(fdctrl->result_timer,
1903                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() / 50));
1904 }
1905 
1906 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1907 {
1908     FDrive *cur_drv;
1909 
1910     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1911     cur_drv = get_cur_drv(fdctrl);
1912     fdctrl->data_state |= FD_STATE_FORMAT;
1913     if (fdctrl->fifo[0] & 0x80)
1914         fdctrl->data_state |= FD_STATE_MULTI;
1915     else
1916         fdctrl->data_state &= ~FD_STATE_MULTI;
1917     cur_drv->bps =
1918         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1919 #if 0
1920     cur_drv->last_sect =
1921         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1922         fdctrl->fifo[3] / 2;
1923 #else
1924     cur_drv->last_sect = fdctrl->fifo[3];
1925 #endif
1926     /* TODO: implement format using DMA expected by the Bochs BIOS
1927      * and Linux fdformat (read 3 bytes per sector via DMA and fill
1928      * the sector with the specified fill byte
1929      */
1930     fdctrl->data_state &= ~FD_STATE_FORMAT;
1931     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1932 }
1933 
1934 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1935 {
1936     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1937     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1938     if (fdctrl->fifo[2] & 1)
1939         fdctrl->dor &= ~FD_DOR_DMAEN;
1940     else
1941         fdctrl->dor |= FD_DOR_DMAEN;
1942     /* No result back */
1943     fdctrl_to_command_phase(fdctrl);
1944 }
1945 
1946 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1947 {
1948     FDrive *cur_drv;
1949 
1950     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1951     cur_drv = get_cur_drv(fdctrl);
1952     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1953     /* 1 Byte status back */
1954     fdctrl->fifo[0] = (cur_drv->ro << 6) |
1955         (cur_drv->track == 0 ? 0x10 : 0x00) |
1956         (cur_drv->head << 2) |
1957         GET_CUR_DRV(fdctrl) |
1958         0x28;
1959     fdctrl_to_result_phase(fdctrl, 1);
1960 }
1961 
1962 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
1963 {
1964     FDrive *cur_drv;
1965 
1966     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1967     cur_drv = get_cur_drv(fdctrl);
1968     fd_recalibrate(cur_drv);
1969     fdctrl_to_command_phase(fdctrl);
1970     /* Raise Interrupt */
1971     fdctrl->status0 |= FD_SR0_SEEK;
1972     fdctrl_raise_irq(fdctrl);
1973 }
1974 
1975 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
1976 {
1977     FDrive *cur_drv = get_cur_drv(fdctrl);
1978 
1979     if (fdctrl->reset_sensei > 0) {
1980         fdctrl->fifo[0] =
1981             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
1982         fdctrl->reset_sensei--;
1983     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1984         fdctrl->fifo[0] = FD_SR0_INVCMD;
1985         fdctrl_to_result_phase(fdctrl, 1);
1986         return;
1987     } else {
1988         fdctrl->fifo[0] =
1989                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
1990                 | GET_CUR_DRV(fdctrl);
1991     }
1992 
1993     fdctrl->fifo[1] = cur_drv->track;
1994     fdctrl_to_result_phase(fdctrl, 2);
1995     fdctrl_reset_irq(fdctrl);
1996     fdctrl->status0 = FD_SR0_RDYCHG;
1997 }
1998 
1999 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2000 {
2001     FDrive *cur_drv;
2002 
2003     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2004     cur_drv = get_cur_drv(fdctrl);
2005     fdctrl_to_command_phase(fdctrl);
2006     /* The seek command just sends step pulses to the drive and doesn't care if
2007      * there is a medium inserted of if it's banging the head against the drive.
2008      */
2009     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2010     /* Raise Interrupt */
2011     fdctrl->status0 |= FD_SR0_SEEK;
2012     fdctrl_raise_irq(fdctrl);
2013 }
2014 
2015 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2016 {
2017     FDrive *cur_drv = get_cur_drv(fdctrl);
2018 
2019     if (fdctrl->fifo[1] & 0x80)
2020         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2021     /* No result back */
2022     fdctrl_to_command_phase(fdctrl);
2023 }
2024 
2025 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2026 {
2027     fdctrl->config = fdctrl->fifo[2];
2028     fdctrl->precomp_trk =  fdctrl->fifo[3];
2029     /* No result back */
2030     fdctrl_to_command_phase(fdctrl);
2031 }
2032 
2033 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2034 {
2035     fdctrl->pwrd = fdctrl->fifo[1];
2036     fdctrl->fifo[0] = fdctrl->fifo[1];
2037     fdctrl_to_result_phase(fdctrl, 1);
2038 }
2039 
2040 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2041 {
2042     /* No result back */
2043     fdctrl_to_command_phase(fdctrl);
2044 }
2045 
2046 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2047 {
2048     FDrive *cur_drv = get_cur_drv(fdctrl);
2049     uint32_t pos;
2050 
2051     pos = fdctrl->data_pos - 1;
2052     pos %= FD_SECTOR_LEN;
2053     if (fdctrl->fifo[pos] & 0x80) {
2054         /* Command parameters done */
2055         if (fdctrl->fifo[pos] & 0x40) {
2056             fdctrl->fifo[0] = fdctrl->fifo[1];
2057             fdctrl->fifo[2] = 0;
2058             fdctrl->fifo[3] = 0;
2059             fdctrl_to_result_phase(fdctrl, 4);
2060         } else {
2061             fdctrl_to_command_phase(fdctrl);
2062         }
2063     } else if (fdctrl->data_len > 7) {
2064         /* ERROR */
2065         fdctrl->fifo[0] = 0x80 |
2066             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2067         fdctrl_to_result_phase(fdctrl, 1);
2068     }
2069 }
2070 
2071 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2072 {
2073     FDrive *cur_drv;
2074 
2075     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2076     cur_drv = get_cur_drv(fdctrl);
2077     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2078         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2079                 cur_drv->sect, 1);
2080     } else {
2081         fd_seek(cur_drv, cur_drv->head,
2082                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2083     }
2084     fdctrl_to_command_phase(fdctrl);
2085     /* Raise Interrupt */
2086     fdctrl->status0 |= FD_SR0_SEEK;
2087     fdctrl_raise_irq(fdctrl);
2088 }
2089 
2090 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2091 {
2092     FDrive *cur_drv;
2093 
2094     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2095     cur_drv = get_cur_drv(fdctrl);
2096     if (fdctrl->fifo[2] > cur_drv->track) {
2097         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2098     } else {
2099         fd_seek(cur_drv, cur_drv->head,
2100                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2101     }
2102     fdctrl_to_command_phase(fdctrl);
2103     /* Raise Interrupt */
2104     fdctrl->status0 |= FD_SR0_SEEK;
2105     fdctrl_raise_irq(fdctrl);
2106 }
2107 
2108 /*
2109  * Handlers for the execution phase of each command
2110  */
2111 typedef struct FDCtrlCommand {
2112     uint8_t value;
2113     uint8_t mask;
2114     const char* name;
2115     int parameters;
2116     void (*handler)(FDCtrl *fdctrl, int direction);
2117     int direction;
2118 } FDCtrlCommand;
2119 
2120 static const FDCtrlCommand handlers[] = {
2121     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2122     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2123     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2124     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2125     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2126     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2127     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2128     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2129     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2130     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2131     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2132     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2133     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2134     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2135     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2136     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2137     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2138     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2139     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2140     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2141     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2142     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2143     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2144     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2145     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2146     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2147     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2148     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2149     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2150     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2151     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2152     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2153 };
2154 /* Associate command to an index in the 'handlers' array */
2155 static uint8_t command_to_handler[256];
2156 
2157 static const FDCtrlCommand *get_command(uint8_t cmd)
2158 {
2159     int idx;
2160 
2161     idx = command_to_handler[cmd];
2162     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2163     return &handlers[idx];
2164 }
2165 
2166 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2167 {
2168     FDrive *cur_drv;
2169     const FDCtrlCommand *cmd;
2170     uint32_t pos;
2171 
2172     /* Reset mode */
2173     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2174         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2175         return;
2176     }
2177     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2178         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2179         return;
2180     }
2181     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2182 
2183     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2184 
2185     /* If data_len spans multiple sectors, the current position in the FIFO
2186      * wraps around while fdctrl->data_pos is the real position in the whole
2187      * request. */
2188     pos = fdctrl->data_pos++;
2189     pos %= FD_SECTOR_LEN;
2190     fdctrl->fifo[pos] = value;
2191 
2192     if (fdctrl->data_pos == fdctrl->data_len) {
2193         fdctrl->msr &= ~FD_MSR_RQM;
2194     }
2195 
2196     switch (fdctrl->phase) {
2197     case FD_PHASE_EXECUTION:
2198         /* For DMA requests, RQM should be cleared during execution phase, so
2199          * we would have errored out above. */
2200         assert(fdctrl->msr & FD_MSR_NONDMA);
2201 
2202         /* FIFO data write */
2203         if (pos == FD_SECTOR_LEN - 1 ||
2204             fdctrl->data_pos == fdctrl->data_len) {
2205             cur_drv = get_cur_drv(fdctrl);
2206             if (blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
2207                 < 0) {
2208                 FLOPPY_DPRINTF("error writing sector %d\n",
2209                                fd_sector(cur_drv));
2210                 break;
2211             }
2212             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2213                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2214                                fd_sector(cur_drv));
2215                 break;
2216             }
2217         }
2218 
2219         /* Switch to result phase when done with the transfer */
2220         if (fdctrl->data_pos == fdctrl->data_len) {
2221             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2222         }
2223         break;
2224 
2225     case FD_PHASE_COMMAND:
2226         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2227         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2228 
2229         if (pos == 0) {
2230             /* The first byte specifies the command. Now we start reading
2231              * as many parameters as this command requires. */
2232             cmd = get_command(value);
2233             fdctrl->data_len = cmd->parameters + 1;
2234             if (cmd->parameters) {
2235                 fdctrl->msr |= FD_MSR_RQM;
2236             }
2237             fdctrl->msr |= FD_MSR_CMDBUSY;
2238         }
2239 
2240         if (fdctrl->data_pos == fdctrl->data_len) {
2241             /* We have all parameters now, execute the command */
2242             fdctrl->phase = FD_PHASE_EXECUTION;
2243 
2244             if (fdctrl->data_state & FD_STATE_FORMAT) {
2245                 fdctrl_format_sector(fdctrl);
2246                 break;
2247             }
2248 
2249             cmd = get_command(fdctrl->fifo[0]);
2250             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2251             cmd->handler(fdctrl, cmd->direction);
2252         }
2253         break;
2254 
2255     case FD_PHASE_RESULT:
2256     default:
2257         abort();
2258     }
2259 }
2260 
2261 static void fdctrl_result_timer(void *opaque)
2262 {
2263     FDCtrl *fdctrl = opaque;
2264     FDrive *cur_drv = get_cur_drv(fdctrl);
2265 
2266     /* Pretend we are spinning.
2267      * This is needed for Coherent, which uses READ ID to check for
2268      * sector interleaving.
2269      */
2270     if (cur_drv->last_sect != 0) {
2271         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2272     }
2273     /* READ_ID can't automatically succeed! */
2274     if (fdctrl->check_media_rate &&
2275         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2276         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2277                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2278         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2279     } else {
2280         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2281     }
2282 }
2283 
2284 static void fdctrl_change_cb(void *opaque, bool load)
2285 {
2286     FDrive *drive = opaque;
2287 
2288     drive->media_inserted = load && drive->blk && blk_is_inserted(drive->blk);
2289 
2290     drive->media_changed = 1;
2291     drive->media_validated = false;
2292     fd_revalidate(drive);
2293 }
2294 
2295 static bool fdctrl_is_tray_open(void *opaque)
2296 {
2297     FDrive *drive = opaque;
2298     return !drive->media_inserted;
2299 }
2300 
2301 static const BlockDevOps fdctrl_block_ops = {
2302     .change_media_cb = fdctrl_change_cb,
2303     .is_tray_open = fdctrl_is_tray_open,
2304 };
2305 
2306 /* Init functions */
2307 static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp)
2308 {
2309     unsigned int i;
2310     FDrive *drive;
2311 
2312     for (i = 0; i < MAX_FD; i++) {
2313         drive = &fdctrl->drives[i];
2314         drive->fdctrl = fdctrl;
2315 
2316         if (drive->blk) {
2317             if (blk_get_on_error(drive->blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC) {
2318                 error_setg(errp, "fdc doesn't support drive option werror");
2319                 return;
2320             }
2321             if (blk_get_on_error(drive->blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
2322                 error_setg(errp, "fdc doesn't support drive option rerror");
2323                 return;
2324             }
2325         }
2326 
2327         fd_init(drive);
2328         if (drive->blk) {
2329             blk_set_dev_ops(drive->blk, &fdctrl_block_ops, drive);
2330             drive->media_inserted = blk_is_inserted(drive->blk);
2331             pick_drive_type(drive);
2332         }
2333         fd_revalidate(drive);
2334     }
2335 }
2336 
2337 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2338 {
2339     DeviceState *dev;
2340     ISADevice *isadev;
2341 
2342     isadev = isa_try_create(bus, TYPE_ISA_FDC);
2343     if (!isadev) {
2344         return NULL;
2345     }
2346     dev = DEVICE(isadev);
2347 
2348     if (fds[0]) {
2349         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2350                             &error_fatal);
2351     }
2352     if (fds[1]) {
2353         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2354                             &error_fatal);
2355     }
2356     qdev_init_nofail(dev);
2357 
2358     return isadev;
2359 }
2360 
2361 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2362                         hwaddr mmio_base, DriveInfo **fds)
2363 {
2364     FDCtrl *fdctrl;
2365     DeviceState *dev;
2366     SysBusDevice *sbd;
2367     FDCtrlSysBus *sys;
2368 
2369     dev = qdev_create(NULL, "sysbus-fdc");
2370     sys = SYSBUS_FDC(dev);
2371     fdctrl = &sys->state;
2372     fdctrl->dma_chann = dma_chann; /* FIXME */
2373     if (fds[0]) {
2374         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2375                             &error_fatal);
2376     }
2377     if (fds[1]) {
2378         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2379                             &error_fatal);
2380     }
2381     qdev_init_nofail(dev);
2382     sbd = SYS_BUS_DEVICE(dev);
2383     sysbus_connect_irq(sbd, 0, irq);
2384     sysbus_mmio_map(sbd, 0, mmio_base);
2385 }
2386 
2387 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2388                        DriveInfo **fds, qemu_irq *fdc_tc)
2389 {
2390     DeviceState *dev;
2391     FDCtrlSysBus *sys;
2392 
2393     dev = qdev_create(NULL, "SUNW,fdtwo");
2394     if (fds[0]) {
2395         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2396                             &error_fatal);
2397     }
2398     qdev_init_nofail(dev);
2399     sys = SYSBUS_FDC(dev);
2400     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2401     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2402     *fdc_tc = qdev_get_gpio_in(dev, 0);
2403 }
2404 
2405 static void fdctrl_realize_common(FDCtrl *fdctrl, Error **errp)
2406 {
2407     int i, j;
2408     static int command_tables_inited = 0;
2409 
2410     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2411         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2412     }
2413 
2414     /* Fill 'command_to_handler' lookup table */
2415     if (!command_tables_inited) {
2416         command_tables_inited = 1;
2417         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2418             for (j = 0; j < sizeof(command_to_handler); j++) {
2419                 if ((j & handlers[i].mask) == handlers[i].value) {
2420                     command_to_handler[j] = i;
2421                 }
2422             }
2423         }
2424     }
2425 
2426     FLOPPY_DPRINTF("init controller\n");
2427     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2428     fdctrl->fifo_size = 512;
2429     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2430                                              fdctrl_result_timer, fdctrl);
2431 
2432     fdctrl->version = 0x90; /* Intel 82078 controller */
2433     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2434     fdctrl->num_floppies = MAX_FD;
2435 
2436     if (fdctrl->dma_chann != -1) {
2437         DMA_register_channel(fdctrl->dma_chann, &fdctrl_transfer_handler, fdctrl);
2438     }
2439     fdctrl_connect_drives(fdctrl, errp);
2440 }
2441 
2442 static const MemoryRegionPortio fdc_portio_list[] = {
2443     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2444     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2445     PORTIO_END_OF_LIST(),
2446 };
2447 
2448 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2449 {
2450     ISADevice *isadev = ISA_DEVICE(dev);
2451     FDCtrlISABus *isa = ISA_FDC(dev);
2452     FDCtrl *fdctrl = &isa->state;
2453     Error *err = NULL;
2454 
2455     isa_register_portio_list(isadev, isa->iobase, fdc_portio_list, fdctrl,
2456                              "fdc");
2457 
2458     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2459     fdctrl->dma_chann = isa->dma;
2460 
2461     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2462     fdctrl_realize_common(fdctrl, &err);
2463     if (err != NULL) {
2464         error_propagate(errp, err);
2465         return;
2466     }
2467 }
2468 
2469 static void sysbus_fdc_initfn(Object *obj)
2470 {
2471     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2472     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2473     FDCtrl *fdctrl = &sys->state;
2474 
2475     fdctrl->dma_chann = -1;
2476 
2477     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2478                           "fdc", 0x08);
2479     sysbus_init_mmio(sbd, &fdctrl->iomem);
2480 }
2481 
2482 static void sun4m_fdc_initfn(Object *obj)
2483 {
2484     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2485     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2486     FDCtrl *fdctrl = &sys->state;
2487 
2488     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2489                           fdctrl, "fdctrl", 0x08);
2490     sysbus_init_mmio(sbd, &fdctrl->iomem);
2491 }
2492 
2493 static void sysbus_fdc_common_initfn(Object *obj)
2494 {
2495     DeviceState *dev = DEVICE(obj);
2496     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2497     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2498     FDCtrl *fdctrl = &sys->state;
2499 
2500     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2501 
2502     sysbus_init_irq(sbd, &fdctrl->irq);
2503     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2504 }
2505 
2506 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2507 {
2508     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2509     FDCtrl *fdctrl = &sys->state;
2510 
2511     fdctrl_realize_common(fdctrl, errp);
2512 }
2513 
2514 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2515 {
2516     FDCtrlISABus *isa = ISA_FDC(fdc);
2517 
2518     return isa->state.drives[i].drive;
2519 }
2520 
2521 static const VMStateDescription vmstate_isa_fdc ={
2522     .name = "fdc",
2523     .version_id = 2,
2524     .minimum_version_id = 2,
2525     .fields = (VMStateField[]) {
2526         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2527         VMSTATE_END_OF_LIST()
2528     }
2529 };
2530 
2531 static Property isa_fdc_properties[] = {
2532     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2533     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2534     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2535     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.drives[0].blk),
2536     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.drives[1].blk),
2537     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2538                     0, true),
2539     DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus, state.drives[0].drive,
2540                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2541                         FloppyDriveType),
2542     DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus, state.drives[1].drive,
2543                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2544                         FloppyDriveType),
2545     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2546                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2547                         FloppyDriveType),
2548     DEFINE_PROP_END_OF_LIST(),
2549 };
2550 
2551 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2552 {
2553     DeviceClass *dc = DEVICE_CLASS(klass);
2554 
2555     dc->realize = isabus_fdc_realize;
2556     dc->fw_name = "fdc";
2557     dc->reset = fdctrl_external_reset_isa;
2558     dc->vmsd = &vmstate_isa_fdc;
2559     dc->props = isa_fdc_properties;
2560     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2561 }
2562 
2563 static void isabus_fdc_instance_init(Object *obj)
2564 {
2565     FDCtrlISABus *isa = ISA_FDC(obj);
2566 
2567     device_add_bootindex_property(obj, &isa->bootindexA,
2568                                   "bootindexA", "/floppy@0",
2569                                   DEVICE(obj), NULL);
2570     device_add_bootindex_property(obj, &isa->bootindexB,
2571                                   "bootindexB", "/floppy@1",
2572                                   DEVICE(obj), NULL);
2573 }
2574 
2575 static const TypeInfo isa_fdc_info = {
2576     .name          = TYPE_ISA_FDC,
2577     .parent        = TYPE_ISA_DEVICE,
2578     .instance_size = sizeof(FDCtrlISABus),
2579     .class_init    = isabus_fdc_class_init,
2580     .instance_init = isabus_fdc_instance_init,
2581 };
2582 
2583 static const VMStateDescription vmstate_sysbus_fdc ={
2584     .name = "fdc",
2585     .version_id = 2,
2586     .minimum_version_id = 2,
2587     .fields = (VMStateField[]) {
2588         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2589         VMSTATE_END_OF_LIST()
2590     }
2591 };
2592 
2593 static Property sysbus_fdc_properties[] = {
2594     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.drives[0].blk),
2595     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.drives[1].blk),
2596     DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus, state.drives[0].drive,
2597                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2598                         FloppyDriveType),
2599     DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus, state.drives[1].drive,
2600                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2601                         FloppyDriveType),
2602     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2603                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2604                         FloppyDriveType),
2605     DEFINE_PROP_END_OF_LIST(),
2606 };
2607 
2608 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2609 {
2610     DeviceClass *dc = DEVICE_CLASS(klass);
2611 
2612     dc->props = sysbus_fdc_properties;
2613     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2614 }
2615 
2616 static const TypeInfo sysbus_fdc_info = {
2617     .name          = "sysbus-fdc",
2618     .parent        = TYPE_SYSBUS_FDC,
2619     .instance_init = sysbus_fdc_initfn,
2620     .class_init    = sysbus_fdc_class_init,
2621 };
2622 
2623 static Property sun4m_fdc_properties[] = {
2624     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.drives[0].blk),
2625     DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus, state.drives[0].drive,
2626                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2627                         FloppyDriveType),
2628     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2629                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2630                         FloppyDriveType),
2631     DEFINE_PROP_END_OF_LIST(),
2632 };
2633 
2634 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2635 {
2636     DeviceClass *dc = DEVICE_CLASS(klass);
2637 
2638     dc->props = sun4m_fdc_properties;
2639     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2640 }
2641 
2642 static const TypeInfo sun4m_fdc_info = {
2643     .name          = "SUNW,fdtwo",
2644     .parent        = TYPE_SYSBUS_FDC,
2645     .instance_init = sun4m_fdc_initfn,
2646     .class_init    = sun4m_fdc_class_init,
2647 };
2648 
2649 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2650 {
2651     DeviceClass *dc = DEVICE_CLASS(klass);
2652 
2653     dc->realize = sysbus_fdc_common_realize;
2654     dc->reset = fdctrl_external_reset_sysbus;
2655     dc->vmsd = &vmstate_sysbus_fdc;
2656 }
2657 
2658 static const TypeInfo sysbus_fdc_type_info = {
2659     .name          = TYPE_SYSBUS_FDC,
2660     .parent        = TYPE_SYS_BUS_DEVICE,
2661     .instance_size = sizeof(FDCtrlSysBus),
2662     .instance_init = sysbus_fdc_common_initfn,
2663     .abstract      = true,
2664     .class_init    = sysbus_fdc_common_class_init,
2665 };
2666 
2667 static void fdc_register_types(void)
2668 {
2669     type_register_static(&isa_fdc_info);
2670     type_register_static(&sysbus_fdc_type_info);
2671     type_register_static(&sysbus_fdc_info);
2672     type_register_static(&sun4m_fdc_info);
2673 }
2674 
2675 type_init(fdc_register_types)
2676