xref: /openbmc/qemu/hw/block/fdc.c (revision 72ea60e4114272f3030455c214e86bcf1c8a1a9e)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/irq.h"
36 #include "hw/isa/isa.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/qdev-properties-system.h"
39 #include "hw/sysbus.h"
40 #include "migration/vmstate.h"
41 #include "hw/block/block.h"
42 #include "sysemu/block-backend.h"
43 #include "sysemu/blockdev.h"
44 #include "sysemu/sysemu.h"
45 #include "qemu/log.h"
46 #include "qemu/main-loop.h"
47 #include "qemu/module.h"
48 #include "trace.h"
49 #include "qom/object.h"
50 #include "fdc-internal.h"
51 
52 /********************************************************/
53 /* debug Floppy devices */
54 
55 #define DEBUG_FLOPPY 0
56 
57 #define FLOPPY_DPRINTF(fmt, ...)                                \
58     do {                                                        \
59         if (DEBUG_FLOPPY) {                                     \
60             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
61         }                                                       \
62     } while (0)
63 
64 
65 /********************************************************/
66 /* qdev floppy bus                                      */
67 
68 #define TYPE_FLOPPY_BUS "floppy-bus"
69 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS)
70 
71 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
72 
73 static const TypeInfo floppy_bus_info = {
74     .name = TYPE_FLOPPY_BUS,
75     .parent = TYPE_BUS,
76     .instance_size = sizeof(FloppyBus),
77 };
78 
79 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
80 {
81     qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
82     bus->fdc = fdc;
83 }
84 
85 
86 /********************************************************/
87 /* Floppy drive emulation                               */
88 
89 /* In many cases, the total sector size of a format is enough to uniquely
90  * identify it. However, there are some total sector collisions between
91  * formats of different physical size, and these are noted below by
92  * highlighting the total sector size for entries with collisions. */
93 const FDFormat fd_formats[] = {
94     /* First entry is default format */
95     /* 1.44 MB 3"1/2 floppy disks */
96     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
97     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
98     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
99     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
100     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
101     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
102     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
103     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
104     /* 2.88 MB 3"1/2 floppy disks */
105     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
106     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
107     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
108     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
109     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
110     /* 720 kB 3"1/2 floppy disks */
111     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
112     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
113     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
114     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
115     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
116     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
117     /* 1.2 MB 5"1/4 floppy disks */
118     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
119     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
120     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
121     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
122     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
123     /* 720 kB 5"1/4 floppy disks */
124     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
125     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
126     /* 360 kB 5"1/4 floppy disks */
127     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
128     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
129     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
130     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
131     /* 320 kB 5"1/4 floppy disks */
132     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
133     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
134     /* 360 kB must match 5"1/4 better than 3"1/2... */
135     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
136     /* end */
137     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
138 };
139 
140 static FDriveSize drive_size(FloppyDriveType drive)
141 {
142     switch (drive) {
143     case FLOPPY_DRIVE_TYPE_120:
144         return FDRIVE_SIZE_525;
145     case FLOPPY_DRIVE_TYPE_144:
146     case FLOPPY_DRIVE_TYPE_288:
147         return FDRIVE_SIZE_350;
148     default:
149         return FDRIVE_SIZE_UNKNOWN;
150     }
151 }
152 
153 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
154 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
155 
156 /* Will always be a fixed parameter for us */
157 #define FD_SECTOR_LEN          512
158 #define FD_SECTOR_SC           2   /* Sector size code */
159 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
160 
161 
162 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
163 
164 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
165  * currently goes through some pains to keep seeks within the bounds
166  * established by last_sect and max_track. Correcting this is difficult,
167  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
168  *
169  * For now: allow empty drives to have large bounds so we can seek around,
170  * with the understanding that when a diskette is inserted, the bounds will
171  * properly tighten to match the geometry of that inserted medium.
172  */
173 static void fd_empty_seek_hack(FDrive *drv)
174 {
175     drv->last_sect = 0xFF;
176     drv->max_track = 0xFF;
177 }
178 
179 static void fd_init(FDrive *drv)
180 {
181     /* Drive */
182     drv->perpendicular = 0;
183     /* Disk */
184     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
185     drv->last_sect = 0;
186     drv->max_track = 0;
187     drv->ro = true;
188     drv->media_changed = 1;
189 }
190 
191 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
192 
193 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
194                           uint8_t last_sect, uint8_t num_sides)
195 {
196     return (((track * num_sides) + head) * last_sect) + sect - 1;
197 }
198 
199 /* Returns current position, in sectors, for given drive */
200 static int fd_sector(FDrive *drv)
201 {
202     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
203                           NUM_SIDES(drv));
204 }
205 
206 /* Returns current position, in bytes, for given drive */
207 static int fd_offset(FDrive *drv)
208 {
209     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
210     return fd_sector(drv) << BDRV_SECTOR_BITS;
211 }
212 
213 /* Seek to a new position:
214  * returns 0 if already on right track
215  * returns 1 if track changed
216  * returns 2 if track is invalid
217  * returns 3 if sector is invalid
218  * returns 4 if seek is disabled
219  */
220 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
221                    int enable_seek)
222 {
223     uint32_t sector;
224     int ret;
225 
226     if (track > drv->max_track ||
227         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
228         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
229                        head, track, sect, 1,
230                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
231                        drv->max_track, drv->last_sect);
232         return 2;
233     }
234     if (sect > drv->last_sect) {
235         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
236                        head, track, sect, 1,
237                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
238                        drv->max_track, drv->last_sect);
239         return 3;
240     }
241     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
242     ret = 0;
243     if (sector != fd_sector(drv)) {
244 #if 0
245         if (!enable_seek) {
246             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
247                            " (max=%d %02x %02x)\n",
248                            head, track, sect, 1, drv->max_track,
249                            drv->last_sect);
250             return 4;
251         }
252 #endif
253         drv->head = head;
254         if (drv->track != track) {
255             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
256                 drv->media_changed = 0;
257             }
258             ret = 1;
259         }
260         drv->track = track;
261         drv->sect = sect;
262     }
263 
264     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
265         ret = 2;
266     }
267 
268     return ret;
269 }
270 
271 /* Set drive back to track 0 */
272 static void fd_recalibrate(FDrive *drv)
273 {
274     FLOPPY_DPRINTF("recalibrate\n");
275     fd_seek(drv, 0, 0, 1, 1);
276 }
277 
278 /**
279  * Determine geometry based on inserted diskette.
280  * Will not operate on an empty drive.
281  *
282  * @return: 0 on success, -1 if the drive is empty.
283  */
284 static int pick_geometry(FDrive *drv)
285 {
286     BlockBackend *blk = drv->blk;
287     const FDFormat *parse;
288     uint64_t nb_sectors, size;
289     int i;
290     int match, size_match, type_match;
291     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
292 
293     /* We can only pick a geometry if we have a diskette. */
294     if (!drv->blk || !blk_is_inserted(drv->blk) ||
295         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
296     {
297         return -1;
298     }
299 
300     /* We need to determine the likely geometry of the inserted medium.
301      * In order of preference, we look for:
302      * (1) The same drive type and number of sectors,
303      * (2) The same diskette size and number of sectors,
304      * (3) The same drive type.
305      *
306      * In all cases, matches that occur higher in the drive table will take
307      * precedence over matches that occur later in the table.
308      */
309     blk_get_geometry(blk, &nb_sectors);
310     match = size_match = type_match = -1;
311     for (i = 0; ; i++) {
312         parse = &fd_formats[i];
313         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
314             break;
315         }
316         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
317         if (nb_sectors == size) {
318             if (magic || parse->drive == drv->drive) {
319                 /* (1) perfect match -- nb_sectors and drive type */
320                 goto out;
321             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
322                 /* (2) size match -- nb_sectors and physical medium size */
323                 match = (match == -1) ? i : match;
324             } else {
325                 /* This is suspicious -- Did the user misconfigure? */
326                 size_match = (size_match == -1) ? i : size_match;
327             }
328         } else if (type_match == -1) {
329             if ((parse->drive == drv->drive) ||
330                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
331                 /* (3) type match -- nb_sectors mismatch, but matches the type
332                  *     specified explicitly by the user, or matches the fallback
333                  *     default type when using the drive autodetect mechanism */
334                 type_match = i;
335             }
336         }
337     }
338 
339     /* No exact match found */
340     if (match == -1) {
341         if (size_match != -1) {
342             parse = &fd_formats[size_match];
343             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
344                            "but inserted medium appears to be a "
345                            "%"PRId64" sector '%s' type\n",
346                            FloppyDriveType_str(drv->drive),
347                            nb_sectors,
348                            FloppyDriveType_str(parse->drive));
349         }
350         assert(type_match != -1 && "misconfigured fd_format");
351         match = type_match;
352     }
353     parse = &(fd_formats[match]);
354 
355  out:
356     if (parse->max_head == 0) {
357         drv->flags &= ~FDISK_DBL_SIDES;
358     } else {
359         drv->flags |= FDISK_DBL_SIDES;
360     }
361     drv->max_track = parse->max_track;
362     drv->last_sect = parse->last_sect;
363     drv->disk = parse->drive;
364     drv->media_rate = parse->rate;
365     return 0;
366 }
367 
368 static void pick_drive_type(FDrive *drv)
369 {
370     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
371         return;
372     }
373 
374     if (pick_geometry(drv) == 0) {
375         drv->drive = drv->disk;
376     } else {
377         drv->drive = get_fallback_drive_type(drv);
378     }
379 
380     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
381 }
382 
383 /* Revalidate a disk drive after a disk change */
384 static void fd_revalidate(FDrive *drv)
385 {
386     int rc;
387 
388     FLOPPY_DPRINTF("revalidate\n");
389     if (drv->blk != NULL) {
390         drv->ro = !blk_is_writable(drv->blk);
391         if (!blk_is_inserted(drv->blk)) {
392             FLOPPY_DPRINTF("No disk in drive\n");
393             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
394             fd_empty_seek_hack(drv);
395         } else if (!drv->media_validated) {
396             rc = pick_geometry(drv);
397             if (rc) {
398                 FLOPPY_DPRINTF("Could not validate floppy drive media");
399             } else {
400                 drv->media_validated = true;
401                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
402                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
403                                drv->max_track, drv->last_sect,
404                                drv->ro ? "ro" : "rw");
405             }
406         }
407     } else {
408         FLOPPY_DPRINTF("No drive connected\n");
409         drv->last_sect = 0;
410         drv->max_track = 0;
411         drv->flags &= ~FDISK_DBL_SIDES;
412         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
413         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
414     }
415 }
416 
417 static void fd_change_cb(void *opaque, bool load, Error **errp)
418 {
419     FDrive *drive = opaque;
420 
421     if (!load) {
422         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
423     } else {
424         if (!blkconf_apply_backend_options(drive->conf,
425                                            !blk_supports_write_perm(drive->blk),
426                                            false, errp)) {
427             return;
428         }
429     }
430 
431     drive->media_changed = 1;
432     drive->media_validated = false;
433     fd_revalidate(drive);
434 }
435 
436 static const BlockDevOps fd_block_ops = {
437     .change_media_cb = fd_change_cb,
438 };
439 
440 
441 #define TYPE_FLOPPY_DRIVE "floppy"
442 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE)
443 
444 struct FloppyDrive {
445     DeviceState     qdev;
446     uint32_t        unit;
447     BlockConf       conf;
448     FloppyDriveType type;
449 };
450 
451 static Property floppy_drive_properties[] = {
452     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
453     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
454     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
455                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
456                         FloppyDriveType),
457     DEFINE_PROP_END_OF_LIST(),
458 };
459 
460 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
461 {
462     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
463     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
464     FDrive *drive;
465     bool read_only;
466     int ret;
467 
468     if (dev->unit == -1) {
469         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
470             drive = get_drv(bus->fdc, dev->unit);
471             if (!drive->blk) {
472                 break;
473             }
474         }
475     }
476 
477     if (dev->unit >= MAX_FD) {
478         error_setg(errp, "Can't create floppy unit %d, bus supports "
479                    "only %d units", dev->unit, MAX_FD);
480         return;
481     }
482 
483     drive = get_drv(bus->fdc, dev->unit);
484     if (drive->blk) {
485         error_setg(errp, "Floppy unit %d is in use", dev->unit);
486         return;
487     }
488 
489     if (!dev->conf.blk) {
490         /* Anonymous BlockBackend for an empty drive */
491         dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
492         ret = blk_attach_dev(dev->conf.blk, qdev);
493         assert(ret == 0);
494 
495         /* Don't take write permissions on an empty drive to allow attaching a
496          * read-only node later */
497         read_only = true;
498     } else {
499         read_only = !blk_bs(dev->conf.blk) ||
500                     !blk_supports_write_perm(dev->conf.blk);
501     }
502 
503     if (!blkconf_blocksizes(&dev->conf, errp)) {
504         return;
505     }
506 
507     if (dev->conf.logical_block_size != 512 ||
508         dev->conf.physical_block_size != 512)
509     {
510         error_setg(errp, "Physical and logical block size must "
511                    "be 512 for floppy");
512         return;
513     }
514 
515     /* rerror/werror aren't supported by fdc and therefore not even registered
516      * with qdev. So set the defaults manually before they are used in
517      * blkconf_apply_backend_options(). */
518     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
519     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
520 
521     if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
522         return;
523     }
524 
525     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
526      * for empty drives. */
527     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
528         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
529         error_setg(errp, "fdc doesn't support drive option werror");
530         return;
531     }
532     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
533         error_setg(errp, "fdc doesn't support drive option rerror");
534         return;
535     }
536 
537     drive->conf = &dev->conf;
538     drive->blk = dev->conf.blk;
539     drive->fdctrl = bus->fdc;
540 
541     fd_init(drive);
542     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
543 
544     /* Keep 'type' qdev property and FDrive->drive in sync */
545     drive->drive = dev->type;
546     pick_drive_type(drive);
547     dev->type = drive->drive;
548 
549     fd_revalidate(drive);
550 }
551 
552 static void floppy_drive_class_init(ObjectClass *klass, void *data)
553 {
554     DeviceClass *k = DEVICE_CLASS(klass);
555     k->realize = floppy_drive_realize;
556     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
557     k->bus_type = TYPE_FLOPPY_BUS;
558     device_class_set_props(k, floppy_drive_properties);
559     k->desc = "virtual floppy drive";
560 }
561 
562 static const TypeInfo floppy_drive_info = {
563     .name = TYPE_FLOPPY_DRIVE,
564     .parent = TYPE_DEVICE,
565     .instance_size = sizeof(FloppyDrive),
566     .class_init = floppy_drive_class_init,
567 };
568 
569 /********************************************************/
570 /* Intel 82078 floppy disk controller emulation          */
571 
572 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
573 static void fdctrl_raise_irq(FDCtrl *fdctrl);
574 static FDrive *get_cur_drv(FDCtrl *fdctrl);
575 
576 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
577 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
578 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
579 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
580 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
581 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
582 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
583 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
584 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
585 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
586 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
587 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
588 
589 enum {
590     FD_DIR_WRITE   = 0,
591     FD_DIR_READ    = 1,
592     FD_DIR_SCANE   = 2,
593     FD_DIR_SCANL   = 3,
594     FD_DIR_SCANH   = 4,
595     FD_DIR_VERIFY  = 5,
596 };
597 
598 enum {
599     FD_STATE_MULTI  = 0x01,	/* multi track flag */
600     FD_STATE_FORMAT = 0x02,	/* format flag */
601 };
602 
603 enum {
604     FD_REG_SRA = 0x00,
605     FD_REG_SRB = 0x01,
606     FD_REG_DOR = 0x02,
607     FD_REG_TDR = 0x03,
608     FD_REG_MSR = 0x04,
609     FD_REG_DSR = 0x04,
610     FD_REG_FIFO = 0x05,
611     FD_REG_DIR = 0x07,
612     FD_REG_CCR = 0x07,
613 };
614 
615 enum {
616     FD_CMD_READ_TRACK = 0x02,
617     FD_CMD_SPECIFY = 0x03,
618     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
619     FD_CMD_WRITE = 0x05,
620     FD_CMD_READ = 0x06,
621     FD_CMD_RECALIBRATE = 0x07,
622     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
623     FD_CMD_WRITE_DELETED = 0x09,
624     FD_CMD_READ_ID = 0x0a,
625     FD_CMD_READ_DELETED = 0x0c,
626     FD_CMD_FORMAT_TRACK = 0x0d,
627     FD_CMD_DUMPREG = 0x0e,
628     FD_CMD_SEEK = 0x0f,
629     FD_CMD_VERSION = 0x10,
630     FD_CMD_SCAN_EQUAL = 0x11,
631     FD_CMD_PERPENDICULAR_MODE = 0x12,
632     FD_CMD_CONFIGURE = 0x13,
633     FD_CMD_LOCK = 0x14,
634     FD_CMD_VERIFY = 0x16,
635     FD_CMD_POWERDOWN_MODE = 0x17,
636     FD_CMD_PART_ID = 0x18,
637     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
638     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
639     FD_CMD_SAVE = 0x2e,
640     FD_CMD_OPTION = 0x33,
641     FD_CMD_RESTORE = 0x4e,
642     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
643     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
644     FD_CMD_FORMAT_AND_WRITE = 0xcd,
645     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
646 };
647 
648 enum {
649     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
650     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
651     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
652     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
653     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
654 };
655 
656 enum {
657     FD_SR0_DS0      = 0x01,
658     FD_SR0_DS1      = 0x02,
659     FD_SR0_HEAD     = 0x04,
660     FD_SR0_EQPMT    = 0x10,
661     FD_SR0_SEEK     = 0x20,
662     FD_SR0_ABNTERM  = 0x40,
663     FD_SR0_INVCMD   = 0x80,
664     FD_SR0_RDYCHG   = 0xc0,
665 };
666 
667 enum {
668     FD_SR1_MA       = 0x01, /* Missing address mark */
669     FD_SR1_NW       = 0x02, /* Not writable */
670     FD_SR1_EC       = 0x80, /* End of cylinder */
671 };
672 
673 enum {
674     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
675     FD_SR2_SEH      = 0x08, /* Scan equal hit */
676 };
677 
678 enum {
679     FD_SRA_DIR      = 0x01,
680     FD_SRA_nWP      = 0x02,
681     FD_SRA_nINDX    = 0x04,
682     FD_SRA_HDSEL    = 0x08,
683     FD_SRA_nTRK0    = 0x10,
684     FD_SRA_STEP     = 0x20,
685     FD_SRA_nDRV2    = 0x40,
686     FD_SRA_INTPEND  = 0x80,
687 };
688 
689 enum {
690     FD_SRB_MTR0     = 0x01,
691     FD_SRB_MTR1     = 0x02,
692     FD_SRB_WGATE    = 0x04,
693     FD_SRB_RDATA    = 0x08,
694     FD_SRB_WDATA    = 0x10,
695     FD_SRB_DR0      = 0x20,
696 };
697 
698 enum {
699 #if MAX_FD == 4
700     FD_DOR_SELMASK  = 0x03,
701 #else
702     FD_DOR_SELMASK  = 0x01,
703 #endif
704     FD_DOR_nRESET   = 0x04,
705     FD_DOR_DMAEN    = 0x08,
706     FD_DOR_MOTEN0   = 0x10,
707     FD_DOR_MOTEN1   = 0x20,
708     FD_DOR_MOTEN2   = 0x40,
709     FD_DOR_MOTEN3   = 0x80,
710 };
711 
712 enum {
713 #if MAX_FD == 4
714     FD_TDR_BOOTSEL  = 0x0c,
715 #else
716     FD_TDR_BOOTSEL  = 0x04,
717 #endif
718 };
719 
720 enum {
721     FD_DSR_DRATEMASK= 0x03,
722     FD_DSR_PWRDOWN  = 0x40,
723     FD_DSR_SWRESET  = 0x80,
724 };
725 
726 enum {
727     FD_MSR_DRV0BUSY = 0x01,
728     FD_MSR_DRV1BUSY = 0x02,
729     FD_MSR_DRV2BUSY = 0x04,
730     FD_MSR_DRV3BUSY = 0x08,
731     FD_MSR_CMDBUSY  = 0x10,
732     FD_MSR_NONDMA   = 0x20,
733     FD_MSR_DIO      = 0x40,
734     FD_MSR_RQM      = 0x80,
735 };
736 
737 enum {
738     FD_DIR_DSKCHG   = 0x80,
739 };
740 
741 /*
742  * See chapter 5.0 "Controller phases" of the spec:
743  *
744  * Command phase:
745  * The host writes a command and its parameters into the FIFO. The command
746  * phase is completed when all parameters for the command have been supplied,
747  * and execution phase is entered.
748  *
749  * Execution phase:
750  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
751  * contains the payload now, otherwise it's unused. When all bytes of the
752  * required data have been transferred, the state is switched to either result
753  * phase (if the command produces status bytes) or directly back into the
754  * command phase for the next command.
755  *
756  * Result phase:
757  * The host reads out the FIFO, which contains one or more result bytes now.
758  */
759 enum {
760     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
761     FD_PHASE_RECONSTRUCT    = 0,
762 
763     FD_PHASE_COMMAND        = 1,
764     FD_PHASE_EXECUTION      = 2,
765     FD_PHASE_RESULT         = 3,
766 };
767 
768 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
769 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
770 
771 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
772 {
773     return drv->fdctrl->fallback;
774 }
775 
776 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
777 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlSysBus, SYSBUS_FDC)
778 
779 struct FDCtrlSysBus {
780     /*< private >*/
781     SysBusDevice parent_obj;
782     /*< public >*/
783 
784     struct FDCtrl state;
785 };
786 
787 uint32_t fdctrl_read(void *opaque, uint32_t reg)
788 {
789     FDCtrl *fdctrl = opaque;
790     uint32_t retval;
791 
792     reg &= 7;
793     switch (reg) {
794     case FD_REG_SRA:
795         retval = fdctrl_read_statusA(fdctrl);
796         break;
797     case FD_REG_SRB:
798         retval = fdctrl_read_statusB(fdctrl);
799         break;
800     case FD_REG_DOR:
801         retval = fdctrl_read_dor(fdctrl);
802         break;
803     case FD_REG_TDR:
804         retval = fdctrl_read_tape(fdctrl);
805         break;
806     case FD_REG_MSR:
807         retval = fdctrl_read_main_status(fdctrl);
808         break;
809     case FD_REG_FIFO:
810         retval = fdctrl_read_data(fdctrl);
811         break;
812     case FD_REG_DIR:
813         retval = fdctrl_read_dir(fdctrl);
814         break;
815     default:
816         retval = (uint32_t)(-1);
817         break;
818     }
819     trace_fdc_ioport_read(reg, retval);
820 
821     return retval;
822 }
823 
824 void fdctrl_write(void *opaque, uint32_t reg, uint32_t value)
825 {
826     FDCtrl *fdctrl = opaque;
827 
828     reg &= 7;
829     trace_fdc_ioport_write(reg, value);
830     switch (reg) {
831     case FD_REG_DOR:
832         fdctrl_write_dor(fdctrl, value);
833         break;
834     case FD_REG_TDR:
835         fdctrl_write_tape(fdctrl, value);
836         break;
837     case FD_REG_DSR:
838         fdctrl_write_rate(fdctrl, value);
839         break;
840     case FD_REG_FIFO:
841         fdctrl_write_data(fdctrl, value);
842         break;
843     case FD_REG_CCR:
844         fdctrl_write_ccr(fdctrl, value);
845         break;
846     default:
847         break;
848     }
849 }
850 
851 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
852                                  unsigned ize)
853 {
854     return fdctrl_read(opaque, (uint32_t)reg);
855 }
856 
857 static void fdctrl_write_mem (void *opaque, hwaddr reg,
858                               uint64_t value, unsigned size)
859 {
860     fdctrl_write(opaque, (uint32_t)reg, value);
861 }
862 
863 static const MemoryRegionOps fdctrl_mem_ops = {
864     .read = fdctrl_read_mem,
865     .write = fdctrl_write_mem,
866     .endianness = DEVICE_NATIVE_ENDIAN,
867 };
868 
869 static const MemoryRegionOps fdctrl_mem_strict_ops = {
870     .read = fdctrl_read_mem,
871     .write = fdctrl_write_mem,
872     .endianness = DEVICE_NATIVE_ENDIAN,
873     .valid = {
874         .min_access_size = 1,
875         .max_access_size = 1,
876     },
877 };
878 
879 static bool fdrive_media_changed_needed(void *opaque)
880 {
881     FDrive *drive = opaque;
882 
883     return (drive->blk != NULL && drive->media_changed != 1);
884 }
885 
886 static const VMStateDescription vmstate_fdrive_media_changed = {
887     .name = "fdrive/media_changed",
888     .version_id = 1,
889     .minimum_version_id = 1,
890     .needed = fdrive_media_changed_needed,
891     .fields = (VMStateField[]) {
892         VMSTATE_UINT8(media_changed, FDrive),
893         VMSTATE_END_OF_LIST()
894     }
895 };
896 
897 static const VMStateDescription vmstate_fdrive_media_rate = {
898     .name = "fdrive/media_rate",
899     .version_id = 1,
900     .minimum_version_id = 1,
901     .fields = (VMStateField[]) {
902         VMSTATE_UINT8(media_rate, FDrive),
903         VMSTATE_END_OF_LIST()
904     }
905 };
906 
907 static bool fdrive_perpendicular_needed(void *opaque)
908 {
909     FDrive *drive = opaque;
910 
911     return drive->perpendicular != 0;
912 }
913 
914 static const VMStateDescription vmstate_fdrive_perpendicular = {
915     .name = "fdrive/perpendicular",
916     .version_id = 1,
917     .minimum_version_id = 1,
918     .needed = fdrive_perpendicular_needed,
919     .fields = (VMStateField[]) {
920         VMSTATE_UINT8(perpendicular, FDrive),
921         VMSTATE_END_OF_LIST()
922     }
923 };
924 
925 static int fdrive_post_load(void *opaque, int version_id)
926 {
927     fd_revalidate(opaque);
928     return 0;
929 }
930 
931 static const VMStateDescription vmstate_fdrive = {
932     .name = "fdrive",
933     .version_id = 1,
934     .minimum_version_id = 1,
935     .post_load = fdrive_post_load,
936     .fields = (VMStateField[]) {
937         VMSTATE_UINT8(head, FDrive),
938         VMSTATE_UINT8(track, FDrive),
939         VMSTATE_UINT8(sect, FDrive),
940         VMSTATE_END_OF_LIST()
941     },
942     .subsections = (const VMStateDescription*[]) {
943         &vmstate_fdrive_media_changed,
944         &vmstate_fdrive_media_rate,
945         &vmstate_fdrive_perpendicular,
946         NULL
947     }
948 };
949 
950 /*
951  * Reconstructs the phase from register values according to the logic that was
952  * implemented in qemu 2.3. This is the default value that is used if the phase
953  * subsection is not present on migration.
954  *
955  * Don't change this function to reflect newer qemu versions, it is part of
956  * the migration ABI.
957  */
958 static int reconstruct_phase(FDCtrl *fdctrl)
959 {
960     if (fdctrl->msr & FD_MSR_NONDMA) {
961         return FD_PHASE_EXECUTION;
962     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
963         /* qemu 2.3 disabled RQM only during DMA transfers */
964         return FD_PHASE_EXECUTION;
965     } else if (fdctrl->msr & FD_MSR_DIO) {
966         return FD_PHASE_RESULT;
967     } else {
968         return FD_PHASE_COMMAND;
969     }
970 }
971 
972 static int fdc_pre_save(void *opaque)
973 {
974     FDCtrl *s = opaque;
975 
976     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
977 
978     return 0;
979 }
980 
981 static int fdc_pre_load(void *opaque)
982 {
983     FDCtrl *s = opaque;
984     s->phase = FD_PHASE_RECONSTRUCT;
985     return 0;
986 }
987 
988 static int fdc_post_load(void *opaque, int version_id)
989 {
990     FDCtrl *s = opaque;
991 
992     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
993     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
994 
995     if (s->phase == FD_PHASE_RECONSTRUCT) {
996         s->phase = reconstruct_phase(s);
997     }
998 
999     return 0;
1000 }
1001 
1002 static bool fdc_reset_sensei_needed(void *opaque)
1003 {
1004     FDCtrl *s = opaque;
1005 
1006     return s->reset_sensei != 0;
1007 }
1008 
1009 static const VMStateDescription vmstate_fdc_reset_sensei = {
1010     .name = "fdc/reset_sensei",
1011     .version_id = 1,
1012     .minimum_version_id = 1,
1013     .needed = fdc_reset_sensei_needed,
1014     .fields = (VMStateField[]) {
1015         VMSTATE_INT32(reset_sensei, FDCtrl),
1016         VMSTATE_END_OF_LIST()
1017     }
1018 };
1019 
1020 static bool fdc_result_timer_needed(void *opaque)
1021 {
1022     FDCtrl *s = opaque;
1023 
1024     return timer_pending(s->result_timer);
1025 }
1026 
1027 static const VMStateDescription vmstate_fdc_result_timer = {
1028     .name = "fdc/result_timer",
1029     .version_id = 1,
1030     .minimum_version_id = 1,
1031     .needed = fdc_result_timer_needed,
1032     .fields = (VMStateField[]) {
1033         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1034         VMSTATE_END_OF_LIST()
1035     }
1036 };
1037 
1038 static bool fdc_phase_needed(void *opaque)
1039 {
1040     FDCtrl *fdctrl = opaque;
1041 
1042     return reconstruct_phase(fdctrl) != fdctrl->phase;
1043 }
1044 
1045 static const VMStateDescription vmstate_fdc_phase = {
1046     .name = "fdc/phase",
1047     .version_id = 1,
1048     .minimum_version_id = 1,
1049     .needed = fdc_phase_needed,
1050     .fields = (VMStateField[]) {
1051         VMSTATE_UINT8(phase, FDCtrl),
1052         VMSTATE_END_OF_LIST()
1053     }
1054 };
1055 
1056 const VMStateDescription vmstate_fdc = {
1057     .name = "fdc",
1058     .version_id = 2,
1059     .minimum_version_id = 2,
1060     .pre_save = fdc_pre_save,
1061     .pre_load = fdc_pre_load,
1062     .post_load = fdc_post_load,
1063     .fields = (VMStateField[]) {
1064         /* Controller State */
1065         VMSTATE_UINT8(sra, FDCtrl),
1066         VMSTATE_UINT8(srb, FDCtrl),
1067         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1068         VMSTATE_UINT8(tdr, FDCtrl),
1069         VMSTATE_UINT8(dsr, FDCtrl),
1070         VMSTATE_UINT8(msr, FDCtrl),
1071         VMSTATE_UINT8(status0, FDCtrl),
1072         VMSTATE_UINT8(status1, FDCtrl),
1073         VMSTATE_UINT8(status2, FDCtrl),
1074         /* Command FIFO */
1075         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1076                              uint8_t),
1077         VMSTATE_UINT32(data_pos, FDCtrl),
1078         VMSTATE_UINT32(data_len, FDCtrl),
1079         VMSTATE_UINT8(data_state, FDCtrl),
1080         VMSTATE_UINT8(data_dir, FDCtrl),
1081         VMSTATE_UINT8(eot, FDCtrl),
1082         /* States kept only to be returned back */
1083         VMSTATE_UINT8(timer0, FDCtrl),
1084         VMSTATE_UINT8(timer1, FDCtrl),
1085         VMSTATE_UINT8(precomp_trk, FDCtrl),
1086         VMSTATE_UINT8(config, FDCtrl),
1087         VMSTATE_UINT8(lock, FDCtrl),
1088         VMSTATE_UINT8(pwrd, FDCtrl),
1089         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1090         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1091                              vmstate_fdrive, FDrive),
1092         VMSTATE_END_OF_LIST()
1093     },
1094     .subsections = (const VMStateDescription*[]) {
1095         &vmstate_fdc_reset_sensei,
1096         &vmstate_fdc_result_timer,
1097         &vmstate_fdc_phase,
1098         NULL
1099     }
1100 };
1101 
1102 static void fdctrl_external_reset_sysbus(DeviceState *d)
1103 {
1104     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1105     FDCtrl *s = &sys->state;
1106 
1107     fdctrl_reset(s, 0);
1108 }
1109 
1110 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1111 {
1112     trace_fdctrl_tc_pulse(level);
1113 }
1114 
1115 /* Change IRQ state */
1116 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1117 {
1118     fdctrl->status0 = 0;
1119     if (!(fdctrl->sra & FD_SRA_INTPEND))
1120         return;
1121     FLOPPY_DPRINTF("Reset interrupt\n");
1122     qemu_set_irq(fdctrl->irq, 0);
1123     fdctrl->sra &= ~FD_SRA_INTPEND;
1124 }
1125 
1126 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1127 {
1128     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1129         qemu_set_irq(fdctrl->irq, 1);
1130         fdctrl->sra |= FD_SRA_INTPEND;
1131     }
1132 
1133     fdctrl->reset_sensei = 0;
1134     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1135 }
1136 
1137 /* Reset controller */
1138 void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1139 {
1140     int i;
1141 
1142     FLOPPY_DPRINTF("reset controller\n");
1143     fdctrl_reset_irq(fdctrl);
1144     /* Initialise controller */
1145     fdctrl->sra = 0;
1146     fdctrl->srb = 0xc0;
1147     if (!fdctrl->drives[1].blk) {
1148         fdctrl->sra |= FD_SRA_nDRV2;
1149     }
1150     fdctrl->cur_drv = 0;
1151     fdctrl->dor = FD_DOR_nRESET;
1152     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1153     fdctrl->msr = FD_MSR_RQM;
1154     fdctrl->reset_sensei = 0;
1155     timer_del(fdctrl->result_timer);
1156     /* FIFO state */
1157     fdctrl->data_pos = 0;
1158     fdctrl->data_len = 0;
1159     fdctrl->data_state = 0;
1160     fdctrl->data_dir = FD_DIR_WRITE;
1161     for (i = 0; i < MAX_FD; i++)
1162         fd_recalibrate(&fdctrl->drives[i]);
1163     fdctrl_to_command_phase(fdctrl);
1164     if (do_irq) {
1165         fdctrl->status0 |= FD_SR0_RDYCHG;
1166         fdctrl_raise_irq(fdctrl);
1167         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1168     }
1169 }
1170 
1171 static inline FDrive *drv0(FDCtrl *fdctrl)
1172 {
1173     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1174 }
1175 
1176 static inline FDrive *drv1(FDCtrl *fdctrl)
1177 {
1178     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1179         return &fdctrl->drives[1];
1180     else
1181         return &fdctrl->drives[0];
1182 }
1183 
1184 #if MAX_FD == 4
1185 static inline FDrive *drv2(FDCtrl *fdctrl)
1186 {
1187     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1188         return &fdctrl->drives[2];
1189     else
1190         return &fdctrl->drives[1];
1191 }
1192 
1193 static inline FDrive *drv3(FDCtrl *fdctrl)
1194 {
1195     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1196         return &fdctrl->drives[3];
1197     else
1198         return &fdctrl->drives[2];
1199 }
1200 #endif
1201 
1202 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1203 {
1204     switch (unit) {
1205         case 0: return drv0(fdctrl);
1206         case 1: return drv1(fdctrl);
1207 #if MAX_FD == 4
1208         case 2: return drv2(fdctrl);
1209         case 3: return drv3(fdctrl);
1210 #endif
1211         default: return NULL;
1212     }
1213 }
1214 
1215 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1216 {
1217     return get_drv(fdctrl, fdctrl->cur_drv);
1218 }
1219 
1220 /* Status A register : 0x00 (read-only) */
1221 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1222 {
1223     uint32_t retval = fdctrl->sra;
1224 
1225     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1226 
1227     return retval;
1228 }
1229 
1230 /* Status B register : 0x01 (read-only) */
1231 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1232 {
1233     uint32_t retval = fdctrl->srb;
1234 
1235     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1236 
1237     return retval;
1238 }
1239 
1240 /* Digital output register : 0x02 */
1241 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1242 {
1243     uint32_t retval = fdctrl->dor;
1244 
1245     /* Selected drive */
1246     retval |= fdctrl->cur_drv;
1247     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1248 
1249     return retval;
1250 }
1251 
1252 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1253 {
1254     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1255 
1256     /* Motors */
1257     if (value & FD_DOR_MOTEN0)
1258         fdctrl->srb |= FD_SRB_MTR0;
1259     else
1260         fdctrl->srb &= ~FD_SRB_MTR0;
1261     if (value & FD_DOR_MOTEN1)
1262         fdctrl->srb |= FD_SRB_MTR1;
1263     else
1264         fdctrl->srb &= ~FD_SRB_MTR1;
1265 
1266     /* Drive */
1267     if (value & 1)
1268         fdctrl->srb |= FD_SRB_DR0;
1269     else
1270         fdctrl->srb &= ~FD_SRB_DR0;
1271 
1272     /* Reset */
1273     if (!(value & FD_DOR_nRESET)) {
1274         if (fdctrl->dor & FD_DOR_nRESET) {
1275             FLOPPY_DPRINTF("controller enter RESET state\n");
1276         }
1277     } else {
1278         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1279             FLOPPY_DPRINTF("controller out of RESET state\n");
1280             fdctrl_reset(fdctrl, 1);
1281             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1282         }
1283     }
1284     /* Selected drive */
1285     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1286 
1287     fdctrl->dor = value;
1288 }
1289 
1290 /* Tape drive register : 0x03 */
1291 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1292 {
1293     uint32_t retval = fdctrl->tdr;
1294 
1295     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1296 
1297     return retval;
1298 }
1299 
1300 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1301 {
1302     /* Reset mode */
1303     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1304         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1305         return;
1306     }
1307     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1308     /* Disk boot selection indicator */
1309     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1310     /* Tape indicators: never allow */
1311 }
1312 
1313 /* Main status register : 0x04 (read) */
1314 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1315 {
1316     uint32_t retval = fdctrl->msr;
1317 
1318     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1319     fdctrl->dor |= FD_DOR_nRESET;
1320 
1321     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1322 
1323     return retval;
1324 }
1325 
1326 /* Data select rate register : 0x04 (write) */
1327 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1328 {
1329     /* Reset mode */
1330     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1331         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1332         return;
1333     }
1334     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1335     /* Reset: autoclear */
1336     if (value & FD_DSR_SWRESET) {
1337         fdctrl->dor &= ~FD_DOR_nRESET;
1338         fdctrl_reset(fdctrl, 1);
1339         fdctrl->dor |= FD_DOR_nRESET;
1340     }
1341     if (value & FD_DSR_PWRDOWN) {
1342         fdctrl_reset(fdctrl, 1);
1343     }
1344     fdctrl->dsr = value;
1345 }
1346 
1347 /* Configuration control register: 0x07 (write) */
1348 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1349 {
1350     /* Reset mode */
1351     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1352         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1353         return;
1354     }
1355     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1356 
1357     /* Only the rate selection bits used in AT mode, and we
1358      * store those in the DSR.
1359      */
1360     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1361                   (value & FD_DSR_DRATEMASK);
1362 }
1363 
1364 static int fdctrl_media_changed(FDrive *drv)
1365 {
1366     return drv->media_changed;
1367 }
1368 
1369 /* Digital input register : 0x07 (read-only) */
1370 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1371 {
1372     uint32_t retval = 0;
1373 
1374     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1375         retval |= FD_DIR_DSKCHG;
1376     }
1377     if (retval != 0) {
1378         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1379     }
1380 
1381     return retval;
1382 }
1383 
1384 /* Clear the FIFO and update the state for receiving the next command */
1385 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1386 {
1387     fdctrl->phase = FD_PHASE_COMMAND;
1388     fdctrl->data_dir = FD_DIR_WRITE;
1389     fdctrl->data_pos = 0;
1390     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1391     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1392     fdctrl->msr |= FD_MSR_RQM;
1393 }
1394 
1395 /* Update the state to allow the guest to read out the command status.
1396  * @fifo_len is the number of result bytes to be read out. */
1397 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1398 {
1399     fdctrl->phase = FD_PHASE_RESULT;
1400     fdctrl->data_dir = FD_DIR_READ;
1401     fdctrl->data_len = fifo_len;
1402     fdctrl->data_pos = 0;
1403     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1404 }
1405 
1406 /* Set an error: unimplemented/unknown command */
1407 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1408 {
1409     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1410                   fdctrl->fifo[0]);
1411     fdctrl->fifo[0] = FD_SR0_INVCMD;
1412     fdctrl_to_result_phase(fdctrl, 1);
1413 }
1414 
1415 /* Seek to next sector
1416  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1417  * otherwise returns 1
1418  */
1419 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1420 {
1421     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1422                    cur_drv->head, cur_drv->track, cur_drv->sect,
1423                    fd_sector(cur_drv));
1424     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1425        error in fact */
1426     uint8_t new_head = cur_drv->head;
1427     uint8_t new_track = cur_drv->track;
1428     uint8_t new_sect = cur_drv->sect;
1429 
1430     int ret = 1;
1431 
1432     if (new_sect >= cur_drv->last_sect ||
1433         new_sect == fdctrl->eot) {
1434         new_sect = 1;
1435         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1436             if (new_head == 0 &&
1437                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1438                 new_head = 1;
1439             } else {
1440                 new_head = 0;
1441                 new_track++;
1442                 fdctrl->status0 |= FD_SR0_SEEK;
1443                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1444                     ret = 0;
1445                 }
1446             }
1447         } else {
1448             fdctrl->status0 |= FD_SR0_SEEK;
1449             new_track++;
1450             ret = 0;
1451         }
1452         if (ret == 1) {
1453             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1454                     new_head, new_track, new_sect, fd_sector(cur_drv));
1455         }
1456     } else {
1457         new_sect++;
1458     }
1459     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1460     return ret;
1461 }
1462 
1463 /* Callback for transfer end (stop or abort) */
1464 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1465                                  uint8_t status1, uint8_t status2)
1466 {
1467     FDrive *cur_drv;
1468     cur_drv = get_cur_drv(fdctrl);
1469 
1470     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1471     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1472     if (cur_drv->head) {
1473         fdctrl->status0 |= FD_SR0_HEAD;
1474     }
1475     fdctrl->status0 |= status0;
1476 
1477     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1478                    status0, status1, status2, fdctrl->status0);
1479     fdctrl->fifo[0] = fdctrl->status0;
1480     fdctrl->fifo[1] = status1;
1481     fdctrl->fifo[2] = status2;
1482     fdctrl->fifo[3] = cur_drv->track;
1483     fdctrl->fifo[4] = cur_drv->head;
1484     fdctrl->fifo[5] = cur_drv->sect;
1485     fdctrl->fifo[6] = FD_SECTOR_SC;
1486     fdctrl->data_dir = FD_DIR_READ;
1487     if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1488         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1489         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1490     }
1491     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1492     fdctrl->msr &= ~FD_MSR_NONDMA;
1493 
1494     fdctrl_to_result_phase(fdctrl, 7);
1495     fdctrl_raise_irq(fdctrl);
1496 }
1497 
1498 /* Prepare a data transfer (either DMA or FIFO) */
1499 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1500 {
1501     FDrive *cur_drv;
1502     uint8_t kh, kt, ks;
1503 
1504     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1505     cur_drv = get_cur_drv(fdctrl);
1506     kt = fdctrl->fifo[2];
1507     kh = fdctrl->fifo[3];
1508     ks = fdctrl->fifo[4];
1509     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1510                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1511                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1512                                   NUM_SIDES(cur_drv)));
1513     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1514     case 2:
1515         /* sect too big */
1516         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1517         fdctrl->fifo[3] = kt;
1518         fdctrl->fifo[4] = kh;
1519         fdctrl->fifo[5] = ks;
1520         return;
1521     case 3:
1522         /* track too big */
1523         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1524         fdctrl->fifo[3] = kt;
1525         fdctrl->fifo[4] = kh;
1526         fdctrl->fifo[5] = ks;
1527         return;
1528     case 4:
1529         /* No seek enabled */
1530         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1531         fdctrl->fifo[3] = kt;
1532         fdctrl->fifo[4] = kh;
1533         fdctrl->fifo[5] = ks;
1534         return;
1535     case 1:
1536         fdctrl->status0 |= FD_SR0_SEEK;
1537         break;
1538     default:
1539         break;
1540     }
1541 
1542     /* Check the data rate. If the programmed data rate does not match
1543      * the currently inserted medium, the operation has to fail. */
1544     if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1545         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1546                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1547         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1548         fdctrl->fifo[3] = kt;
1549         fdctrl->fifo[4] = kh;
1550         fdctrl->fifo[5] = ks;
1551         return;
1552     }
1553 
1554     /* Set the FIFO state */
1555     fdctrl->data_dir = direction;
1556     fdctrl->data_pos = 0;
1557     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1558     if (fdctrl->fifo[0] & 0x80)
1559         fdctrl->data_state |= FD_STATE_MULTI;
1560     else
1561         fdctrl->data_state &= ~FD_STATE_MULTI;
1562     if (fdctrl->fifo[5] == 0) {
1563         fdctrl->data_len = fdctrl->fifo[8];
1564     } else {
1565         int tmp;
1566         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1567         tmp = (fdctrl->fifo[6] - ks + 1);
1568         if (fdctrl->fifo[0] & 0x80)
1569             tmp += fdctrl->fifo[6];
1570         fdctrl->data_len *= tmp;
1571     }
1572     fdctrl->eot = fdctrl->fifo[6];
1573     if (fdctrl->dor & FD_DOR_DMAEN) {
1574         /* DMA transfer is enabled. */
1575         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1576 
1577         FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1578                        direction, (128 << fdctrl->fifo[5]) *
1579                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1580 
1581         /* No access is allowed until DMA transfer has completed */
1582         fdctrl->msr &= ~FD_MSR_RQM;
1583         if (direction != FD_DIR_VERIFY) {
1584             /*
1585              * Now, we just have to wait for the DMA controller to
1586              * recall us...
1587              */
1588             k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1589             k->schedule(fdctrl->dma);
1590         } else {
1591             /* Start transfer */
1592             fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1593                     fdctrl->data_len);
1594         }
1595         return;
1596     }
1597     FLOPPY_DPRINTF("start non-DMA transfer\n");
1598     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1599     if (direction != FD_DIR_WRITE)
1600         fdctrl->msr |= FD_MSR_DIO;
1601     /* IO based transfer: calculate len */
1602     fdctrl_raise_irq(fdctrl);
1603 }
1604 
1605 /* Prepare a transfer of deleted data */
1606 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1607 {
1608     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1609 
1610     /* We don't handle deleted data,
1611      * so we don't return *ANYTHING*
1612      */
1613     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1614 }
1615 
1616 /* handlers for DMA transfers */
1617 int fdctrl_transfer_handler(void *opaque, int nchan, int dma_pos, int dma_len)
1618 {
1619     FDCtrl *fdctrl;
1620     FDrive *cur_drv;
1621     int len, start_pos, rel_pos;
1622     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1623     IsaDmaClass *k;
1624 
1625     fdctrl = opaque;
1626     if (fdctrl->msr & FD_MSR_RQM) {
1627         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1628         return 0;
1629     }
1630     k = ISADMA_GET_CLASS(fdctrl->dma);
1631     cur_drv = get_cur_drv(fdctrl);
1632     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1633         fdctrl->data_dir == FD_DIR_SCANH)
1634         status2 = FD_SR2_SNS;
1635     if (dma_len > fdctrl->data_len)
1636         dma_len = fdctrl->data_len;
1637     if (cur_drv->blk == NULL) {
1638         if (fdctrl->data_dir == FD_DIR_WRITE)
1639             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1640         else
1641             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1642         len = 0;
1643         goto transfer_error;
1644     }
1645     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1646     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1647         len = dma_len - fdctrl->data_pos;
1648         if (len + rel_pos > FD_SECTOR_LEN)
1649             len = FD_SECTOR_LEN - rel_pos;
1650         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1651                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1652                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1653                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1654                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1655         if (fdctrl->data_dir != FD_DIR_WRITE ||
1656             len < FD_SECTOR_LEN || rel_pos != 0) {
1657             /* READ & SCAN commands and realign to a sector for WRITE */
1658             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1659                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1660                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1661                                fd_sector(cur_drv));
1662                 /* Sure, image size is too small... */
1663                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1664             }
1665         }
1666         switch (fdctrl->data_dir) {
1667         case FD_DIR_READ:
1668             /* READ commands */
1669             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1670                             fdctrl->data_pos, len);
1671             break;
1672         case FD_DIR_WRITE:
1673             /* WRITE commands */
1674             if (cur_drv->ro) {
1675                 /* Handle readonly medium early, no need to do DMA, touch the
1676                  * LED or attempt any writes. A real floppy doesn't attempt
1677                  * to write to readonly media either. */
1678                 fdctrl_stop_transfer(fdctrl,
1679                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1680                                      0x00);
1681                 goto transfer_error;
1682             }
1683 
1684             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1685                            fdctrl->data_pos, len);
1686             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1687                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1688                 FLOPPY_DPRINTF("error writing sector %d\n",
1689                                fd_sector(cur_drv));
1690                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1691                 goto transfer_error;
1692             }
1693             break;
1694         case FD_DIR_VERIFY:
1695             /* VERIFY commands */
1696             break;
1697         default:
1698             /* SCAN commands */
1699             {
1700                 uint8_t tmpbuf[FD_SECTOR_LEN];
1701                 int ret;
1702                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1703                                len);
1704                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1705                 if (ret == 0) {
1706                     status2 = FD_SR2_SEH;
1707                     goto end_transfer;
1708                 }
1709                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1710                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1711                     status2 = 0x00;
1712                     goto end_transfer;
1713                 }
1714             }
1715             break;
1716         }
1717         fdctrl->data_pos += len;
1718         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1719         if (rel_pos == 0) {
1720             /* Seek to next sector */
1721             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1722                 break;
1723         }
1724     }
1725  end_transfer:
1726     len = fdctrl->data_pos - start_pos;
1727     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1728                    fdctrl->data_pos, len, fdctrl->data_len);
1729     if (fdctrl->data_dir == FD_DIR_SCANE ||
1730         fdctrl->data_dir == FD_DIR_SCANL ||
1731         fdctrl->data_dir == FD_DIR_SCANH)
1732         status2 = FD_SR2_SEH;
1733     fdctrl->data_len -= len;
1734     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1735  transfer_error:
1736 
1737     return len;
1738 }
1739 
1740 /* Data register : 0x05 */
1741 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1742 {
1743     FDrive *cur_drv;
1744     uint32_t retval = 0;
1745     uint32_t pos;
1746 
1747     cur_drv = get_cur_drv(fdctrl);
1748     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1749     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1750         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1751         return 0;
1752     }
1753 
1754     /* If data_len spans multiple sectors, the current position in the FIFO
1755      * wraps around while fdctrl->data_pos is the real position in the whole
1756      * request. */
1757     pos = fdctrl->data_pos;
1758     pos %= FD_SECTOR_LEN;
1759 
1760     switch (fdctrl->phase) {
1761     case FD_PHASE_EXECUTION:
1762         assert(fdctrl->msr & FD_MSR_NONDMA);
1763         if (pos == 0) {
1764             if (fdctrl->data_pos != 0)
1765                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1766                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1767                                    fd_sector(cur_drv));
1768                     return 0;
1769                 }
1770             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1771                           BDRV_SECTOR_SIZE)
1772                 < 0) {
1773                 FLOPPY_DPRINTF("error getting sector %d\n",
1774                                fd_sector(cur_drv));
1775                 /* Sure, image size is too small... */
1776                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1777             }
1778         }
1779 
1780         if (++fdctrl->data_pos == fdctrl->data_len) {
1781             fdctrl->msr &= ~FD_MSR_RQM;
1782             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1783         }
1784         break;
1785 
1786     case FD_PHASE_RESULT:
1787         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1788         if (++fdctrl->data_pos == fdctrl->data_len) {
1789             fdctrl->msr &= ~FD_MSR_RQM;
1790             fdctrl_to_command_phase(fdctrl);
1791             fdctrl_reset_irq(fdctrl);
1792         }
1793         break;
1794 
1795     case FD_PHASE_COMMAND:
1796     default:
1797         abort();
1798     }
1799 
1800     retval = fdctrl->fifo[pos];
1801     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1802 
1803     return retval;
1804 }
1805 
1806 static void fdctrl_format_sector(FDCtrl *fdctrl)
1807 {
1808     FDrive *cur_drv;
1809     uint8_t kh, kt, ks;
1810 
1811     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1812     cur_drv = get_cur_drv(fdctrl);
1813     kt = fdctrl->fifo[6];
1814     kh = fdctrl->fifo[7];
1815     ks = fdctrl->fifo[8];
1816     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1817                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1818                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1819                                   NUM_SIDES(cur_drv)));
1820     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1821     case 2:
1822         /* sect too big */
1823         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1824         fdctrl->fifo[3] = kt;
1825         fdctrl->fifo[4] = kh;
1826         fdctrl->fifo[5] = ks;
1827         return;
1828     case 3:
1829         /* track too big */
1830         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1831         fdctrl->fifo[3] = kt;
1832         fdctrl->fifo[4] = kh;
1833         fdctrl->fifo[5] = ks;
1834         return;
1835     case 4:
1836         /* No seek enabled */
1837         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1838         fdctrl->fifo[3] = kt;
1839         fdctrl->fifo[4] = kh;
1840         fdctrl->fifo[5] = ks;
1841         return;
1842     case 1:
1843         fdctrl->status0 |= FD_SR0_SEEK;
1844         break;
1845     default:
1846         break;
1847     }
1848     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1849     if (cur_drv->blk == NULL ||
1850         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1851                    BDRV_SECTOR_SIZE, 0) < 0) {
1852         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1853         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1854     } else {
1855         if (cur_drv->sect == cur_drv->last_sect) {
1856             fdctrl->data_state &= ~FD_STATE_FORMAT;
1857             /* Last sector done */
1858             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1859         } else {
1860             /* More to do */
1861             fdctrl->data_pos = 0;
1862             fdctrl->data_len = 4;
1863         }
1864     }
1865 }
1866 
1867 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1868 {
1869     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1870     fdctrl->fifo[0] = fdctrl->lock << 4;
1871     fdctrl_to_result_phase(fdctrl, 1);
1872 }
1873 
1874 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1875 {
1876     FDrive *cur_drv = get_cur_drv(fdctrl);
1877 
1878     /* Drives position */
1879     fdctrl->fifo[0] = drv0(fdctrl)->track;
1880     fdctrl->fifo[1] = drv1(fdctrl)->track;
1881 #if MAX_FD == 4
1882     fdctrl->fifo[2] = drv2(fdctrl)->track;
1883     fdctrl->fifo[3] = drv3(fdctrl)->track;
1884 #else
1885     fdctrl->fifo[2] = 0;
1886     fdctrl->fifo[3] = 0;
1887 #endif
1888     /* timers */
1889     fdctrl->fifo[4] = fdctrl->timer0;
1890     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1891     fdctrl->fifo[6] = cur_drv->last_sect;
1892     fdctrl->fifo[7] = (fdctrl->lock << 7) |
1893         (cur_drv->perpendicular << 2);
1894     fdctrl->fifo[8] = fdctrl->config;
1895     fdctrl->fifo[9] = fdctrl->precomp_trk;
1896     fdctrl_to_result_phase(fdctrl, 10);
1897 }
1898 
1899 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1900 {
1901     /* Controller's version */
1902     fdctrl->fifo[0] = fdctrl->version;
1903     fdctrl_to_result_phase(fdctrl, 1);
1904 }
1905 
1906 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1907 {
1908     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1909     fdctrl_to_result_phase(fdctrl, 1);
1910 }
1911 
1912 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1913 {
1914     FDrive *cur_drv = get_cur_drv(fdctrl);
1915 
1916     /* Drives position */
1917     drv0(fdctrl)->track = fdctrl->fifo[3];
1918     drv1(fdctrl)->track = fdctrl->fifo[4];
1919 #if MAX_FD == 4
1920     drv2(fdctrl)->track = fdctrl->fifo[5];
1921     drv3(fdctrl)->track = fdctrl->fifo[6];
1922 #endif
1923     /* timers */
1924     fdctrl->timer0 = fdctrl->fifo[7];
1925     fdctrl->timer1 = fdctrl->fifo[8];
1926     cur_drv->last_sect = fdctrl->fifo[9];
1927     fdctrl->lock = fdctrl->fifo[10] >> 7;
1928     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1929     fdctrl->config = fdctrl->fifo[11];
1930     fdctrl->precomp_trk = fdctrl->fifo[12];
1931     fdctrl->pwrd = fdctrl->fifo[13];
1932     fdctrl_to_command_phase(fdctrl);
1933 }
1934 
1935 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1936 {
1937     FDrive *cur_drv = get_cur_drv(fdctrl);
1938 
1939     fdctrl->fifo[0] = 0;
1940     fdctrl->fifo[1] = 0;
1941     /* Drives position */
1942     fdctrl->fifo[2] = drv0(fdctrl)->track;
1943     fdctrl->fifo[3] = drv1(fdctrl)->track;
1944 #if MAX_FD == 4
1945     fdctrl->fifo[4] = drv2(fdctrl)->track;
1946     fdctrl->fifo[5] = drv3(fdctrl)->track;
1947 #else
1948     fdctrl->fifo[4] = 0;
1949     fdctrl->fifo[5] = 0;
1950 #endif
1951     /* timers */
1952     fdctrl->fifo[6] = fdctrl->timer0;
1953     fdctrl->fifo[7] = fdctrl->timer1;
1954     fdctrl->fifo[8] = cur_drv->last_sect;
1955     fdctrl->fifo[9] = (fdctrl->lock << 7) |
1956         (cur_drv->perpendicular << 2);
1957     fdctrl->fifo[10] = fdctrl->config;
1958     fdctrl->fifo[11] = fdctrl->precomp_trk;
1959     fdctrl->fifo[12] = fdctrl->pwrd;
1960     fdctrl->fifo[13] = 0;
1961     fdctrl->fifo[14] = 0;
1962     fdctrl_to_result_phase(fdctrl, 15);
1963 }
1964 
1965 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1966 {
1967     FDrive *cur_drv = get_cur_drv(fdctrl);
1968 
1969     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1970     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1971              (NANOSECONDS_PER_SECOND / 50));
1972 }
1973 
1974 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1975 {
1976     FDrive *cur_drv;
1977 
1978     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1979     cur_drv = get_cur_drv(fdctrl);
1980     fdctrl->data_state |= FD_STATE_FORMAT;
1981     if (fdctrl->fifo[0] & 0x80)
1982         fdctrl->data_state |= FD_STATE_MULTI;
1983     else
1984         fdctrl->data_state &= ~FD_STATE_MULTI;
1985     cur_drv->bps =
1986         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1987 #if 0
1988     cur_drv->last_sect =
1989         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1990         fdctrl->fifo[3] / 2;
1991 #else
1992     cur_drv->last_sect = fdctrl->fifo[3];
1993 #endif
1994     /* TODO: implement format using DMA expected by the Bochs BIOS
1995      * and Linux fdformat (read 3 bytes per sector via DMA and fill
1996      * the sector with the specified fill byte
1997      */
1998     fdctrl->data_state &= ~FD_STATE_FORMAT;
1999     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2000 }
2001 
2002 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2003 {
2004     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2005     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2006     if (fdctrl->fifo[2] & 1)
2007         fdctrl->dor &= ~FD_DOR_DMAEN;
2008     else
2009         fdctrl->dor |= FD_DOR_DMAEN;
2010     /* No result back */
2011     fdctrl_to_command_phase(fdctrl);
2012 }
2013 
2014 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2015 {
2016     FDrive *cur_drv;
2017 
2018     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2019     cur_drv = get_cur_drv(fdctrl);
2020     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2021     /* 1 Byte status back */
2022     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2023         (cur_drv->track == 0 ? 0x10 : 0x00) |
2024         (cur_drv->head << 2) |
2025         GET_CUR_DRV(fdctrl) |
2026         0x28;
2027     fdctrl_to_result_phase(fdctrl, 1);
2028 }
2029 
2030 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2031 {
2032     FDrive *cur_drv;
2033 
2034     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2035     cur_drv = get_cur_drv(fdctrl);
2036     fd_recalibrate(cur_drv);
2037     fdctrl_to_command_phase(fdctrl);
2038     /* Raise Interrupt */
2039     fdctrl->status0 |= FD_SR0_SEEK;
2040     fdctrl_raise_irq(fdctrl);
2041 }
2042 
2043 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2044 {
2045     FDrive *cur_drv = get_cur_drv(fdctrl);
2046 
2047     if (fdctrl->reset_sensei > 0) {
2048         fdctrl->fifo[0] =
2049             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2050         fdctrl->reset_sensei--;
2051     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2052         fdctrl->fifo[0] = FD_SR0_INVCMD;
2053         fdctrl_to_result_phase(fdctrl, 1);
2054         return;
2055     } else {
2056         fdctrl->fifo[0] =
2057                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2058                 | GET_CUR_DRV(fdctrl);
2059     }
2060 
2061     fdctrl->fifo[1] = cur_drv->track;
2062     fdctrl_to_result_phase(fdctrl, 2);
2063     fdctrl_reset_irq(fdctrl);
2064     fdctrl->status0 = FD_SR0_RDYCHG;
2065 }
2066 
2067 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2068 {
2069     FDrive *cur_drv;
2070 
2071     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2072     cur_drv = get_cur_drv(fdctrl);
2073     fdctrl_to_command_phase(fdctrl);
2074     /* The seek command just sends step pulses to the drive and doesn't care if
2075      * there is a medium inserted of if it's banging the head against the drive.
2076      */
2077     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2078     /* Raise Interrupt */
2079     fdctrl->status0 |= FD_SR0_SEEK;
2080     fdctrl_raise_irq(fdctrl);
2081 }
2082 
2083 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2084 {
2085     FDrive *cur_drv = get_cur_drv(fdctrl);
2086 
2087     if (fdctrl->fifo[1] & 0x80)
2088         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2089     /* No result back */
2090     fdctrl_to_command_phase(fdctrl);
2091 }
2092 
2093 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2094 {
2095     fdctrl->config = fdctrl->fifo[2];
2096     fdctrl->precomp_trk =  fdctrl->fifo[3];
2097     /* No result back */
2098     fdctrl_to_command_phase(fdctrl);
2099 }
2100 
2101 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2102 {
2103     fdctrl->pwrd = fdctrl->fifo[1];
2104     fdctrl->fifo[0] = fdctrl->fifo[1];
2105     fdctrl_to_result_phase(fdctrl, 1);
2106 }
2107 
2108 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2109 {
2110     /* No result back */
2111     fdctrl_to_command_phase(fdctrl);
2112 }
2113 
2114 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2115 {
2116     FDrive *cur_drv = get_cur_drv(fdctrl);
2117     uint32_t pos;
2118 
2119     pos = fdctrl->data_pos - 1;
2120     pos %= FD_SECTOR_LEN;
2121     if (fdctrl->fifo[pos] & 0x80) {
2122         /* Command parameters done */
2123         if (fdctrl->fifo[pos] & 0x40) {
2124             fdctrl->fifo[0] = fdctrl->fifo[1];
2125             fdctrl->fifo[2] = 0;
2126             fdctrl->fifo[3] = 0;
2127             fdctrl_to_result_phase(fdctrl, 4);
2128         } else {
2129             fdctrl_to_command_phase(fdctrl);
2130         }
2131     } else if (fdctrl->data_len > 7) {
2132         /* ERROR */
2133         fdctrl->fifo[0] = 0x80 |
2134             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2135         fdctrl_to_result_phase(fdctrl, 1);
2136     }
2137 }
2138 
2139 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2140 {
2141     FDrive *cur_drv;
2142 
2143     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2144     cur_drv = get_cur_drv(fdctrl);
2145     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2146         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2147                 cur_drv->sect, 1);
2148     } else {
2149         fd_seek(cur_drv, cur_drv->head,
2150                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2151     }
2152     fdctrl_to_command_phase(fdctrl);
2153     /* Raise Interrupt */
2154     fdctrl->status0 |= FD_SR0_SEEK;
2155     fdctrl_raise_irq(fdctrl);
2156 }
2157 
2158 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2159 {
2160     FDrive *cur_drv;
2161 
2162     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2163     cur_drv = get_cur_drv(fdctrl);
2164     if (fdctrl->fifo[2] > cur_drv->track) {
2165         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2166     } else {
2167         fd_seek(cur_drv, cur_drv->head,
2168                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2169     }
2170     fdctrl_to_command_phase(fdctrl);
2171     /* Raise Interrupt */
2172     fdctrl->status0 |= FD_SR0_SEEK;
2173     fdctrl_raise_irq(fdctrl);
2174 }
2175 
2176 /*
2177  * Handlers for the execution phase of each command
2178  */
2179 typedef struct FDCtrlCommand {
2180     uint8_t value;
2181     uint8_t mask;
2182     const char* name;
2183     int parameters;
2184     void (*handler)(FDCtrl *fdctrl, int direction);
2185     int direction;
2186 } FDCtrlCommand;
2187 
2188 static const FDCtrlCommand handlers[] = {
2189     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2190     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2191     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2192     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2193     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2194     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2195     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2196     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2197     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2198     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2199     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2200     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2201     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2202     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2203     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2204     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2205     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2206     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2207     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2208     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2209     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2210     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2211     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2212     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2213     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2214     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2215     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2216     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2217     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2218     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2219     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2220     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2221 };
2222 /* Associate command to an index in the 'handlers' array */
2223 static uint8_t command_to_handler[256];
2224 
2225 static const FDCtrlCommand *get_command(uint8_t cmd)
2226 {
2227     int idx;
2228 
2229     idx = command_to_handler[cmd];
2230     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2231     return &handlers[idx];
2232 }
2233 
2234 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2235 {
2236     FDrive *cur_drv;
2237     const FDCtrlCommand *cmd;
2238     uint32_t pos;
2239 
2240     /* Reset mode */
2241     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2242         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2243         return;
2244     }
2245     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2246         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2247         return;
2248     }
2249     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2250 
2251     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2252 
2253     /* If data_len spans multiple sectors, the current position in the FIFO
2254      * wraps around while fdctrl->data_pos is the real position in the whole
2255      * request. */
2256     pos = fdctrl->data_pos++;
2257     pos %= FD_SECTOR_LEN;
2258     fdctrl->fifo[pos] = value;
2259 
2260     if (fdctrl->data_pos == fdctrl->data_len) {
2261         fdctrl->msr &= ~FD_MSR_RQM;
2262     }
2263 
2264     switch (fdctrl->phase) {
2265     case FD_PHASE_EXECUTION:
2266         /* For DMA requests, RQM should be cleared during execution phase, so
2267          * we would have errored out above. */
2268         assert(fdctrl->msr & FD_MSR_NONDMA);
2269 
2270         /* FIFO data write */
2271         if (pos == FD_SECTOR_LEN - 1 ||
2272             fdctrl->data_pos == fdctrl->data_len) {
2273             cur_drv = get_cur_drv(fdctrl);
2274             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2275                            BDRV_SECTOR_SIZE, 0) < 0) {
2276                 FLOPPY_DPRINTF("error writing sector %d\n",
2277                                fd_sector(cur_drv));
2278                 break;
2279             }
2280             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2281                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2282                                fd_sector(cur_drv));
2283                 break;
2284             }
2285         }
2286 
2287         /* Switch to result phase when done with the transfer */
2288         if (fdctrl->data_pos == fdctrl->data_len) {
2289             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2290         }
2291         break;
2292 
2293     case FD_PHASE_COMMAND:
2294         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2295         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2296 
2297         if (pos == 0) {
2298             /* The first byte specifies the command. Now we start reading
2299              * as many parameters as this command requires. */
2300             cmd = get_command(value);
2301             fdctrl->data_len = cmd->parameters + 1;
2302             if (cmd->parameters) {
2303                 fdctrl->msr |= FD_MSR_RQM;
2304             }
2305             fdctrl->msr |= FD_MSR_CMDBUSY;
2306         }
2307 
2308         if (fdctrl->data_pos == fdctrl->data_len) {
2309             /* We have all parameters now, execute the command */
2310             fdctrl->phase = FD_PHASE_EXECUTION;
2311 
2312             if (fdctrl->data_state & FD_STATE_FORMAT) {
2313                 fdctrl_format_sector(fdctrl);
2314                 break;
2315             }
2316 
2317             cmd = get_command(fdctrl->fifo[0]);
2318             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2319             cmd->handler(fdctrl, cmd->direction);
2320         }
2321         break;
2322 
2323     case FD_PHASE_RESULT:
2324     default:
2325         abort();
2326     }
2327 }
2328 
2329 static void fdctrl_result_timer(void *opaque)
2330 {
2331     FDCtrl *fdctrl = opaque;
2332     FDrive *cur_drv = get_cur_drv(fdctrl);
2333 
2334     /* Pretend we are spinning.
2335      * This is needed for Coherent, which uses READ ID to check for
2336      * sector interleaving.
2337      */
2338     if (cur_drv->last_sect != 0) {
2339         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2340     }
2341     /* READ_ID can't automatically succeed! */
2342     if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2343         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2344                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2345         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2346     } else {
2347         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2348     }
2349 }
2350 
2351 /* Init functions */
2352 
2353 void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
2354 {
2355     DeviceState *dev;
2356     int i;
2357 
2358     for (i = 0; i < MAX_FD; i++) {
2359         if (fds[i]) {
2360             dev = qdev_new("floppy");
2361             qdev_prop_set_uint32(dev, "unit", i);
2362             qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
2363             qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
2364                                     &error_fatal);
2365             qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
2366         }
2367     }
2368 }
2369 
2370 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2371                         hwaddr mmio_base, DriveInfo **fds)
2372 {
2373     FDCtrl *fdctrl;
2374     DeviceState *dev;
2375     SysBusDevice *sbd;
2376     FDCtrlSysBus *sys;
2377 
2378     dev = qdev_new("sysbus-fdc");
2379     sys = SYSBUS_FDC(dev);
2380     fdctrl = &sys->state;
2381     fdctrl->dma_chann = dma_chann; /* FIXME */
2382     sbd = SYS_BUS_DEVICE(dev);
2383     sysbus_realize_and_unref(sbd, &error_fatal);
2384     sysbus_connect_irq(sbd, 0, irq);
2385     sysbus_mmio_map(sbd, 0, mmio_base);
2386 
2387     fdctrl_init_drives(&sys->state.bus, fds);
2388 }
2389 
2390 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2391                        DriveInfo **fds, qemu_irq *fdc_tc)
2392 {
2393     DeviceState *dev;
2394     FDCtrlSysBus *sys;
2395 
2396     dev = qdev_new("sun-fdtwo");
2397     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2398     sys = SYSBUS_FDC(dev);
2399     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2400     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2401     *fdc_tc = qdev_get_gpio_in(dev, 0);
2402 
2403     fdctrl_init_drives(&sys->state.bus, fds);
2404 }
2405 
2406 void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, Error **errp)
2407 {
2408     int i, j;
2409     FDrive *drive;
2410     static int command_tables_inited = 0;
2411 
2412     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2413         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2414         return;
2415     }
2416 
2417     /* Fill 'command_to_handler' lookup table */
2418     if (!command_tables_inited) {
2419         command_tables_inited = 1;
2420         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2421             for (j = 0; j < sizeof(command_to_handler); j++) {
2422                 if ((j & handlers[i].mask) == handlers[i].value) {
2423                     command_to_handler[j] = i;
2424                 }
2425             }
2426         }
2427     }
2428 
2429     FLOPPY_DPRINTF("init controller\n");
2430     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2431     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2432     fdctrl->fifo_size = 512;
2433     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2434                                              fdctrl_result_timer, fdctrl);
2435 
2436     fdctrl->version = 0x90; /* Intel 82078 controller */
2437     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2438     fdctrl->num_floppies = MAX_FD;
2439 
2440     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2441 
2442     for (i = 0; i < MAX_FD; i++) {
2443         drive = &fdctrl->drives[i];
2444         drive->fdctrl = fdctrl;
2445         fd_init(drive);
2446         fd_revalidate(drive);
2447     }
2448 }
2449 
2450 static void sysbus_fdc_initfn(Object *obj)
2451 {
2452     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2453     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2454     FDCtrl *fdctrl = &sys->state;
2455 
2456     fdctrl->dma_chann = -1;
2457 
2458     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2459                           "fdc", 0x08);
2460     sysbus_init_mmio(sbd, &fdctrl->iomem);
2461 }
2462 
2463 static void sun4m_fdc_initfn(Object *obj)
2464 {
2465     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2466     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2467     FDCtrl *fdctrl = &sys->state;
2468 
2469     fdctrl->dma_chann = -1;
2470 
2471     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2472                           fdctrl, "fdctrl", 0x08);
2473     sysbus_init_mmio(sbd, &fdctrl->iomem);
2474 }
2475 
2476 static void sysbus_fdc_common_initfn(Object *obj)
2477 {
2478     DeviceState *dev = DEVICE(obj);
2479     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2480     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2481     FDCtrl *fdctrl = &sys->state;
2482 
2483     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2484 
2485     sysbus_init_irq(sbd, &fdctrl->irq);
2486     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2487 }
2488 
2489 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2490 {
2491     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2492     FDCtrl *fdctrl = &sys->state;
2493 
2494     fdctrl_realize_common(dev, fdctrl, errp);
2495 }
2496 
2497 static const VMStateDescription vmstate_sysbus_fdc ={
2498     .name = "fdc",
2499     .version_id = 2,
2500     .minimum_version_id = 2,
2501     .fields = (VMStateField[]) {
2502         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2503         VMSTATE_END_OF_LIST()
2504     }
2505 };
2506 
2507 static Property sysbus_fdc_properties[] = {
2508     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2509                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2510                         FloppyDriveType),
2511     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2512                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2513                         FloppyDriveType),
2514     DEFINE_PROP_SIGNED("fallback", FDCtrlSysBus, state.fallback,
2515                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2516                         FloppyDriveType),
2517     DEFINE_PROP_END_OF_LIST(),
2518 };
2519 
2520 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2521 {
2522     DeviceClass *dc = DEVICE_CLASS(klass);
2523 
2524     device_class_set_props(dc, sysbus_fdc_properties);
2525     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2526 }
2527 
2528 static const TypeInfo sysbus_fdc_info = {
2529     .name          = "sysbus-fdc",
2530     .parent        = TYPE_SYSBUS_FDC,
2531     .instance_init = sysbus_fdc_initfn,
2532     .class_init    = sysbus_fdc_class_init,
2533 };
2534 
2535 static Property sun4m_fdc_properties[] = {
2536     DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2537                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2538                         FloppyDriveType),
2539     DEFINE_PROP_SIGNED("fallback", FDCtrlSysBus, state.fallback,
2540                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2541                         FloppyDriveType),
2542     DEFINE_PROP_END_OF_LIST(),
2543 };
2544 
2545 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2546 {
2547     DeviceClass *dc = DEVICE_CLASS(klass);
2548 
2549     device_class_set_props(dc, sun4m_fdc_properties);
2550     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2551 }
2552 
2553 static const TypeInfo sun4m_fdc_info = {
2554     .name          = "sun-fdtwo",
2555     .parent        = TYPE_SYSBUS_FDC,
2556     .instance_init = sun4m_fdc_initfn,
2557     .class_init    = sun4m_fdc_class_init,
2558 };
2559 
2560 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2561 {
2562     DeviceClass *dc = DEVICE_CLASS(klass);
2563 
2564     dc->realize = sysbus_fdc_common_realize;
2565     dc->reset = fdctrl_external_reset_sysbus;
2566     dc->vmsd = &vmstate_sysbus_fdc;
2567 }
2568 
2569 static const TypeInfo sysbus_fdc_type_info = {
2570     .name          = TYPE_SYSBUS_FDC,
2571     .parent        = TYPE_SYS_BUS_DEVICE,
2572     .instance_size = sizeof(FDCtrlSysBus),
2573     .instance_init = sysbus_fdc_common_initfn,
2574     .abstract      = true,
2575     .class_init    = sysbus_fdc_common_class_init,
2576 };
2577 
2578 static void fdc_register_types(void)
2579 {
2580     type_register_static(&sysbus_fdc_type_info);
2581     type_register_static(&sysbus_fdc_info);
2582     type_register_static(&sun4m_fdc_info);
2583     type_register_static(&floppy_bus_info);
2584     type_register_static(&floppy_drive_info);
2585 }
2586 
2587 type_init(fdc_register_types)
2588