xref: /openbmc/qemu/hw/block/fdc.c (revision 62dd4eda)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
42 #include "qemu/log.h"
43 
44 /********************************************************/
45 /* debug Floppy devices */
46 
47 #define DEBUG_FLOPPY 0
48 
49 #define FLOPPY_DPRINTF(fmt, ...)                                \
50     do {                                                        \
51         if (DEBUG_FLOPPY) {                                     \
52             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
53         }                                                       \
54     } while (0)
55 
56 
57 /********************************************************/
58 /* qdev floppy bus                                      */
59 
60 #define TYPE_FLOPPY_BUS "floppy-bus"
61 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
62 
63 typedef struct FDCtrl FDCtrl;
64 typedef struct FDrive FDrive;
65 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
66 
67 typedef struct FloppyBus {
68     BusState bus;
69     FDCtrl *fdc;
70 } FloppyBus;
71 
72 static const TypeInfo floppy_bus_info = {
73     .name = TYPE_FLOPPY_BUS,
74     .parent = TYPE_BUS,
75     .instance_size = sizeof(FloppyBus),
76 };
77 
78 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
79 {
80     qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
81     bus->fdc = fdc;
82 }
83 
84 
85 /********************************************************/
86 /* Floppy drive emulation                               */
87 
88 typedef enum FDriveRate {
89     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
90     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
91     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
92     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
93 } FDriveRate;
94 
95 typedef enum FDriveSize {
96     FDRIVE_SIZE_UNKNOWN,
97     FDRIVE_SIZE_350,
98     FDRIVE_SIZE_525,
99 } FDriveSize;
100 
101 typedef struct FDFormat {
102     FloppyDriveType drive;
103     uint8_t last_sect;
104     uint8_t max_track;
105     uint8_t max_head;
106     FDriveRate rate;
107 } FDFormat;
108 
109 /* In many cases, the total sector size of a format is enough to uniquely
110  * identify it. However, there are some total sector collisions between
111  * formats of different physical size, and these are noted below by
112  * highlighting the total sector size for entries with collisions. */
113 static const FDFormat fd_formats[] = {
114     /* First entry is default format */
115     /* 1.44 MB 3"1/2 floppy disks */
116     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
117     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
118     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
119     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
120     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
121     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
122     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
123     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
124     /* 2.88 MB 3"1/2 floppy disks */
125     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
126     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
127     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
128     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
129     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
130     /* 720 kB 3"1/2 floppy disks */
131     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
132     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
133     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
134     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
135     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
136     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
137     /* 1.2 MB 5"1/4 floppy disks */
138     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
139     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
140     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
141     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
142     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
143     /* 720 kB 5"1/4 floppy disks */
144     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
145     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
146     /* 360 kB 5"1/4 floppy disks */
147     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
148     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
149     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
150     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
151     /* 320 kB 5"1/4 floppy disks */
152     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
153     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
154     /* 360 kB must match 5"1/4 better than 3"1/2... */
155     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
156     /* end */
157     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
158 };
159 
160 static FDriveSize drive_size(FloppyDriveType drive)
161 {
162     switch (drive) {
163     case FLOPPY_DRIVE_TYPE_120:
164         return FDRIVE_SIZE_525;
165     case FLOPPY_DRIVE_TYPE_144:
166     case FLOPPY_DRIVE_TYPE_288:
167         return FDRIVE_SIZE_350;
168     default:
169         return FDRIVE_SIZE_UNKNOWN;
170     }
171 }
172 
173 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
174 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
175 
176 /* Will always be a fixed parameter for us */
177 #define FD_SECTOR_LEN          512
178 #define FD_SECTOR_SC           2   /* Sector size code */
179 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
180 
181 /* Floppy disk drive emulation */
182 typedef enum FDiskFlags {
183     FDISK_DBL_SIDES  = 0x01,
184 } FDiskFlags;
185 
186 struct FDrive {
187     FDCtrl *fdctrl;
188     BlockBackend *blk;
189     BlockConf *conf;
190     /* Drive status */
191     FloppyDriveType drive;    /* CMOS drive type        */
192     uint8_t perpendicular;    /* 2.88 MB access mode    */
193     /* Position */
194     uint8_t head;
195     uint8_t track;
196     uint8_t sect;
197     /* Media */
198     FloppyDriveType disk;     /* Current disk type      */
199     FDiskFlags flags;
200     uint8_t last_sect;        /* Nb sector per track    */
201     uint8_t max_track;        /* Nb of tracks           */
202     uint16_t bps;             /* Bytes per sector       */
203     uint8_t ro;               /* Is read-only           */
204     uint8_t media_changed;    /* Is media changed       */
205     uint8_t media_rate;       /* Data rate of medium    */
206 
207     bool media_validated;     /* Have we validated the media? */
208 };
209 
210 
211 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
212 
213 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
214  * currently goes through some pains to keep seeks within the bounds
215  * established by last_sect and max_track. Correcting this is difficult,
216  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
217  *
218  * For now: allow empty drives to have large bounds so we can seek around,
219  * with the understanding that when a diskette is inserted, the bounds will
220  * properly tighten to match the geometry of that inserted medium.
221  */
222 static void fd_empty_seek_hack(FDrive *drv)
223 {
224     drv->last_sect = 0xFF;
225     drv->max_track = 0xFF;
226 }
227 
228 static void fd_init(FDrive *drv)
229 {
230     /* Drive */
231     drv->perpendicular = 0;
232     /* Disk */
233     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
234     drv->last_sect = 0;
235     drv->max_track = 0;
236     drv->ro = true;
237     drv->media_changed = 1;
238 }
239 
240 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
241 
242 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
243                           uint8_t last_sect, uint8_t num_sides)
244 {
245     return (((track * num_sides) + head) * last_sect) + sect - 1;
246 }
247 
248 /* Returns current position, in sectors, for given drive */
249 static int fd_sector(FDrive *drv)
250 {
251     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
252                           NUM_SIDES(drv));
253 }
254 
255 /* Returns current position, in bytes, for given drive */
256 static int fd_offset(FDrive *drv)
257 {
258     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
259     return fd_sector(drv) << BDRV_SECTOR_BITS;
260 }
261 
262 /* Seek to a new position:
263  * returns 0 if already on right track
264  * returns 1 if track changed
265  * returns 2 if track is invalid
266  * returns 3 if sector is invalid
267  * returns 4 if seek is disabled
268  */
269 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
270                    int enable_seek)
271 {
272     uint32_t sector;
273     int ret;
274 
275     if (track > drv->max_track ||
276         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
277         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
278                        head, track, sect, 1,
279                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
280                        drv->max_track, drv->last_sect);
281         return 2;
282     }
283     if (sect > drv->last_sect) {
284         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
285                        head, track, sect, 1,
286                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
287                        drv->max_track, drv->last_sect);
288         return 3;
289     }
290     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
291     ret = 0;
292     if (sector != fd_sector(drv)) {
293 #if 0
294         if (!enable_seek) {
295             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
296                            " (max=%d %02x %02x)\n",
297                            head, track, sect, 1, drv->max_track,
298                            drv->last_sect);
299             return 4;
300         }
301 #endif
302         drv->head = head;
303         if (drv->track != track) {
304             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
305                 drv->media_changed = 0;
306             }
307             ret = 1;
308         }
309         drv->track = track;
310         drv->sect = sect;
311     }
312 
313     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
314         ret = 2;
315     }
316 
317     return ret;
318 }
319 
320 /* Set drive back to track 0 */
321 static void fd_recalibrate(FDrive *drv)
322 {
323     FLOPPY_DPRINTF("recalibrate\n");
324     fd_seek(drv, 0, 0, 1, 1);
325 }
326 
327 /**
328  * Determine geometry based on inserted diskette.
329  * Will not operate on an empty drive.
330  *
331  * @return: 0 on success, -1 if the drive is empty.
332  */
333 static int pick_geometry(FDrive *drv)
334 {
335     BlockBackend *blk = drv->blk;
336     const FDFormat *parse;
337     uint64_t nb_sectors, size;
338     int i;
339     int match, size_match, type_match;
340     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
341 
342     /* We can only pick a geometry if we have a diskette. */
343     if (!drv->blk || !blk_is_inserted(drv->blk) ||
344         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
345     {
346         return -1;
347     }
348 
349     /* We need to determine the likely geometry of the inserted medium.
350      * In order of preference, we look for:
351      * (1) The same drive type and number of sectors,
352      * (2) The same diskette size and number of sectors,
353      * (3) The same drive type.
354      *
355      * In all cases, matches that occur higher in the drive table will take
356      * precedence over matches that occur later in the table.
357      */
358     blk_get_geometry(blk, &nb_sectors);
359     match = size_match = type_match = -1;
360     for (i = 0; ; i++) {
361         parse = &fd_formats[i];
362         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
363             break;
364         }
365         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
366         if (nb_sectors == size) {
367             if (magic || parse->drive == drv->drive) {
368                 /* (1) perfect match -- nb_sectors and drive type */
369                 goto out;
370             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
371                 /* (2) size match -- nb_sectors and physical medium size */
372                 match = (match == -1) ? i : match;
373             } else {
374                 /* This is suspicious -- Did the user misconfigure? */
375                 size_match = (size_match == -1) ? i : size_match;
376             }
377         } else if (type_match == -1) {
378             if ((parse->drive == drv->drive) ||
379                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
380                 /* (3) type match -- nb_sectors mismatch, but matches the type
381                  *     specified explicitly by the user, or matches the fallback
382                  *     default type when using the drive autodetect mechanism */
383                 type_match = i;
384             }
385         }
386     }
387 
388     /* No exact match found */
389     if (match == -1) {
390         if (size_match != -1) {
391             parse = &fd_formats[size_match];
392             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
393                            "but inserted medium appears to be a "
394                            "%"PRId64" sector '%s' type\n",
395                            FloppyDriveType_str(drv->drive),
396                            nb_sectors,
397                            FloppyDriveType_str(parse->drive));
398         }
399         match = type_match;
400     }
401 
402     /* No match of any kind found -- fd_format is misconfigured, abort. */
403     if (match == -1) {
404         error_setg(&error_abort, "No candidate geometries present in table "
405                    " for floppy drive type '%s'",
406                    FloppyDriveType_str(drv->drive));
407     }
408 
409     parse = &(fd_formats[match]);
410 
411  out:
412     if (parse->max_head == 0) {
413         drv->flags &= ~FDISK_DBL_SIDES;
414     } else {
415         drv->flags |= FDISK_DBL_SIDES;
416     }
417     drv->max_track = parse->max_track;
418     drv->last_sect = parse->last_sect;
419     drv->disk = parse->drive;
420     drv->media_rate = parse->rate;
421     return 0;
422 }
423 
424 static void pick_drive_type(FDrive *drv)
425 {
426     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
427         return;
428     }
429 
430     if (pick_geometry(drv) == 0) {
431         drv->drive = drv->disk;
432     } else {
433         drv->drive = get_fallback_drive_type(drv);
434     }
435 
436     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
437 }
438 
439 /* Revalidate a disk drive after a disk change */
440 static void fd_revalidate(FDrive *drv)
441 {
442     int rc;
443 
444     FLOPPY_DPRINTF("revalidate\n");
445     if (drv->blk != NULL) {
446         drv->ro = blk_is_read_only(drv->blk);
447         if (!blk_is_inserted(drv->blk)) {
448             FLOPPY_DPRINTF("No disk in drive\n");
449             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
450             fd_empty_seek_hack(drv);
451         } else if (!drv->media_validated) {
452             rc = pick_geometry(drv);
453             if (rc) {
454                 FLOPPY_DPRINTF("Could not validate floppy drive media");
455             } else {
456                 drv->media_validated = true;
457                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
458                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
459                                drv->max_track, drv->last_sect,
460                                drv->ro ? "ro" : "rw");
461             }
462         }
463     } else {
464         FLOPPY_DPRINTF("No drive connected\n");
465         drv->last_sect = 0;
466         drv->max_track = 0;
467         drv->flags &= ~FDISK_DBL_SIDES;
468         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
469         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
470     }
471 }
472 
473 static void fd_change_cb(void *opaque, bool load, Error **errp)
474 {
475     FDrive *drive = opaque;
476     Error *local_err = NULL;
477 
478     if (!load) {
479         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
480     } else {
481         blkconf_apply_backend_options(drive->conf,
482                                       blk_is_read_only(drive->blk), false,
483                                       &local_err);
484         if (local_err) {
485             error_propagate(errp, local_err);
486             return;
487         }
488     }
489 
490     drive->media_changed = 1;
491     drive->media_validated = false;
492     fd_revalidate(drive);
493 }
494 
495 static const BlockDevOps fd_block_ops = {
496     .change_media_cb = fd_change_cb,
497 };
498 
499 
500 #define TYPE_FLOPPY_DRIVE "floppy"
501 #define FLOPPY_DRIVE(obj) \
502      OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
503 
504 typedef struct FloppyDrive {
505     DeviceState     qdev;
506     uint32_t        unit;
507     BlockConf       conf;
508     FloppyDriveType type;
509 } FloppyDrive;
510 
511 static Property floppy_drive_properties[] = {
512     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
513     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
514     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
515                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
516                         FloppyDriveType),
517     DEFINE_PROP_END_OF_LIST(),
518 };
519 
520 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
521 {
522     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
523     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
524     FDrive *drive;
525     Error *local_err = NULL;
526     int ret;
527 
528     if (dev->unit == -1) {
529         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
530             drive = get_drv(bus->fdc, dev->unit);
531             if (!drive->blk) {
532                 break;
533             }
534         }
535     }
536 
537     if (dev->unit >= MAX_FD) {
538         error_setg(errp, "Can't create floppy unit %d, bus supports "
539                    "only %d units", dev->unit, MAX_FD);
540         return;
541     }
542 
543     drive = get_drv(bus->fdc, dev->unit);
544     if (drive->blk) {
545         error_setg(errp, "Floppy unit %d is in use", dev->unit);
546         return;
547     }
548 
549     if (!dev->conf.blk) {
550         /* Anonymous BlockBackend for an empty drive */
551         dev->conf.blk = blk_new(0, BLK_PERM_ALL);
552         ret = blk_attach_dev(dev->conf.blk, qdev);
553         assert(ret == 0);
554     }
555 
556     blkconf_blocksizes(&dev->conf);
557     if (dev->conf.logical_block_size != 512 ||
558         dev->conf.physical_block_size != 512)
559     {
560         error_setg(errp, "Physical and logical block size must "
561                    "be 512 for floppy");
562         return;
563     }
564 
565     /* rerror/werror aren't supported by fdc and therefore not even registered
566      * with qdev. So set the defaults manually before they are used in
567      * blkconf_apply_backend_options(). */
568     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
569     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
570 
571     blkconf_apply_backend_options(&dev->conf, blk_is_read_only(dev->conf.blk),
572                                   false, &local_err);
573     if (local_err) {
574         error_propagate(errp, local_err);
575         return;
576     }
577 
578     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
579      * for empty drives. */
580     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
581         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
582         error_setg(errp, "fdc doesn't support drive option werror");
583         return;
584     }
585     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
586         error_setg(errp, "fdc doesn't support drive option rerror");
587         return;
588     }
589 
590     drive->conf = &dev->conf;
591     drive->blk = dev->conf.blk;
592     drive->fdctrl = bus->fdc;
593 
594     fd_init(drive);
595     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
596 
597     /* Keep 'type' qdev property and FDrive->drive in sync */
598     drive->drive = dev->type;
599     pick_drive_type(drive);
600     dev->type = drive->drive;
601 
602     fd_revalidate(drive);
603 }
604 
605 static void floppy_drive_class_init(ObjectClass *klass, void *data)
606 {
607     DeviceClass *k = DEVICE_CLASS(klass);
608     k->realize = floppy_drive_realize;
609     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
610     k->bus_type = TYPE_FLOPPY_BUS;
611     k->props = floppy_drive_properties;
612     k->desc = "virtual floppy drive";
613 }
614 
615 static const TypeInfo floppy_drive_info = {
616     .name = TYPE_FLOPPY_DRIVE,
617     .parent = TYPE_DEVICE,
618     .instance_size = sizeof(FloppyDrive),
619     .class_init = floppy_drive_class_init,
620 };
621 
622 /********************************************************/
623 /* Intel 82078 floppy disk controller emulation          */
624 
625 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
626 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
627 static int fdctrl_transfer_handler (void *opaque, int nchan,
628                                     int dma_pos, int dma_len);
629 static void fdctrl_raise_irq(FDCtrl *fdctrl);
630 static FDrive *get_cur_drv(FDCtrl *fdctrl);
631 
632 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
633 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
634 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
635 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
636 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
637 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
638 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
639 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
640 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
641 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
642 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
643 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
644 
645 enum {
646     FD_DIR_WRITE   = 0,
647     FD_DIR_READ    = 1,
648     FD_DIR_SCANE   = 2,
649     FD_DIR_SCANL   = 3,
650     FD_DIR_SCANH   = 4,
651     FD_DIR_VERIFY  = 5,
652 };
653 
654 enum {
655     FD_STATE_MULTI  = 0x01,	/* multi track flag */
656     FD_STATE_FORMAT = 0x02,	/* format flag */
657 };
658 
659 enum {
660     FD_REG_SRA = 0x00,
661     FD_REG_SRB = 0x01,
662     FD_REG_DOR = 0x02,
663     FD_REG_TDR = 0x03,
664     FD_REG_MSR = 0x04,
665     FD_REG_DSR = 0x04,
666     FD_REG_FIFO = 0x05,
667     FD_REG_DIR = 0x07,
668     FD_REG_CCR = 0x07,
669 };
670 
671 enum {
672     FD_CMD_READ_TRACK = 0x02,
673     FD_CMD_SPECIFY = 0x03,
674     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
675     FD_CMD_WRITE = 0x05,
676     FD_CMD_READ = 0x06,
677     FD_CMD_RECALIBRATE = 0x07,
678     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
679     FD_CMD_WRITE_DELETED = 0x09,
680     FD_CMD_READ_ID = 0x0a,
681     FD_CMD_READ_DELETED = 0x0c,
682     FD_CMD_FORMAT_TRACK = 0x0d,
683     FD_CMD_DUMPREG = 0x0e,
684     FD_CMD_SEEK = 0x0f,
685     FD_CMD_VERSION = 0x10,
686     FD_CMD_SCAN_EQUAL = 0x11,
687     FD_CMD_PERPENDICULAR_MODE = 0x12,
688     FD_CMD_CONFIGURE = 0x13,
689     FD_CMD_LOCK = 0x14,
690     FD_CMD_VERIFY = 0x16,
691     FD_CMD_POWERDOWN_MODE = 0x17,
692     FD_CMD_PART_ID = 0x18,
693     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
694     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
695     FD_CMD_SAVE = 0x2e,
696     FD_CMD_OPTION = 0x33,
697     FD_CMD_RESTORE = 0x4e,
698     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
699     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
700     FD_CMD_FORMAT_AND_WRITE = 0xcd,
701     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
702 };
703 
704 enum {
705     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
706     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
707     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
708     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
709     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
710 };
711 
712 enum {
713     FD_SR0_DS0      = 0x01,
714     FD_SR0_DS1      = 0x02,
715     FD_SR0_HEAD     = 0x04,
716     FD_SR0_EQPMT    = 0x10,
717     FD_SR0_SEEK     = 0x20,
718     FD_SR0_ABNTERM  = 0x40,
719     FD_SR0_INVCMD   = 0x80,
720     FD_SR0_RDYCHG   = 0xc0,
721 };
722 
723 enum {
724     FD_SR1_MA       = 0x01, /* Missing address mark */
725     FD_SR1_NW       = 0x02, /* Not writable */
726     FD_SR1_EC       = 0x80, /* End of cylinder */
727 };
728 
729 enum {
730     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
731     FD_SR2_SEH      = 0x08, /* Scan equal hit */
732 };
733 
734 enum {
735     FD_SRA_DIR      = 0x01,
736     FD_SRA_nWP      = 0x02,
737     FD_SRA_nINDX    = 0x04,
738     FD_SRA_HDSEL    = 0x08,
739     FD_SRA_nTRK0    = 0x10,
740     FD_SRA_STEP     = 0x20,
741     FD_SRA_nDRV2    = 0x40,
742     FD_SRA_INTPEND  = 0x80,
743 };
744 
745 enum {
746     FD_SRB_MTR0     = 0x01,
747     FD_SRB_MTR1     = 0x02,
748     FD_SRB_WGATE    = 0x04,
749     FD_SRB_RDATA    = 0x08,
750     FD_SRB_WDATA    = 0x10,
751     FD_SRB_DR0      = 0x20,
752 };
753 
754 enum {
755 #if MAX_FD == 4
756     FD_DOR_SELMASK  = 0x03,
757 #else
758     FD_DOR_SELMASK  = 0x01,
759 #endif
760     FD_DOR_nRESET   = 0x04,
761     FD_DOR_DMAEN    = 0x08,
762     FD_DOR_MOTEN0   = 0x10,
763     FD_DOR_MOTEN1   = 0x20,
764     FD_DOR_MOTEN2   = 0x40,
765     FD_DOR_MOTEN3   = 0x80,
766 };
767 
768 enum {
769 #if MAX_FD == 4
770     FD_TDR_BOOTSEL  = 0x0c,
771 #else
772     FD_TDR_BOOTSEL  = 0x04,
773 #endif
774 };
775 
776 enum {
777     FD_DSR_DRATEMASK= 0x03,
778     FD_DSR_PWRDOWN  = 0x40,
779     FD_DSR_SWRESET  = 0x80,
780 };
781 
782 enum {
783     FD_MSR_DRV0BUSY = 0x01,
784     FD_MSR_DRV1BUSY = 0x02,
785     FD_MSR_DRV2BUSY = 0x04,
786     FD_MSR_DRV3BUSY = 0x08,
787     FD_MSR_CMDBUSY  = 0x10,
788     FD_MSR_NONDMA   = 0x20,
789     FD_MSR_DIO      = 0x40,
790     FD_MSR_RQM      = 0x80,
791 };
792 
793 enum {
794     FD_DIR_DSKCHG   = 0x80,
795 };
796 
797 /*
798  * See chapter 5.0 "Controller phases" of the spec:
799  *
800  * Command phase:
801  * The host writes a command and its parameters into the FIFO. The command
802  * phase is completed when all parameters for the command have been supplied,
803  * and execution phase is entered.
804  *
805  * Execution phase:
806  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
807  * contains the payload now, otherwise it's unused. When all bytes of the
808  * required data have been transferred, the state is switched to either result
809  * phase (if the command produces status bytes) or directly back into the
810  * command phase for the next command.
811  *
812  * Result phase:
813  * The host reads out the FIFO, which contains one or more result bytes now.
814  */
815 enum {
816     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
817     FD_PHASE_RECONSTRUCT    = 0,
818 
819     FD_PHASE_COMMAND        = 1,
820     FD_PHASE_EXECUTION      = 2,
821     FD_PHASE_RESULT         = 3,
822 };
823 
824 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
825 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
826 
827 struct FDCtrl {
828     MemoryRegion iomem;
829     qemu_irq irq;
830     /* Controller state */
831     QEMUTimer *result_timer;
832     int dma_chann;
833     uint8_t phase;
834     IsaDma *dma;
835     /* Controller's identification */
836     uint8_t version;
837     /* HW */
838     uint8_t sra;
839     uint8_t srb;
840     uint8_t dor;
841     uint8_t dor_vmstate; /* only used as temp during vmstate */
842     uint8_t tdr;
843     uint8_t dsr;
844     uint8_t msr;
845     uint8_t cur_drv;
846     uint8_t status0;
847     uint8_t status1;
848     uint8_t status2;
849     /* Command FIFO */
850     uint8_t *fifo;
851     int32_t fifo_size;
852     uint32_t data_pos;
853     uint32_t data_len;
854     uint8_t data_state;
855     uint8_t data_dir;
856     uint8_t eot; /* last wanted sector */
857     /* States kept only to be returned back */
858     /* precompensation */
859     uint8_t precomp_trk;
860     uint8_t config;
861     uint8_t lock;
862     /* Power down config (also with status regB access mode */
863     uint8_t pwrd;
864     /* Floppy drives */
865     FloppyBus bus;
866     uint8_t num_floppies;
867     FDrive drives[MAX_FD];
868     struct {
869         BlockBackend *blk;
870         FloppyDriveType type;
871     } qdev_for_drives[MAX_FD];
872     int reset_sensei;
873     uint32_t check_media_rate;
874     FloppyDriveType fallback; /* type=auto failure fallback */
875     /* Timers state */
876     uint8_t timer0;
877     uint8_t timer1;
878     PortioList portio_list;
879 };
880 
881 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
882 {
883     return drv->fdctrl->fallback;
884 }
885 
886 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
887 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
888 
889 typedef struct FDCtrlSysBus {
890     /*< private >*/
891     SysBusDevice parent_obj;
892     /*< public >*/
893 
894     struct FDCtrl state;
895 } FDCtrlSysBus;
896 
897 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
898 
899 typedef struct FDCtrlISABus {
900     ISADevice parent_obj;
901 
902     uint32_t iobase;
903     uint32_t irq;
904     uint32_t dma;
905     struct FDCtrl state;
906     int32_t bootindexA;
907     int32_t bootindexB;
908 } FDCtrlISABus;
909 
910 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
911 {
912     FDCtrl *fdctrl = opaque;
913     uint32_t retval;
914 
915     reg &= 7;
916     switch (reg) {
917     case FD_REG_SRA:
918         retval = fdctrl_read_statusA(fdctrl);
919         break;
920     case FD_REG_SRB:
921         retval = fdctrl_read_statusB(fdctrl);
922         break;
923     case FD_REG_DOR:
924         retval = fdctrl_read_dor(fdctrl);
925         break;
926     case FD_REG_TDR:
927         retval = fdctrl_read_tape(fdctrl);
928         break;
929     case FD_REG_MSR:
930         retval = fdctrl_read_main_status(fdctrl);
931         break;
932     case FD_REG_FIFO:
933         retval = fdctrl_read_data(fdctrl);
934         break;
935     case FD_REG_DIR:
936         retval = fdctrl_read_dir(fdctrl);
937         break;
938     default:
939         retval = (uint32_t)(-1);
940         break;
941     }
942     FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
943 
944     return retval;
945 }
946 
947 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
948 {
949     FDCtrl *fdctrl = opaque;
950 
951     FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
952 
953     reg &= 7;
954     switch (reg) {
955     case FD_REG_DOR:
956         fdctrl_write_dor(fdctrl, value);
957         break;
958     case FD_REG_TDR:
959         fdctrl_write_tape(fdctrl, value);
960         break;
961     case FD_REG_DSR:
962         fdctrl_write_rate(fdctrl, value);
963         break;
964     case FD_REG_FIFO:
965         fdctrl_write_data(fdctrl, value);
966         break;
967     case FD_REG_CCR:
968         fdctrl_write_ccr(fdctrl, value);
969         break;
970     default:
971         break;
972     }
973 }
974 
975 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
976                                  unsigned ize)
977 {
978     return fdctrl_read(opaque, (uint32_t)reg);
979 }
980 
981 static void fdctrl_write_mem (void *opaque, hwaddr reg,
982                               uint64_t value, unsigned size)
983 {
984     fdctrl_write(opaque, (uint32_t)reg, value);
985 }
986 
987 static const MemoryRegionOps fdctrl_mem_ops = {
988     .read = fdctrl_read_mem,
989     .write = fdctrl_write_mem,
990     .endianness = DEVICE_NATIVE_ENDIAN,
991 };
992 
993 static const MemoryRegionOps fdctrl_mem_strict_ops = {
994     .read = fdctrl_read_mem,
995     .write = fdctrl_write_mem,
996     .endianness = DEVICE_NATIVE_ENDIAN,
997     .valid = {
998         .min_access_size = 1,
999         .max_access_size = 1,
1000     },
1001 };
1002 
1003 static bool fdrive_media_changed_needed(void *opaque)
1004 {
1005     FDrive *drive = opaque;
1006 
1007     return (drive->blk != NULL && drive->media_changed != 1);
1008 }
1009 
1010 static const VMStateDescription vmstate_fdrive_media_changed = {
1011     .name = "fdrive/media_changed",
1012     .version_id = 1,
1013     .minimum_version_id = 1,
1014     .needed = fdrive_media_changed_needed,
1015     .fields = (VMStateField[]) {
1016         VMSTATE_UINT8(media_changed, FDrive),
1017         VMSTATE_END_OF_LIST()
1018     }
1019 };
1020 
1021 static bool fdrive_media_rate_needed(void *opaque)
1022 {
1023     FDrive *drive = opaque;
1024 
1025     return drive->fdctrl->check_media_rate;
1026 }
1027 
1028 static const VMStateDescription vmstate_fdrive_media_rate = {
1029     .name = "fdrive/media_rate",
1030     .version_id = 1,
1031     .minimum_version_id = 1,
1032     .needed = fdrive_media_rate_needed,
1033     .fields = (VMStateField[]) {
1034         VMSTATE_UINT8(media_rate, FDrive),
1035         VMSTATE_END_OF_LIST()
1036     }
1037 };
1038 
1039 static bool fdrive_perpendicular_needed(void *opaque)
1040 {
1041     FDrive *drive = opaque;
1042 
1043     return drive->perpendicular != 0;
1044 }
1045 
1046 static const VMStateDescription vmstate_fdrive_perpendicular = {
1047     .name = "fdrive/perpendicular",
1048     .version_id = 1,
1049     .minimum_version_id = 1,
1050     .needed = fdrive_perpendicular_needed,
1051     .fields = (VMStateField[]) {
1052         VMSTATE_UINT8(perpendicular, FDrive),
1053         VMSTATE_END_OF_LIST()
1054     }
1055 };
1056 
1057 static int fdrive_post_load(void *opaque, int version_id)
1058 {
1059     fd_revalidate(opaque);
1060     return 0;
1061 }
1062 
1063 static const VMStateDescription vmstate_fdrive = {
1064     .name = "fdrive",
1065     .version_id = 1,
1066     .minimum_version_id = 1,
1067     .post_load = fdrive_post_load,
1068     .fields = (VMStateField[]) {
1069         VMSTATE_UINT8(head, FDrive),
1070         VMSTATE_UINT8(track, FDrive),
1071         VMSTATE_UINT8(sect, FDrive),
1072         VMSTATE_END_OF_LIST()
1073     },
1074     .subsections = (const VMStateDescription*[]) {
1075         &vmstate_fdrive_media_changed,
1076         &vmstate_fdrive_media_rate,
1077         &vmstate_fdrive_perpendicular,
1078         NULL
1079     }
1080 };
1081 
1082 /*
1083  * Reconstructs the phase from register values according to the logic that was
1084  * implemented in qemu 2.3. This is the default value that is used if the phase
1085  * subsection is not present on migration.
1086  *
1087  * Don't change this function to reflect newer qemu versions, it is part of
1088  * the migration ABI.
1089  */
1090 static int reconstruct_phase(FDCtrl *fdctrl)
1091 {
1092     if (fdctrl->msr & FD_MSR_NONDMA) {
1093         return FD_PHASE_EXECUTION;
1094     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1095         /* qemu 2.3 disabled RQM only during DMA transfers */
1096         return FD_PHASE_EXECUTION;
1097     } else if (fdctrl->msr & FD_MSR_DIO) {
1098         return FD_PHASE_RESULT;
1099     } else {
1100         return FD_PHASE_COMMAND;
1101     }
1102 }
1103 
1104 static int fdc_pre_save(void *opaque)
1105 {
1106     FDCtrl *s = opaque;
1107 
1108     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1109 
1110     return 0;
1111 }
1112 
1113 static int fdc_pre_load(void *opaque)
1114 {
1115     FDCtrl *s = opaque;
1116     s->phase = FD_PHASE_RECONSTRUCT;
1117     return 0;
1118 }
1119 
1120 static int fdc_post_load(void *opaque, int version_id)
1121 {
1122     FDCtrl *s = opaque;
1123 
1124     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1125     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1126 
1127     if (s->phase == FD_PHASE_RECONSTRUCT) {
1128         s->phase = reconstruct_phase(s);
1129     }
1130 
1131     return 0;
1132 }
1133 
1134 static bool fdc_reset_sensei_needed(void *opaque)
1135 {
1136     FDCtrl *s = opaque;
1137 
1138     return s->reset_sensei != 0;
1139 }
1140 
1141 static const VMStateDescription vmstate_fdc_reset_sensei = {
1142     .name = "fdc/reset_sensei",
1143     .version_id = 1,
1144     .minimum_version_id = 1,
1145     .needed = fdc_reset_sensei_needed,
1146     .fields = (VMStateField[]) {
1147         VMSTATE_INT32(reset_sensei, FDCtrl),
1148         VMSTATE_END_OF_LIST()
1149     }
1150 };
1151 
1152 static bool fdc_result_timer_needed(void *opaque)
1153 {
1154     FDCtrl *s = opaque;
1155 
1156     return timer_pending(s->result_timer);
1157 }
1158 
1159 static const VMStateDescription vmstate_fdc_result_timer = {
1160     .name = "fdc/result_timer",
1161     .version_id = 1,
1162     .minimum_version_id = 1,
1163     .needed = fdc_result_timer_needed,
1164     .fields = (VMStateField[]) {
1165         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1166         VMSTATE_END_OF_LIST()
1167     }
1168 };
1169 
1170 static bool fdc_phase_needed(void *opaque)
1171 {
1172     FDCtrl *fdctrl = opaque;
1173 
1174     return reconstruct_phase(fdctrl) != fdctrl->phase;
1175 }
1176 
1177 static const VMStateDescription vmstate_fdc_phase = {
1178     .name = "fdc/phase",
1179     .version_id = 1,
1180     .minimum_version_id = 1,
1181     .needed = fdc_phase_needed,
1182     .fields = (VMStateField[]) {
1183         VMSTATE_UINT8(phase, FDCtrl),
1184         VMSTATE_END_OF_LIST()
1185     }
1186 };
1187 
1188 static const VMStateDescription vmstate_fdc = {
1189     .name = "fdc",
1190     .version_id = 2,
1191     .minimum_version_id = 2,
1192     .pre_save = fdc_pre_save,
1193     .pre_load = fdc_pre_load,
1194     .post_load = fdc_post_load,
1195     .fields = (VMStateField[]) {
1196         /* Controller State */
1197         VMSTATE_UINT8(sra, FDCtrl),
1198         VMSTATE_UINT8(srb, FDCtrl),
1199         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1200         VMSTATE_UINT8(tdr, FDCtrl),
1201         VMSTATE_UINT8(dsr, FDCtrl),
1202         VMSTATE_UINT8(msr, FDCtrl),
1203         VMSTATE_UINT8(status0, FDCtrl),
1204         VMSTATE_UINT8(status1, FDCtrl),
1205         VMSTATE_UINT8(status2, FDCtrl),
1206         /* Command FIFO */
1207         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1208                              uint8_t),
1209         VMSTATE_UINT32(data_pos, FDCtrl),
1210         VMSTATE_UINT32(data_len, FDCtrl),
1211         VMSTATE_UINT8(data_state, FDCtrl),
1212         VMSTATE_UINT8(data_dir, FDCtrl),
1213         VMSTATE_UINT8(eot, FDCtrl),
1214         /* States kept only to be returned back */
1215         VMSTATE_UINT8(timer0, FDCtrl),
1216         VMSTATE_UINT8(timer1, FDCtrl),
1217         VMSTATE_UINT8(precomp_trk, FDCtrl),
1218         VMSTATE_UINT8(config, FDCtrl),
1219         VMSTATE_UINT8(lock, FDCtrl),
1220         VMSTATE_UINT8(pwrd, FDCtrl),
1221         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1222         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1223                              vmstate_fdrive, FDrive),
1224         VMSTATE_END_OF_LIST()
1225     },
1226     .subsections = (const VMStateDescription*[]) {
1227         &vmstate_fdc_reset_sensei,
1228         &vmstate_fdc_result_timer,
1229         &vmstate_fdc_phase,
1230         NULL
1231     }
1232 };
1233 
1234 static void fdctrl_external_reset_sysbus(DeviceState *d)
1235 {
1236     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1237     FDCtrl *s = &sys->state;
1238 
1239     fdctrl_reset(s, 0);
1240 }
1241 
1242 static void fdctrl_external_reset_isa(DeviceState *d)
1243 {
1244     FDCtrlISABus *isa = ISA_FDC(d);
1245     FDCtrl *s = &isa->state;
1246 
1247     fdctrl_reset(s, 0);
1248 }
1249 
1250 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1251 {
1252     //FDCtrl *s = opaque;
1253 
1254     if (level) {
1255         // XXX
1256         FLOPPY_DPRINTF("TC pulsed\n");
1257     }
1258 }
1259 
1260 /* Change IRQ state */
1261 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1262 {
1263     fdctrl->status0 = 0;
1264     if (!(fdctrl->sra & FD_SRA_INTPEND))
1265         return;
1266     FLOPPY_DPRINTF("Reset interrupt\n");
1267     qemu_set_irq(fdctrl->irq, 0);
1268     fdctrl->sra &= ~FD_SRA_INTPEND;
1269 }
1270 
1271 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1272 {
1273     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1274         qemu_set_irq(fdctrl->irq, 1);
1275         fdctrl->sra |= FD_SRA_INTPEND;
1276     }
1277 
1278     fdctrl->reset_sensei = 0;
1279     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1280 }
1281 
1282 /* Reset controller */
1283 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1284 {
1285     int i;
1286 
1287     FLOPPY_DPRINTF("reset controller\n");
1288     fdctrl_reset_irq(fdctrl);
1289     /* Initialise controller */
1290     fdctrl->sra = 0;
1291     fdctrl->srb = 0xc0;
1292     if (!fdctrl->drives[1].blk) {
1293         fdctrl->sra |= FD_SRA_nDRV2;
1294     }
1295     fdctrl->cur_drv = 0;
1296     fdctrl->dor = FD_DOR_nRESET;
1297     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1298     fdctrl->msr = FD_MSR_RQM;
1299     fdctrl->reset_sensei = 0;
1300     timer_del(fdctrl->result_timer);
1301     /* FIFO state */
1302     fdctrl->data_pos = 0;
1303     fdctrl->data_len = 0;
1304     fdctrl->data_state = 0;
1305     fdctrl->data_dir = FD_DIR_WRITE;
1306     for (i = 0; i < MAX_FD; i++)
1307         fd_recalibrate(&fdctrl->drives[i]);
1308     fdctrl_to_command_phase(fdctrl);
1309     if (do_irq) {
1310         fdctrl->status0 |= FD_SR0_RDYCHG;
1311         fdctrl_raise_irq(fdctrl);
1312         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1313     }
1314 }
1315 
1316 static inline FDrive *drv0(FDCtrl *fdctrl)
1317 {
1318     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1319 }
1320 
1321 static inline FDrive *drv1(FDCtrl *fdctrl)
1322 {
1323     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1324         return &fdctrl->drives[1];
1325     else
1326         return &fdctrl->drives[0];
1327 }
1328 
1329 #if MAX_FD == 4
1330 static inline FDrive *drv2(FDCtrl *fdctrl)
1331 {
1332     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1333         return &fdctrl->drives[2];
1334     else
1335         return &fdctrl->drives[1];
1336 }
1337 
1338 static inline FDrive *drv3(FDCtrl *fdctrl)
1339 {
1340     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1341         return &fdctrl->drives[3];
1342     else
1343         return &fdctrl->drives[2];
1344 }
1345 #endif
1346 
1347 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1348 {
1349     switch (unit) {
1350         case 0: return drv0(fdctrl);
1351         case 1: return drv1(fdctrl);
1352 #if MAX_FD == 4
1353         case 2: return drv2(fdctrl);
1354         case 3: return drv3(fdctrl);
1355 #endif
1356         default: return NULL;
1357     }
1358 }
1359 
1360 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1361 {
1362     return get_drv(fdctrl, fdctrl->cur_drv);
1363 }
1364 
1365 /* Status A register : 0x00 (read-only) */
1366 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1367 {
1368     uint32_t retval = fdctrl->sra;
1369 
1370     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1371 
1372     return retval;
1373 }
1374 
1375 /* Status B register : 0x01 (read-only) */
1376 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1377 {
1378     uint32_t retval = fdctrl->srb;
1379 
1380     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1381 
1382     return retval;
1383 }
1384 
1385 /* Digital output register : 0x02 */
1386 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1387 {
1388     uint32_t retval = fdctrl->dor;
1389 
1390     /* Selected drive */
1391     retval |= fdctrl->cur_drv;
1392     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1393 
1394     return retval;
1395 }
1396 
1397 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1398 {
1399     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1400 
1401     /* Motors */
1402     if (value & FD_DOR_MOTEN0)
1403         fdctrl->srb |= FD_SRB_MTR0;
1404     else
1405         fdctrl->srb &= ~FD_SRB_MTR0;
1406     if (value & FD_DOR_MOTEN1)
1407         fdctrl->srb |= FD_SRB_MTR1;
1408     else
1409         fdctrl->srb &= ~FD_SRB_MTR1;
1410 
1411     /* Drive */
1412     if (value & 1)
1413         fdctrl->srb |= FD_SRB_DR0;
1414     else
1415         fdctrl->srb &= ~FD_SRB_DR0;
1416 
1417     /* Reset */
1418     if (!(value & FD_DOR_nRESET)) {
1419         if (fdctrl->dor & FD_DOR_nRESET) {
1420             FLOPPY_DPRINTF("controller enter RESET state\n");
1421         }
1422     } else {
1423         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1424             FLOPPY_DPRINTF("controller out of RESET state\n");
1425             fdctrl_reset(fdctrl, 1);
1426             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1427         }
1428     }
1429     /* Selected drive */
1430     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1431 
1432     fdctrl->dor = value;
1433 }
1434 
1435 /* Tape drive register : 0x03 */
1436 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1437 {
1438     uint32_t retval = fdctrl->tdr;
1439 
1440     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1441 
1442     return retval;
1443 }
1444 
1445 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1446 {
1447     /* Reset mode */
1448     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1449         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1450         return;
1451     }
1452     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1453     /* Disk boot selection indicator */
1454     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1455     /* Tape indicators: never allow */
1456 }
1457 
1458 /* Main status register : 0x04 (read) */
1459 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1460 {
1461     uint32_t retval = fdctrl->msr;
1462 
1463     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1464     fdctrl->dor |= FD_DOR_nRESET;
1465 
1466     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1467 
1468     return retval;
1469 }
1470 
1471 /* Data select rate register : 0x04 (write) */
1472 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1473 {
1474     /* Reset mode */
1475     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1476         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1477         return;
1478     }
1479     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1480     /* Reset: autoclear */
1481     if (value & FD_DSR_SWRESET) {
1482         fdctrl->dor &= ~FD_DOR_nRESET;
1483         fdctrl_reset(fdctrl, 1);
1484         fdctrl->dor |= FD_DOR_nRESET;
1485     }
1486     if (value & FD_DSR_PWRDOWN) {
1487         fdctrl_reset(fdctrl, 1);
1488     }
1489     fdctrl->dsr = value;
1490 }
1491 
1492 /* Configuration control register: 0x07 (write) */
1493 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1494 {
1495     /* Reset mode */
1496     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1497         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1498         return;
1499     }
1500     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1501 
1502     /* Only the rate selection bits used in AT mode, and we
1503      * store those in the DSR.
1504      */
1505     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1506                   (value & FD_DSR_DRATEMASK);
1507 }
1508 
1509 static int fdctrl_media_changed(FDrive *drv)
1510 {
1511     return drv->media_changed;
1512 }
1513 
1514 /* Digital input register : 0x07 (read-only) */
1515 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1516 {
1517     uint32_t retval = 0;
1518 
1519     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1520         retval |= FD_DIR_DSKCHG;
1521     }
1522     if (retval != 0) {
1523         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1524     }
1525 
1526     return retval;
1527 }
1528 
1529 /* Clear the FIFO and update the state for receiving the next command */
1530 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1531 {
1532     fdctrl->phase = FD_PHASE_COMMAND;
1533     fdctrl->data_dir = FD_DIR_WRITE;
1534     fdctrl->data_pos = 0;
1535     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1536     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1537     fdctrl->msr |= FD_MSR_RQM;
1538 }
1539 
1540 /* Update the state to allow the guest to read out the command status.
1541  * @fifo_len is the number of result bytes to be read out. */
1542 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1543 {
1544     fdctrl->phase = FD_PHASE_RESULT;
1545     fdctrl->data_dir = FD_DIR_READ;
1546     fdctrl->data_len = fifo_len;
1547     fdctrl->data_pos = 0;
1548     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1549 }
1550 
1551 /* Set an error: unimplemented/unknown command */
1552 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1553 {
1554     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1555                   fdctrl->fifo[0]);
1556     fdctrl->fifo[0] = FD_SR0_INVCMD;
1557     fdctrl_to_result_phase(fdctrl, 1);
1558 }
1559 
1560 /* Seek to next sector
1561  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1562  * otherwise returns 1
1563  */
1564 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1565 {
1566     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1567                    cur_drv->head, cur_drv->track, cur_drv->sect,
1568                    fd_sector(cur_drv));
1569     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1570        error in fact */
1571     uint8_t new_head = cur_drv->head;
1572     uint8_t new_track = cur_drv->track;
1573     uint8_t new_sect = cur_drv->sect;
1574 
1575     int ret = 1;
1576 
1577     if (new_sect >= cur_drv->last_sect ||
1578         new_sect == fdctrl->eot) {
1579         new_sect = 1;
1580         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1581             if (new_head == 0 &&
1582                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1583                 new_head = 1;
1584             } else {
1585                 new_head = 0;
1586                 new_track++;
1587                 fdctrl->status0 |= FD_SR0_SEEK;
1588                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1589                     ret = 0;
1590                 }
1591             }
1592         } else {
1593             fdctrl->status0 |= FD_SR0_SEEK;
1594             new_track++;
1595             ret = 0;
1596         }
1597         if (ret == 1) {
1598             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1599                     new_head, new_track, new_sect, fd_sector(cur_drv));
1600         }
1601     } else {
1602         new_sect++;
1603     }
1604     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1605     return ret;
1606 }
1607 
1608 /* Callback for transfer end (stop or abort) */
1609 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1610                                  uint8_t status1, uint8_t status2)
1611 {
1612     FDrive *cur_drv;
1613     cur_drv = get_cur_drv(fdctrl);
1614 
1615     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1616     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1617     if (cur_drv->head) {
1618         fdctrl->status0 |= FD_SR0_HEAD;
1619     }
1620     fdctrl->status0 |= status0;
1621 
1622     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1623                    status0, status1, status2, fdctrl->status0);
1624     fdctrl->fifo[0] = fdctrl->status0;
1625     fdctrl->fifo[1] = status1;
1626     fdctrl->fifo[2] = status2;
1627     fdctrl->fifo[3] = cur_drv->track;
1628     fdctrl->fifo[4] = cur_drv->head;
1629     fdctrl->fifo[5] = cur_drv->sect;
1630     fdctrl->fifo[6] = FD_SECTOR_SC;
1631     fdctrl->data_dir = FD_DIR_READ;
1632     if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1633         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1634         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1635     }
1636     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1637     fdctrl->msr &= ~FD_MSR_NONDMA;
1638 
1639     fdctrl_to_result_phase(fdctrl, 7);
1640     fdctrl_raise_irq(fdctrl);
1641 }
1642 
1643 /* Prepare a data transfer (either DMA or FIFO) */
1644 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1645 {
1646     FDrive *cur_drv;
1647     uint8_t kh, kt, ks;
1648 
1649     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1650     cur_drv = get_cur_drv(fdctrl);
1651     kt = fdctrl->fifo[2];
1652     kh = fdctrl->fifo[3];
1653     ks = fdctrl->fifo[4];
1654     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1655                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1656                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1657                                   NUM_SIDES(cur_drv)));
1658     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1659     case 2:
1660         /* sect too big */
1661         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1662         fdctrl->fifo[3] = kt;
1663         fdctrl->fifo[4] = kh;
1664         fdctrl->fifo[5] = ks;
1665         return;
1666     case 3:
1667         /* track too big */
1668         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1669         fdctrl->fifo[3] = kt;
1670         fdctrl->fifo[4] = kh;
1671         fdctrl->fifo[5] = ks;
1672         return;
1673     case 4:
1674         /* No seek enabled */
1675         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1676         fdctrl->fifo[3] = kt;
1677         fdctrl->fifo[4] = kh;
1678         fdctrl->fifo[5] = ks;
1679         return;
1680     case 1:
1681         fdctrl->status0 |= FD_SR0_SEEK;
1682         break;
1683     default:
1684         break;
1685     }
1686 
1687     /* Check the data rate. If the programmed data rate does not match
1688      * the currently inserted medium, the operation has to fail. */
1689     if (fdctrl->check_media_rate &&
1690         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1691         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1692                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1693         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1694         fdctrl->fifo[3] = kt;
1695         fdctrl->fifo[4] = kh;
1696         fdctrl->fifo[5] = ks;
1697         return;
1698     }
1699 
1700     /* Set the FIFO state */
1701     fdctrl->data_dir = direction;
1702     fdctrl->data_pos = 0;
1703     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1704     if (fdctrl->fifo[0] & 0x80)
1705         fdctrl->data_state |= FD_STATE_MULTI;
1706     else
1707         fdctrl->data_state &= ~FD_STATE_MULTI;
1708     if (fdctrl->fifo[5] == 0) {
1709         fdctrl->data_len = fdctrl->fifo[8];
1710     } else {
1711         int tmp;
1712         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1713         tmp = (fdctrl->fifo[6] - ks + 1);
1714         if (fdctrl->fifo[0] & 0x80)
1715             tmp += fdctrl->fifo[6];
1716         fdctrl->data_len *= tmp;
1717     }
1718     fdctrl->eot = fdctrl->fifo[6];
1719     if (fdctrl->dor & FD_DOR_DMAEN) {
1720         IsaDmaTransferMode dma_mode;
1721         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1722         bool dma_mode_ok;
1723         /* DMA transfer are enabled. Check if DMA channel is well programmed */
1724         dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1725         FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1726                        dma_mode, direction,
1727                        (128 << fdctrl->fifo[5]) *
1728                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1729         switch (direction) {
1730         case FD_DIR_SCANE:
1731         case FD_DIR_SCANL:
1732         case FD_DIR_SCANH:
1733             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1734             break;
1735         case FD_DIR_WRITE:
1736             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1737             break;
1738         case FD_DIR_READ:
1739             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1740             break;
1741         case FD_DIR_VERIFY:
1742             dma_mode_ok = true;
1743             break;
1744         default:
1745             dma_mode_ok = false;
1746             break;
1747         }
1748         if (dma_mode_ok) {
1749             /* No access is allowed until DMA transfer has completed */
1750             fdctrl->msr &= ~FD_MSR_RQM;
1751             if (direction != FD_DIR_VERIFY) {
1752                 /* Now, we just have to wait for the DMA controller to
1753                  * recall us...
1754                  */
1755                 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1756                 k->schedule(fdctrl->dma);
1757             } else {
1758                 /* Start transfer */
1759                 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1760                                         fdctrl->data_len);
1761             }
1762             return;
1763         } else {
1764             FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1765                            direction);
1766         }
1767     }
1768     FLOPPY_DPRINTF("start non-DMA transfer\n");
1769     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1770     if (direction != FD_DIR_WRITE)
1771         fdctrl->msr |= FD_MSR_DIO;
1772     /* IO based transfer: calculate len */
1773     fdctrl_raise_irq(fdctrl);
1774 }
1775 
1776 /* Prepare a transfer of deleted data */
1777 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1778 {
1779     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1780 
1781     /* We don't handle deleted data,
1782      * so we don't return *ANYTHING*
1783      */
1784     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1785 }
1786 
1787 /* handlers for DMA transfers */
1788 static int fdctrl_transfer_handler (void *opaque, int nchan,
1789                                     int dma_pos, int dma_len)
1790 {
1791     FDCtrl *fdctrl;
1792     FDrive *cur_drv;
1793     int len, start_pos, rel_pos;
1794     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1795     IsaDmaClass *k;
1796 
1797     fdctrl = opaque;
1798     if (fdctrl->msr & FD_MSR_RQM) {
1799         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1800         return 0;
1801     }
1802     k = ISADMA_GET_CLASS(fdctrl->dma);
1803     cur_drv = get_cur_drv(fdctrl);
1804     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1805         fdctrl->data_dir == FD_DIR_SCANH)
1806         status2 = FD_SR2_SNS;
1807     if (dma_len > fdctrl->data_len)
1808         dma_len = fdctrl->data_len;
1809     if (cur_drv->blk == NULL) {
1810         if (fdctrl->data_dir == FD_DIR_WRITE)
1811             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1812         else
1813             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1814         len = 0;
1815         goto transfer_error;
1816     }
1817     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1818     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1819         len = dma_len - fdctrl->data_pos;
1820         if (len + rel_pos > FD_SECTOR_LEN)
1821             len = FD_SECTOR_LEN - rel_pos;
1822         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1823                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1824                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1825                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1826                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1827         if (fdctrl->data_dir != FD_DIR_WRITE ||
1828             len < FD_SECTOR_LEN || rel_pos != 0) {
1829             /* READ & SCAN commands and realign to a sector for WRITE */
1830             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1831                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1832                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1833                                fd_sector(cur_drv));
1834                 /* Sure, image size is too small... */
1835                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1836             }
1837         }
1838         switch (fdctrl->data_dir) {
1839         case FD_DIR_READ:
1840             /* READ commands */
1841             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1842                             fdctrl->data_pos, len);
1843             break;
1844         case FD_DIR_WRITE:
1845             /* WRITE commands */
1846             if (cur_drv->ro) {
1847                 /* Handle readonly medium early, no need to do DMA, touch the
1848                  * LED or attempt any writes. A real floppy doesn't attempt
1849                  * to write to readonly media either. */
1850                 fdctrl_stop_transfer(fdctrl,
1851                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1852                                      0x00);
1853                 goto transfer_error;
1854             }
1855 
1856             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1857                            fdctrl->data_pos, len);
1858             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1859                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1860                 FLOPPY_DPRINTF("error writing sector %d\n",
1861                                fd_sector(cur_drv));
1862                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1863                 goto transfer_error;
1864             }
1865             break;
1866         case FD_DIR_VERIFY:
1867             /* VERIFY commands */
1868             break;
1869         default:
1870             /* SCAN commands */
1871             {
1872                 uint8_t tmpbuf[FD_SECTOR_LEN];
1873                 int ret;
1874                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1875                                len);
1876                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1877                 if (ret == 0) {
1878                     status2 = FD_SR2_SEH;
1879                     goto end_transfer;
1880                 }
1881                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1882                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1883                     status2 = 0x00;
1884                     goto end_transfer;
1885                 }
1886             }
1887             break;
1888         }
1889         fdctrl->data_pos += len;
1890         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1891         if (rel_pos == 0) {
1892             /* Seek to next sector */
1893             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1894                 break;
1895         }
1896     }
1897  end_transfer:
1898     len = fdctrl->data_pos - start_pos;
1899     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1900                    fdctrl->data_pos, len, fdctrl->data_len);
1901     if (fdctrl->data_dir == FD_DIR_SCANE ||
1902         fdctrl->data_dir == FD_DIR_SCANL ||
1903         fdctrl->data_dir == FD_DIR_SCANH)
1904         status2 = FD_SR2_SEH;
1905     fdctrl->data_len -= len;
1906     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1907  transfer_error:
1908 
1909     return len;
1910 }
1911 
1912 /* Data register : 0x05 */
1913 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1914 {
1915     FDrive *cur_drv;
1916     uint32_t retval = 0;
1917     uint32_t pos;
1918 
1919     cur_drv = get_cur_drv(fdctrl);
1920     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1921     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1922         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1923         return 0;
1924     }
1925 
1926     /* If data_len spans multiple sectors, the current position in the FIFO
1927      * wraps around while fdctrl->data_pos is the real position in the whole
1928      * request. */
1929     pos = fdctrl->data_pos;
1930     pos %= FD_SECTOR_LEN;
1931 
1932     switch (fdctrl->phase) {
1933     case FD_PHASE_EXECUTION:
1934         assert(fdctrl->msr & FD_MSR_NONDMA);
1935         if (pos == 0) {
1936             if (fdctrl->data_pos != 0)
1937                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1938                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1939                                    fd_sector(cur_drv));
1940                     return 0;
1941                 }
1942             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1943                           BDRV_SECTOR_SIZE)
1944                 < 0) {
1945                 FLOPPY_DPRINTF("error getting sector %d\n",
1946                                fd_sector(cur_drv));
1947                 /* Sure, image size is too small... */
1948                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1949             }
1950         }
1951 
1952         if (++fdctrl->data_pos == fdctrl->data_len) {
1953             fdctrl->msr &= ~FD_MSR_RQM;
1954             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1955         }
1956         break;
1957 
1958     case FD_PHASE_RESULT:
1959         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1960         if (++fdctrl->data_pos == fdctrl->data_len) {
1961             fdctrl->msr &= ~FD_MSR_RQM;
1962             fdctrl_to_command_phase(fdctrl);
1963             fdctrl_reset_irq(fdctrl);
1964         }
1965         break;
1966 
1967     case FD_PHASE_COMMAND:
1968     default:
1969         abort();
1970     }
1971 
1972     retval = fdctrl->fifo[pos];
1973     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1974 
1975     return retval;
1976 }
1977 
1978 static void fdctrl_format_sector(FDCtrl *fdctrl)
1979 {
1980     FDrive *cur_drv;
1981     uint8_t kh, kt, ks;
1982 
1983     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1984     cur_drv = get_cur_drv(fdctrl);
1985     kt = fdctrl->fifo[6];
1986     kh = fdctrl->fifo[7];
1987     ks = fdctrl->fifo[8];
1988     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1989                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1990                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1991                                   NUM_SIDES(cur_drv)));
1992     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1993     case 2:
1994         /* sect too big */
1995         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1996         fdctrl->fifo[3] = kt;
1997         fdctrl->fifo[4] = kh;
1998         fdctrl->fifo[5] = ks;
1999         return;
2000     case 3:
2001         /* track too big */
2002         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
2003         fdctrl->fifo[3] = kt;
2004         fdctrl->fifo[4] = kh;
2005         fdctrl->fifo[5] = ks;
2006         return;
2007     case 4:
2008         /* No seek enabled */
2009         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
2010         fdctrl->fifo[3] = kt;
2011         fdctrl->fifo[4] = kh;
2012         fdctrl->fifo[5] = ks;
2013         return;
2014     case 1:
2015         fdctrl->status0 |= FD_SR0_SEEK;
2016         break;
2017     default:
2018         break;
2019     }
2020     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2021     if (cur_drv->blk == NULL ||
2022         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2023                    BDRV_SECTOR_SIZE, 0) < 0) {
2024         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2025         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2026     } else {
2027         if (cur_drv->sect == cur_drv->last_sect) {
2028             fdctrl->data_state &= ~FD_STATE_FORMAT;
2029             /* Last sector done */
2030             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2031         } else {
2032             /* More to do */
2033             fdctrl->data_pos = 0;
2034             fdctrl->data_len = 4;
2035         }
2036     }
2037 }
2038 
2039 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2040 {
2041     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2042     fdctrl->fifo[0] = fdctrl->lock << 4;
2043     fdctrl_to_result_phase(fdctrl, 1);
2044 }
2045 
2046 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2047 {
2048     FDrive *cur_drv = get_cur_drv(fdctrl);
2049 
2050     /* Drives position */
2051     fdctrl->fifo[0] = drv0(fdctrl)->track;
2052     fdctrl->fifo[1] = drv1(fdctrl)->track;
2053 #if MAX_FD == 4
2054     fdctrl->fifo[2] = drv2(fdctrl)->track;
2055     fdctrl->fifo[3] = drv3(fdctrl)->track;
2056 #else
2057     fdctrl->fifo[2] = 0;
2058     fdctrl->fifo[3] = 0;
2059 #endif
2060     /* timers */
2061     fdctrl->fifo[4] = fdctrl->timer0;
2062     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2063     fdctrl->fifo[6] = cur_drv->last_sect;
2064     fdctrl->fifo[7] = (fdctrl->lock << 7) |
2065         (cur_drv->perpendicular << 2);
2066     fdctrl->fifo[8] = fdctrl->config;
2067     fdctrl->fifo[9] = fdctrl->precomp_trk;
2068     fdctrl_to_result_phase(fdctrl, 10);
2069 }
2070 
2071 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2072 {
2073     /* Controller's version */
2074     fdctrl->fifo[0] = fdctrl->version;
2075     fdctrl_to_result_phase(fdctrl, 1);
2076 }
2077 
2078 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2079 {
2080     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2081     fdctrl_to_result_phase(fdctrl, 1);
2082 }
2083 
2084 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2085 {
2086     FDrive *cur_drv = get_cur_drv(fdctrl);
2087 
2088     /* Drives position */
2089     drv0(fdctrl)->track = fdctrl->fifo[3];
2090     drv1(fdctrl)->track = fdctrl->fifo[4];
2091 #if MAX_FD == 4
2092     drv2(fdctrl)->track = fdctrl->fifo[5];
2093     drv3(fdctrl)->track = fdctrl->fifo[6];
2094 #endif
2095     /* timers */
2096     fdctrl->timer0 = fdctrl->fifo[7];
2097     fdctrl->timer1 = fdctrl->fifo[8];
2098     cur_drv->last_sect = fdctrl->fifo[9];
2099     fdctrl->lock = fdctrl->fifo[10] >> 7;
2100     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2101     fdctrl->config = fdctrl->fifo[11];
2102     fdctrl->precomp_trk = fdctrl->fifo[12];
2103     fdctrl->pwrd = fdctrl->fifo[13];
2104     fdctrl_to_command_phase(fdctrl);
2105 }
2106 
2107 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2108 {
2109     FDrive *cur_drv = get_cur_drv(fdctrl);
2110 
2111     fdctrl->fifo[0] = 0;
2112     fdctrl->fifo[1] = 0;
2113     /* Drives position */
2114     fdctrl->fifo[2] = drv0(fdctrl)->track;
2115     fdctrl->fifo[3] = drv1(fdctrl)->track;
2116 #if MAX_FD == 4
2117     fdctrl->fifo[4] = drv2(fdctrl)->track;
2118     fdctrl->fifo[5] = drv3(fdctrl)->track;
2119 #else
2120     fdctrl->fifo[4] = 0;
2121     fdctrl->fifo[5] = 0;
2122 #endif
2123     /* timers */
2124     fdctrl->fifo[6] = fdctrl->timer0;
2125     fdctrl->fifo[7] = fdctrl->timer1;
2126     fdctrl->fifo[8] = cur_drv->last_sect;
2127     fdctrl->fifo[9] = (fdctrl->lock << 7) |
2128         (cur_drv->perpendicular << 2);
2129     fdctrl->fifo[10] = fdctrl->config;
2130     fdctrl->fifo[11] = fdctrl->precomp_trk;
2131     fdctrl->fifo[12] = fdctrl->pwrd;
2132     fdctrl->fifo[13] = 0;
2133     fdctrl->fifo[14] = 0;
2134     fdctrl_to_result_phase(fdctrl, 15);
2135 }
2136 
2137 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2138 {
2139     FDrive *cur_drv = get_cur_drv(fdctrl);
2140 
2141     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2142     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2143              (NANOSECONDS_PER_SECOND / 50));
2144 }
2145 
2146 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2147 {
2148     FDrive *cur_drv;
2149 
2150     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2151     cur_drv = get_cur_drv(fdctrl);
2152     fdctrl->data_state |= FD_STATE_FORMAT;
2153     if (fdctrl->fifo[0] & 0x80)
2154         fdctrl->data_state |= FD_STATE_MULTI;
2155     else
2156         fdctrl->data_state &= ~FD_STATE_MULTI;
2157     cur_drv->bps =
2158         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2159 #if 0
2160     cur_drv->last_sect =
2161         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2162         fdctrl->fifo[3] / 2;
2163 #else
2164     cur_drv->last_sect = fdctrl->fifo[3];
2165 #endif
2166     /* TODO: implement format using DMA expected by the Bochs BIOS
2167      * and Linux fdformat (read 3 bytes per sector via DMA and fill
2168      * the sector with the specified fill byte
2169      */
2170     fdctrl->data_state &= ~FD_STATE_FORMAT;
2171     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2172 }
2173 
2174 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2175 {
2176     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2177     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2178     if (fdctrl->fifo[2] & 1)
2179         fdctrl->dor &= ~FD_DOR_DMAEN;
2180     else
2181         fdctrl->dor |= FD_DOR_DMAEN;
2182     /* No result back */
2183     fdctrl_to_command_phase(fdctrl);
2184 }
2185 
2186 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2187 {
2188     FDrive *cur_drv;
2189 
2190     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2191     cur_drv = get_cur_drv(fdctrl);
2192     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2193     /* 1 Byte status back */
2194     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2195         (cur_drv->track == 0 ? 0x10 : 0x00) |
2196         (cur_drv->head << 2) |
2197         GET_CUR_DRV(fdctrl) |
2198         0x28;
2199     fdctrl_to_result_phase(fdctrl, 1);
2200 }
2201 
2202 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2203 {
2204     FDrive *cur_drv;
2205 
2206     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2207     cur_drv = get_cur_drv(fdctrl);
2208     fd_recalibrate(cur_drv);
2209     fdctrl_to_command_phase(fdctrl);
2210     /* Raise Interrupt */
2211     fdctrl->status0 |= FD_SR0_SEEK;
2212     fdctrl_raise_irq(fdctrl);
2213 }
2214 
2215 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2216 {
2217     FDrive *cur_drv = get_cur_drv(fdctrl);
2218 
2219     if (fdctrl->reset_sensei > 0) {
2220         fdctrl->fifo[0] =
2221             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2222         fdctrl->reset_sensei--;
2223     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2224         fdctrl->fifo[0] = FD_SR0_INVCMD;
2225         fdctrl_to_result_phase(fdctrl, 1);
2226         return;
2227     } else {
2228         fdctrl->fifo[0] =
2229                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2230                 | GET_CUR_DRV(fdctrl);
2231     }
2232 
2233     fdctrl->fifo[1] = cur_drv->track;
2234     fdctrl_to_result_phase(fdctrl, 2);
2235     fdctrl_reset_irq(fdctrl);
2236     fdctrl->status0 = FD_SR0_RDYCHG;
2237 }
2238 
2239 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2240 {
2241     FDrive *cur_drv;
2242 
2243     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2244     cur_drv = get_cur_drv(fdctrl);
2245     fdctrl_to_command_phase(fdctrl);
2246     /* The seek command just sends step pulses to the drive and doesn't care if
2247      * there is a medium inserted of if it's banging the head against the drive.
2248      */
2249     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2250     /* Raise Interrupt */
2251     fdctrl->status0 |= FD_SR0_SEEK;
2252     fdctrl_raise_irq(fdctrl);
2253 }
2254 
2255 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2256 {
2257     FDrive *cur_drv = get_cur_drv(fdctrl);
2258 
2259     if (fdctrl->fifo[1] & 0x80)
2260         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2261     /* No result back */
2262     fdctrl_to_command_phase(fdctrl);
2263 }
2264 
2265 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2266 {
2267     fdctrl->config = fdctrl->fifo[2];
2268     fdctrl->precomp_trk =  fdctrl->fifo[3];
2269     /* No result back */
2270     fdctrl_to_command_phase(fdctrl);
2271 }
2272 
2273 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2274 {
2275     fdctrl->pwrd = fdctrl->fifo[1];
2276     fdctrl->fifo[0] = fdctrl->fifo[1];
2277     fdctrl_to_result_phase(fdctrl, 1);
2278 }
2279 
2280 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2281 {
2282     /* No result back */
2283     fdctrl_to_command_phase(fdctrl);
2284 }
2285 
2286 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2287 {
2288     FDrive *cur_drv = get_cur_drv(fdctrl);
2289     uint32_t pos;
2290 
2291     pos = fdctrl->data_pos - 1;
2292     pos %= FD_SECTOR_LEN;
2293     if (fdctrl->fifo[pos] & 0x80) {
2294         /* Command parameters done */
2295         if (fdctrl->fifo[pos] & 0x40) {
2296             fdctrl->fifo[0] = fdctrl->fifo[1];
2297             fdctrl->fifo[2] = 0;
2298             fdctrl->fifo[3] = 0;
2299             fdctrl_to_result_phase(fdctrl, 4);
2300         } else {
2301             fdctrl_to_command_phase(fdctrl);
2302         }
2303     } else if (fdctrl->data_len > 7) {
2304         /* ERROR */
2305         fdctrl->fifo[0] = 0x80 |
2306             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2307         fdctrl_to_result_phase(fdctrl, 1);
2308     }
2309 }
2310 
2311 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2312 {
2313     FDrive *cur_drv;
2314 
2315     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2316     cur_drv = get_cur_drv(fdctrl);
2317     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2318         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2319                 cur_drv->sect, 1);
2320     } else {
2321         fd_seek(cur_drv, cur_drv->head,
2322                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2323     }
2324     fdctrl_to_command_phase(fdctrl);
2325     /* Raise Interrupt */
2326     fdctrl->status0 |= FD_SR0_SEEK;
2327     fdctrl_raise_irq(fdctrl);
2328 }
2329 
2330 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2331 {
2332     FDrive *cur_drv;
2333 
2334     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2335     cur_drv = get_cur_drv(fdctrl);
2336     if (fdctrl->fifo[2] > cur_drv->track) {
2337         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2338     } else {
2339         fd_seek(cur_drv, cur_drv->head,
2340                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2341     }
2342     fdctrl_to_command_phase(fdctrl);
2343     /* Raise Interrupt */
2344     fdctrl->status0 |= FD_SR0_SEEK;
2345     fdctrl_raise_irq(fdctrl);
2346 }
2347 
2348 /*
2349  * Handlers for the execution phase of each command
2350  */
2351 typedef struct FDCtrlCommand {
2352     uint8_t value;
2353     uint8_t mask;
2354     const char* name;
2355     int parameters;
2356     void (*handler)(FDCtrl *fdctrl, int direction);
2357     int direction;
2358 } FDCtrlCommand;
2359 
2360 static const FDCtrlCommand handlers[] = {
2361     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2362     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2363     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2364     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2365     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2366     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2367     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2368     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2369     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2370     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2371     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2372     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2373     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2374     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2375     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2376     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2377     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2378     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2379     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2380     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2381     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2382     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2383     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2384     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2385     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2386     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2387     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2388     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2389     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2390     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2391     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2392     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2393 };
2394 /* Associate command to an index in the 'handlers' array */
2395 static uint8_t command_to_handler[256];
2396 
2397 static const FDCtrlCommand *get_command(uint8_t cmd)
2398 {
2399     int idx;
2400 
2401     idx = command_to_handler[cmd];
2402     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2403     return &handlers[idx];
2404 }
2405 
2406 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2407 {
2408     FDrive *cur_drv;
2409     const FDCtrlCommand *cmd;
2410     uint32_t pos;
2411 
2412     /* Reset mode */
2413     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2414         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2415         return;
2416     }
2417     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2418         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2419         return;
2420     }
2421     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2422 
2423     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2424 
2425     /* If data_len spans multiple sectors, the current position in the FIFO
2426      * wraps around while fdctrl->data_pos is the real position in the whole
2427      * request. */
2428     pos = fdctrl->data_pos++;
2429     pos %= FD_SECTOR_LEN;
2430     fdctrl->fifo[pos] = value;
2431 
2432     if (fdctrl->data_pos == fdctrl->data_len) {
2433         fdctrl->msr &= ~FD_MSR_RQM;
2434     }
2435 
2436     switch (fdctrl->phase) {
2437     case FD_PHASE_EXECUTION:
2438         /* For DMA requests, RQM should be cleared during execution phase, so
2439          * we would have errored out above. */
2440         assert(fdctrl->msr & FD_MSR_NONDMA);
2441 
2442         /* FIFO data write */
2443         if (pos == FD_SECTOR_LEN - 1 ||
2444             fdctrl->data_pos == fdctrl->data_len) {
2445             cur_drv = get_cur_drv(fdctrl);
2446             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2447                            BDRV_SECTOR_SIZE, 0) < 0) {
2448                 FLOPPY_DPRINTF("error writing sector %d\n",
2449                                fd_sector(cur_drv));
2450                 break;
2451             }
2452             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2453                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2454                                fd_sector(cur_drv));
2455                 break;
2456             }
2457         }
2458 
2459         /* Switch to result phase when done with the transfer */
2460         if (fdctrl->data_pos == fdctrl->data_len) {
2461             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2462         }
2463         break;
2464 
2465     case FD_PHASE_COMMAND:
2466         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2467         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2468 
2469         if (pos == 0) {
2470             /* The first byte specifies the command. Now we start reading
2471              * as many parameters as this command requires. */
2472             cmd = get_command(value);
2473             fdctrl->data_len = cmd->parameters + 1;
2474             if (cmd->parameters) {
2475                 fdctrl->msr |= FD_MSR_RQM;
2476             }
2477             fdctrl->msr |= FD_MSR_CMDBUSY;
2478         }
2479 
2480         if (fdctrl->data_pos == fdctrl->data_len) {
2481             /* We have all parameters now, execute the command */
2482             fdctrl->phase = FD_PHASE_EXECUTION;
2483 
2484             if (fdctrl->data_state & FD_STATE_FORMAT) {
2485                 fdctrl_format_sector(fdctrl);
2486                 break;
2487             }
2488 
2489             cmd = get_command(fdctrl->fifo[0]);
2490             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2491             cmd->handler(fdctrl, cmd->direction);
2492         }
2493         break;
2494 
2495     case FD_PHASE_RESULT:
2496     default:
2497         abort();
2498     }
2499 }
2500 
2501 static void fdctrl_result_timer(void *opaque)
2502 {
2503     FDCtrl *fdctrl = opaque;
2504     FDrive *cur_drv = get_cur_drv(fdctrl);
2505 
2506     /* Pretend we are spinning.
2507      * This is needed for Coherent, which uses READ ID to check for
2508      * sector interleaving.
2509      */
2510     if (cur_drv->last_sect != 0) {
2511         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2512     }
2513     /* READ_ID can't automatically succeed! */
2514     if (fdctrl->check_media_rate &&
2515         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2516         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2517                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2518         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2519     } else {
2520         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2521     }
2522 }
2523 
2524 /* Init functions */
2525 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2526                                   Error **errp)
2527 {
2528     unsigned int i;
2529     FDrive *drive;
2530     DeviceState *dev;
2531     BlockBackend *blk;
2532     Error *local_err = NULL;
2533 
2534     for (i = 0; i < MAX_FD; i++) {
2535         drive = &fdctrl->drives[i];
2536         drive->fdctrl = fdctrl;
2537 
2538         /* If the drive is not present, we skip creating the qdev device, but
2539          * still have to initialise the controller. */
2540         blk = fdctrl->qdev_for_drives[i].blk;
2541         if (!blk) {
2542             fd_init(drive);
2543             fd_revalidate(drive);
2544             continue;
2545         }
2546 
2547         dev = qdev_create(&fdctrl->bus.bus, "floppy");
2548         qdev_prop_set_uint32(dev, "unit", i);
2549         qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2550 
2551         blk_ref(blk);
2552         blk_detach_dev(blk, fdc_dev);
2553         fdctrl->qdev_for_drives[i].blk = NULL;
2554         qdev_prop_set_drive(dev, "drive", blk, &local_err);
2555         blk_unref(blk);
2556 
2557         if (local_err) {
2558             error_propagate(errp, local_err);
2559             return;
2560         }
2561 
2562         object_property_set_bool(OBJECT(dev), true, "realized", &local_err);
2563         if (local_err) {
2564             error_propagate(errp, local_err);
2565             return;
2566         }
2567     }
2568 }
2569 
2570 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2571 {
2572     DeviceState *dev;
2573     ISADevice *isadev;
2574 
2575     isadev = isa_try_create(bus, TYPE_ISA_FDC);
2576     if (!isadev) {
2577         return NULL;
2578     }
2579     dev = DEVICE(isadev);
2580 
2581     if (fds[0]) {
2582         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2583                             &error_fatal);
2584     }
2585     if (fds[1]) {
2586         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2587                             &error_fatal);
2588     }
2589     qdev_init_nofail(dev);
2590 
2591     return isadev;
2592 }
2593 
2594 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2595                         hwaddr mmio_base, DriveInfo **fds)
2596 {
2597     FDCtrl *fdctrl;
2598     DeviceState *dev;
2599     SysBusDevice *sbd;
2600     FDCtrlSysBus *sys;
2601 
2602     dev = qdev_create(NULL, "sysbus-fdc");
2603     sys = SYSBUS_FDC(dev);
2604     fdctrl = &sys->state;
2605     fdctrl->dma_chann = dma_chann; /* FIXME */
2606     if (fds[0]) {
2607         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2608                             &error_fatal);
2609     }
2610     if (fds[1]) {
2611         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2612                             &error_fatal);
2613     }
2614     qdev_init_nofail(dev);
2615     sbd = SYS_BUS_DEVICE(dev);
2616     sysbus_connect_irq(sbd, 0, irq);
2617     sysbus_mmio_map(sbd, 0, mmio_base);
2618 }
2619 
2620 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2621                        DriveInfo **fds, qemu_irq *fdc_tc)
2622 {
2623     DeviceState *dev;
2624     FDCtrlSysBus *sys;
2625 
2626     dev = qdev_create(NULL, "SUNW,fdtwo");
2627     if (fds[0]) {
2628         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2629                             &error_fatal);
2630     }
2631     qdev_init_nofail(dev);
2632     sys = SYSBUS_FDC(dev);
2633     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2634     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2635     *fdc_tc = qdev_get_gpio_in(dev, 0);
2636 }
2637 
2638 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2639                                   Error **errp)
2640 {
2641     int i, j;
2642     static int command_tables_inited = 0;
2643 
2644     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2645         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2646     }
2647 
2648     /* Fill 'command_to_handler' lookup table */
2649     if (!command_tables_inited) {
2650         command_tables_inited = 1;
2651         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2652             for (j = 0; j < sizeof(command_to_handler); j++) {
2653                 if ((j & handlers[i].mask) == handlers[i].value) {
2654                     command_to_handler[j] = i;
2655                 }
2656             }
2657         }
2658     }
2659 
2660     FLOPPY_DPRINTF("init controller\n");
2661     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2662     fdctrl->fifo_size = 512;
2663     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2664                                              fdctrl_result_timer, fdctrl);
2665 
2666     fdctrl->version = 0x90; /* Intel 82078 controller */
2667     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2668     fdctrl->num_floppies = MAX_FD;
2669 
2670     if (fdctrl->dma_chann != -1) {
2671         IsaDmaClass *k;
2672         assert(fdctrl->dma);
2673         k = ISADMA_GET_CLASS(fdctrl->dma);
2674         k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2675                             &fdctrl_transfer_handler, fdctrl);
2676     }
2677 
2678     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2679     fdctrl_connect_drives(fdctrl, dev, errp);
2680 }
2681 
2682 static const MemoryRegionPortio fdc_portio_list[] = {
2683     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2684     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2685     PORTIO_END_OF_LIST(),
2686 };
2687 
2688 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2689 {
2690     ISADevice *isadev = ISA_DEVICE(dev);
2691     FDCtrlISABus *isa = ISA_FDC(dev);
2692     FDCtrl *fdctrl = &isa->state;
2693     Error *err = NULL;
2694 
2695     isa_register_portio_list(isadev, &fdctrl->portio_list,
2696                              isa->iobase, fdc_portio_list, fdctrl,
2697                              "fdc");
2698 
2699     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2700     fdctrl->dma_chann = isa->dma;
2701     if (fdctrl->dma_chann != -1) {
2702         fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2703         assert(fdctrl->dma);
2704     }
2705 
2706     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2707     fdctrl_realize_common(dev, fdctrl, &err);
2708     if (err != NULL) {
2709         error_propagate(errp, err);
2710         return;
2711     }
2712 }
2713 
2714 static void sysbus_fdc_initfn(Object *obj)
2715 {
2716     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2717     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2718     FDCtrl *fdctrl = &sys->state;
2719 
2720     fdctrl->dma_chann = -1;
2721 
2722     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2723                           "fdc", 0x08);
2724     sysbus_init_mmio(sbd, &fdctrl->iomem);
2725 }
2726 
2727 static void sun4m_fdc_initfn(Object *obj)
2728 {
2729     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2730     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2731     FDCtrl *fdctrl = &sys->state;
2732 
2733     fdctrl->dma_chann = -1;
2734 
2735     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2736                           fdctrl, "fdctrl", 0x08);
2737     sysbus_init_mmio(sbd, &fdctrl->iomem);
2738 }
2739 
2740 static void sysbus_fdc_common_initfn(Object *obj)
2741 {
2742     DeviceState *dev = DEVICE(obj);
2743     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2744     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2745     FDCtrl *fdctrl = &sys->state;
2746 
2747     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2748 
2749     sysbus_init_irq(sbd, &fdctrl->irq);
2750     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2751 }
2752 
2753 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2754 {
2755     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2756     FDCtrl *fdctrl = &sys->state;
2757 
2758     fdctrl_realize_common(dev, fdctrl, errp);
2759 }
2760 
2761 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2762 {
2763     FDCtrlISABus *isa = ISA_FDC(fdc);
2764 
2765     return isa->state.drives[i].drive;
2766 }
2767 
2768 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2769                                uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2770 {
2771     const FDFormat *fdf;
2772 
2773     *maxc = *maxh = *maxs = 0;
2774     for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2775         if (fdf->drive != type) {
2776             continue;
2777         }
2778         if (*maxc < fdf->max_track) {
2779             *maxc = fdf->max_track;
2780         }
2781         if (*maxh < fdf->max_head) {
2782             *maxh = fdf->max_head;
2783         }
2784         if (*maxs < fdf->last_sect) {
2785             *maxs = fdf->last_sect;
2786         }
2787     }
2788     (*maxc)--;
2789 }
2790 
2791 static const VMStateDescription vmstate_isa_fdc ={
2792     .name = "fdc",
2793     .version_id = 2,
2794     .minimum_version_id = 2,
2795     .fields = (VMStateField[]) {
2796         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2797         VMSTATE_END_OF_LIST()
2798     }
2799 };
2800 
2801 static Property isa_fdc_properties[] = {
2802     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2803     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2804     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2805     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2806     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2807     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2808                     0, true),
2809     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2810                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2811                         FloppyDriveType),
2812     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2813                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2814                         FloppyDriveType),
2815     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2816                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2817                         FloppyDriveType),
2818     DEFINE_PROP_END_OF_LIST(),
2819 };
2820 
2821 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2822 {
2823     DeviceClass *dc = DEVICE_CLASS(klass);
2824 
2825     dc->realize = isabus_fdc_realize;
2826     dc->fw_name = "fdc";
2827     dc->reset = fdctrl_external_reset_isa;
2828     dc->vmsd = &vmstate_isa_fdc;
2829     dc->props = isa_fdc_properties;
2830     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2831 }
2832 
2833 static void isabus_fdc_instance_init(Object *obj)
2834 {
2835     FDCtrlISABus *isa = ISA_FDC(obj);
2836 
2837     device_add_bootindex_property(obj, &isa->bootindexA,
2838                                   "bootindexA", "/floppy@0",
2839                                   DEVICE(obj), NULL);
2840     device_add_bootindex_property(obj, &isa->bootindexB,
2841                                   "bootindexB", "/floppy@1",
2842                                   DEVICE(obj), NULL);
2843 }
2844 
2845 static const TypeInfo isa_fdc_info = {
2846     .name          = TYPE_ISA_FDC,
2847     .parent        = TYPE_ISA_DEVICE,
2848     .instance_size = sizeof(FDCtrlISABus),
2849     .class_init    = isabus_fdc_class_init,
2850     .instance_init = isabus_fdc_instance_init,
2851 };
2852 
2853 static const VMStateDescription vmstate_sysbus_fdc ={
2854     .name = "fdc",
2855     .version_id = 2,
2856     .minimum_version_id = 2,
2857     .fields = (VMStateField[]) {
2858         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2859         VMSTATE_END_OF_LIST()
2860     }
2861 };
2862 
2863 static Property sysbus_fdc_properties[] = {
2864     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2865     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2866     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2867                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2868                         FloppyDriveType),
2869     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2870                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2871                         FloppyDriveType),
2872     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2873                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2874                         FloppyDriveType),
2875     DEFINE_PROP_END_OF_LIST(),
2876 };
2877 
2878 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2879 {
2880     DeviceClass *dc = DEVICE_CLASS(klass);
2881 
2882     dc->props = sysbus_fdc_properties;
2883     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2884 }
2885 
2886 static const TypeInfo sysbus_fdc_info = {
2887     .name          = "sysbus-fdc",
2888     .parent        = TYPE_SYSBUS_FDC,
2889     .instance_init = sysbus_fdc_initfn,
2890     .class_init    = sysbus_fdc_class_init,
2891 };
2892 
2893 static Property sun4m_fdc_properties[] = {
2894     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2895     DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2896                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2897                         FloppyDriveType),
2898     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2899                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2900                         FloppyDriveType),
2901     DEFINE_PROP_END_OF_LIST(),
2902 };
2903 
2904 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2905 {
2906     DeviceClass *dc = DEVICE_CLASS(klass);
2907 
2908     dc->props = sun4m_fdc_properties;
2909     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2910 }
2911 
2912 static const TypeInfo sun4m_fdc_info = {
2913     .name          = "SUNW,fdtwo",
2914     .parent        = TYPE_SYSBUS_FDC,
2915     .instance_init = sun4m_fdc_initfn,
2916     .class_init    = sun4m_fdc_class_init,
2917 };
2918 
2919 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2920 {
2921     DeviceClass *dc = DEVICE_CLASS(klass);
2922 
2923     dc->realize = sysbus_fdc_common_realize;
2924     dc->reset = fdctrl_external_reset_sysbus;
2925     dc->vmsd = &vmstate_sysbus_fdc;
2926 }
2927 
2928 static const TypeInfo sysbus_fdc_type_info = {
2929     .name          = TYPE_SYSBUS_FDC,
2930     .parent        = TYPE_SYS_BUS_DEVICE,
2931     .instance_size = sizeof(FDCtrlSysBus),
2932     .instance_init = sysbus_fdc_common_initfn,
2933     .abstract      = true,
2934     .class_init    = sysbus_fdc_common_class_init,
2935 };
2936 
2937 static void fdc_register_types(void)
2938 {
2939     type_register_static(&isa_fdc_info);
2940     type_register_static(&sysbus_fdc_type_info);
2941     type_register_static(&sysbus_fdc_info);
2942     type_register_static(&sun4m_fdc_info);
2943     type_register_static(&floppy_bus_info);
2944     type_register_static(&floppy_drive_info);
2945 }
2946 
2947 type_init(fdc_register_types)
2948