1 /* 2 * QEMU Floppy disk emulator (Intel 82078) 3 * 4 * Copyright (c) 2003, 2007 Jocelyn Mayer 5 * Copyright (c) 2008 Hervé Poussineau 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 /* 26 * The controller is used in Sun4m systems in a slightly different 27 * way. There are changes in DOR register and DMA is not available. 28 */ 29 30 #include "qemu/osdep.h" 31 #include "hw/block/fdc.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 #include "qemu/timer.h" 35 #include "qemu/memalign.h" 36 #include "hw/irq.h" 37 #include "hw/isa/isa.h" 38 #include "hw/qdev-properties.h" 39 #include "hw/qdev-properties-system.h" 40 #include "migration/vmstate.h" 41 #include "hw/block/block.h" 42 #include "sysemu/block-backend.h" 43 #include "sysemu/blockdev.h" 44 #include "sysemu/sysemu.h" 45 #include "qemu/log.h" 46 #include "qemu/main-loop.h" 47 #include "qemu/module.h" 48 #include "trace.h" 49 #include "qom/object.h" 50 #include "fdc-internal.h" 51 52 /********************************************************/ 53 /* debug Floppy devices */ 54 55 #define DEBUG_FLOPPY 0 56 57 #define FLOPPY_DPRINTF(fmt, ...) \ 58 do { \ 59 if (DEBUG_FLOPPY) { \ 60 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \ 61 } \ 62 } while (0) 63 64 65 /* Anonymous BlockBackend for empty drive */ 66 static BlockBackend *blk_create_empty_drive(void) 67 { 68 return blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL); 69 } 70 71 /********************************************************/ 72 /* qdev floppy bus */ 73 74 #define TYPE_FLOPPY_BUS "floppy-bus" 75 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS) 76 77 static FDrive *get_drv(FDCtrl *fdctrl, int unit); 78 79 static const TypeInfo floppy_bus_info = { 80 .name = TYPE_FLOPPY_BUS, 81 .parent = TYPE_BUS, 82 .instance_size = sizeof(FloppyBus), 83 }; 84 85 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev) 86 { 87 qbus_init(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL); 88 bus->fdc = fdc; 89 } 90 91 92 /********************************************************/ 93 /* Floppy drive emulation */ 94 95 /* In many cases, the total sector size of a format is enough to uniquely 96 * identify it. However, there are some total sector collisions between 97 * formats of different physical size, and these are noted below by 98 * highlighting the total sector size for entries with collisions. */ 99 const FDFormat fd_formats[] = { 100 /* First entry is default format */ 101 /* 1.44 MB 3"1/2 floppy disks */ 102 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */ 103 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */ 104 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, }, 105 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, }, 106 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, }, 107 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, }, 108 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, }, 109 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, }, 110 /* 2.88 MB 3"1/2 floppy disks */ 111 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, }, 112 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, }, 113 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, }, 114 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, }, 115 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, }, 116 /* 720 kB 3"1/2 floppy disks */ 117 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */ 118 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, }, 119 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, }, 120 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, }, 121 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, }, 122 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, }, 123 /* 1.2 MB 5"1/4 floppy disks */ 124 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, }, 125 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */ 126 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, }, 127 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, }, 128 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */ 129 /* 720 kB 5"1/4 floppy disks */ 130 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */ 131 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, }, 132 /* 360 kB 5"1/4 floppy disks */ 133 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */ 134 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, }, 135 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, }, 136 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, }, 137 /* 320 kB 5"1/4 floppy disks */ 138 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, }, 139 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, }, 140 /* 360 kB must match 5"1/4 better than 3"1/2... */ 141 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */ 142 /* end */ 143 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, }, 144 }; 145 146 static FDriveSize drive_size(FloppyDriveType drive) 147 { 148 switch (drive) { 149 case FLOPPY_DRIVE_TYPE_120: 150 return FDRIVE_SIZE_525; 151 case FLOPPY_DRIVE_TYPE_144: 152 case FLOPPY_DRIVE_TYPE_288: 153 return FDRIVE_SIZE_350; 154 default: 155 return FDRIVE_SIZE_UNKNOWN; 156 } 157 } 158 159 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv) 160 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive)) 161 162 /* Will always be a fixed parameter for us */ 163 #define FD_SECTOR_LEN 512 164 #define FD_SECTOR_SC 2 /* Sector size code */ 165 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */ 166 167 168 static FloppyDriveType get_fallback_drive_type(FDrive *drv); 169 170 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU 171 * currently goes through some pains to keep seeks within the bounds 172 * established by last_sect and max_track. Correcting this is difficult, 173 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel. 174 * 175 * For now: allow empty drives to have large bounds so we can seek around, 176 * with the understanding that when a diskette is inserted, the bounds will 177 * properly tighten to match the geometry of that inserted medium. 178 */ 179 static void fd_empty_seek_hack(FDrive *drv) 180 { 181 drv->last_sect = 0xFF; 182 drv->max_track = 0xFF; 183 } 184 185 static void fd_init(FDrive *drv) 186 { 187 /* Drive */ 188 drv->perpendicular = 0; 189 /* Disk */ 190 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 191 drv->last_sect = 0; 192 drv->max_track = 0; 193 drv->ro = true; 194 drv->media_changed = 1; 195 } 196 197 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1) 198 199 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect, 200 uint8_t last_sect, uint8_t num_sides) 201 { 202 return (((track * num_sides) + head) * last_sect) + sect - 1; 203 } 204 205 /* Returns current position, in sectors, for given drive */ 206 static int fd_sector(FDrive *drv) 207 { 208 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect, 209 NUM_SIDES(drv)); 210 } 211 212 /* Returns current position, in bytes, for given drive */ 213 static int fd_offset(FDrive *drv) 214 { 215 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS); 216 return fd_sector(drv) << BDRV_SECTOR_BITS; 217 } 218 219 /* Seek to a new position: 220 * returns 0 if already on right track 221 * returns 1 if track changed 222 * returns 2 if track is invalid 223 * returns 3 if sector is invalid 224 * returns 4 if seek is disabled 225 */ 226 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect, 227 int enable_seek) 228 { 229 uint32_t sector; 230 int ret; 231 232 if (track > drv->max_track || 233 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) { 234 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", 235 head, track, sect, 1, 236 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, 237 drv->max_track, drv->last_sect); 238 return 2; 239 } 240 if (sect > drv->last_sect) { 241 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", 242 head, track, sect, 1, 243 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, 244 drv->max_track, drv->last_sect); 245 return 3; 246 } 247 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv)); 248 ret = 0; 249 if (sector != fd_sector(drv)) { 250 #if 0 251 if (!enable_seek) { 252 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x" 253 " (max=%d %02x %02x)\n", 254 head, track, sect, 1, drv->max_track, 255 drv->last_sect); 256 return 4; 257 } 258 #endif 259 drv->head = head; 260 if (drv->track != track) { 261 if (drv->blk != NULL && blk_is_inserted(drv->blk)) { 262 drv->media_changed = 0; 263 } 264 ret = 1; 265 } 266 drv->track = track; 267 drv->sect = sect; 268 } 269 270 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) { 271 ret = 2; 272 } 273 274 return ret; 275 } 276 277 /* Set drive back to track 0 */ 278 static void fd_recalibrate(FDrive *drv) 279 { 280 FLOPPY_DPRINTF("recalibrate\n"); 281 fd_seek(drv, 0, 0, 1, 1); 282 } 283 284 /** 285 * Determine geometry based on inserted diskette. 286 * Will not operate on an empty drive. 287 * 288 * @return: 0 on success, -1 if the drive is empty. 289 */ 290 static int pick_geometry(FDrive *drv) 291 { 292 BlockBackend *blk = drv->blk; 293 const FDFormat *parse; 294 uint64_t nb_sectors, size; 295 int i; 296 int match, size_match, type_match; 297 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO; 298 299 /* We can only pick a geometry if we have a diskette. */ 300 if (!drv->blk || !blk_is_inserted(drv->blk) || 301 drv->drive == FLOPPY_DRIVE_TYPE_NONE) 302 { 303 return -1; 304 } 305 306 /* We need to determine the likely geometry of the inserted medium. 307 * In order of preference, we look for: 308 * (1) The same drive type and number of sectors, 309 * (2) The same diskette size and number of sectors, 310 * (3) The same drive type. 311 * 312 * In all cases, matches that occur higher in the drive table will take 313 * precedence over matches that occur later in the table. 314 */ 315 blk_get_geometry(blk, &nb_sectors); 316 match = size_match = type_match = -1; 317 for (i = 0; ; i++) { 318 parse = &fd_formats[i]; 319 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) { 320 break; 321 } 322 size = (parse->max_head + 1) * parse->max_track * parse->last_sect; 323 if (nb_sectors == size) { 324 if (magic || parse->drive == drv->drive) { 325 /* (1) perfect match -- nb_sectors and drive type */ 326 goto out; 327 } else if (drive_size(parse->drive) == drive_size(drv->drive)) { 328 /* (2) size match -- nb_sectors and physical medium size */ 329 match = (match == -1) ? i : match; 330 } else { 331 /* This is suspicious -- Did the user misconfigure? */ 332 size_match = (size_match == -1) ? i : size_match; 333 } 334 } else if (type_match == -1) { 335 if ((parse->drive == drv->drive) || 336 (magic && (parse->drive == get_fallback_drive_type(drv)))) { 337 /* (3) type match -- nb_sectors mismatch, but matches the type 338 * specified explicitly by the user, or matches the fallback 339 * default type when using the drive autodetect mechanism */ 340 type_match = i; 341 } 342 } 343 } 344 345 /* No exact match found */ 346 if (match == -1) { 347 if (size_match != -1) { 348 parse = &fd_formats[size_match]; 349 FLOPPY_DPRINTF("User requested floppy drive type '%s', " 350 "but inserted medium appears to be a " 351 "%"PRId64" sector '%s' type\n", 352 FloppyDriveType_str(drv->drive), 353 nb_sectors, 354 FloppyDriveType_str(parse->drive)); 355 } 356 assert(type_match != -1 && "misconfigured fd_format"); 357 match = type_match; 358 } 359 parse = &(fd_formats[match]); 360 361 out: 362 if (parse->max_head == 0) { 363 drv->flags &= ~FDISK_DBL_SIDES; 364 } else { 365 drv->flags |= FDISK_DBL_SIDES; 366 } 367 drv->max_track = parse->max_track; 368 drv->last_sect = parse->last_sect; 369 drv->disk = parse->drive; 370 drv->media_rate = parse->rate; 371 return 0; 372 } 373 374 static void pick_drive_type(FDrive *drv) 375 { 376 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) { 377 return; 378 } 379 380 if (pick_geometry(drv) == 0) { 381 drv->drive = drv->disk; 382 } else { 383 drv->drive = get_fallback_drive_type(drv); 384 } 385 386 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO); 387 } 388 389 /* Revalidate a disk drive after a disk change */ 390 static void fd_revalidate(FDrive *drv) 391 { 392 int rc; 393 394 FLOPPY_DPRINTF("revalidate\n"); 395 if (drv->blk != NULL) { 396 drv->ro = !blk_is_writable(drv->blk); 397 if (!blk_is_inserted(drv->blk)) { 398 FLOPPY_DPRINTF("No disk in drive\n"); 399 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 400 fd_empty_seek_hack(drv); 401 } else if (!drv->media_validated) { 402 rc = pick_geometry(drv); 403 if (rc) { 404 FLOPPY_DPRINTF("Could not validate floppy drive media"); 405 } else { 406 drv->media_validated = true; 407 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n", 408 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1, 409 drv->max_track, drv->last_sect, 410 drv->ro ? "ro" : "rw"); 411 } 412 } 413 } else { 414 FLOPPY_DPRINTF("No drive connected\n"); 415 drv->last_sect = 0; 416 drv->max_track = 0; 417 drv->flags &= ~FDISK_DBL_SIDES; 418 drv->drive = FLOPPY_DRIVE_TYPE_NONE; 419 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 420 } 421 } 422 423 static void fd_change_cb(void *opaque, bool load, Error **errp) 424 { 425 FDrive *drive = opaque; 426 427 if (!load) { 428 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort); 429 } else { 430 if (!blkconf_apply_backend_options(drive->conf, 431 !blk_supports_write_perm(drive->blk), 432 false, errp)) { 433 return; 434 } 435 } 436 437 drive->media_changed = 1; 438 drive->media_validated = false; 439 fd_revalidate(drive); 440 } 441 442 static const BlockDevOps fd_block_ops = { 443 .change_media_cb = fd_change_cb, 444 }; 445 446 447 #define TYPE_FLOPPY_DRIVE "floppy" 448 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE) 449 450 struct FloppyDrive { 451 DeviceState qdev; 452 uint32_t unit; 453 BlockConf conf; 454 FloppyDriveType type; 455 }; 456 457 static Property floppy_drive_properties[] = { 458 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1), 459 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf), 460 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type, 461 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 462 FloppyDriveType), 463 DEFINE_PROP_END_OF_LIST(), 464 }; 465 466 static void floppy_drive_realize(DeviceState *qdev, Error **errp) 467 { 468 FloppyDrive *dev = FLOPPY_DRIVE(qdev); 469 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus); 470 FDrive *drive; 471 bool read_only; 472 int ret; 473 474 if (dev->unit == -1) { 475 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) { 476 drive = get_drv(bus->fdc, dev->unit); 477 if (!drive->blk) { 478 break; 479 } 480 } 481 } 482 483 if (dev->unit >= MAX_FD) { 484 error_setg(errp, "Can't create floppy unit %d, bus supports " 485 "only %d units", dev->unit, MAX_FD); 486 return; 487 } 488 489 drive = get_drv(bus->fdc, dev->unit); 490 if (drive->blk) { 491 error_setg(errp, "Floppy unit %d is in use", dev->unit); 492 return; 493 } 494 495 if (!dev->conf.blk) { 496 dev->conf.blk = blk_create_empty_drive(); 497 ret = blk_attach_dev(dev->conf.blk, qdev); 498 assert(ret == 0); 499 500 /* Don't take write permissions on an empty drive to allow attaching a 501 * read-only node later */ 502 read_only = true; 503 } else { 504 read_only = !blk_bs(dev->conf.blk) || 505 !blk_supports_write_perm(dev->conf.blk); 506 } 507 508 if (!blkconf_blocksizes(&dev->conf, errp)) { 509 return; 510 } 511 512 if (dev->conf.logical_block_size != 512 || 513 dev->conf.physical_block_size != 512) 514 { 515 error_setg(errp, "Physical and logical block size must " 516 "be 512 for floppy"); 517 return; 518 } 519 520 /* rerror/werror aren't supported by fdc and therefore not even registered 521 * with qdev. So set the defaults manually before they are used in 522 * blkconf_apply_backend_options(). */ 523 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO; 524 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO; 525 526 if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) { 527 return; 528 } 529 530 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us 531 * for empty drives. */ 532 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC && 533 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) { 534 error_setg(errp, "fdc doesn't support drive option werror"); 535 return; 536 } 537 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) { 538 error_setg(errp, "fdc doesn't support drive option rerror"); 539 return; 540 } 541 542 drive->conf = &dev->conf; 543 drive->blk = dev->conf.blk; 544 drive->fdctrl = bus->fdc; 545 546 fd_init(drive); 547 blk_set_dev_ops(drive->blk, &fd_block_ops, drive); 548 549 /* Keep 'type' qdev property and FDrive->drive in sync */ 550 drive->drive = dev->type; 551 pick_drive_type(drive); 552 dev->type = drive->drive; 553 554 fd_revalidate(drive); 555 } 556 557 static void floppy_drive_class_init(ObjectClass *klass, void *data) 558 { 559 DeviceClass *k = DEVICE_CLASS(klass); 560 k->realize = floppy_drive_realize; 561 set_bit(DEVICE_CATEGORY_STORAGE, k->categories); 562 k->bus_type = TYPE_FLOPPY_BUS; 563 device_class_set_props(k, floppy_drive_properties); 564 k->desc = "virtual floppy drive"; 565 } 566 567 static const TypeInfo floppy_drive_info = { 568 .name = TYPE_FLOPPY_DRIVE, 569 .parent = TYPE_DEVICE, 570 .instance_size = sizeof(FloppyDrive), 571 .class_init = floppy_drive_class_init, 572 }; 573 574 /********************************************************/ 575 /* Intel 82078 floppy disk controller emulation */ 576 577 static void fdctrl_to_command_phase(FDCtrl *fdctrl); 578 static void fdctrl_raise_irq(FDCtrl *fdctrl); 579 static FDrive *get_cur_drv(FDCtrl *fdctrl); 580 581 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl); 582 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl); 583 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl); 584 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value); 585 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl); 586 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value); 587 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl); 588 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value); 589 static uint32_t fdctrl_read_data(FDCtrl *fdctrl); 590 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value); 591 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl); 592 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value); 593 594 enum { 595 FD_DIR_WRITE = 0, 596 FD_DIR_READ = 1, 597 FD_DIR_SCANE = 2, 598 FD_DIR_SCANL = 3, 599 FD_DIR_SCANH = 4, 600 FD_DIR_VERIFY = 5, 601 }; 602 603 enum { 604 FD_STATE_MULTI = 0x01, /* multi track flag */ 605 FD_STATE_FORMAT = 0x02, /* format flag */ 606 }; 607 608 enum { 609 FD_REG_SRA = 0x00, 610 FD_REG_SRB = 0x01, 611 FD_REG_DOR = 0x02, 612 FD_REG_TDR = 0x03, 613 FD_REG_MSR = 0x04, 614 FD_REG_DSR = 0x04, 615 FD_REG_FIFO = 0x05, 616 FD_REG_DIR = 0x07, 617 FD_REG_CCR = 0x07, 618 }; 619 620 enum { 621 FD_CMD_READ_TRACK = 0x02, 622 FD_CMD_SPECIFY = 0x03, 623 FD_CMD_SENSE_DRIVE_STATUS = 0x04, 624 FD_CMD_WRITE = 0x05, 625 FD_CMD_READ = 0x06, 626 FD_CMD_RECALIBRATE = 0x07, 627 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08, 628 FD_CMD_WRITE_DELETED = 0x09, 629 FD_CMD_READ_ID = 0x0a, 630 FD_CMD_READ_DELETED = 0x0c, 631 FD_CMD_FORMAT_TRACK = 0x0d, 632 FD_CMD_DUMPREG = 0x0e, 633 FD_CMD_SEEK = 0x0f, 634 FD_CMD_VERSION = 0x10, 635 FD_CMD_SCAN_EQUAL = 0x11, 636 FD_CMD_PERPENDICULAR_MODE = 0x12, 637 FD_CMD_CONFIGURE = 0x13, 638 FD_CMD_LOCK = 0x14, 639 FD_CMD_VERIFY = 0x16, 640 FD_CMD_POWERDOWN_MODE = 0x17, 641 FD_CMD_PART_ID = 0x18, 642 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19, 643 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d, 644 FD_CMD_SAVE = 0x2e, 645 FD_CMD_OPTION = 0x33, 646 FD_CMD_RESTORE = 0x4e, 647 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e, 648 FD_CMD_RELATIVE_SEEK_OUT = 0x8f, 649 FD_CMD_FORMAT_AND_WRITE = 0xcd, 650 FD_CMD_RELATIVE_SEEK_IN = 0xcf, 651 }; 652 653 enum { 654 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */ 655 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */ 656 FD_CONFIG_POLL = 0x10, /* Poll enabled */ 657 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */ 658 FD_CONFIG_EIS = 0x40, /* No implied seeks */ 659 }; 660 661 enum { 662 FD_SR0_DS0 = 0x01, 663 FD_SR0_DS1 = 0x02, 664 FD_SR0_HEAD = 0x04, 665 FD_SR0_EQPMT = 0x10, 666 FD_SR0_SEEK = 0x20, 667 FD_SR0_ABNTERM = 0x40, 668 FD_SR0_INVCMD = 0x80, 669 FD_SR0_RDYCHG = 0xc0, 670 }; 671 672 enum { 673 FD_SR1_MA = 0x01, /* Missing address mark */ 674 FD_SR1_NW = 0x02, /* Not writable */ 675 FD_SR1_EC = 0x80, /* End of cylinder */ 676 }; 677 678 enum { 679 FD_SR2_SNS = 0x04, /* Scan not satisfied */ 680 FD_SR2_SEH = 0x08, /* Scan equal hit */ 681 }; 682 683 enum { 684 FD_SRA_DIR = 0x01, 685 FD_SRA_nWP = 0x02, 686 FD_SRA_nINDX = 0x04, 687 FD_SRA_HDSEL = 0x08, 688 FD_SRA_nTRK0 = 0x10, 689 FD_SRA_STEP = 0x20, 690 FD_SRA_nDRV2 = 0x40, 691 FD_SRA_INTPEND = 0x80, 692 }; 693 694 enum { 695 FD_SRB_MTR0 = 0x01, 696 FD_SRB_MTR1 = 0x02, 697 FD_SRB_WGATE = 0x04, 698 FD_SRB_RDATA = 0x08, 699 FD_SRB_WDATA = 0x10, 700 FD_SRB_DR0 = 0x20, 701 }; 702 703 enum { 704 #if MAX_FD == 4 705 FD_DOR_SELMASK = 0x03, 706 #else 707 FD_DOR_SELMASK = 0x01, 708 #endif 709 FD_DOR_nRESET = 0x04, 710 FD_DOR_DMAEN = 0x08, 711 FD_DOR_MOTEN0 = 0x10, 712 FD_DOR_MOTEN1 = 0x20, 713 FD_DOR_MOTEN2 = 0x40, 714 FD_DOR_MOTEN3 = 0x80, 715 }; 716 717 enum { 718 #if MAX_FD == 4 719 FD_TDR_BOOTSEL = 0x0c, 720 #else 721 FD_TDR_BOOTSEL = 0x04, 722 #endif 723 }; 724 725 enum { 726 FD_DSR_DRATEMASK= 0x03, 727 FD_DSR_PWRDOWN = 0x40, 728 FD_DSR_SWRESET = 0x80, 729 }; 730 731 enum { 732 FD_MSR_DRV0BUSY = 0x01, 733 FD_MSR_DRV1BUSY = 0x02, 734 FD_MSR_DRV2BUSY = 0x04, 735 FD_MSR_DRV3BUSY = 0x08, 736 FD_MSR_CMDBUSY = 0x10, 737 FD_MSR_NONDMA = 0x20, 738 FD_MSR_DIO = 0x40, 739 FD_MSR_RQM = 0x80, 740 }; 741 742 enum { 743 FD_DIR_DSKCHG = 0x80, 744 }; 745 746 /* 747 * See chapter 5.0 "Controller phases" of the spec: 748 * 749 * Command phase: 750 * The host writes a command and its parameters into the FIFO. The command 751 * phase is completed when all parameters for the command have been supplied, 752 * and execution phase is entered. 753 * 754 * Execution phase: 755 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO 756 * contains the payload now, otherwise it's unused. When all bytes of the 757 * required data have been transferred, the state is switched to either result 758 * phase (if the command produces status bytes) or directly back into the 759 * command phase for the next command. 760 * 761 * Result phase: 762 * The host reads out the FIFO, which contains one or more result bytes now. 763 */ 764 enum { 765 /* Only for migration: reconstruct phase from registers like qemu 2.3 */ 766 FD_PHASE_RECONSTRUCT = 0, 767 768 FD_PHASE_COMMAND = 1, 769 FD_PHASE_EXECUTION = 2, 770 FD_PHASE_RESULT = 3, 771 }; 772 773 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI) 774 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT) 775 776 static FloppyDriveType get_fallback_drive_type(FDrive *drv) 777 { 778 return drv->fdctrl->fallback; 779 } 780 781 uint32_t fdctrl_read(void *opaque, uint32_t reg) 782 { 783 FDCtrl *fdctrl = opaque; 784 uint32_t retval; 785 786 reg &= 7; 787 switch (reg) { 788 case FD_REG_SRA: 789 retval = fdctrl_read_statusA(fdctrl); 790 break; 791 case FD_REG_SRB: 792 retval = fdctrl_read_statusB(fdctrl); 793 break; 794 case FD_REG_DOR: 795 retval = fdctrl_read_dor(fdctrl); 796 break; 797 case FD_REG_TDR: 798 retval = fdctrl_read_tape(fdctrl); 799 break; 800 case FD_REG_MSR: 801 retval = fdctrl_read_main_status(fdctrl); 802 break; 803 case FD_REG_FIFO: 804 retval = fdctrl_read_data(fdctrl); 805 break; 806 case FD_REG_DIR: 807 retval = fdctrl_read_dir(fdctrl); 808 break; 809 default: 810 retval = (uint32_t)(-1); 811 break; 812 } 813 trace_fdc_ioport_read(reg, retval); 814 815 return retval; 816 } 817 818 void fdctrl_write(void *opaque, uint32_t reg, uint32_t value) 819 { 820 FDCtrl *fdctrl = opaque; 821 822 reg &= 7; 823 trace_fdc_ioport_write(reg, value); 824 switch (reg) { 825 case FD_REG_DOR: 826 fdctrl_write_dor(fdctrl, value); 827 break; 828 case FD_REG_TDR: 829 fdctrl_write_tape(fdctrl, value); 830 break; 831 case FD_REG_DSR: 832 fdctrl_write_rate(fdctrl, value); 833 break; 834 case FD_REG_FIFO: 835 fdctrl_write_data(fdctrl, value); 836 break; 837 case FD_REG_CCR: 838 fdctrl_write_ccr(fdctrl, value); 839 break; 840 default: 841 break; 842 } 843 } 844 845 static bool fdrive_media_changed_needed(void *opaque) 846 { 847 FDrive *drive = opaque; 848 849 return (drive->blk != NULL && drive->media_changed != 1); 850 } 851 852 static const VMStateDescription vmstate_fdrive_media_changed = { 853 .name = "fdrive/media_changed", 854 .version_id = 1, 855 .minimum_version_id = 1, 856 .needed = fdrive_media_changed_needed, 857 .fields = (VMStateField[]) { 858 VMSTATE_UINT8(media_changed, FDrive), 859 VMSTATE_END_OF_LIST() 860 } 861 }; 862 863 static const VMStateDescription vmstate_fdrive_media_rate = { 864 .name = "fdrive/media_rate", 865 .version_id = 1, 866 .minimum_version_id = 1, 867 .fields = (VMStateField[]) { 868 VMSTATE_UINT8(media_rate, FDrive), 869 VMSTATE_END_OF_LIST() 870 } 871 }; 872 873 static bool fdrive_perpendicular_needed(void *opaque) 874 { 875 FDrive *drive = opaque; 876 877 return drive->perpendicular != 0; 878 } 879 880 static const VMStateDescription vmstate_fdrive_perpendicular = { 881 .name = "fdrive/perpendicular", 882 .version_id = 1, 883 .minimum_version_id = 1, 884 .needed = fdrive_perpendicular_needed, 885 .fields = (VMStateField[]) { 886 VMSTATE_UINT8(perpendicular, FDrive), 887 VMSTATE_END_OF_LIST() 888 } 889 }; 890 891 static int fdrive_post_load(void *opaque, int version_id) 892 { 893 fd_revalidate(opaque); 894 return 0; 895 } 896 897 static const VMStateDescription vmstate_fdrive = { 898 .name = "fdrive", 899 .version_id = 1, 900 .minimum_version_id = 1, 901 .post_load = fdrive_post_load, 902 .fields = (VMStateField[]) { 903 VMSTATE_UINT8(head, FDrive), 904 VMSTATE_UINT8(track, FDrive), 905 VMSTATE_UINT8(sect, FDrive), 906 VMSTATE_END_OF_LIST() 907 }, 908 .subsections = (const VMStateDescription*[]) { 909 &vmstate_fdrive_media_changed, 910 &vmstate_fdrive_media_rate, 911 &vmstate_fdrive_perpendicular, 912 NULL 913 } 914 }; 915 916 /* 917 * Reconstructs the phase from register values according to the logic that was 918 * implemented in qemu 2.3. This is the default value that is used if the phase 919 * subsection is not present on migration. 920 * 921 * Don't change this function to reflect newer qemu versions, it is part of 922 * the migration ABI. 923 */ 924 static int reconstruct_phase(FDCtrl *fdctrl) 925 { 926 if (fdctrl->msr & FD_MSR_NONDMA) { 927 return FD_PHASE_EXECUTION; 928 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) { 929 /* qemu 2.3 disabled RQM only during DMA transfers */ 930 return FD_PHASE_EXECUTION; 931 } else if (fdctrl->msr & FD_MSR_DIO) { 932 return FD_PHASE_RESULT; 933 } else { 934 return FD_PHASE_COMMAND; 935 } 936 } 937 938 static int fdc_pre_save(void *opaque) 939 { 940 FDCtrl *s = opaque; 941 942 s->dor_vmstate = s->dor | GET_CUR_DRV(s); 943 944 return 0; 945 } 946 947 static int fdc_pre_load(void *opaque) 948 { 949 FDCtrl *s = opaque; 950 s->phase = FD_PHASE_RECONSTRUCT; 951 return 0; 952 } 953 954 static int fdc_post_load(void *opaque, int version_id) 955 { 956 FDCtrl *s = opaque; 957 958 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK); 959 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK; 960 961 if (s->phase == FD_PHASE_RECONSTRUCT) { 962 s->phase = reconstruct_phase(s); 963 } 964 965 return 0; 966 } 967 968 static bool fdc_reset_sensei_needed(void *opaque) 969 { 970 FDCtrl *s = opaque; 971 972 return s->reset_sensei != 0; 973 } 974 975 static const VMStateDescription vmstate_fdc_reset_sensei = { 976 .name = "fdc/reset_sensei", 977 .version_id = 1, 978 .minimum_version_id = 1, 979 .needed = fdc_reset_sensei_needed, 980 .fields = (VMStateField[]) { 981 VMSTATE_INT32(reset_sensei, FDCtrl), 982 VMSTATE_END_OF_LIST() 983 } 984 }; 985 986 static bool fdc_result_timer_needed(void *opaque) 987 { 988 FDCtrl *s = opaque; 989 990 return timer_pending(s->result_timer); 991 } 992 993 static const VMStateDescription vmstate_fdc_result_timer = { 994 .name = "fdc/result_timer", 995 .version_id = 1, 996 .minimum_version_id = 1, 997 .needed = fdc_result_timer_needed, 998 .fields = (VMStateField[]) { 999 VMSTATE_TIMER_PTR(result_timer, FDCtrl), 1000 VMSTATE_END_OF_LIST() 1001 } 1002 }; 1003 1004 static bool fdc_phase_needed(void *opaque) 1005 { 1006 FDCtrl *fdctrl = opaque; 1007 1008 return reconstruct_phase(fdctrl) != fdctrl->phase; 1009 } 1010 1011 static const VMStateDescription vmstate_fdc_phase = { 1012 .name = "fdc/phase", 1013 .version_id = 1, 1014 .minimum_version_id = 1, 1015 .needed = fdc_phase_needed, 1016 .fields = (VMStateField[]) { 1017 VMSTATE_UINT8(phase, FDCtrl), 1018 VMSTATE_END_OF_LIST() 1019 } 1020 }; 1021 1022 const VMStateDescription vmstate_fdc = { 1023 .name = "fdc", 1024 .version_id = 2, 1025 .minimum_version_id = 2, 1026 .pre_save = fdc_pre_save, 1027 .pre_load = fdc_pre_load, 1028 .post_load = fdc_post_load, 1029 .fields = (VMStateField[]) { 1030 /* Controller State */ 1031 VMSTATE_UINT8(sra, FDCtrl), 1032 VMSTATE_UINT8(srb, FDCtrl), 1033 VMSTATE_UINT8(dor_vmstate, FDCtrl), 1034 VMSTATE_UINT8(tdr, FDCtrl), 1035 VMSTATE_UINT8(dsr, FDCtrl), 1036 VMSTATE_UINT8(msr, FDCtrl), 1037 VMSTATE_UINT8(status0, FDCtrl), 1038 VMSTATE_UINT8(status1, FDCtrl), 1039 VMSTATE_UINT8(status2, FDCtrl), 1040 /* Command FIFO */ 1041 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8, 1042 uint8_t), 1043 VMSTATE_UINT32(data_pos, FDCtrl), 1044 VMSTATE_UINT32(data_len, FDCtrl), 1045 VMSTATE_UINT8(data_state, FDCtrl), 1046 VMSTATE_UINT8(data_dir, FDCtrl), 1047 VMSTATE_UINT8(eot, FDCtrl), 1048 /* States kept only to be returned back */ 1049 VMSTATE_UINT8(timer0, FDCtrl), 1050 VMSTATE_UINT8(timer1, FDCtrl), 1051 VMSTATE_UINT8(precomp_trk, FDCtrl), 1052 VMSTATE_UINT8(config, FDCtrl), 1053 VMSTATE_UINT8(lock, FDCtrl), 1054 VMSTATE_UINT8(pwrd, FDCtrl), 1055 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL), 1056 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1, 1057 vmstate_fdrive, FDrive), 1058 VMSTATE_END_OF_LIST() 1059 }, 1060 .subsections = (const VMStateDescription*[]) { 1061 &vmstate_fdc_reset_sensei, 1062 &vmstate_fdc_result_timer, 1063 &vmstate_fdc_phase, 1064 NULL 1065 } 1066 }; 1067 1068 /* Change IRQ state */ 1069 static void fdctrl_reset_irq(FDCtrl *fdctrl) 1070 { 1071 fdctrl->status0 = 0; 1072 if (!(fdctrl->sra & FD_SRA_INTPEND)) 1073 return; 1074 FLOPPY_DPRINTF("Reset interrupt\n"); 1075 qemu_set_irq(fdctrl->irq, 0); 1076 fdctrl->sra &= ~FD_SRA_INTPEND; 1077 } 1078 1079 static void fdctrl_raise_irq(FDCtrl *fdctrl) 1080 { 1081 if (!(fdctrl->sra & FD_SRA_INTPEND)) { 1082 qemu_set_irq(fdctrl->irq, 1); 1083 fdctrl->sra |= FD_SRA_INTPEND; 1084 } 1085 1086 fdctrl->reset_sensei = 0; 1087 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0); 1088 } 1089 1090 /* Reset controller */ 1091 void fdctrl_reset(FDCtrl *fdctrl, int do_irq) 1092 { 1093 int i; 1094 1095 FLOPPY_DPRINTF("reset controller\n"); 1096 fdctrl_reset_irq(fdctrl); 1097 /* Initialise controller */ 1098 fdctrl->sra = 0; 1099 fdctrl->srb = 0xc0; 1100 if (!fdctrl->drives[1].blk) { 1101 fdctrl->sra |= FD_SRA_nDRV2; 1102 } 1103 fdctrl->cur_drv = 0; 1104 fdctrl->dor = FD_DOR_nRESET; 1105 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0; 1106 fdctrl->msr = FD_MSR_RQM; 1107 fdctrl->reset_sensei = 0; 1108 timer_del(fdctrl->result_timer); 1109 /* FIFO state */ 1110 fdctrl->data_pos = 0; 1111 fdctrl->data_len = 0; 1112 fdctrl->data_state = 0; 1113 fdctrl->data_dir = FD_DIR_WRITE; 1114 for (i = 0; i < MAX_FD; i++) 1115 fd_recalibrate(&fdctrl->drives[i]); 1116 fdctrl_to_command_phase(fdctrl); 1117 if (do_irq) { 1118 fdctrl->status0 |= FD_SR0_RDYCHG; 1119 fdctrl_raise_irq(fdctrl); 1120 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT; 1121 } 1122 } 1123 1124 static inline FDrive *drv0(FDCtrl *fdctrl) 1125 { 1126 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2]; 1127 } 1128 1129 static inline FDrive *drv1(FDCtrl *fdctrl) 1130 { 1131 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2)) 1132 return &fdctrl->drives[1]; 1133 else 1134 return &fdctrl->drives[0]; 1135 } 1136 1137 #if MAX_FD == 4 1138 static inline FDrive *drv2(FDCtrl *fdctrl) 1139 { 1140 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2)) 1141 return &fdctrl->drives[2]; 1142 else 1143 return &fdctrl->drives[1]; 1144 } 1145 1146 static inline FDrive *drv3(FDCtrl *fdctrl) 1147 { 1148 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2)) 1149 return &fdctrl->drives[3]; 1150 else 1151 return &fdctrl->drives[2]; 1152 } 1153 #endif 1154 1155 static FDrive *get_drv(FDCtrl *fdctrl, int unit) 1156 { 1157 switch (unit) { 1158 case 0: return drv0(fdctrl); 1159 case 1: return drv1(fdctrl); 1160 #if MAX_FD == 4 1161 case 2: return drv2(fdctrl); 1162 case 3: return drv3(fdctrl); 1163 #endif 1164 default: return NULL; 1165 } 1166 } 1167 1168 static FDrive *get_cur_drv(FDCtrl *fdctrl) 1169 { 1170 FDrive *cur_drv = get_drv(fdctrl, fdctrl->cur_drv); 1171 1172 if (!cur_drv->blk) { 1173 /* 1174 * Kludge: empty drive line selected. Create an anonymous 1175 * BlockBackend to avoid NULL deref with various BlockBackend 1176 * API calls within this model (CVE-2021-20196). 1177 * Due to the controller QOM model limitations, we don't 1178 * attach the created to the controller device. 1179 */ 1180 cur_drv->blk = blk_create_empty_drive(); 1181 } 1182 return cur_drv; 1183 } 1184 1185 /* Status A register : 0x00 (read-only) */ 1186 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl) 1187 { 1188 uint32_t retval = fdctrl->sra; 1189 1190 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval); 1191 1192 return retval; 1193 } 1194 1195 /* Status B register : 0x01 (read-only) */ 1196 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl) 1197 { 1198 uint32_t retval = fdctrl->srb; 1199 1200 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval); 1201 1202 return retval; 1203 } 1204 1205 /* Digital output register : 0x02 */ 1206 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl) 1207 { 1208 uint32_t retval = fdctrl->dor; 1209 1210 /* Selected drive */ 1211 retval |= fdctrl->cur_drv; 1212 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval); 1213 1214 return retval; 1215 } 1216 1217 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value) 1218 { 1219 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value); 1220 1221 /* Motors */ 1222 if (value & FD_DOR_MOTEN0) 1223 fdctrl->srb |= FD_SRB_MTR0; 1224 else 1225 fdctrl->srb &= ~FD_SRB_MTR0; 1226 if (value & FD_DOR_MOTEN1) 1227 fdctrl->srb |= FD_SRB_MTR1; 1228 else 1229 fdctrl->srb &= ~FD_SRB_MTR1; 1230 1231 /* Drive */ 1232 if (value & 1) 1233 fdctrl->srb |= FD_SRB_DR0; 1234 else 1235 fdctrl->srb &= ~FD_SRB_DR0; 1236 1237 /* Reset */ 1238 if (!(value & FD_DOR_nRESET)) { 1239 if (fdctrl->dor & FD_DOR_nRESET) { 1240 FLOPPY_DPRINTF("controller enter RESET state\n"); 1241 } 1242 } else { 1243 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1244 FLOPPY_DPRINTF("controller out of RESET state\n"); 1245 fdctrl_reset(fdctrl, 1); 1246 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1247 } 1248 } 1249 /* Selected drive */ 1250 fdctrl->cur_drv = value & FD_DOR_SELMASK; 1251 1252 fdctrl->dor = value; 1253 } 1254 1255 /* Tape drive register : 0x03 */ 1256 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl) 1257 { 1258 uint32_t retval = fdctrl->tdr; 1259 1260 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval); 1261 1262 return retval; 1263 } 1264 1265 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value) 1266 { 1267 /* Reset mode */ 1268 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1269 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1270 return; 1271 } 1272 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value); 1273 /* Disk boot selection indicator */ 1274 fdctrl->tdr = value & FD_TDR_BOOTSEL; 1275 /* Tape indicators: never allow */ 1276 } 1277 1278 /* Main status register : 0x04 (read) */ 1279 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl) 1280 { 1281 uint32_t retval = fdctrl->msr; 1282 1283 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1284 fdctrl->dor |= FD_DOR_nRESET; 1285 1286 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval); 1287 1288 return retval; 1289 } 1290 1291 /* Data select rate register : 0x04 (write) */ 1292 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value) 1293 { 1294 /* Reset mode */ 1295 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1296 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1297 return; 1298 } 1299 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value); 1300 /* Reset: autoclear */ 1301 if (value & FD_DSR_SWRESET) { 1302 fdctrl->dor &= ~FD_DOR_nRESET; 1303 fdctrl_reset(fdctrl, 1); 1304 fdctrl->dor |= FD_DOR_nRESET; 1305 } 1306 if (value & FD_DSR_PWRDOWN) { 1307 fdctrl_reset(fdctrl, 1); 1308 } 1309 fdctrl->dsr = value; 1310 } 1311 1312 /* Configuration control register: 0x07 (write) */ 1313 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value) 1314 { 1315 /* Reset mode */ 1316 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1317 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1318 return; 1319 } 1320 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value); 1321 1322 /* Only the rate selection bits used in AT mode, and we 1323 * store those in the DSR. 1324 */ 1325 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) | 1326 (value & FD_DSR_DRATEMASK); 1327 } 1328 1329 static int fdctrl_media_changed(FDrive *drv) 1330 { 1331 return drv->media_changed; 1332 } 1333 1334 /* Digital input register : 0x07 (read-only) */ 1335 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl) 1336 { 1337 uint32_t retval = 0; 1338 1339 if (fdctrl_media_changed(get_cur_drv(fdctrl))) { 1340 retval |= FD_DIR_DSKCHG; 1341 } 1342 if (retval != 0) { 1343 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval); 1344 } 1345 1346 return retval; 1347 } 1348 1349 /* Clear the FIFO and update the state for receiving the next command */ 1350 static void fdctrl_to_command_phase(FDCtrl *fdctrl) 1351 { 1352 fdctrl->phase = FD_PHASE_COMMAND; 1353 fdctrl->data_dir = FD_DIR_WRITE; 1354 fdctrl->data_pos = 0; 1355 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */ 1356 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO); 1357 fdctrl->msr |= FD_MSR_RQM; 1358 } 1359 1360 /* Update the state to allow the guest to read out the command status. 1361 * @fifo_len is the number of result bytes to be read out. */ 1362 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len) 1363 { 1364 fdctrl->phase = FD_PHASE_RESULT; 1365 fdctrl->data_dir = FD_DIR_READ; 1366 fdctrl->data_len = fifo_len; 1367 fdctrl->data_pos = 0; 1368 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO; 1369 } 1370 1371 /* Set an error: unimplemented/unknown command */ 1372 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction) 1373 { 1374 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n", 1375 fdctrl->fifo[0]); 1376 fdctrl->fifo[0] = FD_SR0_INVCMD; 1377 fdctrl_to_result_phase(fdctrl, 1); 1378 } 1379 1380 /* Seek to next sector 1381 * returns 0 when end of track reached (for DBL_SIDES on head 1) 1382 * otherwise returns 1 1383 */ 1384 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv) 1385 { 1386 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n", 1387 cur_drv->head, cur_drv->track, cur_drv->sect, 1388 fd_sector(cur_drv)); 1389 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an 1390 error in fact */ 1391 uint8_t new_head = cur_drv->head; 1392 uint8_t new_track = cur_drv->track; 1393 uint8_t new_sect = cur_drv->sect; 1394 1395 int ret = 1; 1396 1397 if (new_sect >= cur_drv->last_sect || 1398 new_sect == fdctrl->eot) { 1399 new_sect = 1; 1400 if (FD_MULTI_TRACK(fdctrl->data_state)) { 1401 if (new_head == 0 && 1402 (cur_drv->flags & FDISK_DBL_SIDES) != 0) { 1403 new_head = 1; 1404 } else { 1405 new_head = 0; 1406 new_track++; 1407 fdctrl->status0 |= FD_SR0_SEEK; 1408 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) { 1409 ret = 0; 1410 } 1411 } 1412 } else { 1413 fdctrl->status0 |= FD_SR0_SEEK; 1414 new_track++; 1415 ret = 0; 1416 } 1417 if (ret == 1) { 1418 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n", 1419 new_head, new_track, new_sect, fd_sector(cur_drv)); 1420 } 1421 } else { 1422 new_sect++; 1423 } 1424 fd_seek(cur_drv, new_head, new_track, new_sect, 1); 1425 return ret; 1426 } 1427 1428 /* Callback for transfer end (stop or abort) */ 1429 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0, 1430 uint8_t status1, uint8_t status2) 1431 { 1432 FDrive *cur_drv; 1433 cur_drv = get_cur_drv(fdctrl); 1434 1435 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD); 1436 fdctrl->status0 |= GET_CUR_DRV(fdctrl); 1437 if (cur_drv->head) { 1438 fdctrl->status0 |= FD_SR0_HEAD; 1439 } 1440 fdctrl->status0 |= status0; 1441 1442 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n", 1443 status0, status1, status2, fdctrl->status0); 1444 fdctrl->fifo[0] = fdctrl->status0; 1445 fdctrl->fifo[1] = status1; 1446 fdctrl->fifo[2] = status2; 1447 fdctrl->fifo[3] = cur_drv->track; 1448 fdctrl->fifo[4] = cur_drv->head; 1449 fdctrl->fifo[5] = cur_drv->sect; 1450 fdctrl->fifo[6] = FD_SECTOR_SC; 1451 fdctrl->data_dir = FD_DIR_READ; 1452 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) { 1453 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); 1454 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann); 1455 } 1456 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO; 1457 fdctrl->msr &= ~FD_MSR_NONDMA; 1458 1459 fdctrl_to_result_phase(fdctrl, 7); 1460 fdctrl_raise_irq(fdctrl); 1461 } 1462 1463 /* Prepare a data transfer (either DMA or FIFO) */ 1464 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction) 1465 { 1466 FDrive *cur_drv; 1467 uint8_t kh, kt, ks; 1468 1469 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1470 cur_drv = get_cur_drv(fdctrl); 1471 kt = fdctrl->fifo[2]; 1472 kh = fdctrl->fifo[3]; 1473 ks = fdctrl->fifo[4]; 1474 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n", 1475 GET_CUR_DRV(fdctrl), kh, kt, ks, 1476 fd_sector_calc(kh, kt, ks, cur_drv->last_sect, 1477 NUM_SIDES(cur_drv))); 1478 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { 1479 case 2: 1480 /* sect too big */ 1481 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1482 fdctrl->fifo[3] = kt; 1483 fdctrl->fifo[4] = kh; 1484 fdctrl->fifo[5] = ks; 1485 return; 1486 case 3: 1487 /* track too big */ 1488 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); 1489 fdctrl->fifo[3] = kt; 1490 fdctrl->fifo[4] = kh; 1491 fdctrl->fifo[5] = ks; 1492 return; 1493 case 4: 1494 /* No seek enabled */ 1495 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1496 fdctrl->fifo[3] = kt; 1497 fdctrl->fifo[4] = kh; 1498 fdctrl->fifo[5] = ks; 1499 return; 1500 case 1: 1501 fdctrl->status0 |= FD_SR0_SEEK; 1502 break; 1503 default: 1504 break; 1505 } 1506 1507 /* Check the data rate. If the programmed data rate does not match 1508 * the currently inserted medium, the operation has to fail. */ 1509 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { 1510 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n", 1511 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); 1512 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); 1513 fdctrl->fifo[3] = kt; 1514 fdctrl->fifo[4] = kh; 1515 fdctrl->fifo[5] = ks; 1516 return; 1517 } 1518 1519 /* Set the FIFO state */ 1520 fdctrl->data_dir = direction; 1521 fdctrl->data_pos = 0; 1522 assert(fdctrl->msr & FD_MSR_CMDBUSY); 1523 if (fdctrl->fifo[0] & 0x80) 1524 fdctrl->data_state |= FD_STATE_MULTI; 1525 else 1526 fdctrl->data_state &= ~FD_STATE_MULTI; 1527 if (fdctrl->fifo[5] == 0) { 1528 fdctrl->data_len = fdctrl->fifo[8]; 1529 } else { 1530 int tmp; 1531 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]); 1532 tmp = (fdctrl->fifo[6] - ks + 1); 1533 if (tmp < 0) { 1534 FLOPPY_DPRINTF("invalid EOT: %d\n", tmp); 1535 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); 1536 fdctrl->fifo[3] = kt; 1537 fdctrl->fifo[4] = kh; 1538 fdctrl->fifo[5] = ks; 1539 return; 1540 } 1541 if (fdctrl->fifo[0] & 0x80) 1542 tmp += fdctrl->fifo[6]; 1543 fdctrl->data_len *= tmp; 1544 } 1545 fdctrl->eot = fdctrl->fifo[6]; 1546 if (fdctrl->dor & FD_DOR_DMAEN) { 1547 /* DMA transfer is enabled. */ 1548 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); 1549 1550 FLOPPY_DPRINTF("direction=%d (%d - %d)\n", 1551 direction, (128 << fdctrl->fifo[5]) * 1552 (cur_drv->last_sect - ks + 1), fdctrl->data_len); 1553 1554 /* No access is allowed until DMA transfer has completed */ 1555 fdctrl->msr &= ~FD_MSR_RQM; 1556 if (direction != FD_DIR_VERIFY) { 1557 /* 1558 * Now, we just have to wait for the DMA controller to 1559 * recall us... 1560 */ 1561 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann); 1562 k->schedule(fdctrl->dma); 1563 } else { 1564 /* Start transfer */ 1565 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0, 1566 fdctrl->data_len); 1567 } 1568 return; 1569 } 1570 FLOPPY_DPRINTF("start non-DMA transfer\n"); 1571 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM; 1572 if (direction != FD_DIR_WRITE) 1573 fdctrl->msr |= FD_MSR_DIO; 1574 /* IO based transfer: calculate len */ 1575 fdctrl_raise_irq(fdctrl); 1576 } 1577 1578 /* Prepare a transfer of deleted data */ 1579 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction) 1580 { 1581 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n"); 1582 1583 /* We don't handle deleted data, 1584 * so we don't return *ANYTHING* 1585 */ 1586 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1587 } 1588 1589 /* handlers for DMA transfers */ 1590 int fdctrl_transfer_handler(void *opaque, int nchan, int dma_pos, int dma_len) 1591 { 1592 FDCtrl *fdctrl; 1593 FDrive *cur_drv; 1594 int len, start_pos, rel_pos; 1595 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00; 1596 IsaDmaClass *k; 1597 1598 fdctrl = opaque; 1599 if (fdctrl->msr & FD_MSR_RQM) { 1600 FLOPPY_DPRINTF("Not in DMA transfer mode !\n"); 1601 return 0; 1602 } 1603 k = ISADMA_GET_CLASS(fdctrl->dma); 1604 cur_drv = get_cur_drv(fdctrl); 1605 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL || 1606 fdctrl->data_dir == FD_DIR_SCANH) 1607 status2 = FD_SR2_SNS; 1608 if (dma_len > fdctrl->data_len) 1609 dma_len = fdctrl->data_len; 1610 if (cur_drv->blk == NULL) { 1611 if (fdctrl->data_dir == FD_DIR_WRITE) 1612 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1613 else 1614 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1615 len = 0; 1616 goto transfer_error; 1617 } 1618 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; 1619 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) { 1620 len = dma_len - fdctrl->data_pos; 1621 if (len + rel_pos > FD_SECTOR_LEN) 1622 len = FD_SECTOR_LEN - rel_pos; 1623 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x " 1624 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos, 1625 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head, 1626 cur_drv->track, cur_drv->sect, fd_sector(cur_drv), 1627 fd_sector(cur_drv) * FD_SECTOR_LEN); 1628 if (fdctrl->data_dir != FD_DIR_WRITE || 1629 len < FD_SECTOR_LEN || rel_pos != 0) { 1630 /* READ & SCAN commands and realign to a sector for WRITE */ 1631 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), 1632 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) { 1633 FLOPPY_DPRINTF("Floppy: error getting sector %d\n", 1634 fd_sector(cur_drv)); 1635 /* Sure, image size is too small... */ 1636 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 1637 } 1638 } 1639 switch (fdctrl->data_dir) { 1640 case FD_DIR_READ: 1641 /* READ commands */ 1642 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, 1643 fdctrl->data_pos, len); 1644 break; 1645 case FD_DIR_WRITE: 1646 /* WRITE commands */ 1647 if (cur_drv->ro) { 1648 /* Handle readonly medium early, no need to do DMA, touch the 1649 * LED or attempt any writes. A real floppy doesn't attempt 1650 * to write to readonly media either. */ 1651 fdctrl_stop_transfer(fdctrl, 1652 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW, 1653 0x00); 1654 goto transfer_error; 1655 } 1656 1657 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, 1658 fdctrl->data_pos, len); 1659 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), 1660 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) { 1661 FLOPPY_DPRINTF("error writing sector %d\n", 1662 fd_sector(cur_drv)); 1663 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1664 goto transfer_error; 1665 } 1666 break; 1667 case FD_DIR_VERIFY: 1668 /* VERIFY commands */ 1669 break; 1670 default: 1671 /* SCAN commands */ 1672 { 1673 uint8_t tmpbuf[FD_SECTOR_LEN]; 1674 int ret; 1675 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos, 1676 len); 1677 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len); 1678 if (ret == 0) { 1679 status2 = FD_SR2_SEH; 1680 goto end_transfer; 1681 } 1682 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) || 1683 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) { 1684 status2 = 0x00; 1685 goto end_transfer; 1686 } 1687 } 1688 break; 1689 } 1690 fdctrl->data_pos += len; 1691 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; 1692 if (rel_pos == 0) { 1693 /* Seek to next sector */ 1694 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) 1695 break; 1696 } 1697 } 1698 end_transfer: 1699 len = fdctrl->data_pos - start_pos; 1700 FLOPPY_DPRINTF("end transfer %d %d %d\n", 1701 fdctrl->data_pos, len, fdctrl->data_len); 1702 if (fdctrl->data_dir == FD_DIR_SCANE || 1703 fdctrl->data_dir == FD_DIR_SCANL || 1704 fdctrl->data_dir == FD_DIR_SCANH) 1705 status2 = FD_SR2_SEH; 1706 fdctrl->data_len -= len; 1707 fdctrl_stop_transfer(fdctrl, status0, status1, status2); 1708 transfer_error: 1709 1710 return len; 1711 } 1712 1713 /* Data register : 0x05 */ 1714 static uint32_t fdctrl_read_data(FDCtrl *fdctrl) 1715 { 1716 FDrive *cur_drv; 1717 uint32_t retval = 0; 1718 uint32_t pos; 1719 1720 cur_drv = get_cur_drv(fdctrl); 1721 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1722 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) { 1723 FLOPPY_DPRINTF("error: controller not ready for reading\n"); 1724 return 0; 1725 } 1726 1727 /* If data_len spans multiple sectors, the current position in the FIFO 1728 * wraps around while fdctrl->data_pos is the real position in the whole 1729 * request. */ 1730 pos = fdctrl->data_pos; 1731 pos %= FD_SECTOR_LEN; 1732 1733 switch (fdctrl->phase) { 1734 case FD_PHASE_EXECUTION: 1735 assert(fdctrl->msr & FD_MSR_NONDMA); 1736 if (pos == 0) { 1737 if (fdctrl->data_pos != 0) 1738 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { 1739 FLOPPY_DPRINTF("error seeking to next sector %d\n", 1740 fd_sector(cur_drv)); 1741 return 0; 1742 } 1743 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, 1744 BDRV_SECTOR_SIZE) 1745 < 0) { 1746 FLOPPY_DPRINTF("error getting sector %d\n", 1747 fd_sector(cur_drv)); 1748 /* Sure, image size is too small... */ 1749 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 1750 } 1751 } 1752 1753 if (++fdctrl->data_pos == fdctrl->data_len) { 1754 fdctrl->msr &= ~FD_MSR_RQM; 1755 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 1756 } 1757 break; 1758 1759 case FD_PHASE_RESULT: 1760 assert(!(fdctrl->msr & FD_MSR_NONDMA)); 1761 if (++fdctrl->data_pos == fdctrl->data_len) { 1762 fdctrl->msr &= ~FD_MSR_RQM; 1763 fdctrl_to_command_phase(fdctrl); 1764 fdctrl_reset_irq(fdctrl); 1765 } 1766 break; 1767 1768 case FD_PHASE_COMMAND: 1769 default: 1770 abort(); 1771 } 1772 1773 retval = fdctrl->fifo[pos]; 1774 FLOPPY_DPRINTF("data register: 0x%02x\n", retval); 1775 1776 return retval; 1777 } 1778 1779 static void fdctrl_format_sector(FDCtrl *fdctrl) 1780 { 1781 FDrive *cur_drv; 1782 uint8_t kh, kt, ks; 1783 1784 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1785 cur_drv = get_cur_drv(fdctrl); 1786 kt = fdctrl->fifo[6]; 1787 kh = fdctrl->fifo[7]; 1788 ks = fdctrl->fifo[8]; 1789 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n", 1790 GET_CUR_DRV(fdctrl), kh, kt, ks, 1791 fd_sector_calc(kh, kt, ks, cur_drv->last_sect, 1792 NUM_SIDES(cur_drv))); 1793 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { 1794 case 2: 1795 /* sect too big */ 1796 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1797 fdctrl->fifo[3] = kt; 1798 fdctrl->fifo[4] = kh; 1799 fdctrl->fifo[5] = ks; 1800 return; 1801 case 3: 1802 /* track too big */ 1803 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); 1804 fdctrl->fifo[3] = kt; 1805 fdctrl->fifo[4] = kh; 1806 fdctrl->fifo[5] = ks; 1807 return; 1808 case 4: 1809 /* No seek enabled */ 1810 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1811 fdctrl->fifo[3] = kt; 1812 fdctrl->fifo[4] = kh; 1813 fdctrl->fifo[5] = ks; 1814 return; 1815 case 1: 1816 fdctrl->status0 |= FD_SR0_SEEK; 1817 break; 1818 default: 1819 break; 1820 } 1821 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 1822 if (cur_drv->blk == NULL || 1823 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, 1824 BDRV_SECTOR_SIZE, 0) < 0) { 1825 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv)); 1826 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1827 } else { 1828 if (cur_drv->sect == cur_drv->last_sect) { 1829 fdctrl->data_state &= ~FD_STATE_FORMAT; 1830 /* Last sector done */ 1831 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 1832 } else { 1833 /* More to do */ 1834 fdctrl->data_pos = 0; 1835 fdctrl->data_len = 4; 1836 } 1837 } 1838 } 1839 1840 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction) 1841 { 1842 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0; 1843 fdctrl->fifo[0] = fdctrl->lock << 4; 1844 fdctrl_to_result_phase(fdctrl, 1); 1845 } 1846 1847 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction) 1848 { 1849 FDrive *cur_drv = get_cur_drv(fdctrl); 1850 1851 /* Drives position */ 1852 fdctrl->fifo[0] = drv0(fdctrl)->track; 1853 fdctrl->fifo[1] = drv1(fdctrl)->track; 1854 #if MAX_FD == 4 1855 fdctrl->fifo[2] = drv2(fdctrl)->track; 1856 fdctrl->fifo[3] = drv3(fdctrl)->track; 1857 #else 1858 fdctrl->fifo[2] = 0; 1859 fdctrl->fifo[3] = 0; 1860 #endif 1861 /* timers */ 1862 fdctrl->fifo[4] = fdctrl->timer0; 1863 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0); 1864 fdctrl->fifo[6] = cur_drv->last_sect; 1865 fdctrl->fifo[7] = (fdctrl->lock << 7) | 1866 (cur_drv->perpendicular << 2); 1867 fdctrl->fifo[8] = fdctrl->config; 1868 fdctrl->fifo[9] = fdctrl->precomp_trk; 1869 fdctrl_to_result_phase(fdctrl, 10); 1870 } 1871 1872 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction) 1873 { 1874 /* Controller's version */ 1875 fdctrl->fifo[0] = fdctrl->version; 1876 fdctrl_to_result_phase(fdctrl, 1); 1877 } 1878 1879 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction) 1880 { 1881 fdctrl->fifo[0] = 0x41; /* Stepping 1 */ 1882 fdctrl_to_result_phase(fdctrl, 1); 1883 } 1884 1885 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction) 1886 { 1887 FDrive *cur_drv = get_cur_drv(fdctrl); 1888 1889 /* Drives position */ 1890 drv0(fdctrl)->track = fdctrl->fifo[3]; 1891 drv1(fdctrl)->track = fdctrl->fifo[4]; 1892 #if MAX_FD == 4 1893 drv2(fdctrl)->track = fdctrl->fifo[5]; 1894 drv3(fdctrl)->track = fdctrl->fifo[6]; 1895 #endif 1896 /* timers */ 1897 fdctrl->timer0 = fdctrl->fifo[7]; 1898 fdctrl->timer1 = fdctrl->fifo[8]; 1899 cur_drv->last_sect = fdctrl->fifo[9]; 1900 fdctrl->lock = fdctrl->fifo[10] >> 7; 1901 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF; 1902 fdctrl->config = fdctrl->fifo[11]; 1903 fdctrl->precomp_trk = fdctrl->fifo[12]; 1904 fdctrl->pwrd = fdctrl->fifo[13]; 1905 fdctrl_to_command_phase(fdctrl); 1906 } 1907 1908 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction) 1909 { 1910 FDrive *cur_drv = get_cur_drv(fdctrl); 1911 1912 fdctrl->fifo[0] = 0; 1913 fdctrl->fifo[1] = 0; 1914 /* Drives position */ 1915 fdctrl->fifo[2] = drv0(fdctrl)->track; 1916 fdctrl->fifo[3] = drv1(fdctrl)->track; 1917 #if MAX_FD == 4 1918 fdctrl->fifo[4] = drv2(fdctrl)->track; 1919 fdctrl->fifo[5] = drv3(fdctrl)->track; 1920 #else 1921 fdctrl->fifo[4] = 0; 1922 fdctrl->fifo[5] = 0; 1923 #endif 1924 /* timers */ 1925 fdctrl->fifo[6] = fdctrl->timer0; 1926 fdctrl->fifo[7] = fdctrl->timer1; 1927 fdctrl->fifo[8] = cur_drv->last_sect; 1928 fdctrl->fifo[9] = (fdctrl->lock << 7) | 1929 (cur_drv->perpendicular << 2); 1930 fdctrl->fifo[10] = fdctrl->config; 1931 fdctrl->fifo[11] = fdctrl->precomp_trk; 1932 fdctrl->fifo[12] = fdctrl->pwrd; 1933 fdctrl->fifo[13] = 0; 1934 fdctrl->fifo[14] = 0; 1935 fdctrl_to_result_phase(fdctrl, 15); 1936 } 1937 1938 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction) 1939 { 1940 FDrive *cur_drv = get_cur_drv(fdctrl); 1941 1942 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; 1943 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1944 (NANOSECONDS_PER_SECOND / 50)); 1945 } 1946 1947 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction) 1948 { 1949 FDrive *cur_drv; 1950 1951 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1952 cur_drv = get_cur_drv(fdctrl); 1953 fdctrl->data_state |= FD_STATE_FORMAT; 1954 if (fdctrl->fifo[0] & 0x80) 1955 fdctrl->data_state |= FD_STATE_MULTI; 1956 else 1957 fdctrl->data_state &= ~FD_STATE_MULTI; 1958 cur_drv->bps = 1959 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2]; 1960 #if 0 1961 cur_drv->last_sect = 1962 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] : 1963 fdctrl->fifo[3] / 2; 1964 #else 1965 cur_drv->last_sect = fdctrl->fifo[3]; 1966 #endif 1967 /* TODO: implement format using DMA expected by the Bochs BIOS 1968 * and Linux fdformat (read 3 bytes per sector via DMA and fill 1969 * the sector with the specified fill byte 1970 */ 1971 fdctrl->data_state &= ~FD_STATE_FORMAT; 1972 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 1973 } 1974 1975 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction) 1976 { 1977 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF; 1978 fdctrl->timer1 = fdctrl->fifo[2] >> 1; 1979 if (fdctrl->fifo[2] & 1) 1980 fdctrl->dor &= ~FD_DOR_DMAEN; 1981 else 1982 fdctrl->dor |= FD_DOR_DMAEN; 1983 /* No result back */ 1984 fdctrl_to_command_phase(fdctrl); 1985 } 1986 1987 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction) 1988 { 1989 FDrive *cur_drv; 1990 1991 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1992 cur_drv = get_cur_drv(fdctrl); 1993 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; 1994 /* 1 Byte status back */ 1995 fdctrl->fifo[0] = (cur_drv->ro << 6) | 1996 (cur_drv->track == 0 ? 0x10 : 0x00) | 1997 (cur_drv->head << 2) | 1998 GET_CUR_DRV(fdctrl) | 1999 0x28; 2000 fdctrl_to_result_phase(fdctrl, 1); 2001 } 2002 2003 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction) 2004 { 2005 FDrive *cur_drv; 2006 2007 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2008 cur_drv = get_cur_drv(fdctrl); 2009 fd_recalibrate(cur_drv); 2010 fdctrl_to_command_phase(fdctrl); 2011 /* Raise Interrupt */ 2012 fdctrl->status0 |= FD_SR0_SEEK; 2013 fdctrl_raise_irq(fdctrl); 2014 } 2015 2016 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction) 2017 { 2018 FDrive *cur_drv = get_cur_drv(fdctrl); 2019 2020 if (fdctrl->reset_sensei > 0) { 2021 fdctrl->fifo[0] = 2022 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei; 2023 fdctrl->reset_sensei--; 2024 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) { 2025 fdctrl->fifo[0] = FD_SR0_INVCMD; 2026 fdctrl_to_result_phase(fdctrl, 1); 2027 return; 2028 } else { 2029 fdctrl->fifo[0] = 2030 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0)) 2031 | GET_CUR_DRV(fdctrl); 2032 } 2033 2034 fdctrl->fifo[1] = cur_drv->track; 2035 fdctrl_to_result_phase(fdctrl, 2); 2036 fdctrl_reset_irq(fdctrl); 2037 fdctrl->status0 = FD_SR0_RDYCHG; 2038 } 2039 2040 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction) 2041 { 2042 FDrive *cur_drv; 2043 2044 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2045 cur_drv = get_cur_drv(fdctrl); 2046 fdctrl_to_command_phase(fdctrl); 2047 /* The seek command just sends step pulses to the drive and doesn't care if 2048 * there is a medium inserted of if it's banging the head against the drive. 2049 */ 2050 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1); 2051 /* Raise Interrupt */ 2052 fdctrl->status0 |= FD_SR0_SEEK; 2053 fdctrl_raise_irq(fdctrl); 2054 } 2055 2056 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction) 2057 { 2058 FDrive *cur_drv = get_cur_drv(fdctrl); 2059 2060 if (fdctrl->fifo[1] & 0x80) 2061 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7; 2062 /* No result back */ 2063 fdctrl_to_command_phase(fdctrl); 2064 } 2065 2066 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction) 2067 { 2068 fdctrl->config = fdctrl->fifo[2]; 2069 fdctrl->precomp_trk = fdctrl->fifo[3]; 2070 /* No result back */ 2071 fdctrl_to_command_phase(fdctrl); 2072 } 2073 2074 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction) 2075 { 2076 fdctrl->pwrd = fdctrl->fifo[1]; 2077 fdctrl->fifo[0] = fdctrl->fifo[1]; 2078 fdctrl_to_result_phase(fdctrl, 1); 2079 } 2080 2081 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction) 2082 { 2083 /* No result back */ 2084 fdctrl_to_command_phase(fdctrl); 2085 } 2086 2087 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction) 2088 { 2089 FDrive *cur_drv = get_cur_drv(fdctrl); 2090 uint32_t pos; 2091 2092 pos = fdctrl->data_pos - 1; 2093 pos %= FD_SECTOR_LEN; 2094 if (fdctrl->fifo[pos] & 0x80) { 2095 /* Command parameters done */ 2096 if (fdctrl->fifo[pos] & 0x40) { 2097 fdctrl->fifo[0] = fdctrl->fifo[1]; 2098 fdctrl->fifo[2] = 0; 2099 fdctrl->fifo[3] = 0; 2100 fdctrl_to_result_phase(fdctrl, 4); 2101 } else { 2102 fdctrl_to_command_phase(fdctrl); 2103 } 2104 } else if (fdctrl->data_len > 7) { 2105 /* ERROR */ 2106 fdctrl->fifo[0] = 0x80 | 2107 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl); 2108 fdctrl_to_result_phase(fdctrl, 1); 2109 } 2110 } 2111 2112 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction) 2113 { 2114 FDrive *cur_drv; 2115 2116 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2117 cur_drv = get_cur_drv(fdctrl); 2118 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) { 2119 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1, 2120 cur_drv->sect, 1); 2121 } else { 2122 fd_seek(cur_drv, cur_drv->head, 2123 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1); 2124 } 2125 fdctrl_to_command_phase(fdctrl); 2126 /* Raise Interrupt */ 2127 fdctrl->status0 |= FD_SR0_SEEK; 2128 fdctrl_raise_irq(fdctrl); 2129 } 2130 2131 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction) 2132 { 2133 FDrive *cur_drv; 2134 2135 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2136 cur_drv = get_cur_drv(fdctrl); 2137 if (fdctrl->fifo[2] > cur_drv->track) { 2138 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1); 2139 } else { 2140 fd_seek(cur_drv, cur_drv->head, 2141 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1); 2142 } 2143 fdctrl_to_command_phase(fdctrl); 2144 /* Raise Interrupt */ 2145 fdctrl->status0 |= FD_SR0_SEEK; 2146 fdctrl_raise_irq(fdctrl); 2147 } 2148 2149 /* 2150 * Handlers for the execution phase of each command 2151 */ 2152 typedef struct FDCtrlCommand { 2153 uint8_t value; 2154 uint8_t mask; 2155 const char* name; 2156 int parameters; 2157 void (*handler)(FDCtrl *fdctrl, int direction); 2158 int direction; 2159 } FDCtrlCommand; 2160 2161 static const FDCtrlCommand handlers[] = { 2162 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ }, 2163 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE }, 2164 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek }, 2165 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status }, 2166 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate }, 2167 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track }, 2168 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ }, 2169 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */ 2170 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */ 2171 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ }, 2172 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE }, 2173 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY }, 2174 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL }, 2175 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH }, 2176 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE }, 2177 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid }, 2178 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify }, 2179 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status }, 2180 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode }, 2181 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure }, 2182 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode }, 2183 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option }, 2184 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command }, 2185 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out }, 2186 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented }, 2187 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in }, 2188 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock }, 2189 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg }, 2190 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version }, 2191 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid }, 2192 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */ 2193 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */ 2194 }; 2195 /* Associate command to an index in the 'handlers' array */ 2196 static uint8_t command_to_handler[256]; 2197 2198 static const FDCtrlCommand *get_command(uint8_t cmd) 2199 { 2200 int idx; 2201 2202 idx = command_to_handler[cmd]; 2203 FLOPPY_DPRINTF("%s command\n", handlers[idx].name); 2204 return &handlers[idx]; 2205 } 2206 2207 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value) 2208 { 2209 FDrive *cur_drv; 2210 const FDCtrlCommand *cmd; 2211 uint32_t pos; 2212 2213 /* Reset mode */ 2214 if (!(fdctrl->dor & FD_DOR_nRESET)) { 2215 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 2216 return; 2217 } 2218 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) { 2219 FLOPPY_DPRINTF("error: controller not ready for writing\n"); 2220 return; 2221 } 2222 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 2223 2224 FLOPPY_DPRINTF("%s: %02x\n", __func__, value); 2225 2226 /* If data_len spans multiple sectors, the current position in the FIFO 2227 * wraps around while fdctrl->data_pos is the real position in the whole 2228 * request. */ 2229 pos = fdctrl->data_pos++; 2230 pos %= FD_SECTOR_LEN; 2231 fdctrl->fifo[pos] = value; 2232 2233 if (fdctrl->data_pos == fdctrl->data_len) { 2234 fdctrl->msr &= ~FD_MSR_RQM; 2235 } 2236 2237 switch (fdctrl->phase) { 2238 case FD_PHASE_EXECUTION: 2239 /* For DMA requests, RQM should be cleared during execution phase, so 2240 * we would have errored out above. */ 2241 assert(fdctrl->msr & FD_MSR_NONDMA); 2242 2243 /* FIFO data write */ 2244 if (pos == FD_SECTOR_LEN - 1 || 2245 fdctrl->data_pos == fdctrl->data_len) { 2246 cur_drv = get_cur_drv(fdctrl); 2247 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, 2248 BDRV_SECTOR_SIZE, 0) < 0) { 2249 FLOPPY_DPRINTF("error writing sector %d\n", 2250 fd_sector(cur_drv)); 2251 break; 2252 } 2253 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { 2254 FLOPPY_DPRINTF("error seeking to next sector %d\n", 2255 fd_sector(cur_drv)); 2256 break; 2257 } 2258 } 2259 2260 /* Switch to result phase when done with the transfer */ 2261 if (fdctrl->data_pos == fdctrl->data_len) { 2262 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 2263 } 2264 break; 2265 2266 case FD_PHASE_COMMAND: 2267 assert(!(fdctrl->msr & FD_MSR_NONDMA)); 2268 assert(fdctrl->data_pos < FD_SECTOR_LEN); 2269 2270 if (pos == 0) { 2271 /* The first byte specifies the command. Now we start reading 2272 * as many parameters as this command requires. */ 2273 cmd = get_command(value); 2274 fdctrl->data_len = cmd->parameters + 1; 2275 if (cmd->parameters) { 2276 fdctrl->msr |= FD_MSR_RQM; 2277 } 2278 fdctrl->msr |= FD_MSR_CMDBUSY; 2279 } 2280 2281 if (fdctrl->data_pos == fdctrl->data_len) { 2282 /* We have all parameters now, execute the command */ 2283 fdctrl->phase = FD_PHASE_EXECUTION; 2284 2285 if (fdctrl->data_state & FD_STATE_FORMAT) { 2286 fdctrl_format_sector(fdctrl); 2287 break; 2288 } 2289 2290 cmd = get_command(fdctrl->fifo[0]); 2291 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name); 2292 cmd->handler(fdctrl, cmd->direction); 2293 } 2294 break; 2295 2296 case FD_PHASE_RESULT: 2297 default: 2298 abort(); 2299 } 2300 } 2301 2302 static void fdctrl_result_timer(void *opaque) 2303 { 2304 FDCtrl *fdctrl = opaque; 2305 FDrive *cur_drv = get_cur_drv(fdctrl); 2306 2307 /* Pretend we are spinning. 2308 * This is needed for Coherent, which uses READ ID to check for 2309 * sector interleaving. 2310 */ 2311 if (cur_drv->last_sect != 0) { 2312 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1; 2313 } 2314 /* READ_ID can't automatically succeed! */ 2315 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { 2316 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n", 2317 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); 2318 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); 2319 } else { 2320 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 2321 } 2322 } 2323 2324 /* Init functions */ 2325 2326 void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds) 2327 { 2328 DeviceState *dev; 2329 int i; 2330 2331 for (i = 0; i < MAX_FD; i++) { 2332 if (fds[i]) { 2333 dev = qdev_new("floppy"); 2334 qdev_prop_set_uint32(dev, "unit", i); 2335 qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO); 2336 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]), 2337 &error_fatal); 2338 qdev_realize_and_unref(dev, &bus->bus, &error_fatal); 2339 } 2340 } 2341 } 2342 2343 void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, Error **errp) 2344 { 2345 int i, j; 2346 FDrive *drive; 2347 static int command_tables_inited = 0; 2348 2349 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) { 2350 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'"); 2351 return; 2352 } 2353 2354 /* Fill 'command_to_handler' lookup table */ 2355 if (!command_tables_inited) { 2356 command_tables_inited = 1; 2357 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) { 2358 for (j = 0; j < sizeof(command_to_handler); j++) { 2359 if ((j & handlers[i].mask) == handlers[i].value) { 2360 command_to_handler[j] = i; 2361 } 2362 } 2363 } 2364 } 2365 2366 FLOPPY_DPRINTF("init controller\n"); 2367 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN); 2368 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 2369 fdctrl->fifo_size = 512; 2370 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 2371 fdctrl_result_timer, fdctrl); 2372 2373 fdctrl->version = 0x90; /* Intel 82078 controller */ 2374 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */ 2375 fdctrl->num_floppies = MAX_FD; 2376 2377 floppy_bus_create(fdctrl, &fdctrl->bus, dev); 2378 2379 for (i = 0; i < MAX_FD; i++) { 2380 drive = &fdctrl->drives[i]; 2381 drive->fdctrl = fdctrl; 2382 fd_init(drive); 2383 fd_revalidate(drive); 2384 } 2385 } 2386 2387 static void fdc_register_types(void) 2388 { 2389 type_register_static(&floppy_bus_info); 2390 type_register_static(&floppy_drive_info); 2391 } 2392 2393 type_init(fdc_register_types) 2394