xref: /openbmc/qemu/hw/block/fdc.c (revision 80adf54e)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
42 #include "qemu/log.h"
43 
44 /********************************************************/
45 /* debug Floppy devices */
46 
47 #define DEBUG_FLOPPY 0
48 
49 #define FLOPPY_DPRINTF(fmt, ...)                                \
50     do {                                                        \
51         if (DEBUG_FLOPPY) {                                     \
52             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
53         }                                                       \
54     } while (0)
55 
56 
57 /********************************************************/
58 /* qdev floppy bus                                      */
59 
60 #define TYPE_FLOPPY_BUS "floppy-bus"
61 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
62 
63 typedef struct FDCtrl FDCtrl;
64 typedef struct FDrive FDrive;
65 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
66 
67 typedef struct FloppyBus {
68     BusState bus;
69     FDCtrl *fdc;
70 } FloppyBus;
71 
72 static const TypeInfo floppy_bus_info = {
73     .name = TYPE_FLOPPY_BUS,
74     .parent = TYPE_BUS,
75     .instance_size = sizeof(FloppyBus),
76 };
77 
78 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
79 {
80     qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
81     bus->fdc = fdc;
82 }
83 
84 
85 /********************************************************/
86 /* Floppy drive emulation                               */
87 
88 typedef enum FDriveRate {
89     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
90     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
91     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
92     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
93 } FDriveRate;
94 
95 typedef enum FDriveSize {
96     FDRIVE_SIZE_UNKNOWN,
97     FDRIVE_SIZE_350,
98     FDRIVE_SIZE_525,
99 } FDriveSize;
100 
101 typedef struct FDFormat {
102     FloppyDriveType drive;
103     uint8_t last_sect;
104     uint8_t max_track;
105     uint8_t max_head;
106     FDriveRate rate;
107 } FDFormat;
108 
109 /* In many cases, the total sector size of a format is enough to uniquely
110  * identify it. However, there are some total sector collisions between
111  * formats of different physical size, and these are noted below by
112  * highlighting the total sector size for entries with collisions. */
113 static const FDFormat fd_formats[] = {
114     /* First entry is default format */
115     /* 1.44 MB 3"1/2 floppy disks */
116     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
117     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
118     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
119     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
120     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
121     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
122     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
123     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
124     /* 2.88 MB 3"1/2 floppy disks */
125     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
126     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
127     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
128     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
129     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
130     /* 720 kB 3"1/2 floppy disks */
131     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
132     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
133     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
134     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
135     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
136     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
137     /* 1.2 MB 5"1/4 floppy disks */
138     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
139     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
140     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
141     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
142     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
143     /* 720 kB 5"1/4 floppy disks */
144     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
145     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
146     /* 360 kB 5"1/4 floppy disks */
147     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
148     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
149     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
150     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
151     /* 320 kB 5"1/4 floppy disks */
152     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
153     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
154     /* 360 kB must match 5"1/4 better than 3"1/2... */
155     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
156     /* end */
157     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
158 };
159 
160 static FDriveSize drive_size(FloppyDriveType drive)
161 {
162     switch (drive) {
163     case FLOPPY_DRIVE_TYPE_120:
164         return FDRIVE_SIZE_525;
165     case FLOPPY_DRIVE_TYPE_144:
166     case FLOPPY_DRIVE_TYPE_288:
167         return FDRIVE_SIZE_350;
168     default:
169         return FDRIVE_SIZE_UNKNOWN;
170     }
171 }
172 
173 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
174 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
175 
176 /* Will always be a fixed parameter for us */
177 #define FD_SECTOR_LEN          512
178 #define FD_SECTOR_SC           2   /* Sector size code */
179 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
180 
181 /* Floppy disk drive emulation */
182 typedef enum FDiskFlags {
183     FDISK_DBL_SIDES  = 0x01,
184 } FDiskFlags;
185 
186 struct FDrive {
187     FDCtrl *fdctrl;
188     BlockBackend *blk;
189     BlockConf *conf;
190     /* Drive status */
191     FloppyDriveType drive;    /* CMOS drive type        */
192     uint8_t perpendicular;    /* 2.88 MB access mode    */
193     /* Position */
194     uint8_t head;
195     uint8_t track;
196     uint8_t sect;
197     /* Media */
198     FloppyDriveType disk;     /* Current disk type      */
199     FDiskFlags flags;
200     uint8_t last_sect;        /* Nb sector per track    */
201     uint8_t max_track;        /* Nb of tracks           */
202     uint16_t bps;             /* Bytes per sector       */
203     uint8_t ro;               /* Is read-only           */
204     uint8_t media_changed;    /* Is media changed       */
205     uint8_t media_rate;       /* Data rate of medium    */
206 
207     bool media_validated;     /* Have we validated the media? */
208 };
209 
210 
211 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
212 
213 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
214  * currently goes through some pains to keep seeks within the bounds
215  * established by last_sect and max_track. Correcting this is difficult,
216  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
217  *
218  * For now: allow empty drives to have large bounds so we can seek around,
219  * with the understanding that when a diskette is inserted, the bounds will
220  * properly tighten to match the geometry of that inserted medium.
221  */
222 static void fd_empty_seek_hack(FDrive *drv)
223 {
224     drv->last_sect = 0xFF;
225     drv->max_track = 0xFF;
226 }
227 
228 static void fd_init(FDrive *drv)
229 {
230     /* Drive */
231     drv->perpendicular = 0;
232     /* Disk */
233     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
234     drv->last_sect = 0;
235     drv->max_track = 0;
236     drv->ro = true;
237     drv->media_changed = 1;
238 }
239 
240 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
241 
242 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
243                           uint8_t last_sect, uint8_t num_sides)
244 {
245     return (((track * num_sides) + head) * last_sect) + sect - 1;
246 }
247 
248 /* Returns current position, in sectors, for given drive */
249 static int fd_sector(FDrive *drv)
250 {
251     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
252                           NUM_SIDES(drv));
253 }
254 
255 /* Returns current position, in bytes, for given drive */
256 static int fd_offset(FDrive *drv)
257 {
258     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
259     return fd_sector(drv) << BDRV_SECTOR_BITS;
260 }
261 
262 /* Seek to a new position:
263  * returns 0 if already on right track
264  * returns 1 if track changed
265  * returns 2 if track is invalid
266  * returns 3 if sector is invalid
267  * returns 4 if seek is disabled
268  */
269 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
270                    int enable_seek)
271 {
272     uint32_t sector;
273     int ret;
274 
275     if (track > drv->max_track ||
276         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
277         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
278                        head, track, sect, 1,
279                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
280                        drv->max_track, drv->last_sect);
281         return 2;
282     }
283     if (sect > drv->last_sect) {
284         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
285                        head, track, sect, 1,
286                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
287                        drv->max_track, drv->last_sect);
288         return 3;
289     }
290     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
291     ret = 0;
292     if (sector != fd_sector(drv)) {
293 #if 0
294         if (!enable_seek) {
295             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
296                            " (max=%d %02x %02x)\n",
297                            head, track, sect, 1, drv->max_track,
298                            drv->last_sect);
299             return 4;
300         }
301 #endif
302         drv->head = head;
303         if (drv->track != track) {
304             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
305                 drv->media_changed = 0;
306             }
307             ret = 1;
308         }
309         drv->track = track;
310         drv->sect = sect;
311     }
312 
313     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
314         ret = 2;
315     }
316 
317     return ret;
318 }
319 
320 /* Set drive back to track 0 */
321 static void fd_recalibrate(FDrive *drv)
322 {
323     FLOPPY_DPRINTF("recalibrate\n");
324     fd_seek(drv, 0, 0, 1, 1);
325 }
326 
327 /**
328  * Determine geometry based on inserted diskette.
329  * Will not operate on an empty drive.
330  *
331  * @return: 0 on success, -1 if the drive is empty.
332  */
333 static int pick_geometry(FDrive *drv)
334 {
335     BlockBackend *blk = drv->blk;
336     const FDFormat *parse;
337     uint64_t nb_sectors, size;
338     int i;
339     int match, size_match, type_match;
340     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
341 
342     /* We can only pick a geometry if we have a diskette. */
343     if (!drv->blk || !blk_is_inserted(drv->blk) ||
344         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
345     {
346         return -1;
347     }
348 
349     /* We need to determine the likely geometry of the inserted medium.
350      * In order of preference, we look for:
351      * (1) The same drive type and number of sectors,
352      * (2) The same diskette size and number of sectors,
353      * (3) The same drive type.
354      *
355      * In all cases, matches that occur higher in the drive table will take
356      * precedence over matches that occur later in the table.
357      */
358     blk_get_geometry(blk, &nb_sectors);
359     match = size_match = type_match = -1;
360     for (i = 0; ; i++) {
361         parse = &fd_formats[i];
362         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
363             break;
364         }
365         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
366         if (nb_sectors == size) {
367             if (magic || parse->drive == drv->drive) {
368                 /* (1) perfect match -- nb_sectors and drive type */
369                 goto out;
370             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
371                 /* (2) size match -- nb_sectors and physical medium size */
372                 match = (match == -1) ? i : match;
373             } else {
374                 /* This is suspicious -- Did the user misconfigure? */
375                 size_match = (size_match == -1) ? i : size_match;
376             }
377         } else if (type_match == -1) {
378             if ((parse->drive == drv->drive) ||
379                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
380                 /* (3) type match -- nb_sectors mismatch, but matches the type
381                  *     specified explicitly by the user, or matches the fallback
382                  *     default type when using the drive autodetect mechanism */
383                 type_match = i;
384             }
385         }
386     }
387 
388     /* No exact match found */
389     if (match == -1) {
390         if (size_match != -1) {
391             parse = &fd_formats[size_match];
392             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
393                            "but inserted medium appears to be a "
394                            "%"PRId64" sector '%s' type\n",
395                            FloppyDriveType_lookup[drv->drive],
396                            nb_sectors,
397                            FloppyDriveType_lookup[parse->drive]);
398         }
399         match = type_match;
400     }
401 
402     /* No match of any kind found -- fd_format is misconfigured, abort. */
403     if (match == -1) {
404         error_setg(&error_abort, "No candidate geometries present in table "
405                    " for floppy drive type '%s'",
406                    FloppyDriveType_lookup[drv->drive]);
407     }
408 
409     parse = &(fd_formats[match]);
410 
411  out:
412     if (parse->max_head == 0) {
413         drv->flags &= ~FDISK_DBL_SIDES;
414     } else {
415         drv->flags |= FDISK_DBL_SIDES;
416     }
417     drv->max_track = parse->max_track;
418     drv->last_sect = parse->last_sect;
419     drv->disk = parse->drive;
420     drv->media_rate = parse->rate;
421     return 0;
422 }
423 
424 static void pick_drive_type(FDrive *drv)
425 {
426     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
427         return;
428     }
429 
430     if (pick_geometry(drv) == 0) {
431         drv->drive = drv->disk;
432     } else {
433         drv->drive = get_fallback_drive_type(drv);
434     }
435 
436     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
437 }
438 
439 /* Revalidate a disk drive after a disk change */
440 static void fd_revalidate(FDrive *drv)
441 {
442     int rc;
443 
444     FLOPPY_DPRINTF("revalidate\n");
445     if (drv->blk != NULL) {
446         drv->ro = blk_is_read_only(drv->blk);
447         if (!blk_is_inserted(drv->blk)) {
448             FLOPPY_DPRINTF("No disk in drive\n");
449             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
450             fd_empty_seek_hack(drv);
451         } else if (!drv->media_validated) {
452             rc = pick_geometry(drv);
453             if (rc) {
454                 FLOPPY_DPRINTF("Could not validate floppy drive media");
455             } else {
456                 drv->media_validated = true;
457                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
458                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
459                                drv->max_track, drv->last_sect,
460                                drv->ro ? "ro" : "rw");
461             }
462         }
463     } else {
464         FLOPPY_DPRINTF("No drive connected\n");
465         drv->last_sect = 0;
466         drv->max_track = 0;
467         drv->flags &= ~FDISK_DBL_SIDES;
468         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
469         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
470     }
471 }
472 
473 static void fd_change_cb(void *opaque, bool load, Error **errp)
474 {
475     FDrive *drive = opaque;
476     Error *local_err = NULL;
477 
478     if (!load) {
479         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
480     } else {
481         blkconf_apply_backend_options(drive->conf,
482                                       blk_is_read_only(drive->blk), false,
483                                       &local_err);
484         if (local_err) {
485             error_propagate(errp, local_err);
486             return;
487         }
488     }
489 
490     drive->media_changed = 1;
491     drive->media_validated = false;
492     fd_revalidate(drive);
493 }
494 
495 static const BlockDevOps fd_block_ops = {
496     .change_media_cb = fd_change_cb,
497 };
498 
499 
500 #define TYPE_FLOPPY_DRIVE "floppy"
501 #define FLOPPY_DRIVE(obj) \
502      OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
503 
504 typedef struct FloppyDrive {
505     DeviceState     qdev;
506     uint32_t        unit;
507     BlockConf       conf;
508     FloppyDriveType type;
509 } FloppyDrive;
510 
511 static Property floppy_drive_properties[] = {
512     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
513     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
514     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
515                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
516                         FloppyDriveType),
517     DEFINE_PROP_END_OF_LIST(),
518 };
519 
520 static int floppy_drive_init(DeviceState *qdev)
521 {
522     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
523     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
524     FDrive *drive;
525     Error *local_err = NULL;
526     int ret;
527 
528     if (dev->unit == -1) {
529         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
530             drive = get_drv(bus->fdc, dev->unit);
531             if (!drive->blk) {
532                 break;
533             }
534         }
535     }
536 
537     if (dev->unit >= MAX_FD) {
538         error_report("Can't create floppy unit %d, bus supports only %d units",
539                      dev->unit, MAX_FD);
540         return -1;
541     }
542 
543     drive = get_drv(bus->fdc, dev->unit);
544     if (drive->blk) {
545         error_report("Floppy unit %d is in use", dev->unit);
546         return -1;
547     }
548 
549     if (!dev->conf.blk) {
550         /* Anonymous BlockBackend for an empty drive */
551         dev->conf.blk = blk_new(0, BLK_PERM_ALL);
552         ret = blk_attach_dev(dev->conf.blk, qdev);
553         assert(ret == 0);
554     }
555 
556     blkconf_blocksizes(&dev->conf);
557     if (dev->conf.logical_block_size != 512 ||
558         dev->conf.physical_block_size != 512)
559     {
560         error_report("Physical and logical block size must be 512 for floppy");
561         return -1;
562     }
563 
564     /* rerror/werror aren't supported by fdc and therefore not even registered
565      * with qdev. So set the defaults manually before they are used in
566      * blkconf_apply_backend_options(). */
567     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
568     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
569 
570     blkconf_apply_backend_options(&dev->conf, blk_is_read_only(dev->conf.blk),
571                                   false, &local_err);
572     if (local_err) {
573         error_report_err(local_err);
574         return -1;
575     }
576 
577     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
578      * for empty drives. */
579     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
580         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
581         error_report("fdc doesn't support drive option werror");
582         return -1;
583     }
584     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
585         error_report("fdc doesn't support drive option rerror");
586         return -1;
587     }
588 
589     drive->conf = &dev->conf;
590     drive->blk = dev->conf.blk;
591     drive->fdctrl = bus->fdc;
592 
593     fd_init(drive);
594     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
595 
596     /* Keep 'type' qdev property and FDrive->drive in sync */
597     drive->drive = dev->type;
598     pick_drive_type(drive);
599     dev->type = drive->drive;
600 
601     fd_revalidate(drive);
602 
603     return 0;
604 }
605 
606 static void floppy_drive_class_init(ObjectClass *klass, void *data)
607 {
608     DeviceClass *k = DEVICE_CLASS(klass);
609     k->init = floppy_drive_init;
610     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
611     k->bus_type = TYPE_FLOPPY_BUS;
612     k->props = floppy_drive_properties;
613     k->desc = "virtual floppy drive";
614 }
615 
616 static const TypeInfo floppy_drive_info = {
617     .name = TYPE_FLOPPY_DRIVE,
618     .parent = TYPE_DEVICE,
619     .instance_size = sizeof(FloppyDrive),
620     .class_init = floppy_drive_class_init,
621 };
622 
623 /********************************************************/
624 /* Intel 82078 floppy disk controller emulation          */
625 
626 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
627 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
628 static int fdctrl_transfer_handler (void *opaque, int nchan,
629                                     int dma_pos, int dma_len);
630 static void fdctrl_raise_irq(FDCtrl *fdctrl);
631 static FDrive *get_cur_drv(FDCtrl *fdctrl);
632 
633 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
634 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
635 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
636 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
637 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
638 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
639 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
640 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
641 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
642 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
643 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
644 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
645 
646 enum {
647     FD_DIR_WRITE   = 0,
648     FD_DIR_READ    = 1,
649     FD_DIR_SCANE   = 2,
650     FD_DIR_SCANL   = 3,
651     FD_DIR_SCANH   = 4,
652     FD_DIR_VERIFY  = 5,
653 };
654 
655 enum {
656     FD_STATE_MULTI  = 0x01,	/* multi track flag */
657     FD_STATE_FORMAT = 0x02,	/* format flag */
658 };
659 
660 enum {
661     FD_REG_SRA = 0x00,
662     FD_REG_SRB = 0x01,
663     FD_REG_DOR = 0x02,
664     FD_REG_TDR = 0x03,
665     FD_REG_MSR = 0x04,
666     FD_REG_DSR = 0x04,
667     FD_REG_FIFO = 0x05,
668     FD_REG_DIR = 0x07,
669     FD_REG_CCR = 0x07,
670 };
671 
672 enum {
673     FD_CMD_READ_TRACK = 0x02,
674     FD_CMD_SPECIFY = 0x03,
675     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
676     FD_CMD_WRITE = 0x05,
677     FD_CMD_READ = 0x06,
678     FD_CMD_RECALIBRATE = 0x07,
679     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
680     FD_CMD_WRITE_DELETED = 0x09,
681     FD_CMD_READ_ID = 0x0a,
682     FD_CMD_READ_DELETED = 0x0c,
683     FD_CMD_FORMAT_TRACK = 0x0d,
684     FD_CMD_DUMPREG = 0x0e,
685     FD_CMD_SEEK = 0x0f,
686     FD_CMD_VERSION = 0x10,
687     FD_CMD_SCAN_EQUAL = 0x11,
688     FD_CMD_PERPENDICULAR_MODE = 0x12,
689     FD_CMD_CONFIGURE = 0x13,
690     FD_CMD_LOCK = 0x14,
691     FD_CMD_VERIFY = 0x16,
692     FD_CMD_POWERDOWN_MODE = 0x17,
693     FD_CMD_PART_ID = 0x18,
694     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
695     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
696     FD_CMD_SAVE = 0x2e,
697     FD_CMD_OPTION = 0x33,
698     FD_CMD_RESTORE = 0x4e,
699     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
700     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
701     FD_CMD_FORMAT_AND_WRITE = 0xcd,
702     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
703 };
704 
705 enum {
706     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
707     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
708     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
709     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
710     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
711 };
712 
713 enum {
714     FD_SR0_DS0      = 0x01,
715     FD_SR0_DS1      = 0x02,
716     FD_SR0_HEAD     = 0x04,
717     FD_SR0_EQPMT    = 0x10,
718     FD_SR0_SEEK     = 0x20,
719     FD_SR0_ABNTERM  = 0x40,
720     FD_SR0_INVCMD   = 0x80,
721     FD_SR0_RDYCHG   = 0xc0,
722 };
723 
724 enum {
725     FD_SR1_MA       = 0x01, /* Missing address mark */
726     FD_SR1_NW       = 0x02, /* Not writable */
727     FD_SR1_EC       = 0x80, /* End of cylinder */
728 };
729 
730 enum {
731     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
732     FD_SR2_SEH      = 0x08, /* Scan equal hit */
733 };
734 
735 enum {
736     FD_SRA_DIR      = 0x01,
737     FD_SRA_nWP      = 0x02,
738     FD_SRA_nINDX    = 0x04,
739     FD_SRA_HDSEL    = 0x08,
740     FD_SRA_nTRK0    = 0x10,
741     FD_SRA_STEP     = 0x20,
742     FD_SRA_nDRV2    = 0x40,
743     FD_SRA_INTPEND  = 0x80,
744 };
745 
746 enum {
747     FD_SRB_MTR0     = 0x01,
748     FD_SRB_MTR1     = 0x02,
749     FD_SRB_WGATE    = 0x04,
750     FD_SRB_RDATA    = 0x08,
751     FD_SRB_WDATA    = 0x10,
752     FD_SRB_DR0      = 0x20,
753 };
754 
755 enum {
756 #if MAX_FD == 4
757     FD_DOR_SELMASK  = 0x03,
758 #else
759     FD_DOR_SELMASK  = 0x01,
760 #endif
761     FD_DOR_nRESET   = 0x04,
762     FD_DOR_DMAEN    = 0x08,
763     FD_DOR_MOTEN0   = 0x10,
764     FD_DOR_MOTEN1   = 0x20,
765     FD_DOR_MOTEN2   = 0x40,
766     FD_DOR_MOTEN3   = 0x80,
767 };
768 
769 enum {
770 #if MAX_FD == 4
771     FD_TDR_BOOTSEL  = 0x0c,
772 #else
773     FD_TDR_BOOTSEL  = 0x04,
774 #endif
775 };
776 
777 enum {
778     FD_DSR_DRATEMASK= 0x03,
779     FD_DSR_PWRDOWN  = 0x40,
780     FD_DSR_SWRESET  = 0x80,
781 };
782 
783 enum {
784     FD_MSR_DRV0BUSY = 0x01,
785     FD_MSR_DRV1BUSY = 0x02,
786     FD_MSR_DRV2BUSY = 0x04,
787     FD_MSR_DRV3BUSY = 0x08,
788     FD_MSR_CMDBUSY  = 0x10,
789     FD_MSR_NONDMA   = 0x20,
790     FD_MSR_DIO      = 0x40,
791     FD_MSR_RQM      = 0x80,
792 };
793 
794 enum {
795     FD_DIR_DSKCHG   = 0x80,
796 };
797 
798 /*
799  * See chapter 5.0 "Controller phases" of the spec:
800  *
801  * Command phase:
802  * The host writes a command and its parameters into the FIFO. The command
803  * phase is completed when all parameters for the command have been supplied,
804  * and execution phase is entered.
805  *
806  * Execution phase:
807  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
808  * contains the payload now, otherwise it's unused. When all bytes of the
809  * required data have been transferred, the state is switched to either result
810  * phase (if the command produces status bytes) or directly back into the
811  * command phase for the next command.
812  *
813  * Result phase:
814  * The host reads out the FIFO, which contains one or more result bytes now.
815  */
816 enum {
817     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
818     FD_PHASE_RECONSTRUCT    = 0,
819 
820     FD_PHASE_COMMAND        = 1,
821     FD_PHASE_EXECUTION      = 2,
822     FD_PHASE_RESULT         = 3,
823 };
824 
825 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
826 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
827 
828 struct FDCtrl {
829     MemoryRegion iomem;
830     qemu_irq irq;
831     /* Controller state */
832     QEMUTimer *result_timer;
833     int dma_chann;
834     uint8_t phase;
835     IsaDma *dma;
836     /* Controller's identification */
837     uint8_t version;
838     /* HW */
839     uint8_t sra;
840     uint8_t srb;
841     uint8_t dor;
842     uint8_t dor_vmstate; /* only used as temp during vmstate */
843     uint8_t tdr;
844     uint8_t dsr;
845     uint8_t msr;
846     uint8_t cur_drv;
847     uint8_t status0;
848     uint8_t status1;
849     uint8_t status2;
850     /* Command FIFO */
851     uint8_t *fifo;
852     int32_t fifo_size;
853     uint32_t data_pos;
854     uint32_t data_len;
855     uint8_t data_state;
856     uint8_t data_dir;
857     uint8_t eot; /* last wanted sector */
858     /* States kept only to be returned back */
859     /* precompensation */
860     uint8_t precomp_trk;
861     uint8_t config;
862     uint8_t lock;
863     /* Power down config (also with status regB access mode */
864     uint8_t pwrd;
865     /* Floppy drives */
866     FloppyBus bus;
867     uint8_t num_floppies;
868     FDrive drives[MAX_FD];
869     struct {
870         BlockBackend *blk;
871         FloppyDriveType type;
872     } qdev_for_drives[MAX_FD];
873     int reset_sensei;
874     uint32_t check_media_rate;
875     FloppyDriveType fallback; /* type=auto failure fallback */
876     /* Timers state */
877     uint8_t timer0;
878     uint8_t timer1;
879     PortioList portio_list;
880 };
881 
882 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
883 {
884     return drv->fdctrl->fallback;
885 }
886 
887 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
888 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
889 
890 typedef struct FDCtrlSysBus {
891     /*< private >*/
892     SysBusDevice parent_obj;
893     /*< public >*/
894 
895     struct FDCtrl state;
896 } FDCtrlSysBus;
897 
898 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
899 
900 typedef struct FDCtrlISABus {
901     ISADevice parent_obj;
902 
903     uint32_t iobase;
904     uint32_t irq;
905     uint32_t dma;
906     struct FDCtrl state;
907     int32_t bootindexA;
908     int32_t bootindexB;
909 } FDCtrlISABus;
910 
911 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
912 {
913     FDCtrl *fdctrl = opaque;
914     uint32_t retval;
915 
916     reg &= 7;
917     switch (reg) {
918     case FD_REG_SRA:
919         retval = fdctrl_read_statusA(fdctrl);
920         break;
921     case FD_REG_SRB:
922         retval = fdctrl_read_statusB(fdctrl);
923         break;
924     case FD_REG_DOR:
925         retval = fdctrl_read_dor(fdctrl);
926         break;
927     case FD_REG_TDR:
928         retval = fdctrl_read_tape(fdctrl);
929         break;
930     case FD_REG_MSR:
931         retval = fdctrl_read_main_status(fdctrl);
932         break;
933     case FD_REG_FIFO:
934         retval = fdctrl_read_data(fdctrl);
935         break;
936     case FD_REG_DIR:
937         retval = fdctrl_read_dir(fdctrl);
938         break;
939     default:
940         retval = (uint32_t)(-1);
941         break;
942     }
943     FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
944 
945     return retval;
946 }
947 
948 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
949 {
950     FDCtrl *fdctrl = opaque;
951 
952     FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
953 
954     reg &= 7;
955     switch (reg) {
956     case FD_REG_DOR:
957         fdctrl_write_dor(fdctrl, value);
958         break;
959     case FD_REG_TDR:
960         fdctrl_write_tape(fdctrl, value);
961         break;
962     case FD_REG_DSR:
963         fdctrl_write_rate(fdctrl, value);
964         break;
965     case FD_REG_FIFO:
966         fdctrl_write_data(fdctrl, value);
967         break;
968     case FD_REG_CCR:
969         fdctrl_write_ccr(fdctrl, value);
970         break;
971     default:
972         break;
973     }
974 }
975 
976 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
977                                  unsigned ize)
978 {
979     return fdctrl_read(opaque, (uint32_t)reg);
980 }
981 
982 static void fdctrl_write_mem (void *opaque, hwaddr reg,
983                               uint64_t value, unsigned size)
984 {
985     fdctrl_write(opaque, (uint32_t)reg, value);
986 }
987 
988 static const MemoryRegionOps fdctrl_mem_ops = {
989     .read = fdctrl_read_mem,
990     .write = fdctrl_write_mem,
991     .endianness = DEVICE_NATIVE_ENDIAN,
992 };
993 
994 static const MemoryRegionOps fdctrl_mem_strict_ops = {
995     .read = fdctrl_read_mem,
996     .write = fdctrl_write_mem,
997     .endianness = DEVICE_NATIVE_ENDIAN,
998     .valid = {
999         .min_access_size = 1,
1000         .max_access_size = 1,
1001     },
1002 };
1003 
1004 static bool fdrive_media_changed_needed(void *opaque)
1005 {
1006     FDrive *drive = opaque;
1007 
1008     return (drive->blk != NULL && drive->media_changed != 1);
1009 }
1010 
1011 static const VMStateDescription vmstate_fdrive_media_changed = {
1012     .name = "fdrive/media_changed",
1013     .version_id = 1,
1014     .minimum_version_id = 1,
1015     .needed = fdrive_media_changed_needed,
1016     .fields = (VMStateField[]) {
1017         VMSTATE_UINT8(media_changed, FDrive),
1018         VMSTATE_END_OF_LIST()
1019     }
1020 };
1021 
1022 static bool fdrive_media_rate_needed(void *opaque)
1023 {
1024     FDrive *drive = opaque;
1025 
1026     return drive->fdctrl->check_media_rate;
1027 }
1028 
1029 static const VMStateDescription vmstate_fdrive_media_rate = {
1030     .name = "fdrive/media_rate",
1031     .version_id = 1,
1032     .minimum_version_id = 1,
1033     .needed = fdrive_media_rate_needed,
1034     .fields = (VMStateField[]) {
1035         VMSTATE_UINT8(media_rate, FDrive),
1036         VMSTATE_END_OF_LIST()
1037     }
1038 };
1039 
1040 static bool fdrive_perpendicular_needed(void *opaque)
1041 {
1042     FDrive *drive = opaque;
1043 
1044     return drive->perpendicular != 0;
1045 }
1046 
1047 static const VMStateDescription vmstate_fdrive_perpendicular = {
1048     .name = "fdrive/perpendicular",
1049     .version_id = 1,
1050     .minimum_version_id = 1,
1051     .needed = fdrive_perpendicular_needed,
1052     .fields = (VMStateField[]) {
1053         VMSTATE_UINT8(perpendicular, FDrive),
1054         VMSTATE_END_OF_LIST()
1055     }
1056 };
1057 
1058 static int fdrive_post_load(void *opaque, int version_id)
1059 {
1060     fd_revalidate(opaque);
1061     return 0;
1062 }
1063 
1064 static const VMStateDescription vmstate_fdrive = {
1065     .name = "fdrive",
1066     .version_id = 1,
1067     .minimum_version_id = 1,
1068     .post_load = fdrive_post_load,
1069     .fields = (VMStateField[]) {
1070         VMSTATE_UINT8(head, FDrive),
1071         VMSTATE_UINT8(track, FDrive),
1072         VMSTATE_UINT8(sect, FDrive),
1073         VMSTATE_END_OF_LIST()
1074     },
1075     .subsections = (const VMStateDescription*[]) {
1076         &vmstate_fdrive_media_changed,
1077         &vmstate_fdrive_media_rate,
1078         &vmstate_fdrive_perpendicular,
1079         NULL
1080     }
1081 };
1082 
1083 /*
1084  * Reconstructs the phase from register values according to the logic that was
1085  * implemented in qemu 2.3. This is the default value that is used if the phase
1086  * subsection is not present on migration.
1087  *
1088  * Don't change this function to reflect newer qemu versions, it is part of
1089  * the migration ABI.
1090  */
1091 static int reconstruct_phase(FDCtrl *fdctrl)
1092 {
1093     if (fdctrl->msr & FD_MSR_NONDMA) {
1094         return FD_PHASE_EXECUTION;
1095     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1096         /* qemu 2.3 disabled RQM only during DMA transfers */
1097         return FD_PHASE_EXECUTION;
1098     } else if (fdctrl->msr & FD_MSR_DIO) {
1099         return FD_PHASE_RESULT;
1100     } else {
1101         return FD_PHASE_COMMAND;
1102     }
1103 }
1104 
1105 static void fdc_pre_save(void *opaque)
1106 {
1107     FDCtrl *s = opaque;
1108 
1109     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1110 }
1111 
1112 static int fdc_pre_load(void *opaque)
1113 {
1114     FDCtrl *s = opaque;
1115     s->phase = FD_PHASE_RECONSTRUCT;
1116     return 0;
1117 }
1118 
1119 static int fdc_post_load(void *opaque, int version_id)
1120 {
1121     FDCtrl *s = opaque;
1122 
1123     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1124     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1125 
1126     if (s->phase == FD_PHASE_RECONSTRUCT) {
1127         s->phase = reconstruct_phase(s);
1128     }
1129 
1130     return 0;
1131 }
1132 
1133 static bool fdc_reset_sensei_needed(void *opaque)
1134 {
1135     FDCtrl *s = opaque;
1136 
1137     return s->reset_sensei != 0;
1138 }
1139 
1140 static const VMStateDescription vmstate_fdc_reset_sensei = {
1141     .name = "fdc/reset_sensei",
1142     .version_id = 1,
1143     .minimum_version_id = 1,
1144     .needed = fdc_reset_sensei_needed,
1145     .fields = (VMStateField[]) {
1146         VMSTATE_INT32(reset_sensei, FDCtrl),
1147         VMSTATE_END_OF_LIST()
1148     }
1149 };
1150 
1151 static bool fdc_result_timer_needed(void *opaque)
1152 {
1153     FDCtrl *s = opaque;
1154 
1155     return timer_pending(s->result_timer);
1156 }
1157 
1158 static const VMStateDescription vmstate_fdc_result_timer = {
1159     .name = "fdc/result_timer",
1160     .version_id = 1,
1161     .minimum_version_id = 1,
1162     .needed = fdc_result_timer_needed,
1163     .fields = (VMStateField[]) {
1164         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1165         VMSTATE_END_OF_LIST()
1166     }
1167 };
1168 
1169 static bool fdc_phase_needed(void *opaque)
1170 {
1171     FDCtrl *fdctrl = opaque;
1172 
1173     return reconstruct_phase(fdctrl) != fdctrl->phase;
1174 }
1175 
1176 static const VMStateDescription vmstate_fdc_phase = {
1177     .name = "fdc/phase",
1178     .version_id = 1,
1179     .minimum_version_id = 1,
1180     .needed = fdc_phase_needed,
1181     .fields = (VMStateField[]) {
1182         VMSTATE_UINT8(phase, FDCtrl),
1183         VMSTATE_END_OF_LIST()
1184     }
1185 };
1186 
1187 static const VMStateDescription vmstate_fdc = {
1188     .name = "fdc",
1189     .version_id = 2,
1190     .minimum_version_id = 2,
1191     .pre_save = fdc_pre_save,
1192     .pre_load = fdc_pre_load,
1193     .post_load = fdc_post_load,
1194     .fields = (VMStateField[]) {
1195         /* Controller State */
1196         VMSTATE_UINT8(sra, FDCtrl),
1197         VMSTATE_UINT8(srb, FDCtrl),
1198         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1199         VMSTATE_UINT8(tdr, FDCtrl),
1200         VMSTATE_UINT8(dsr, FDCtrl),
1201         VMSTATE_UINT8(msr, FDCtrl),
1202         VMSTATE_UINT8(status0, FDCtrl),
1203         VMSTATE_UINT8(status1, FDCtrl),
1204         VMSTATE_UINT8(status2, FDCtrl),
1205         /* Command FIFO */
1206         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1207                              uint8_t),
1208         VMSTATE_UINT32(data_pos, FDCtrl),
1209         VMSTATE_UINT32(data_len, FDCtrl),
1210         VMSTATE_UINT8(data_state, FDCtrl),
1211         VMSTATE_UINT8(data_dir, FDCtrl),
1212         VMSTATE_UINT8(eot, FDCtrl),
1213         /* States kept only to be returned back */
1214         VMSTATE_UINT8(timer0, FDCtrl),
1215         VMSTATE_UINT8(timer1, FDCtrl),
1216         VMSTATE_UINT8(precomp_trk, FDCtrl),
1217         VMSTATE_UINT8(config, FDCtrl),
1218         VMSTATE_UINT8(lock, FDCtrl),
1219         VMSTATE_UINT8(pwrd, FDCtrl),
1220         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1221         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1222                              vmstate_fdrive, FDrive),
1223         VMSTATE_END_OF_LIST()
1224     },
1225     .subsections = (const VMStateDescription*[]) {
1226         &vmstate_fdc_reset_sensei,
1227         &vmstate_fdc_result_timer,
1228         &vmstate_fdc_phase,
1229         NULL
1230     }
1231 };
1232 
1233 static void fdctrl_external_reset_sysbus(DeviceState *d)
1234 {
1235     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1236     FDCtrl *s = &sys->state;
1237 
1238     fdctrl_reset(s, 0);
1239 }
1240 
1241 static void fdctrl_external_reset_isa(DeviceState *d)
1242 {
1243     FDCtrlISABus *isa = ISA_FDC(d);
1244     FDCtrl *s = &isa->state;
1245 
1246     fdctrl_reset(s, 0);
1247 }
1248 
1249 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1250 {
1251     //FDCtrl *s = opaque;
1252 
1253     if (level) {
1254         // XXX
1255         FLOPPY_DPRINTF("TC pulsed\n");
1256     }
1257 }
1258 
1259 /* Change IRQ state */
1260 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1261 {
1262     fdctrl->status0 = 0;
1263     if (!(fdctrl->sra & FD_SRA_INTPEND))
1264         return;
1265     FLOPPY_DPRINTF("Reset interrupt\n");
1266     qemu_set_irq(fdctrl->irq, 0);
1267     fdctrl->sra &= ~FD_SRA_INTPEND;
1268 }
1269 
1270 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1271 {
1272     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1273         qemu_set_irq(fdctrl->irq, 1);
1274         fdctrl->sra |= FD_SRA_INTPEND;
1275     }
1276 
1277     fdctrl->reset_sensei = 0;
1278     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1279 }
1280 
1281 /* Reset controller */
1282 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1283 {
1284     int i;
1285 
1286     FLOPPY_DPRINTF("reset controller\n");
1287     fdctrl_reset_irq(fdctrl);
1288     /* Initialise controller */
1289     fdctrl->sra = 0;
1290     fdctrl->srb = 0xc0;
1291     if (!fdctrl->drives[1].blk) {
1292         fdctrl->sra |= FD_SRA_nDRV2;
1293     }
1294     fdctrl->cur_drv = 0;
1295     fdctrl->dor = FD_DOR_nRESET;
1296     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1297     fdctrl->msr = FD_MSR_RQM;
1298     fdctrl->reset_sensei = 0;
1299     timer_del(fdctrl->result_timer);
1300     /* FIFO state */
1301     fdctrl->data_pos = 0;
1302     fdctrl->data_len = 0;
1303     fdctrl->data_state = 0;
1304     fdctrl->data_dir = FD_DIR_WRITE;
1305     for (i = 0; i < MAX_FD; i++)
1306         fd_recalibrate(&fdctrl->drives[i]);
1307     fdctrl_to_command_phase(fdctrl);
1308     if (do_irq) {
1309         fdctrl->status0 |= FD_SR0_RDYCHG;
1310         fdctrl_raise_irq(fdctrl);
1311         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1312     }
1313 }
1314 
1315 static inline FDrive *drv0(FDCtrl *fdctrl)
1316 {
1317     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1318 }
1319 
1320 static inline FDrive *drv1(FDCtrl *fdctrl)
1321 {
1322     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1323         return &fdctrl->drives[1];
1324     else
1325         return &fdctrl->drives[0];
1326 }
1327 
1328 #if MAX_FD == 4
1329 static inline FDrive *drv2(FDCtrl *fdctrl)
1330 {
1331     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1332         return &fdctrl->drives[2];
1333     else
1334         return &fdctrl->drives[1];
1335 }
1336 
1337 static inline FDrive *drv3(FDCtrl *fdctrl)
1338 {
1339     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1340         return &fdctrl->drives[3];
1341     else
1342         return &fdctrl->drives[2];
1343 }
1344 #endif
1345 
1346 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1347 {
1348     switch (unit) {
1349         case 0: return drv0(fdctrl);
1350         case 1: return drv1(fdctrl);
1351 #if MAX_FD == 4
1352         case 2: return drv2(fdctrl);
1353         case 3: return drv3(fdctrl);
1354 #endif
1355         default: return NULL;
1356     }
1357 }
1358 
1359 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1360 {
1361     return get_drv(fdctrl, fdctrl->cur_drv);
1362 }
1363 
1364 /* Status A register : 0x00 (read-only) */
1365 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1366 {
1367     uint32_t retval = fdctrl->sra;
1368 
1369     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1370 
1371     return retval;
1372 }
1373 
1374 /* Status B register : 0x01 (read-only) */
1375 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1376 {
1377     uint32_t retval = fdctrl->srb;
1378 
1379     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1380 
1381     return retval;
1382 }
1383 
1384 /* Digital output register : 0x02 */
1385 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1386 {
1387     uint32_t retval = fdctrl->dor;
1388 
1389     /* Selected drive */
1390     retval |= fdctrl->cur_drv;
1391     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1392 
1393     return retval;
1394 }
1395 
1396 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1397 {
1398     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1399 
1400     /* Motors */
1401     if (value & FD_DOR_MOTEN0)
1402         fdctrl->srb |= FD_SRB_MTR0;
1403     else
1404         fdctrl->srb &= ~FD_SRB_MTR0;
1405     if (value & FD_DOR_MOTEN1)
1406         fdctrl->srb |= FD_SRB_MTR1;
1407     else
1408         fdctrl->srb &= ~FD_SRB_MTR1;
1409 
1410     /* Drive */
1411     if (value & 1)
1412         fdctrl->srb |= FD_SRB_DR0;
1413     else
1414         fdctrl->srb &= ~FD_SRB_DR0;
1415 
1416     /* Reset */
1417     if (!(value & FD_DOR_nRESET)) {
1418         if (fdctrl->dor & FD_DOR_nRESET) {
1419             FLOPPY_DPRINTF("controller enter RESET state\n");
1420         }
1421     } else {
1422         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1423             FLOPPY_DPRINTF("controller out of RESET state\n");
1424             fdctrl_reset(fdctrl, 1);
1425             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1426         }
1427     }
1428     /* Selected drive */
1429     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1430 
1431     fdctrl->dor = value;
1432 }
1433 
1434 /* Tape drive register : 0x03 */
1435 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1436 {
1437     uint32_t retval = fdctrl->tdr;
1438 
1439     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1440 
1441     return retval;
1442 }
1443 
1444 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1445 {
1446     /* Reset mode */
1447     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1448         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1449         return;
1450     }
1451     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1452     /* Disk boot selection indicator */
1453     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1454     /* Tape indicators: never allow */
1455 }
1456 
1457 /* Main status register : 0x04 (read) */
1458 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1459 {
1460     uint32_t retval = fdctrl->msr;
1461 
1462     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1463     fdctrl->dor |= FD_DOR_nRESET;
1464 
1465     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1466 
1467     return retval;
1468 }
1469 
1470 /* Data select rate register : 0x04 (write) */
1471 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1472 {
1473     /* Reset mode */
1474     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1475         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1476         return;
1477     }
1478     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1479     /* Reset: autoclear */
1480     if (value & FD_DSR_SWRESET) {
1481         fdctrl->dor &= ~FD_DOR_nRESET;
1482         fdctrl_reset(fdctrl, 1);
1483         fdctrl->dor |= FD_DOR_nRESET;
1484     }
1485     if (value & FD_DSR_PWRDOWN) {
1486         fdctrl_reset(fdctrl, 1);
1487     }
1488     fdctrl->dsr = value;
1489 }
1490 
1491 /* Configuration control register: 0x07 (write) */
1492 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1493 {
1494     /* Reset mode */
1495     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1496         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1497         return;
1498     }
1499     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1500 
1501     /* Only the rate selection bits used in AT mode, and we
1502      * store those in the DSR.
1503      */
1504     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1505                   (value & FD_DSR_DRATEMASK);
1506 }
1507 
1508 static int fdctrl_media_changed(FDrive *drv)
1509 {
1510     return drv->media_changed;
1511 }
1512 
1513 /* Digital input register : 0x07 (read-only) */
1514 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1515 {
1516     uint32_t retval = 0;
1517 
1518     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1519         retval |= FD_DIR_DSKCHG;
1520     }
1521     if (retval != 0) {
1522         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1523     }
1524 
1525     return retval;
1526 }
1527 
1528 /* Clear the FIFO and update the state for receiving the next command */
1529 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1530 {
1531     fdctrl->phase = FD_PHASE_COMMAND;
1532     fdctrl->data_dir = FD_DIR_WRITE;
1533     fdctrl->data_pos = 0;
1534     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1535     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1536     fdctrl->msr |= FD_MSR_RQM;
1537 }
1538 
1539 /* Update the state to allow the guest to read out the command status.
1540  * @fifo_len is the number of result bytes to be read out. */
1541 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1542 {
1543     fdctrl->phase = FD_PHASE_RESULT;
1544     fdctrl->data_dir = FD_DIR_READ;
1545     fdctrl->data_len = fifo_len;
1546     fdctrl->data_pos = 0;
1547     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1548 }
1549 
1550 /* Set an error: unimplemented/unknown command */
1551 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1552 {
1553     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1554                   fdctrl->fifo[0]);
1555     fdctrl->fifo[0] = FD_SR0_INVCMD;
1556     fdctrl_to_result_phase(fdctrl, 1);
1557 }
1558 
1559 /* Seek to next sector
1560  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1561  * otherwise returns 1
1562  */
1563 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1564 {
1565     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1566                    cur_drv->head, cur_drv->track, cur_drv->sect,
1567                    fd_sector(cur_drv));
1568     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1569        error in fact */
1570     uint8_t new_head = cur_drv->head;
1571     uint8_t new_track = cur_drv->track;
1572     uint8_t new_sect = cur_drv->sect;
1573 
1574     int ret = 1;
1575 
1576     if (new_sect >= cur_drv->last_sect ||
1577         new_sect == fdctrl->eot) {
1578         new_sect = 1;
1579         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1580             if (new_head == 0 &&
1581                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1582                 new_head = 1;
1583             } else {
1584                 new_head = 0;
1585                 new_track++;
1586                 fdctrl->status0 |= FD_SR0_SEEK;
1587                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1588                     ret = 0;
1589                 }
1590             }
1591         } else {
1592             fdctrl->status0 |= FD_SR0_SEEK;
1593             new_track++;
1594             ret = 0;
1595         }
1596         if (ret == 1) {
1597             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1598                     new_head, new_track, new_sect, fd_sector(cur_drv));
1599         }
1600     } else {
1601         new_sect++;
1602     }
1603     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1604     return ret;
1605 }
1606 
1607 /* Callback for transfer end (stop or abort) */
1608 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1609                                  uint8_t status1, uint8_t status2)
1610 {
1611     FDrive *cur_drv;
1612     cur_drv = get_cur_drv(fdctrl);
1613 
1614     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1615     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1616     if (cur_drv->head) {
1617         fdctrl->status0 |= FD_SR0_HEAD;
1618     }
1619     fdctrl->status0 |= status0;
1620 
1621     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1622                    status0, status1, status2, fdctrl->status0);
1623     fdctrl->fifo[0] = fdctrl->status0;
1624     fdctrl->fifo[1] = status1;
1625     fdctrl->fifo[2] = status2;
1626     fdctrl->fifo[3] = cur_drv->track;
1627     fdctrl->fifo[4] = cur_drv->head;
1628     fdctrl->fifo[5] = cur_drv->sect;
1629     fdctrl->fifo[6] = FD_SECTOR_SC;
1630     fdctrl->data_dir = FD_DIR_READ;
1631     if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1632         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1633         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1634     }
1635     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1636     fdctrl->msr &= ~FD_MSR_NONDMA;
1637 
1638     fdctrl_to_result_phase(fdctrl, 7);
1639     fdctrl_raise_irq(fdctrl);
1640 }
1641 
1642 /* Prepare a data transfer (either DMA or FIFO) */
1643 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1644 {
1645     FDrive *cur_drv;
1646     uint8_t kh, kt, ks;
1647 
1648     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1649     cur_drv = get_cur_drv(fdctrl);
1650     kt = fdctrl->fifo[2];
1651     kh = fdctrl->fifo[3];
1652     ks = fdctrl->fifo[4];
1653     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1654                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1655                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1656                                   NUM_SIDES(cur_drv)));
1657     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1658     case 2:
1659         /* sect too big */
1660         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1661         fdctrl->fifo[3] = kt;
1662         fdctrl->fifo[4] = kh;
1663         fdctrl->fifo[5] = ks;
1664         return;
1665     case 3:
1666         /* track too big */
1667         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1668         fdctrl->fifo[3] = kt;
1669         fdctrl->fifo[4] = kh;
1670         fdctrl->fifo[5] = ks;
1671         return;
1672     case 4:
1673         /* No seek enabled */
1674         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1675         fdctrl->fifo[3] = kt;
1676         fdctrl->fifo[4] = kh;
1677         fdctrl->fifo[5] = ks;
1678         return;
1679     case 1:
1680         fdctrl->status0 |= FD_SR0_SEEK;
1681         break;
1682     default:
1683         break;
1684     }
1685 
1686     /* Check the data rate. If the programmed data rate does not match
1687      * the currently inserted medium, the operation has to fail. */
1688     if (fdctrl->check_media_rate &&
1689         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1690         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1691                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1692         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1693         fdctrl->fifo[3] = kt;
1694         fdctrl->fifo[4] = kh;
1695         fdctrl->fifo[5] = ks;
1696         return;
1697     }
1698 
1699     /* Set the FIFO state */
1700     fdctrl->data_dir = direction;
1701     fdctrl->data_pos = 0;
1702     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1703     if (fdctrl->fifo[0] & 0x80)
1704         fdctrl->data_state |= FD_STATE_MULTI;
1705     else
1706         fdctrl->data_state &= ~FD_STATE_MULTI;
1707     if (fdctrl->fifo[5] == 0) {
1708         fdctrl->data_len = fdctrl->fifo[8];
1709     } else {
1710         int tmp;
1711         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1712         tmp = (fdctrl->fifo[6] - ks + 1);
1713         if (fdctrl->fifo[0] & 0x80)
1714             tmp += fdctrl->fifo[6];
1715         fdctrl->data_len *= tmp;
1716     }
1717     fdctrl->eot = fdctrl->fifo[6];
1718     if (fdctrl->dor & FD_DOR_DMAEN) {
1719         IsaDmaTransferMode dma_mode;
1720         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1721         bool dma_mode_ok;
1722         /* DMA transfer are enabled. Check if DMA channel is well programmed */
1723         dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1724         FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1725                        dma_mode, direction,
1726                        (128 << fdctrl->fifo[5]) *
1727                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1728         switch (direction) {
1729         case FD_DIR_SCANE:
1730         case FD_DIR_SCANL:
1731         case FD_DIR_SCANH:
1732             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1733             break;
1734         case FD_DIR_WRITE:
1735             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1736             break;
1737         case FD_DIR_READ:
1738             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1739             break;
1740         case FD_DIR_VERIFY:
1741             dma_mode_ok = true;
1742             break;
1743         default:
1744             dma_mode_ok = false;
1745             break;
1746         }
1747         if (dma_mode_ok) {
1748             /* No access is allowed until DMA transfer has completed */
1749             fdctrl->msr &= ~FD_MSR_RQM;
1750             if (direction != FD_DIR_VERIFY) {
1751                 /* Now, we just have to wait for the DMA controller to
1752                  * recall us...
1753                  */
1754                 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1755                 k->schedule(fdctrl->dma);
1756             } else {
1757                 /* Start transfer */
1758                 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1759                                         fdctrl->data_len);
1760             }
1761             return;
1762         } else {
1763             FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1764                            direction);
1765         }
1766     }
1767     FLOPPY_DPRINTF("start non-DMA transfer\n");
1768     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1769     if (direction != FD_DIR_WRITE)
1770         fdctrl->msr |= FD_MSR_DIO;
1771     /* IO based transfer: calculate len */
1772     fdctrl_raise_irq(fdctrl);
1773 }
1774 
1775 /* Prepare a transfer of deleted data */
1776 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1777 {
1778     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1779 
1780     /* We don't handle deleted data,
1781      * so we don't return *ANYTHING*
1782      */
1783     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1784 }
1785 
1786 /* handlers for DMA transfers */
1787 static int fdctrl_transfer_handler (void *opaque, int nchan,
1788                                     int dma_pos, int dma_len)
1789 {
1790     FDCtrl *fdctrl;
1791     FDrive *cur_drv;
1792     int len, start_pos, rel_pos;
1793     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1794     IsaDmaClass *k;
1795 
1796     fdctrl = opaque;
1797     if (fdctrl->msr & FD_MSR_RQM) {
1798         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1799         return 0;
1800     }
1801     k = ISADMA_GET_CLASS(fdctrl->dma);
1802     cur_drv = get_cur_drv(fdctrl);
1803     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1804         fdctrl->data_dir == FD_DIR_SCANH)
1805         status2 = FD_SR2_SNS;
1806     if (dma_len > fdctrl->data_len)
1807         dma_len = fdctrl->data_len;
1808     if (cur_drv->blk == NULL) {
1809         if (fdctrl->data_dir == FD_DIR_WRITE)
1810             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1811         else
1812             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1813         len = 0;
1814         goto transfer_error;
1815     }
1816     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1817     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1818         len = dma_len - fdctrl->data_pos;
1819         if (len + rel_pos > FD_SECTOR_LEN)
1820             len = FD_SECTOR_LEN - rel_pos;
1821         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1822                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1823                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1824                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1825                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1826         if (fdctrl->data_dir != FD_DIR_WRITE ||
1827             len < FD_SECTOR_LEN || rel_pos != 0) {
1828             /* READ & SCAN commands and realign to a sector for WRITE */
1829             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1830                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1831                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1832                                fd_sector(cur_drv));
1833                 /* Sure, image size is too small... */
1834                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1835             }
1836         }
1837         switch (fdctrl->data_dir) {
1838         case FD_DIR_READ:
1839             /* READ commands */
1840             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1841                             fdctrl->data_pos, len);
1842             break;
1843         case FD_DIR_WRITE:
1844             /* WRITE commands */
1845             if (cur_drv->ro) {
1846                 /* Handle readonly medium early, no need to do DMA, touch the
1847                  * LED or attempt any writes. A real floppy doesn't attempt
1848                  * to write to readonly media either. */
1849                 fdctrl_stop_transfer(fdctrl,
1850                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1851                                      0x00);
1852                 goto transfer_error;
1853             }
1854 
1855             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1856                            fdctrl->data_pos, len);
1857             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1858                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1859                 FLOPPY_DPRINTF("error writing sector %d\n",
1860                                fd_sector(cur_drv));
1861                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1862                 goto transfer_error;
1863             }
1864             break;
1865         case FD_DIR_VERIFY:
1866             /* VERIFY commands */
1867             break;
1868         default:
1869             /* SCAN commands */
1870             {
1871                 uint8_t tmpbuf[FD_SECTOR_LEN];
1872                 int ret;
1873                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1874                                len);
1875                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1876                 if (ret == 0) {
1877                     status2 = FD_SR2_SEH;
1878                     goto end_transfer;
1879                 }
1880                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1881                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1882                     status2 = 0x00;
1883                     goto end_transfer;
1884                 }
1885             }
1886             break;
1887         }
1888         fdctrl->data_pos += len;
1889         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1890         if (rel_pos == 0) {
1891             /* Seek to next sector */
1892             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1893                 break;
1894         }
1895     }
1896  end_transfer:
1897     len = fdctrl->data_pos - start_pos;
1898     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1899                    fdctrl->data_pos, len, fdctrl->data_len);
1900     if (fdctrl->data_dir == FD_DIR_SCANE ||
1901         fdctrl->data_dir == FD_DIR_SCANL ||
1902         fdctrl->data_dir == FD_DIR_SCANH)
1903         status2 = FD_SR2_SEH;
1904     fdctrl->data_len -= len;
1905     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1906  transfer_error:
1907 
1908     return len;
1909 }
1910 
1911 /* Data register : 0x05 */
1912 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1913 {
1914     FDrive *cur_drv;
1915     uint32_t retval = 0;
1916     uint32_t pos;
1917 
1918     cur_drv = get_cur_drv(fdctrl);
1919     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1920     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1921         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1922         return 0;
1923     }
1924 
1925     /* If data_len spans multiple sectors, the current position in the FIFO
1926      * wraps around while fdctrl->data_pos is the real position in the whole
1927      * request. */
1928     pos = fdctrl->data_pos;
1929     pos %= FD_SECTOR_LEN;
1930 
1931     switch (fdctrl->phase) {
1932     case FD_PHASE_EXECUTION:
1933         assert(fdctrl->msr & FD_MSR_NONDMA);
1934         if (pos == 0) {
1935             if (fdctrl->data_pos != 0)
1936                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1937                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1938                                    fd_sector(cur_drv));
1939                     return 0;
1940                 }
1941             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1942                           BDRV_SECTOR_SIZE)
1943                 < 0) {
1944                 FLOPPY_DPRINTF("error getting sector %d\n",
1945                                fd_sector(cur_drv));
1946                 /* Sure, image size is too small... */
1947                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1948             }
1949         }
1950 
1951         if (++fdctrl->data_pos == fdctrl->data_len) {
1952             fdctrl->msr &= ~FD_MSR_RQM;
1953             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1954         }
1955         break;
1956 
1957     case FD_PHASE_RESULT:
1958         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1959         if (++fdctrl->data_pos == fdctrl->data_len) {
1960             fdctrl->msr &= ~FD_MSR_RQM;
1961             fdctrl_to_command_phase(fdctrl);
1962             fdctrl_reset_irq(fdctrl);
1963         }
1964         break;
1965 
1966     case FD_PHASE_COMMAND:
1967     default:
1968         abort();
1969     }
1970 
1971     retval = fdctrl->fifo[pos];
1972     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1973 
1974     return retval;
1975 }
1976 
1977 static void fdctrl_format_sector(FDCtrl *fdctrl)
1978 {
1979     FDrive *cur_drv;
1980     uint8_t kh, kt, ks;
1981 
1982     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1983     cur_drv = get_cur_drv(fdctrl);
1984     kt = fdctrl->fifo[6];
1985     kh = fdctrl->fifo[7];
1986     ks = fdctrl->fifo[8];
1987     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1988                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1989                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1990                                   NUM_SIDES(cur_drv)));
1991     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1992     case 2:
1993         /* sect too big */
1994         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1995         fdctrl->fifo[3] = kt;
1996         fdctrl->fifo[4] = kh;
1997         fdctrl->fifo[5] = ks;
1998         return;
1999     case 3:
2000         /* track too big */
2001         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
2002         fdctrl->fifo[3] = kt;
2003         fdctrl->fifo[4] = kh;
2004         fdctrl->fifo[5] = ks;
2005         return;
2006     case 4:
2007         /* No seek enabled */
2008         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
2009         fdctrl->fifo[3] = kt;
2010         fdctrl->fifo[4] = kh;
2011         fdctrl->fifo[5] = ks;
2012         return;
2013     case 1:
2014         fdctrl->status0 |= FD_SR0_SEEK;
2015         break;
2016     default:
2017         break;
2018     }
2019     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2020     if (cur_drv->blk == NULL ||
2021         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2022                    BDRV_SECTOR_SIZE, 0) < 0) {
2023         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2024         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2025     } else {
2026         if (cur_drv->sect == cur_drv->last_sect) {
2027             fdctrl->data_state &= ~FD_STATE_FORMAT;
2028             /* Last sector done */
2029             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2030         } else {
2031             /* More to do */
2032             fdctrl->data_pos = 0;
2033             fdctrl->data_len = 4;
2034         }
2035     }
2036 }
2037 
2038 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2039 {
2040     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2041     fdctrl->fifo[0] = fdctrl->lock << 4;
2042     fdctrl_to_result_phase(fdctrl, 1);
2043 }
2044 
2045 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2046 {
2047     FDrive *cur_drv = get_cur_drv(fdctrl);
2048 
2049     /* Drives position */
2050     fdctrl->fifo[0] = drv0(fdctrl)->track;
2051     fdctrl->fifo[1] = drv1(fdctrl)->track;
2052 #if MAX_FD == 4
2053     fdctrl->fifo[2] = drv2(fdctrl)->track;
2054     fdctrl->fifo[3] = drv3(fdctrl)->track;
2055 #else
2056     fdctrl->fifo[2] = 0;
2057     fdctrl->fifo[3] = 0;
2058 #endif
2059     /* timers */
2060     fdctrl->fifo[4] = fdctrl->timer0;
2061     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2062     fdctrl->fifo[6] = cur_drv->last_sect;
2063     fdctrl->fifo[7] = (fdctrl->lock << 7) |
2064         (cur_drv->perpendicular << 2);
2065     fdctrl->fifo[8] = fdctrl->config;
2066     fdctrl->fifo[9] = fdctrl->precomp_trk;
2067     fdctrl_to_result_phase(fdctrl, 10);
2068 }
2069 
2070 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2071 {
2072     /* Controller's version */
2073     fdctrl->fifo[0] = fdctrl->version;
2074     fdctrl_to_result_phase(fdctrl, 1);
2075 }
2076 
2077 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2078 {
2079     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2080     fdctrl_to_result_phase(fdctrl, 1);
2081 }
2082 
2083 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2084 {
2085     FDrive *cur_drv = get_cur_drv(fdctrl);
2086 
2087     /* Drives position */
2088     drv0(fdctrl)->track = fdctrl->fifo[3];
2089     drv1(fdctrl)->track = fdctrl->fifo[4];
2090 #if MAX_FD == 4
2091     drv2(fdctrl)->track = fdctrl->fifo[5];
2092     drv3(fdctrl)->track = fdctrl->fifo[6];
2093 #endif
2094     /* timers */
2095     fdctrl->timer0 = fdctrl->fifo[7];
2096     fdctrl->timer1 = fdctrl->fifo[8];
2097     cur_drv->last_sect = fdctrl->fifo[9];
2098     fdctrl->lock = fdctrl->fifo[10] >> 7;
2099     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2100     fdctrl->config = fdctrl->fifo[11];
2101     fdctrl->precomp_trk = fdctrl->fifo[12];
2102     fdctrl->pwrd = fdctrl->fifo[13];
2103     fdctrl_to_command_phase(fdctrl);
2104 }
2105 
2106 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2107 {
2108     FDrive *cur_drv = get_cur_drv(fdctrl);
2109 
2110     fdctrl->fifo[0] = 0;
2111     fdctrl->fifo[1] = 0;
2112     /* Drives position */
2113     fdctrl->fifo[2] = drv0(fdctrl)->track;
2114     fdctrl->fifo[3] = drv1(fdctrl)->track;
2115 #if MAX_FD == 4
2116     fdctrl->fifo[4] = drv2(fdctrl)->track;
2117     fdctrl->fifo[5] = drv3(fdctrl)->track;
2118 #else
2119     fdctrl->fifo[4] = 0;
2120     fdctrl->fifo[5] = 0;
2121 #endif
2122     /* timers */
2123     fdctrl->fifo[6] = fdctrl->timer0;
2124     fdctrl->fifo[7] = fdctrl->timer1;
2125     fdctrl->fifo[8] = cur_drv->last_sect;
2126     fdctrl->fifo[9] = (fdctrl->lock << 7) |
2127         (cur_drv->perpendicular << 2);
2128     fdctrl->fifo[10] = fdctrl->config;
2129     fdctrl->fifo[11] = fdctrl->precomp_trk;
2130     fdctrl->fifo[12] = fdctrl->pwrd;
2131     fdctrl->fifo[13] = 0;
2132     fdctrl->fifo[14] = 0;
2133     fdctrl_to_result_phase(fdctrl, 15);
2134 }
2135 
2136 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2137 {
2138     FDrive *cur_drv = get_cur_drv(fdctrl);
2139 
2140     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2141     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2142              (NANOSECONDS_PER_SECOND / 50));
2143 }
2144 
2145 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2146 {
2147     FDrive *cur_drv;
2148 
2149     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2150     cur_drv = get_cur_drv(fdctrl);
2151     fdctrl->data_state |= FD_STATE_FORMAT;
2152     if (fdctrl->fifo[0] & 0x80)
2153         fdctrl->data_state |= FD_STATE_MULTI;
2154     else
2155         fdctrl->data_state &= ~FD_STATE_MULTI;
2156     cur_drv->bps =
2157         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2158 #if 0
2159     cur_drv->last_sect =
2160         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2161         fdctrl->fifo[3] / 2;
2162 #else
2163     cur_drv->last_sect = fdctrl->fifo[3];
2164 #endif
2165     /* TODO: implement format using DMA expected by the Bochs BIOS
2166      * and Linux fdformat (read 3 bytes per sector via DMA and fill
2167      * the sector with the specified fill byte
2168      */
2169     fdctrl->data_state &= ~FD_STATE_FORMAT;
2170     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2171 }
2172 
2173 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2174 {
2175     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2176     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2177     if (fdctrl->fifo[2] & 1)
2178         fdctrl->dor &= ~FD_DOR_DMAEN;
2179     else
2180         fdctrl->dor |= FD_DOR_DMAEN;
2181     /* No result back */
2182     fdctrl_to_command_phase(fdctrl);
2183 }
2184 
2185 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2186 {
2187     FDrive *cur_drv;
2188 
2189     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2190     cur_drv = get_cur_drv(fdctrl);
2191     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2192     /* 1 Byte status back */
2193     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2194         (cur_drv->track == 0 ? 0x10 : 0x00) |
2195         (cur_drv->head << 2) |
2196         GET_CUR_DRV(fdctrl) |
2197         0x28;
2198     fdctrl_to_result_phase(fdctrl, 1);
2199 }
2200 
2201 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2202 {
2203     FDrive *cur_drv;
2204 
2205     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2206     cur_drv = get_cur_drv(fdctrl);
2207     fd_recalibrate(cur_drv);
2208     fdctrl_to_command_phase(fdctrl);
2209     /* Raise Interrupt */
2210     fdctrl->status0 |= FD_SR0_SEEK;
2211     fdctrl_raise_irq(fdctrl);
2212 }
2213 
2214 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2215 {
2216     FDrive *cur_drv = get_cur_drv(fdctrl);
2217 
2218     if (fdctrl->reset_sensei > 0) {
2219         fdctrl->fifo[0] =
2220             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2221         fdctrl->reset_sensei--;
2222     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2223         fdctrl->fifo[0] = FD_SR0_INVCMD;
2224         fdctrl_to_result_phase(fdctrl, 1);
2225         return;
2226     } else {
2227         fdctrl->fifo[0] =
2228                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2229                 | GET_CUR_DRV(fdctrl);
2230     }
2231 
2232     fdctrl->fifo[1] = cur_drv->track;
2233     fdctrl_to_result_phase(fdctrl, 2);
2234     fdctrl_reset_irq(fdctrl);
2235     fdctrl->status0 = FD_SR0_RDYCHG;
2236 }
2237 
2238 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2239 {
2240     FDrive *cur_drv;
2241 
2242     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2243     cur_drv = get_cur_drv(fdctrl);
2244     fdctrl_to_command_phase(fdctrl);
2245     /* The seek command just sends step pulses to the drive and doesn't care if
2246      * there is a medium inserted of if it's banging the head against the drive.
2247      */
2248     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2249     /* Raise Interrupt */
2250     fdctrl->status0 |= FD_SR0_SEEK;
2251     fdctrl_raise_irq(fdctrl);
2252 }
2253 
2254 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2255 {
2256     FDrive *cur_drv = get_cur_drv(fdctrl);
2257 
2258     if (fdctrl->fifo[1] & 0x80)
2259         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2260     /* No result back */
2261     fdctrl_to_command_phase(fdctrl);
2262 }
2263 
2264 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2265 {
2266     fdctrl->config = fdctrl->fifo[2];
2267     fdctrl->precomp_trk =  fdctrl->fifo[3];
2268     /* No result back */
2269     fdctrl_to_command_phase(fdctrl);
2270 }
2271 
2272 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2273 {
2274     fdctrl->pwrd = fdctrl->fifo[1];
2275     fdctrl->fifo[0] = fdctrl->fifo[1];
2276     fdctrl_to_result_phase(fdctrl, 1);
2277 }
2278 
2279 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2280 {
2281     /* No result back */
2282     fdctrl_to_command_phase(fdctrl);
2283 }
2284 
2285 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2286 {
2287     FDrive *cur_drv = get_cur_drv(fdctrl);
2288     uint32_t pos;
2289 
2290     pos = fdctrl->data_pos - 1;
2291     pos %= FD_SECTOR_LEN;
2292     if (fdctrl->fifo[pos] & 0x80) {
2293         /* Command parameters done */
2294         if (fdctrl->fifo[pos] & 0x40) {
2295             fdctrl->fifo[0] = fdctrl->fifo[1];
2296             fdctrl->fifo[2] = 0;
2297             fdctrl->fifo[3] = 0;
2298             fdctrl_to_result_phase(fdctrl, 4);
2299         } else {
2300             fdctrl_to_command_phase(fdctrl);
2301         }
2302     } else if (fdctrl->data_len > 7) {
2303         /* ERROR */
2304         fdctrl->fifo[0] = 0x80 |
2305             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2306         fdctrl_to_result_phase(fdctrl, 1);
2307     }
2308 }
2309 
2310 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2311 {
2312     FDrive *cur_drv;
2313 
2314     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2315     cur_drv = get_cur_drv(fdctrl);
2316     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2317         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2318                 cur_drv->sect, 1);
2319     } else {
2320         fd_seek(cur_drv, cur_drv->head,
2321                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2322     }
2323     fdctrl_to_command_phase(fdctrl);
2324     /* Raise Interrupt */
2325     fdctrl->status0 |= FD_SR0_SEEK;
2326     fdctrl_raise_irq(fdctrl);
2327 }
2328 
2329 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2330 {
2331     FDrive *cur_drv;
2332 
2333     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2334     cur_drv = get_cur_drv(fdctrl);
2335     if (fdctrl->fifo[2] > cur_drv->track) {
2336         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2337     } else {
2338         fd_seek(cur_drv, cur_drv->head,
2339                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2340     }
2341     fdctrl_to_command_phase(fdctrl);
2342     /* Raise Interrupt */
2343     fdctrl->status0 |= FD_SR0_SEEK;
2344     fdctrl_raise_irq(fdctrl);
2345 }
2346 
2347 /*
2348  * Handlers for the execution phase of each command
2349  */
2350 typedef struct FDCtrlCommand {
2351     uint8_t value;
2352     uint8_t mask;
2353     const char* name;
2354     int parameters;
2355     void (*handler)(FDCtrl *fdctrl, int direction);
2356     int direction;
2357 } FDCtrlCommand;
2358 
2359 static const FDCtrlCommand handlers[] = {
2360     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2361     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2362     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2363     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2364     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2365     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2366     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2367     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2368     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2369     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2370     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2371     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2372     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2373     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2374     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2375     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2376     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2377     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2378     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2379     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2380     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2381     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2382     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2383     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2384     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2385     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2386     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2387     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2388     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2389     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2390     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2391     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2392 };
2393 /* Associate command to an index in the 'handlers' array */
2394 static uint8_t command_to_handler[256];
2395 
2396 static const FDCtrlCommand *get_command(uint8_t cmd)
2397 {
2398     int idx;
2399 
2400     idx = command_to_handler[cmd];
2401     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2402     return &handlers[idx];
2403 }
2404 
2405 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2406 {
2407     FDrive *cur_drv;
2408     const FDCtrlCommand *cmd;
2409     uint32_t pos;
2410 
2411     /* Reset mode */
2412     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2413         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2414         return;
2415     }
2416     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2417         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2418         return;
2419     }
2420     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2421 
2422     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2423 
2424     /* If data_len spans multiple sectors, the current position in the FIFO
2425      * wraps around while fdctrl->data_pos is the real position in the whole
2426      * request. */
2427     pos = fdctrl->data_pos++;
2428     pos %= FD_SECTOR_LEN;
2429     fdctrl->fifo[pos] = value;
2430 
2431     if (fdctrl->data_pos == fdctrl->data_len) {
2432         fdctrl->msr &= ~FD_MSR_RQM;
2433     }
2434 
2435     switch (fdctrl->phase) {
2436     case FD_PHASE_EXECUTION:
2437         /* For DMA requests, RQM should be cleared during execution phase, so
2438          * we would have errored out above. */
2439         assert(fdctrl->msr & FD_MSR_NONDMA);
2440 
2441         /* FIFO data write */
2442         if (pos == FD_SECTOR_LEN - 1 ||
2443             fdctrl->data_pos == fdctrl->data_len) {
2444             cur_drv = get_cur_drv(fdctrl);
2445             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2446                            BDRV_SECTOR_SIZE, 0) < 0) {
2447                 FLOPPY_DPRINTF("error writing sector %d\n",
2448                                fd_sector(cur_drv));
2449                 break;
2450             }
2451             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2452                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2453                                fd_sector(cur_drv));
2454                 break;
2455             }
2456         }
2457 
2458         /* Switch to result phase when done with the transfer */
2459         if (fdctrl->data_pos == fdctrl->data_len) {
2460             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2461         }
2462         break;
2463 
2464     case FD_PHASE_COMMAND:
2465         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2466         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2467 
2468         if (pos == 0) {
2469             /* The first byte specifies the command. Now we start reading
2470              * as many parameters as this command requires. */
2471             cmd = get_command(value);
2472             fdctrl->data_len = cmd->parameters + 1;
2473             if (cmd->parameters) {
2474                 fdctrl->msr |= FD_MSR_RQM;
2475             }
2476             fdctrl->msr |= FD_MSR_CMDBUSY;
2477         }
2478 
2479         if (fdctrl->data_pos == fdctrl->data_len) {
2480             /* We have all parameters now, execute the command */
2481             fdctrl->phase = FD_PHASE_EXECUTION;
2482 
2483             if (fdctrl->data_state & FD_STATE_FORMAT) {
2484                 fdctrl_format_sector(fdctrl);
2485                 break;
2486             }
2487 
2488             cmd = get_command(fdctrl->fifo[0]);
2489             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2490             cmd->handler(fdctrl, cmd->direction);
2491         }
2492         break;
2493 
2494     case FD_PHASE_RESULT:
2495     default:
2496         abort();
2497     }
2498 }
2499 
2500 static void fdctrl_result_timer(void *opaque)
2501 {
2502     FDCtrl *fdctrl = opaque;
2503     FDrive *cur_drv = get_cur_drv(fdctrl);
2504 
2505     /* Pretend we are spinning.
2506      * This is needed for Coherent, which uses READ ID to check for
2507      * sector interleaving.
2508      */
2509     if (cur_drv->last_sect != 0) {
2510         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2511     }
2512     /* READ_ID can't automatically succeed! */
2513     if (fdctrl->check_media_rate &&
2514         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2515         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2516                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2517         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2518     } else {
2519         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2520     }
2521 }
2522 
2523 /* Init functions */
2524 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2525                                   Error **errp)
2526 {
2527     unsigned int i;
2528     FDrive *drive;
2529     DeviceState *dev;
2530     BlockBackend *blk;
2531     Error *local_err = NULL;
2532 
2533     for (i = 0; i < MAX_FD; i++) {
2534         drive = &fdctrl->drives[i];
2535         drive->fdctrl = fdctrl;
2536 
2537         /* If the drive is not present, we skip creating the qdev device, but
2538          * still have to initialise the controller. */
2539         blk = fdctrl->qdev_for_drives[i].blk;
2540         if (!blk) {
2541             fd_init(drive);
2542             fd_revalidate(drive);
2543             continue;
2544         }
2545 
2546         dev = qdev_create(&fdctrl->bus.bus, "floppy");
2547         qdev_prop_set_uint32(dev, "unit", i);
2548         qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2549 
2550         blk_ref(blk);
2551         blk_detach_dev(blk, fdc_dev);
2552         fdctrl->qdev_for_drives[i].blk = NULL;
2553         qdev_prop_set_drive(dev, "drive", blk, &local_err);
2554         blk_unref(blk);
2555 
2556         if (local_err) {
2557             error_propagate(errp, local_err);
2558             return;
2559         }
2560 
2561         object_property_set_bool(OBJECT(dev), true, "realized", &local_err);
2562         if (local_err) {
2563             error_propagate(errp, local_err);
2564             return;
2565         }
2566     }
2567 }
2568 
2569 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2570 {
2571     DeviceState *dev;
2572     ISADevice *isadev;
2573 
2574     isadev = isa_try_create(bus, TYPE_ISA_FDC);
2575     if (!isadev) {
2576         return NULL;
2577     }
2578     dev = DEVICE(isadev);
2579 
2580     if (fds[0]) {
2581         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2582                             &error_fatal);
2583     }
2584     if (fds[1]) {
2585         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2586                             &error_fatal);
2587     }
2588     qdev_init_nofail(dev);
2589 
2590     return isadev;
2591 }
2592 
2593 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2594                         hwaddr mmio_base, DriveInfo **fds)
2595 {
2596     FDCtrl *fdctrl;
2597     DeviceState *dev;
2598     SysBusDevice *sbd;
2599     FDCtrlSysBus *sys;
2600 
2601     dev = qdev_create(NULL, "sysbus-fdc");
2602     sys = SYSBUS_FDC(dev);
2603     fdctrl = &sys->state;
2604     fdctrl->dma_chann = dma_chann; /* FIXME */
2605     if (fds[0]) {
2606         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2607                             &error_fatal);
2608     }
2609     if (fds[1]) {
2610         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2611                             &error_fatal);
2612     }
2613     qdev_init_nofail(dev);
2614     sbd = SYS_BUS_DEVICE(dev);
2615     sysbus_connect_irq(sbd, 0, irq);
2616     sysbus_mmio_map(sbd, 0, mmio_base);
2617 }
2618 
2619 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2620                        DriveInfo **fds, qemu_irq *fdc_tc)
2621 {
2622     DeviceState *dev;
2623     FDCtrlSysBus *sys;
2624 
2625     dev = qdev_create(NULL, "SUNW,fdtwo");
2626     if (fds[0]) {
2627         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2628                             &error_fatal);
2629     }
2630     qdev_init_nofail(dev);
2631     sys = SYSBUS_FDC(dev);
2632     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2633     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2634     *fdc_tc = qdev_get_gpio_in(dev, 0);
2635 }
2636 
2637 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2638                                   Error **errp)
2639 {
2640     int i, j;
2641     static int command_tables_inited = 0;
2642 
2643     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2644         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2645     }
2646 
2647     /* Fill 'command_to_handler' lookup table */
2648     if (!command_tables_inited) {
2649         command_tables_inited = 1;
2650         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2651             for (j = 0; j < sizeof(command_to_handler); j++) {
2652                 if ((j & handlers[i].mask) == handlers[i].value) {
2653                     command_to_handler[j] = i;
2654                 }
2655             }
2656         }
2657     }
2658 
2659     FLOPPY_DPRINTF("init controller\n");
2660     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2661     fdctrl->fifo_size = 512;
2662     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2663                                              fdctrl_result_timer, fdctrl);
2664 
2665     fdctrl->version = 0x90; /* Intel 82078 controller */
2666     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2667     fdctrl->num_floppies = MAX_FD;
2668 
2669     if (fdctrl->dma_chann != -1) {
2670         IsaDmaClass *k;
2671         assert(fdctrl->dma);
2672         k = ISADMA_GET_CLASS(fdctrl->dma);
2673         k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2674                             &fdctrl_transfer_handler, fdctrl);
2675     }
2676 
2677     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2678     fdctrl_connect_drives(fdctrl, dev, errp);
2679 }
2680 
2681 static const MemoryRegionPortio fdc_portio_list[] = {
2682     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2683     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2684     PORTIO_END_OF_LIST(),
2685 };
2686 
2687 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2688 {
2689     ISADevice *isadev = ISA_DEVICE(dev);
2690     FDCtrlISABus *isa = ISA_FDC(dev);
2691     FDCtrl *fdctrl = &isa->state;
2692     Error *err = NULL;
2693 
2694     isa_register_portio_list(isadev, &fdctrl->portio_list,
2695                              isa->iobase, fdc_portio_list, fdctrl,
2696                              "fdc");
2697 
2698     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2699     fdctrl->dma_chann = isa->dma;
2700     if (fdctrl->dma_chann != -1) {
2701         fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2702         assert(fdctrl->dma);
2703     }
2704 
2705     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2706     fdctrl_realize_common(dev, fdctrl, &err);
2707     if (err != NULL) {
2708         error_propagate(errp, err);
2709         return;
2710     }
2711 }
2712 
2713 static void sysbus_fdc_initfn(Object *obj)
2714 {
2715     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2716     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2717     FDCtrl *fdctrl = &sys->state;
2718 
2719     fdctrl->dma_chann = -1;
2720 
2721     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2722                           "fdc", 0x08);
2723     sysbus_init_mmio(sbd, &fdctrl->iomem);
2724 }
2725 
2726 static void sun4m_fdc_initfn(Object *obj)
2727 {
2728     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2729     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2730     FDCtrl *fdctrl = &sys->state;
2731 
2732     fdctrl->dma_chann = -1;
2733 
2734     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2735                           fdctrl, "fdctrl", 0x08);
2736     sysbus_init_mmio(sbd, &fdctrl->iomem);
2737 }
2738 
2739 static void sysbus_fdc_common_initfn(Object *obj)
2740 {
2741     DeviceState *dev = DEVICE(obj);
2742     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2743     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2744     FDCtrl *fdctrl = &sys->state;
2745 
2746     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2747 
2748     sysbus_init_irq(sbd, &fdctrl->irq);
2749     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2750 }
2751 
2752 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2753 {
2754     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2755     FDCtrl *fdctrl = &sys->state;
2756 
2757     fdctrl_realize_common(dev, fdctrl, errp);
2758 }
2759 
2760 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2761 {
2762     FDCtrlISABus *isa = ISA_FDC(fdc);
2763 
2764     return isa->state.drives[i].drive;
2765 }
2766 
2767 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2768                                uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2769 {
2770     const FDFormat *fdf;
2771 
2772     *maxc = *maxh = *maxs = 0;
2773     for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2774         if (fdf->drive != type) {
2775             continue;
2776         }
2777         if (*maxc < fdf->max_track) {
2778             *maxc = fdf->max_track;
2779         }
2780         if (*maxh < fdf->max_head) {
2781             *maxh = fdf->max_head;
2782         }
2783         if (*maxs < fdf->last_sect) {
2784             *maxs = fdf->last_sect;
2785         }
2786     }
2787     (*maxc)--;
2788 }
2789 
2790 static const VMStateDescription vmstate_isa_fdc ={
2791     .name = "fdc",
2792     .version_id = 2,
2793     .minimum_version_id = 2,
2794     .fields = (VMStateField[]) {
2795         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2796         VMSTATE_END_OF_LIST()
2797     }
2798 };
2799 
2800 static Property isa_fdc_properties[] = {
2801     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2802     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2803     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2804     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2805     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2806     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2807                     0, true),
2808     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2809                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2810                         FloppyDriveType),
2811     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2812                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2813                         FloppyDriveType),
2814     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2815                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2816                         FloppyDriveType),
2817     DEFINE_PROP_END_OF_LIST(),
2818 };
2819 
2820 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2821 {
2822     DeviceClass *dc = DEVICE_CLASS(klass);
2823 
2824     dc->realize = isabus_fdc_realize;
2825     dc->fw_name = "fdc";
2826     dc->reset = fdctrl_external_reset_isa;
2827     dc->vmsd = &vmstate_isa_fdc;
2828     dc->props = isa_fdc_properties;
2829     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2830 }
2831 
2832 static void isabus_fdc_instance_init(Object *obj)
2833 {
2834     FDCtrlISABus *isa = ISA_FDC(obj);
2835 
2836     device_add_bootindex_property(obj, &isa->bootindexA,
2837                                   "bootindexA", "/floppy@0",
2838                                   DEVICE(obj), NULL);
2839     device_add_bootindex_property(obj, &isa->bootindexB,
2840                                   "bootindexB", "/floppy@1",
2841                                   DEVICE(obj), NULL);
2842 }
2843 
2844 static const TypeInfo isa_fdc_info = {
2845     .name          = TYPE_ISA_FDC,
2846     .parent        = TYPE_ISA_DEVICE,
2847     .instance_size = sizeof(FDCtrlISABus),
2848     .class_init    = isabus_fdc_class_init,
2849     .instance_init = isabus_fdc_instance_init,
2850 };
2851 
2852 static const VMStateDescription vmstate_sysbus_fdc ={
2853     .name = "fdc",
2854     .version_id = 2,
2855     .minimum_version_id = 2,
2856     .fields = (VMStateField[]) {
2857         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2858         VMSTATE_END_OF_LIST()
2859     }
2860 };
2861 
2862 static Property sysbus_fdc_properties[] = {
2863     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2864     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2865     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2866                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2867                         FloppyDriveType),
2868     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2869                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2870                         FloppyDriveType),
2871     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2872                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2873                         FloppyDriveType),
2874     DEFINE_PROP_END_OF_LIST(),
2875 };
2876 
2877 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2878 {
2879     DeviceClass *dc = DEVICE_CLASS(klass);
2880 
2881     dc->props = sysbus_fdc_properties;
2882     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2883 }
2884 
2885 static const TypeInfo sysbus_fdc_info = {
2886     .name          = "sysbus-fdc",
2887     .parent        = TYPE_SYSBUS_FDC,
2888     .instance_init = sysbus_fdc_initfn,
2889     .class_init    = sysbus_fdc_class_init,
2890 };
2891 
2892 static Property sun4m_fdc_properties[] = {
2893     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2894     DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2895                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2896                         FloppyDriveType),
2897     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2898                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2899                         FloppyDriveType),
2900     DEFINE_PROP_END_OF_LIST(),
2901 };
2902 
2903 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2904 {
2905     DeviceClass *dc = DEVICE_CLASS(klass);
2906 
2907     dc->props = sun4m_fdc_properties;
2908     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2909 }
2910 
2911 static const TypeInfo sun4m_fdc_info = {
2912     .name          = "SUNW,fdtwo",
2913     .parent        = TYPE_SYSBUS_FDC,
2914     .instance_init = sun4m_fdc_initfn,
2915     .class_init    = sun4m_fdc_class_init,
2916 };
2917 
2918 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2919 {
2920     DeviceClass *dc = DEVICE_CLASS(klass);
2921 
2922     dc->realize = sysbus_fdc_common_realize;
2923     dc->reset = fdctrl_external_reset_sysbus;
2924     dc->vmsd = &vmstate_sysbus_fdc;
2925 }
2926 
2927 static const TypeInfo sysbus_fdc_type_info = {
2928     .name          = TYPE_SYSBUS_FDC,
2929     .parent        = TYPE_SYS_BUS_DEVICE,
2930     .instance_size = sizeof(FDCtrlSysBus),
2931     .instance_init = sysbus_fdc_common_initfn,
2932     .abstract      = true,
2933     .class_init    = sysbus_fdc_common_class_init,
2934 };
2935 
2936 static void fdc_register_types(void)
2937 {
2938     type_register_static(&isa_fdc_info);
2939     type_register_static(&sysbus_fdc_type_info);
2940     type_register_static(&sysbus_fdc_info);
2941     type_register_static(&sun4m_fdc_info);
2942     type_register_static(&floppy_bus_info);
2943     type_register_static(&floppy_drive_info);
2944 }
2945 
2946 type_init(fdc_register_types)
2947