xref: /openbmc/qemu/hw/block/fdc.c (revision 37677d7d)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
42 #include "qemu/log.h"
43 #include "qemu/module.h"
44 #include "trace.h"
45 
46 /********************************************************/
47 /* debug Floppy devices */
48 
49 #define DEBUG_FLOPPY 0
50 
51 #define FLOPPY_DPRINTF(fmt, ...)                                \
52     do {                                                        \
53         if (DEBUG_FLOPPY) {                                     \
54             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
55         }                                                       \
56     } while (0)
57 
58 
59 /********************************************************/
60 /* qdev floppy bus                                      */
61 
62 #define TYPE_FLOPPY_BUS "floppy-bus"
63 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
64 
65 typedef struct FDCtrl FDCtrl;
66 typedef struct FDrive FDrive;
67 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
68 
69 typedef struct FloppyBus {
70     BusState bus;
71     FDCtrl *fdc;
72 } FloppyBus;
73 
74 static const TypeInfo floppy_bus_info = {
75     .name = TYPE_FLOPPY_BUS,
76     .parent = TYPE_BUS,
77     .instance_size = sizeof(FloppyBus),
78 };
79 
80 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
81 {
82     qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
83     bus->fdc = fdc;
84 }
85 
86 
87 /********************************************************/
88 /* Floppy drive emulation                               */
89 
90 typedef enum FDriveRate {
91     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
92     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
93     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
94     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
95 } FDriveRate;
96 
97 typedef enum FDriveSize {
98     FDRIVE_SIZE_UNKNOWN,
99     FDRIVE_SIZE_350,
100     FDRIVE_SIZE_525,
101 } FDriveSize;
102 
103 typedef struct FDFormat {
104     FloppyDriveType drive;
105     uint8_t last_sect;
106     uint8_t max_track;
107     uint8_t max_head;
108     FDriveRate rate;
109 } FDFormat;
110 
111 /* In many cases, the total sector size of a format is enough to uniquely
112  * identify it. However, there are some total sector collisions between
113  * formats of different physical size, and these are noted below by
114  * highlighting the total sector size for entries with collisions. */
115 static const FDFormat fd_formats[] = {
116     /* First entry is default format */
117     /* 1.44 MB 3"1/2 floppy disks */
118     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
119     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
120     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
121     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
122     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
123     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
124     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
125     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
126     /* 2.88 MB 3"1/2 floppy disks */
127     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
128     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
129     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
130     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
131     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
132     /* 720 kB 3"1/2 floppy disks */
133     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
134     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
135     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
136     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
137     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
138     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
139     /* 1.2 MB 5"1/4 floppy disks */
140     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
141     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
142     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
143     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
144     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
145     /* 720 kB 5"1/4 floppy disks */
146     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
147     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
148     /* 360 kB 5"1/4 floppy disks */
149     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
150     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
151     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
152     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
153     /* 320 kB 5"1/4 floppy disks */
154     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
155     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
156     /* 360 kB must match 5"1/4 better than 3"1/2... */
157     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
158     /* end */
159     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
160 };
161 
162 static FDriveSize drive_size(FloppyDriveType drive)
163 {
164     switch (drive) {
165     case FLOPPY_DRIVE_TYPE_120:
166         return FDRIVE_SIZE_525;
167     case FLOPPY_DRIVE_TYPE_144:
168     case FLOPPY_DRIVE_TYPE_288:
169         return FDRIVE_SIZE_350;
170     default:
171         return FDRIVE_SIZE_UNKNOWN;
172     }
173 }
174 
175 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
176 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
177 
178 /* Will always be a fixed parameter for us */
179 #define FD_SECTOR_LEN          512
180 #define FD_SECTOR_SC           2   /* Sector size code */
181 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
182 
183 /* Floppy disk drive emulation */
184 typedef enum FDiskFlags {
185     FDISK_DBL_SIDES  = 0x01,
186 } FDiskFlags;
187 
188 struct FDrive {
189     FDCtrl *fdctrl;
190     BlockBackend *blk;
191     BlockConf *conf;
192     /* Drive status */
193     FloppyDriveType drive;    /* CMOS drive type        */
194     uint8_t perpendicular;    /* 2.88 MB access mode    */
195     /* Position */
196     uint8_t head;
197     uint8_t track;
198     uint8_t sect;
199     /* Media */
200     FloppyDriveType disk;     /* Current disk type      */
201     FDiskFlags flags;
202     uint8_t last_sect;        /* Nb sector per track    */
203     uint8_t max_track;        /* Nb of tracks           */
204     uint16_t bps;             /* Bytes per sector       */
205     uint8_t ro;               /* Is read-only           */
206     uint8_t media_changed;    /* Is media changed       */
207     uint8_t media_rate;       /* Data rate of medium    */
208 
209     bool media_validated;     /* Have we validated the media? */
210 };
211 
212 
213 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
214 
215 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
216  * currently goes through some pains to keep seeks within the bounds
217  * established by last_sect and max_track. Correcting this is difficult,
218  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
219  *
220  * For now: allow empty drives to have large bounds so we can seek around,
221  * with the understanding that when a diskette is inserted, the bounds will
222  * properly tighten to match the geometry of that inserted medium.
223  */
224 static void fd_empty_seek_hack(FDrive *drv)
225 {
226     drv->last_sect = 0xFF;
227     drv->max_track = 0xFF;
228 }
229 
230 static void fd_init(FDrive *drv)
231 {
232     /* Drive */
233     drv->perpendicular = 0;
234     /* Disk */
235     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
236     drv->last_sect = 0;
237     drv->max_track = 0;
238     drv->ro = true;
239     drv->media_changed = 1;
240 }
241 
242 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
243 
244 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
245                           uint8_t last_sect, uint8_t num_sides)
246 {
247     return (((track * num_sides) + head) * last_sect) + sect - 1;
248 }
249 
250 /* Returns current position, in sectors, for given drive */
251 static int fd_sector(FDrive *drv)
252 {
253     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
254                           NUM_SIDES(drv));
255 }
256 
257 /* Returns current position, in bytes, for given drive */
258 static int fd_offset(FDrive *drv)
259 {
260     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
261     return fd_sector(drv) << BDRV_SECTOR_BITS;
262 }
263 
264 /* Seek to a new position:
265  * returns 0 if already on right track
266  * returns 1 if track changed
267  * returns 2 if track is invalid
268  * returns 3 if sector is invalid
269  * returns 4 if seek is disabled
270  */
271 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
272                    int enable_seek)
273 {
274     uint32_t sector;
275     int ret;
276 
277     if (track > drv->max_track ||
278         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
279         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
280                        head, track, sect, 1,
281                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
282                        drv->max_track, drv->last_sect);
283         return 2;
284     }
285     if (sect > drv->last_sect) {
286         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
287                        head, track, sect, 1,
288                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
289                        drv->max_track, drv->last_sect);
290         return 3;
291     }
292     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
293     ret = 0;
294     if (sector != fd_sector(drv)) {
295 #if 0
296         if (!enable_seek) {
297             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
298                            " (max=%d %02x %02x)\n",
299                            head, track, sect, 1, drv->max_track,
300                            drv->last_sect);
301             return 4;
302         }
303 #endif
304         drv->head = head;
305         if (drv->track != track) {
306             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
307                 drv->media_changed = 0;
308             }
309             ret = 1;
310         }
311         drv->track = track;
312         drv->sect = sect;
313     }
314 
315     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
316         ret = 2;
317     }
318 
319     return ret;
320 }
321 
322 /* Set drive back to track 0 */
323 static void fd_recalibrate(FDrive *drv)
324 {
325     FLOPPY_DPRINTF("recalibrate\n");
326     fd_seek(drv, 0, 0, 1, 1);
327 }
328 
329 /**
330  * Determine geometry based on inserted diskette.
331  * Will not operate on an empty drive.
332  *
333  * @return: 0 on success, -1 if the drive is empty.
334  */
335 static int pick_geometry(FDrive *drv)
336 {
337     BlockBackend *blk = drv->blk;
338     const FDFormat *parse;
339     uint64_t nb_sectors, size;
340     int i;
341     int match, size_match, type_match;
342     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
343 
344     /* We can only pick a geometry if we have a diskette. */
345     if (!drv->blk || !blk_is_inserted(drv->blk) ||
346         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
347     {
348         return -1;
349     }
350 
351     /* We need to determine the likely geometry of the inserted medium.
352      * In order of preference, we look for:
353      * (1) The same drive type and number of sectors,
354      * (2) The same diskette size and number of sectors,
355      * (3) The same drive type.
356      *
357      * In all cases, matches that occur higher in the drive table will take
358      * precedence over matches that occur later in the table.
359      */
360     blk_get_geometry(blk, &nb_sectors);
361     match = size_match = type_match = -1;
362     for (i = 0; ; i++) {
363         parse = &fd_formats[i];
364         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
365             break;
366         }
367         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
368         if (nb_sectors == size) {
369             if (magic || parse->drive == drv->drive) {
370                 /* (1) perfect match -- nb_sectors and drive type */
371                 goto out;
372             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
373                 /* (2) size match -- nb_sectors and physical medium size */
374                 match = (match == -1) ? i : match;
375             } else {
376                 /* This is suspicious -- Did the user misconfigure? */
377                 size_match = (size_match == -1) ? i : size_match;
378             }
379         } else if (type_match == -1) {
380             if ((parse->drive == drv->drive) ||
381                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
382                 /* (3) type match -- nb_sectors mismatch, but matches the type
383                  *     specified explicitly by the user, or matches the fallback
384                  *     default type when using the drive autodetect mechanism */
385                 type_match = i;
386             }
387         }
388     }
389 
390     /* No exact match found */
391     if (match == -1) {
392         if (size_match != -1) {
393             parse = &fd_formats[size_match];
394             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
395                            "but inserted medium appears to be a "
396                            "%"PRId64" sector '%s' type\n",
397                            FloppyDriveType_str(drv->drive),
398                            nb_sectors,
399                            FloppyDriveType_str(parse->drive));
400         }
401         assert(type_match != -1 && "misconfigured fd_format");
402         match = type_match;
403     }
404     parse = &(fd_formats[match]);
405 
406  out:
407     if (parse->max_head == 0) {
408         drv->flags &= ~FDISK_DBL_SIDES;
409     } else {
410         drv->flags |= FDISK_DBL_SIDES;
411     }
412     drv->max_track = parse->max_track;
413     drv->last_sect = parse->last_sect;
414     drv->disk = parse->drive;
415     drv->media_rate = parse->rate;
416     return 0;
417 }
418 
419 static void pick_drive_type(FDrive *drv)
420 {
421     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
422         return;
423     }
424 
425     if (pick_geometry(drv) == 0) {
426         drv->drive = drv->disk;
427     } else {
428         drv->drive = get_fallback_drive_type(drv);
429     }
430 
431     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
432 }
433 
434 /* Revalidate a disk drive after a disk change */
435 static void fd_revalidate(FDrive *drv)
436 {
437     int rc;
438 
439     FLOPPY_DPRINTF("revalidate\n");
440     if (drv->blk != NULL) {
441         drv->ro = blk_is_read_only(drv->blk);
442         if (!blk_is_inserted(drv->blk)) {
443             FLOPPY_DPRINTF("No disk in drive\n");
444             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
445             fd_empty_seek_hack(drv);
446         } else if (!drv->media_validated) {
447             rc = pick_geometry(drv);
448             if (rc) {
449                 FLOPPY_DPRINTF("Could not validate floppy drive media");
450             } else {
451                 drv->media_validated = true;
452                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
453                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
454                                drv->max_track, drv->last_sect,
455                                drv->ro ? "ro" : "rw");
456             }
457         }
458     } else {
459         FLOPPY_DPRINTF("No drive connected\n");
460         drv->last_sect = 0;
461         drv->max_track = 0;
462         drv->flags &= ~FDISK_DBL_SIDES;
463         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
464         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
465     }
466 }
467 
468 static void fd_change_cb(void *opaque, bool load, Error **errp)
469 {
470     FDrive *drive = opaque;
471 
472     if (!load) {
473         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
474     } else {
475         if (!blkconf_apply_backend_options(drive->conf,
476                                            blk_is_read_only(drive->blk), false,
477                                            errp)) {
478             return;
479         }
480     }
481 
482     drive->media_changed = 1;
483     drive->media_validated = false;
484     fd_revalidate(drive);
485 }
486 
487 static const BlockDevOps fd_block_ops = {
488     .change_media_cb = fd_change_cb,
489 };
490 
491 
492 #define TYPE_FLOPPY_DRIVE "floppy"
493 #define FLOPPY_DRIVE(obj) \
494      OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
495 
496 typedef struct FloppyDrive {
497     DeviceState     qdev;
498     uint32_t        unit;
499     BlockConf       conf;
500     FloppyDriveType type;
501 } FloppyDrive;
502 
503 static Property floppy_drive_properties[] = {
504     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
505     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
506     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
507                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
508                         FloppyDriveType),
509     DEFINE_PROP_END_OF_LIST(),
510 };
511 
512 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
513 {
514     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
515     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
516     FDrive *drive;
517     int ret;
518 
519     if (dev->unit == -1) {
520         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
521             drive = get_drv(bus->fdc, dev->unit);
522             if (!drive->blk) {
523                 break;
524             }
525         }
526     }
527 
528     if (dev->unit >= MAX_FD) {
529         error_setg(errp, "Can't create floppy unit %d, bus supports "
530                    "only %d units", dev->unit, MAX_FD);
531         return;
532     }
533 
534     drive = get_drv(bus->fdc, dev->unit);
535     if (drive->blk) {
536         error_setg(errp, "Floppy unit %d is in use", dev->unit);
537         return;
538     }
539 
540     if (!dev->conf.blk) {
541         /* Anonymous BlockBackend for an empty drive */
542         dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
543         ret = blk_attach_dev(dev->conf.blk, qdev);
544         assert(ret == 0);
545     }
546 
547     blkconf_blocksizes(&dev->conf);
548     if (dev->conf.logical_block_size != 512 ||
549         dev->conf.physical_block_size != 512)
550     {
551         error_setg(errp, "Physical and logical block size must "
552                    "be 512 for floppy");
553         return;
554     }
555 
556     /* rerror/werror aren't supported by fdc and therefore not even registered
557      * with qdev. So set the defaults manually before they are used in
558      * blkconf_apply_backend_options(). */
559     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
560     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
561 
562     if (!blkconf_apply_backend_options(&dev->conf,
563                                        blk_is_read_only(dev->conf.blk),
564                                        false, errp)) {
565         return;
566     }
567 
568     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
569      * for empty drives. */
570     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
571         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
572         error_setg(errp, "fdc doesn't support drive option werror");
573         return;
574     }
575     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
576         error_setg(errp, "fdc doesn't support drive option rerror");
577         return;
578     }
579 
580     drive->conf = &dev->conf;
581     drive->blk = dev->conf.blk;
582     drive->fdctrl = bus->fdc;
583 
584     fd_init(drive);
585     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
586 
587     /* Keep 'type' qdev property and FDrive->drive in sync */
588     drive->drive = dev->type;
589     pick_drive_type(drive);
590     dev->type = drive->drive;
591 
592     fd_revalidate(drive);
593 }
594 
595 static void floppy_drive_class_init(ObjectClass *klass, void *data)
596 {
597     DeviceClass *k = DEVICE_CLASS(klass);
598     k->realize = floppy_drive_realize;
599     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
600     k->bus_type = TYPE_FLOPPY_BUS;
601     k->props = floppy_drive_properties;
602     k->desc = "virtual floppy drive";
603 }
604 
605 static const TypeInfo floppy_drive_info = {
606     .name = TYPE_FLOPPY_DRIVE,
607     .parent = TYPE_DEVICE,
608     .instance_size = sizeof(FloppyDrive),
609     .class_init = floppy_drive_class_init,
610 };
611 
612 /********************************************************/
613 /* Intel 82078 floppy disk controller emulation          */
614 
615 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
616 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
617 static int fdctrl_transfer_handler (void *opaque, int nchan,
618                                     int dma_pos, int dma_len);
619 static void fdctrl_raise_irq(FDCtrl *fdctrl);
620 static FDrive *get_cur_drv(FDCtrl *fdctrl);
621 
622 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
623 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
624 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
625 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
626 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
627 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
628 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
629 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
630 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
631 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
632 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
633 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
634 
635 enum {
636     FD_DIR_WRITE   = 0,
637     FD_DIR_READ    = 1,
638     FD_DIR_SCANE   = 2,
639     FD_DIR_SCANL   = 3,
640     FD_DIR_SCANH   = 4,
641     FD_DIR_VERIFY  = 5,
642 };
643 
644 enum {
645     FD_STATE_MULTI  = 0x01,	/* multi track flag */
646     FD_STATE_FORMAT = 0x02,	/* format flag */
647 };
648 
649 enum {
650     FD_REG_SRA = 0x00,
651     FD_REG_SRB = 0x01,
652     FD_REG_DOR = 0x02,
653     FD_REG_TDR = 0x03,
654     FD_REG_MSR = 0x04,
655     FD_REG_DSR = 0x04,
656     FD_REG_FIFO = 0x05,
657     FD_REG_DIR = 0x07,
658     FD_REG_CCR = 0x07,
659 };
660 
661 enum {
662     FD_CMD_READ_TRACK = 0x02,
663     FD_CMD_SPECIFY = 0x03,
664     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
665     FD_CMD_WRITE = 0x05,
666     FD_CMD_READ = 0x06,
667     FD_CMD_RECALIBRATE = 0x07,
668     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
669     FD_CMD_WRITE_DELETED = 0x09,
670     FD_CMD_READ_ID = 0x0a,
671     FD_CMD_READ_DELETED = 0x0c,
672     FD_CMD_FORMAT_TRACK = 0x0d,
673     FD_CMD_DUMPREG = 0x0e,
674     FD_CMD_SEEK = 0x0f,
675     FD_CMD_VERSION = 0x10,
676     FD_CMD_SCAN_EQUAL = 0x11,
677     FD_CMD_PERPENDICULAR_MODE = 0x12,
678     FD_CMD_CONFIGURE = 0x13,
679     FD_CMD_LOCK = 0x14,
680     FD_CMD_VERIFY = 0x16,
681     FD_CMD_POWERDOWN_MODE = 0x17,
682     FD_CMD_PART_ID = 0x18,
683     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
684     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
685     FD_CMD_SAVE = 0x2e,
686     FD_CMD_OPTION = 0x33,
687     FD_CMD_RESTORE = 0x4e,
688     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
689     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
690     FD_CMD_FORMAT_AND_WRITE = 0xcd,
691     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
692 };
693 
694 enum {
695     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
696     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
697     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
698     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
699     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
700 };
701 
702 enum {
703     FD_SR0_DS0      = 0x01,
704     FD_SR0_DS1      = 0x02,
705     FD_SR0_HEAD     = 0x04,
706     FD_SR0_EQPMT    = 0x10,
707     FD_SR0_SEEK     = 0x20,
708     FD_SR0_ABNTERM  = 0x40,
709     FD_SR0_INVCMD   = 0x80,
710     FD_SR0_RDYCHG   = 0xc0,
711 };
712 
713 enum {
714     FD_SR1_MA       = 0x01, /* Missing address mark */
715     FD_SR1_NW       = 0x02, /* Not writable */
716     FD_SR1_EC       = 0x80, /* End of cylinder */
717 };
718 
719 enum {
720     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
721     FD_SR2_SEH      = 0x08, /* Scan equal hit */
722 };
723 
724 enum {
725     FD_SRA_DIR      = 0x01,
726     FD_SRA_nWP      = 0x02,
727     FD_SRA_nINDX    = 0x04,
728     FD_SRA_HDSEL    = 0x08,
729     FD_SRA_nTRK0    = 0x10,
730     FD_SRA_STEP     = 0x20,
731     FD_SRA_nDRV2    = 0x40,
732     FD_SRA_INTPEND  = 0x80,
733 };
734 
735 enum {
736     FD_SRB_MTR0     = 0x01,
737     FD_SRB_MTR1     = 0x02,
738     FD_SRB_WGATE    = 0x04,
739     FD_SRB_RDATA    = 0x08,
740     FD_SRB_WDATA    = 0x10,
741     FD_SRB_DR0      = 0x20,
742 };
743 
744 enum {
745 #if MAX_FD == 4
746     FD_DOR_SELMASK  = 0x03,
747 #else
748     FD_DOR_SELMASK  = 0x01,
749 #endif
750     FD_DOR_nRESET   = 0x04,
751     FD_DOR_DMAEN    = 0x08,
752     FD_DOR_MOTEN0   = 0x10,
753     FD_DOR_MOTEN1   = 0x20,
754     FD_DOR_MOTEN2   = 0x40,
755     FD_DOR_MOTEN3   = 0x80,
756 };
757 
758 enum {
759 #if MAX_FD == 4
760     FD_TDR_BOOTSEL  = 0x0c,
761 #else
762     FD_TDR_BOOTSEL  = 0x04,
763 #endif
764 };
765 
766 enum {
767     FD_DSR_DRATEMASK= 0x03,
768     FD_DSR_PWRDOWN  = 0x40,
769     FD_DSR_SWRESET  = 0x80,
770 };
771 
772 enum {
773     FD_MSR_DRV0BUSY = 0x01,
774     FD_MSR_DRV1BUSY = 0x02,
775     FD_MSR_DRV2BUSY = 0x04,
776     FD_MSR_DRV3BUSY = 0x08,
777     FD_MSR_CMDBUSY  = 0x10,
778     FD_MSR_NONDMA   = 0x20,
779     FD_MSR_DIO      = 0x40,
780     FD_MSR_RQM      = 0x80,
781 };
782 
783 enum {
784     FD_DIR_DSKCHG   = 0x80,
785 };
786 
787 /*
788  * See chapter 5.0 "Controller phases" of the spec:
789  *
790  * Command phase:
791  * The host writes a command and its parameters into the FIFO. The command
792  * phase is completed when all parameters for the command have been supplied,
793  * and execution phase is entered.
794  *
795  * Execution phase:
796  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
797  * contains the payload now, otherwise it's unused. When all bytes of the
798  * required data have been transferred, the state is switched to either result
799  * phase (if the command produces status bytes) or directly back into the
800  * command phase for the next command.
801  *
802  * Result phase:
803  * The host reads out the FIFO, which contains one or more result bytes now.
804  */
805 enum {
806     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
807     FD_PHASE_RECONSTRUCT    = 0,
808 
809     FD_PHASE_COMMAND        = 1,
810     FD_PHASE_EXECUTION      = 2,
811     FD_PHASE_RESULT         = 3,
812 };
813 
814 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
815 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
816 
817 struct FDCtrl {
818     MemoryRegion iomem;
819     qemu_irq irq;
820     /* Controller state */
821     QEMUTimer *result_timer;
822     int dma_chann;
823     uint8_t phase;
824     IsaDma *dma;
825     /* Controller's identification */
826     uint8_t version;
827     /* HW */
828     uint8_t sra;
829     uint8_t srb;
830     uint8_t dor;
831     uint8_t dor_vmstate; /* only used as temp during vmstate */
832     uint8_t tdr;
833     uint8_t dsr;
834     uint8_t msr;
835     uint8_t cur_drv;
836     uint8_t status0;
837     uint8_t status1;
838     uint8_t status2;
839     /* Command FIFO */
840     uint8_t *fifo;
841     int32_t fifo_size;
842     uint32_t data_pos;
843     uint32_t data_len;
844     uint8_t data_state;
845     uint8_t data_dir;
846     uint8_t eot; /* last wanted sector */
847     /* States kept only to be returned back */
848     /* precompensation */
849     uint8_t precomp_trk;
850     uint8_t config;
851     uint8_t lock;
852     /* Power down config (also with status regB access mode */
853     uint8_t pwrd;
854     /* Floppy drives */
855     FloppyBus bus;
856     uint8_t num_floppies;
857     FDrive drives[MAX_FD];
858     struct {
859         BlockBackend *blk;
860         FloppyDriveType type;
861     } qdev_for_drives[MAX_FD];
862     int reset_sensei;
863     uint32_t check_media_rate;
864     FloppyDriveType fallback; /* type=auto failure fallback */
865     /* Timers state */
866     uint8_t timer0;
867     uint8_t timer1;
868     PortioList portio_list;
869 };
870 
871 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
872 {
873     return drv->fdctrl->fallback;
874 }
875 
876 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
877 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
878 
879 typedef struct FDCtrlSysBus {
880     /*< private >*/
881     SysBusDevice parent_obj;
882     /*< public >*/
883 
884     struct FDCtrl state;
885 } FDCtrlSysBus;
886 
887 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
888 
889 typedef struct FDCtrlISABus {
890     ISADevice parent_obj;
891 
892     uint32_t iobase;
893     uint32_t irq;
894     uint32_t dma;
895     struct FDCtrl state;
896     int32_t bootindexA;
897     int32_t bootindexB;
898 } FDCtrlISABus;
899 
900 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
901 {
902     FDCtrl *fdctrl = opaque;
903     uint32_t retval;
904 
905     reg &= 7;
906     switch (reg) {
907     case FD_REG_SRA:
908         retval = fdctrl_read_statusA(fdctrl);
909         break;
910     case FD_REG_SRB:
911         retval = fdctrl_read_statusB(fdctrl);
912         break;
913     case FD_REG_DOR:
914         retval = fdctrl_read_dor(fdctrl);
915         break;
916     case FD_REG_TDR:
917         retval = fdctrl_read_tape(fdctrl);
918         break;
919     case FD_REG_MSR:
920         retval = fdctrl_read_main_status(fdctrl);
921         break;
922     case FD_REG_FIFO:
923         retval = fdctrl_read_data(fdctrl);
924         break;
925     case FD_REG_DIR:
926         retval = fdctrl_read_dir(fdctrl);
927         break;
928     default:
929         retval = (uint32_t)(-1);
930         break;
931     }
932     trace_fdc_ioport_read(reg, retval);
933 
934     return retval;
935 }
936 
937 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
938 {
939     FDCtrl *fdctrl = opaque;
940 
941     reg &= 7;
942     trace_fdc_ioport_write(reg, value);
943     switch (reg) {
944     case FD_REG_DOR:
945         fdctrl_write_dor(fdctrl, value);
946         break;
947     case FD_REG_TDR:
948         fdctrl_write_tape(fdctrl, value);
949         break;
950     case FD_REG_DSR:
951         fdctrl_write_rate(fdctrl, value);
952         break;
953     case FD_REG_FIFO:
954         fdctrl_write_data(fdctrl, value);
955         break;
956     case FD_REG_CCR:
957         fdctrl_write_ccr(fdctrl, value);
958         break;
959     default:
960         break;
961     }
962 }
963 
964 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
965                                  unsigned ize)
966 {
967     return fdctrl_read(opaque, (uint32_t)reg);
968 }
969 
970 static void fdctrl_write_mem (void *opaque, hwaddr reg,
971                               uint64_t value, unsigned size)
972 {
973     fdctrl_write(opaque, (uint32_t)reg, value);
974 }
975 
976 static const MemoryRegionOps fdctrl_mem_ops = {
977     .read = fdctrl_read_mem,
978     .write = fdctrl_write_mem,
979     .endianness = DEVICE_NATIVE_ENDIAN,
980 };
981 
982 static const MemoryRegionOps fdctrl_mem_strict_ops = {
983     .read = fdctrl_read_mem,
984     .write = fdctrl_write_mem,
985     .endianness = DEVICE_NATIVE_ENDIAN,
986     .valid = {
987         .min_access_size = 1,
988         .max_access_size = 1,
989     },
990 };
991 
992 static bool fdrive_media_changed_needed(void *opaque)
993 {
994     FDrive *drive = opaque;
995 
996     return (drive->blk != NULL && drive->media_changed != 1);
997 }
998 
999 static const VMStateDescription vmstate_fdrive_media_changed = {
1000     .name = "fdrive/media_changed",
1001     .version_id = 1,
1002     .minimum_version_id = 1,
1003     .needed = fdrive_media_changed_needed,
1004     .fields = (VMStateField[]) {
1005         VMSTATE_UINT8(media_changed, FDrive),
1006         VMSTATE_END_OF_LIST()
1007     }
1008 };
1009 
1010 static bool fdrive_media_rate_needed(void *opaque)
1011 {
1012     FDrive *drive = opaque;
1013 
1014     return drive->fdctrl->check_media_rate;
1015 }
1016 
1017 static const VMStateDescription vmstate_fdrive_media_rate = {
1018     .name = "fdrive/media_rate",
1019     .version_id = 1,
1020     .minimum_version_id = 1,
1021     .needed = fdrive_media_rate_needed,
1022     .fields = (VMStateField[]) {
1023         VMSTATE_UINT8(media_rate, FDrive),
1024         VMSTATE_END_OF_LIST()
1025     }
1026 };
1027 
1028 static bool fdrive_perpendicular_needed(void *opaque)
1029 {
1030     FDrive *drive = opaque;
1031 
1032     return drive->perpendicular != 0;
1033 }
1034 
1035 static const VMStateDescription vmstate_fdrive_perpendicular = {
1036     .name = "fdrive/perpendicular",
1037     .version_id = 1,
1038     .minimum_version_id = 1,
1039     .needed = fdrive_perpendicular_needed,
1040     .fields = (VMStateField[]) {
1041         VMSTATE_UINT8(perpendicular, FDrive),
1042         VMSTATE_END_OF_LIST()
1043     }
1044 };
1045 
1046 static int fdrive_post_load(void *opaque, int version_id)
1047 {
1048     fd_revalidate(opaque);
1049     return 0;
1050 }
1051 
1052 static const VMStateDescription vmstate_fdrive = {
1053     .name = "fdrive",
1054     .version_id = 1,
1055     .minimum_version_id = 1,
1056     .post_load = fdrive_post_load,
1057     .fields = (VMStateField[]) {
1058         VMSTATE_UINT8(head, FDrive),
1059         VMSTATE_UINT8(track, FDrive),
1060         VMSTATE_UINT8(sect, FDrive),
1061         VMSTATE_END_OF_LIST()
1062     },
1063     .subsections = (const VMStateDescription*[]) {
1064         &vmstate_fdrive_media_changed,
1065         &vmstate_fdrive_media_rate,
1066         &vmstate_fdrive_perpendicular,
1067         NULL
1068     }
1069 };
1070 
1071 /*
1072  * Reconstructs the phase from register values according to the logic that was
1073  * implemented in qemu 2.3. This is the default value that is used if the phase
1074  * subsection is not present on migration.
1075  *
1076  * Don't change this function to reflect newer qemu versions, it is part of
1077  * the migration ABI.
1078  */
1079 static int reconstruct_phase(FDCtrl *fdctrl)
1080 {
1081     if (fdctrl->msr & FD_MSR_NONDMA) {
1082         return FD_PHASE_EXECUTION;
1083     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1084         /* qemu 2.3 disabled RQM only during DMA transfers */
1085         return FD_PHASE_EXECUTION;
1086     } else if (fdctrl->msr & FD_MSR_DIO) {
1087         return FD_PHASE_RESULT;
1088     } else {
1089         return FD_PHASE_COMMAND;
1090     }
1091 }
1092 
1093 static int fdc_pre_save(void *opaque)
1094 {
1095     FDCtrl *s = opaque;
1096 
1097     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1098 
1099     return 0;
1100 }
1101 
1102 static int fdc_pre_load(void *opaque)
1103 {
1104     FDCtrl *s = opaque;
1105     s->phase = FD_PHASE_RECONSTRUCT;
1106     return 0;
1107 }
1108 
1109 static int fdc_post_load(void *opaque, int version_id)
1110 {
1111     FDCtrl *s = opaque;
1112 
1113     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1114     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1115 
1116     if (s->phase == FD_PHASE_RECONSTRUCT) {
1117         s->phase = reconstruct_phase(s);
1118     }
1119 
1120     return 0;
1121 }
1122 
1123 static bool fdc_reset_sensei_needed(void *opaque)
1124 {
1125     FDCtrl *s = opaque;
1126 
1127     return s->reset_sensei != 0;
1128 }
1129 
1130 static const VMStateDescription vmstate_fdc_reset_sensei = {
1131     .name = "fdc/reset_sensei",
1132     .version_id = 1,
1133     .minimum_version_id = 1,
1134     .needed = fdc_reset_sensei_needed,
1135     .fields = (VMStateField[]) {
1136         VMSTATE_INT32(reset_sensei, FDCtrl),
1137         VMSTATE_END_OF_LIST()
1138     }
1139 };
1140 
1141 static bool fdc_result_timer_needed(void *opaque)
1142 {
1143     FDCtrl *s = opaque;
1144 
1145     return timer_pending(s->result_timer);
1146 }
1147 
1148 static const VMStateDescription vmstate_fdc_result_timer = {
1149     .name = "fdc/result_timer",
1150     .version_id = 1,
1151     .minimum_version_id = 1,
1152     .needed = fdc_result_timer_needed,
1153     .fields = (VMStateField[]) {
1154         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1155         VMSTATE_END_OF_LIST()
1156     }
1157 };
1158 
1159 static bool fdc_phase_needed(void *opaque)
1160 {
1161     FDCtrl *fdctrl = opaque;
1162 
1163     return reconstruct_phase(fdctrl) != fdctrl->phase;
1164 }
1165 
1166 static const VMStateDescription vmstate_fdc_phase = {
1167     .name = "fdc/phase",
1168     .version_id = 1,
1169     .minimum_version_id = 1,
1170     .needed = fdc_phase_needed,
1171     .fields = (VMStateField[]) {
1172         VMSTATE_UINT8(phase, FDCtrl),
1173         VMSTATE_END_OF_LIST()
1174     }
1175 };
1176 
1177 static const VMStateDescription vmstate_fdc = {
1178     .name = "fdc",
1179     .version_id = 2,
1180     .minimum_version_id = 2,
1181     .pre_save = fdc_pre_save,
1182     .pre_load = fdc_pre_load,
1183     .post_load = fdc_post_load,
1184     .fields = (VMStateField[]) {
1185         /* Controller State */
1186         VMSTATE_UINT8(sra, FDCtrl),
1187         VMSTATE_UINT8(srb, FDCtrl),
1188         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1189         VMSTATE_UINT8(tdr, FDCtrl),
1190         VMSTATE_UINT8(dsr, FDCtrl),
1191         VMSTATE_UINT8(msr, FDCtrl),
1192         VMSTATE_UINT8(status0, FDCtrl),
1193         VMSTATE_UINT8(status1, FDCtrl),
1194         VMSTATE_UINT8(status2, FDCtrl),
1195         /* Command FIFO */
1196         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1197                              uint8_t),
1198         VMSTATE_UINT32(data_pos, FDCtrl),
1199         VMSTATE_UINT32(data_len, FDCtrl),
1200         VMSTATE_UINT8(data_state, FDCtrl),
1201         VMSTATE_UINT8(data_dir, FDCtrl),
1202         VMSTATE_UINT8(eot, FDCtrl),
1203         /* States kept only to be returned back */
1204         VMSTATE_UINT8(timer0, FDCtrl),
1205         VMSTATE_UINT8(timer1, FDCtrl),
1206         VMSTATE_UINT8(precomp_trk, FDCtrl),
1207         VMSTATE_UINT8(config, FDCtrl),
1208         VMSTATE_UINT8(lock, FDCtrl),
1209         VMSTATE_UINT8(pwrd, FDCtrl),
1210         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1211         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1212                              vmstate_fdrive, FDrive),
1213         VMSTATE_END_OF_LIST()
1214     },
1215     .subsections = (const VMStateDescription*[]) {
1216         &vmstate_fdc_reset_sensei,
1217         &vmstate_fdc_result_timer,
1218         &vmstate_fdc_phase,
1219         NULL
1220     }
1221 };
1222 
1223 static void fdctrl_external_reset_sysbus(DeviceState *d)
1224 {
1225     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1226     FDCtrl *s = &sys->state;
1227 
1228     fdctrl_reset(s, 0);
1229 }
1230 
1231 static void fdctrl_external_reset_isa(DeviceState *d)
1232 {
1233     FDCtrlISABus *isa = ISA_FDC(d);
1234     FDCtrl *s = &isa->state;
1235 
1236     fdctrl_reset(s, 0);
1237 }
1238 
1239 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1240 {
1241     //FDCtrl *s = opaque;
1242 
1243     if (level) {
1244         // XXX
1245         FLOPPY_DPRINTF("TC pulsed\n");
1246     }
1247 }
1248 
1249 /* Change IRQ state */
1250 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1251 {
1252     fdctrl->status0 = 0;
1253     if (!(fdctrl->sra & FD_SRA_INTPEND))
1254         return;
1255     FLOPPY_DPRINTF("Reset interrupt\n");
1256     qemu_set_irq(fdctrl->irq, 0);
1257     fdctrl->sra &= ~FD_SRA_INTPEND;
1258 }
1259 
1260 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1261 {
1262     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1263         qemu_set_irq(fdctrl->irq, 1);
1264         fdctrl->sra |= FD_SRA_INTPEND;
1265     }
1266 
1267     fdctrl->reset_sensei = 0;
1268     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1269 }
1270 
1271 /* Reset controller */
1272 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1273 {
1274     int i;
1275 
1276     FLOPPY_DPRINTF("reset controller\n");
1277     fdctrl_reset_irq(fdctrl);
1278     /* Initialise controller */
1279     fdctrl->sra = 0;
1280     fdctrl->srb = 0xc0;
1281     if (!fdctrl->drives[1].blk) {
1282         fdctrl->sra |= FD_SRA_nDRV2;
1283     }
1284     fdctrl->cur_drv = 0;
1285     fdctrl->dor = FD_DOR_nRESET;
1286     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1287     fdctrl->msr = FD_MSR_RQM;
1288     fdctrl->reset_sensei = 0;
1289     timer_del(fdctrl->result_timer);
1290     /* FIFO state */
1291     fdctrl->data_pos = 0;
1292     fdctrl->data_len = 0;
1293     fdctrl->data_state = 0;
1294     fdctrl->data_dir = FD_DIR_WRITE;
1295     for (i = 0; i < MAX_FD; i++)
1296         fd_recalibrate(&fdctrl->drives[i]);
1297     fdctrl_to_command_phase(fdctrl);
1298     if (do_irq) {
1299         fdctrl->status0 |= FD_SR0_RDYCHG;
1300         fdctrl_raise_irq(fdctrl);
1301         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1302     }
1303 }
1304 
1305 static inline FDrive *drv0(FDCtrl *fdctrl)
1306 {
1307     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1308 }
1309 
1310 static inline FDrive *drv1(FDCtrl *fdctrl)
1311 {
1312     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1313         return &fdctrl->drives[1];
1314     else
1315         return &fdctrl->drives[0];
1316 }
1317 
1318 #if MAX_FD == 4
1319 static inline FDrive *drv2(FDCtrl *fdctrl)
1320 {
1321     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1322         return &fdctrl->drives[2];
1323     else
1324         return &fdctrl->drives[1];
1325 }
1326 
1327 static inline FDrive *drv3(FDCtrl *fdctrl)
1328 {
1329     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1330         return &fdctrl->drives[3];
1331     else
1332         return &fdctrl->drives[2];
1333 }
1334 #endif
1335 
1336 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1337 {
1338     switch (unit) {
1339         case 0: return drv0(fdctrl);
1340         case 1: return drv1(fdctrl);
1341 #if MAX_FD == 4
1342         case 2: return drv2(fdctrl);
1343         case 3: return drv3(fdctrl);
1344 #endif
1345         default: return NULL;
1346     }
1347 }
1348 
1349 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1350 {
1351     return get_drv(fdctrl, fdctrl->cur_drv);
1352 }
1353 
1354 /* Status A register : 0x00 (read-only) */
1355 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1356 {
1357     uint32_t retval = fdctrl->sra;
1358 
1359     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1360 
1361     return retval;
1362 }
1363 
1364 /* Status B register : 0x01 (read-only) */
1365 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1366 {
1367     uint32_t retval = fdctrl->srb;
1368 
1369     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1370 
1371     return retval;
1372 }
1373 
1374 /* Digital output register : 0x02 */
1375 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1376 {
1377     uint32_t retval = fdctrl->dor;
1378 
1379     /* Selected drive */
1380     retval |= fdctrl->cur_drv;
1381     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1382 
1383     return retval;
1384 }
1385 
1386 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1387 {
1388     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1389 
1390     /* Motors */
1391     if (value & FD_DOR_MOTEN0)
1392         fdctrl->srb |= FD_SRB_MTR0;
1393     else
1394         fdctrl->srb &= ~FD_SRB_MTR0;
1395     if (value & FD_DOR_MOTEN1)
1396         fdctrl->srb |= FD_SRB_MTR1;
1397     else
1398         fdctrl->srb &= ~FD_SRB_MTR1;
1399 
1400     /* Drive */
1401     if (value & 1)
1402         fdctrl->srb |= FD_SRB_DR0;
1403     else
1404         fdctrl->srb &= ~FD_SRB_DR0;
1405 
1406     /* Reset */
1407     if (!(value & FD_DOR_nRESET)) {
1408         if (fdctrl->dor & FD_DOR_nRESET) {
1409             FLOPPY_DPRINTF("controller enter RESET state\n");
1410         }
1411     } else {
1412         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1413             FLOPPY_DPRINTF("controller out of RESET state\n");
1414             fdctrl_reset(fdctrl, 1);
1415             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1416         }
1417     }
1418     /* Selected drive */
1419     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1420 
1421     fdctrl->dor = value;
1422 }
1423 
1424 /* Tape drive register : 0x03 */
1425 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1426 {
1427     uint32_t retval = fdctrl->tdr;
1428 
1429     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1430 
1431     return retval;
1432 }
1433 
1434 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1435 {
1436     /* Reset mode */
1437     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1438         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1439         return;
1440     }
1441     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1442     /* Disk boot selection indicator */
1443     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1444     /* Tape indicators: never allow */
1445 }
1446 
1447 /* Main status register : 0x04 (read) */
1448 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1449 {
1450     uint32_t retval = fdctrl->msr;
1451 
1452     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1453     fdctrl->dor |= FD_DOR_nRESET;
1454 
1455     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1456 
1457     return retval;
1458 }
1459 
1460 /* Data select rate register : 0x04 (write) */
1461 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1462 {
1463     /* Reset mode */
1464     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1465         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1466         return;
1467     }
1468     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1469     /* Reset: autoclear */
1470     if (value & FD_DSR_SWRESET) {
1471         fdctrl->dor &= ~FD_DOR_nRESET;
1472         fdctrl_reset(fdctrl, 1);
1473         fdctrl->dor |= FD_DOR_nRESET;
1474     }
1475     if (value & FD_DSR_PWRDOWN) {
1476         fdctrl_reset(fdctrl, 1);
1477     }
1478     fdctrl->dsr = value;
1479 }
1480 
1481 /* Configuration control register: 0x07 (write) */
1482 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1483 {
1484     /* Reset mode */
1485     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1486         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1487         return;
1488     }
1489     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1490 
1491     /* Only the rate selection bits used in AT mode, and we
1492      * store those in the DSR.
1493      */
1494     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1495                   (value & FD_DSR_DRATEMASK);
1496 }
1497 
1498 static int fdctrl_media_changed(FDrive *drv)
1499 {
1500     return drv->media_changed;
1501 }
1502 
1503 /* Digital input register : 0x07 (read-only) */
1504 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1505 {
1506     uint32_t retval = 0;
1507 
1508     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1509         retval |= FD_DIR_DSKCHG;
1510     }
1511     if (retval != 0) {
1512         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1513     }
1514 
1515     return retval;
1516 }
1517 
1518 /* Clear the FIFO and update the state for receiving the next command */
1519 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1520 {
1521     fdctrl->phase = FD_PHASE_COMMAND;
1522     fdctrl->data_dir = FD_DIR_WRITE;
1523     fdctrl->data_pos = 0;
1524     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1525     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1526     fdctrl->msr |= FD_MSR_RQM;
1527 }
1528 
1529 /* Update the state to allow the guest to read out the command status.
1530  * @fifo_len is the number of result bytes to be read out. */
1531 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1532 {
1533     fdctrl->phase = FD_PHASE_RESULT;
1534     fdctrl->data_dir = FD_DIR_READ;
1535     fdctrl->data_len = fifo_len;
1536     fdctrl->data_pos = 0;
1537     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1538 }
1539 
1540 /* Set an error: unimplemented/unknown command */
1541 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1542 {
1543     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1544                   fdctrl->fifo[0]);
1545     fdctrl->fifo[0] = FD_SR0_INVCMD;
1546     fdctrl_to_result_phase(fdctrl, 1);
1547 }
1548 
1549 /* Seek to next sector
1550  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1551  * otherwise returns 1
1552  */
1553 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1554 {
1555     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1556                    cur_drv->head, cur_drv->track, cur_drv->sect,
1557                    fd_sector(cur_drv));
1558     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1559        error in fact */
1560     uint8_t new_head = cur_drv->head;
1561     uint8_t new_track = cur_drv->track;
1562     uint8_t new_sect = cur_drv->sect;
1563 
1564     int ret = 1;
1565 
1566     if (new_sect >= cur_drv->last_sect ||
1567         new_sect == fdctrl->eot) {
1568         new_sect = 1;
1569         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1570             if (new_head == 0 &&
1571                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1572                 new_head = 1;
1573             } else {
1574                 new_head = 0;
1575                 new_track++;
1576                 fdctrl->status0 |= FD_SR0_SEEK;
1577                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1578                     ret = 0;
1579                 }
1580             }
1581         } else {
1582             fdctrl->status0 |= FD_SR0_SEEK;
1583             new_track++;
1584             ret = 0;
1585         }
1586         if (ret == 1) {
1587             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1588                     new_head, new_track, new_sect, fd_sector(cur_drv));
1589         }
1590     } else {
1591         new_sect++;
1592     }
1593     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1594     return ret;
1595 }
1596 
1597 /* Callback for transfer end (stop or abort) */
1598 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1599                                  uint8_t status1, uint8_t status2)
1600 {
1601     FDrive *cur_drv;
1602     cur_drv = get_cur_drv(fdctrl);
1603 
1604     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1605     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1606     if (cur_drv->head) {
1607         fdctrl->status0 |= FD_SR0_HEAD;
1608     }
1609     fdctrl->status0 |= status0;
1610 
1611     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1612                    status0, status1, status2, fdctrl->status0);
1613     fdctrl->fifo[0] = fdctrl->status0;
1614     fdctrl->fifo[1] = status1;
1615     fdctrl->fifo[2] = status2;
1616     fdctrl->fifo[3] = cur_drv->track;
1617     fdctrl->fifo[4] = cur_drv->head;
1618     fdctrl->fifo[5] = cur_drv->sect;
1619     fdctrl->fifo[6] = FD_SECTOR_SC;
1620     fdctrl->data_dir = FD_DIR_READ;
1621     if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1622         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1623         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1624     }
1625     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1626     fdctrl->msr &= ~FD_MSR_NONDMA;
1627 
1628     fdctrl_to_result_phase(fdctrl, 7);
1629     fdctrl_raise_irq(fdctrl);
1630 }
1631 
1632 /* Prepare a data transfer (either DMA or FIFO) */
1633 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1634 {
1635     FDrive *cur_drv;
1636     uint8_t kh, kt, ks;
1637 
1638     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1639     cur_drv = get_cur_drv(fdctrl);
1640     kt = fdctrl->fifo[2];
1641     kh = fdctrl->fifo[3];
1642     ks = fdctrl->fifo[4];
1643     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1644                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1645                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1646                                   NUM_SIDES(cur_drv)));
1647     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1648     case 2:
1649         /* sect too big */
1650         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1651         fdctrl->fifo[3] = kt;
1652         fdctrl->fifo[4] = kh;
1653         fdctrl->fifo[5] = ks;
1654         return;
1655     case 3:
1656         /* track too big */
1657         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1658         fdctrl->fifo[3] = kt;
1659         fdctrl->fifo[4] = kh;
1660         fdctrl->fifo[5] = ks;
1661         return;
1662     case 4:
1663         /* No seek enabled */
1664         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1665         fdctrl->fifo[3] = kt;
1666         fdctrl->fifo[4] = kh;
1667         fdctrl->fifo[5] = ks;
1668         return;
1669     case 1:
1670         fdctrl->status0 |= FD_SR0_SEEK;
1671         break;
1672     default:
1673         break;
1674     }
1675 
1676     /* Check the data rate. If the programmed data rate does not match
1677      * the currently inserted medium, the operation has to fail. */
1678     if (fdctrl->check_media_rate &&
1679         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1680         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1681                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1682         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1683         fdctrl->fifo[3] = kt;
1684         fdctrl->fifo[4] = kh;
1685         fdctrl->fifo[5] = ks;
1686         return;
1687     }
1688 
1689     /* Set the FIFO state */
1690     fdctrl->data_dir = direction;
1691     fdctrl->data_pos = 0;
1692     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1693     if (fdctrl->fifo[0] & 0x80)
1694         fdctrl->data_state |= FD_STATE_MULTI;
1695     else
1696         fdctrl->data_state &= ~FD_STATE_MULTI;
1697     if (fdctrl->fifo[5] == 0) {
1698         fdctrl->data_len = fdctrl->fifo[8];
1699     } else {
1700         int tmp;
1701         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1702         tmp = (fdctrl->fifo[6] - ks + 1);
1703         if (fdctrl->fifo[0] & 0x80)
1704             tmp += fdctrl->fifo[6];
1705         fdctrl->data_len *= tmp;
1706     }
1707     fdctrl->eot = fdctrl->fifo[6];
1708     if (fdctrl->dor & FD_DOR_DMAEN) {
1709         IsaDmaTransferMode dma_mode;
1710         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1711         bool dma_mode_ok;
1712         /* DMA transfer are enabled. Check if DMA channel is well programmed */
1713         dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1714         FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1715                        dma_mode, direction,
1716                        (128 << fdctrl->fifo[5]) *
1717                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1718         switch (direction) {
1719         case FD_DIR_SCANE:
1720         case FD_DIR_SCANL:
1721         case FD_DIR_SCANH:
1722             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1723             break;
1724         case FD_DIR_WRITE:
1725             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1726             break;
1727         case FD_DIR_READ:
1728             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1729             break;
1730         case FD_DIR_VERIFY:
1731             dma_mode_ok = true;
1732             break;
1733         default:
1734             dma_mode_ok = false;
1735             break;
1736         }
1737         if (dma_mode_ok) {
1738             /* No access is allowed until DMA transfer has completed */
1739             fdctrl->msr &= ~FD_MSR_RQM;
1740             if (direction != FD_DIR_VERIFY) {
1741                 /* Now, we just have to wait for the DMA controller to
1742                  * recall us...
1743                  */
1744                 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1745                 k->schedule(fdctrl->dma);
1746             } else {
1747                 /* Start transfer */
1748                 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1749                                         fdctrl->data_len);
1750             }
1751             return;
1752         } else {
1753             FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1754                            direction);
1755         }
1756     }
1757     FLOPPY_DPRINTF("start non-DMA transfer\n");
1758     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1759     if (direction != FD_DIR_WRITE)
1760         fdctrl->msr |= FD_MSR_DIO;
1761     /* IO based transfer: calculate len */
1762     fdctrl_raise_irq(fdctrl);
1763 }
1764 
1765 /* Prepare a transfer of deleted data */
1766 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1767 {
1768     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1769 
1770     /* We don't handle deleted data,
1771      * so we don't return *ANYTHING*
1772      */
1773     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1774 }
1775 
1776 /* handlers for DMA transfers */
1777 static int fdctrl_transfer_handler (void *opaque, int nchan,
1778                                     int dma_pos, int dma_len)
1779 {
1780     FDCtrl *fdctrl;
1781     FDrive *cur_drv;
1782     int len, start_pos, rel_pos;
1783     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1784     IsaDmaClass *k;
1785 
1786     fdctrl = opaque;
1787     if (fdctrl->msr & FD_MSR_RQM) {
1788         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1789         return 0;
1790     }
1791     k = ISADMA_GET_CLASS(fdctrl->dma);
1792     cur_drv = get_cur_drv(fdctrl);
1793     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1794         fdctrl->data_dir == FD_DIR_SCANH)
1795         status2 = FD_SR2_SNS;
1796     if (dma_len > fdctrl->data_len)
1797         dma_len = fdctrl->data_len;
1798     if (cur_drv->blk == NULL) {
1799         if (fdctrl->data_dir == FD_DIR_WRITE)
1800             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1801         else
1802             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1803         len = 0;
1804         goto transfer_error;
1805     }
1806     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1807     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1808         len = dma_len - fdctrl->data_pos;
1809         if (len + rel_pos > FD_SECTOR_LEN)
1810             len = FD_SECTOR_LEN - rel_pos;
1811         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1812                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1813                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1814                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1815                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1816         if (fdctrl->data_dir != FD_DIR_WRITE ||
1817             len < FD_SECTOR_LEN || rel_pos != 0) {
1818             /* READ & SCAN commands and realign to a sector for WRITE */
1819             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1820                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1821                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1822                                fd_sector(cur_drv));
1823                 /* Sure, image size is too small... */
1824                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1825             }
1826         }
1827         switch (fdctrl->data_dir) {
1828         case FD_DIR_READ:
1829             /* READ commands */
1830             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1831                             fdctrl->data_pos, len);
1832             break;
1833         case FD_DIR_WRITE:
1834             /* WRITE commands */
1835             if (cur_drv->ro) {
1836                 /* Handle readonly medium early, no need to do DMA, touch the
1837                  * LED or attempt any writes. A real floppy doesn't attempt
1838                  * to write to readonly media either. */
1839                 fdctrl_stop_transfer(fdctrl,
1840                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1841                                      0x00);
1842                 goto transfer_error;
1843             }
1844 
1845             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1846                            fdctrl->data_pos, len);
1847             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1848                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1849                 FLOPPY_DPRINTF("error writing sector %d\n",
1850                                fd_sector(cur_drv));
1851                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1852                 goto transfer_error;
1853             }
1854             break;
1855         case FD_DIR_VERIFY:
1856             /* VERIFY commands */
1857             break;
1858         default:
1859             /* SCAN commands */
1860             {
1861                 uint8_t tmpbuf[FD_SECTOR_LEN];
1862                 int ret;
1863                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1864                                len);
1865                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1866                 if (ret == 0) {
1867                     status2 = FD_SR2_SEH;
1868                     goto end_transfer;
1869                 }
1870                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1871                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1872                     status2 = 0x00;
1873                     goto end_transfer;
1874                 }
1875             }
1876             break;
1877         }
1878         fdctrl->data_pos += len;
1879         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1880         if (rel_pos == 0) {
1881             /* Seek to next sector */
1882             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1883                 break;
1884         }
1885     }
1886  end_transfer:
1887     len = fdctrl->data_pos - start_pos;
1888     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1889                    fdctrl->data_pos, len, fdctrl->data_len);
1890     if (fdctrl->data_dir == FD_DIR_SCANE ||
1891         fdctrl->data_dir == FD_DIR_SCANL ||
1892         fdctrl->data_dir == FD_DIR_SCANH)
1893         status2 = FD_SR2_SEH;
1894     fdctrl->data_len -= len;
1895     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1896  transfer_error:
1897 
1898     return len;
1899 }
1900 
1901 /* Data register : 0x05 */
1902 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1903 {
1904     FDrive *cur_drv;
1905     uint32_t retval = 0;
1906     uint32_t pos;
1907 
1908     cur_drv = get_cur_drv(fdctrl);
1909     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1910     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1911         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1912         return 0;
1913     }
1914 
1915     /* If data_len spans multiple sectors, the current position in the FIFO
1916      * wraps around while fdctrl->data_pos is the real position in the whole
1917      * request. */
1918     pos = fdctrl->data_pos;
1919     pos %= FD_SECTOR_LEN;
1920 
1921     switch (fdctrl->phase) {
1922     case FD_PHASE_EXECUTION:
1923         assert(fdctrl->msr & FD_MSR_NONDMA);
1924         if (pos == 0) {
1925             if (fdctrl->data_pos != 0)
1926                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1927                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1928                                    fd_sector(cur_drv));
1929                     return 0;
1930                 }
1931             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1932                           BDRV_SECTOR_SIZE)
1933                 < 0) {
1934                 FLOPPY_DPRINTF("error getting sector %d\n",
1935                                fd_sector(cur_drv));
1936                 /* Sure, image size is too small... */
1937                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1938             }
1939         }
1940 
1941         if (++fdctrl->data_pos == fdctrl->data_len) {
1942             fdctrl->msr &= ~FD_MSR_RQM;
1943             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1944         }
1945         break;
1946 
1947     case FD_PHASE_RESULT:
1948         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1949         if (++fdctrl->data_pos == fdctrl->data_len) {
1950             fdctrl->msr &= ~FD_MSR_RQM;
1951             fdctrl_to_command_phase(fdctrl);
1952             fdctrl_reset_irq(fdctrl);
1953         }
1954         break;
1955 
1956     case FD_PHASE_COMMAND:
1957     default:
1958         abort();
1959     }
1960 
1961     retval = fdctrl->fifo[pos];
1962     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1963 
1964     return retval;
1965 }
1966 
1967 static void fdctrl_format_sector(FDCtrl *fdctrl)
1968 {
1969     FDrive *cur_drv;
1970     uint8_t kh, kt, ks;
1971 
1972     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1973     cur_drv = get_cur_drv(fdctrl);
1974     kt = fdctrl->fifo[6];
1975     kh = fdctrl->fifo[7];
1976     ks = fdctrl->fifo[8];
1977     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1978                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1979                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1980                                   NUM_SIDES(cur_drv)));
1981     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1982     case 2:
1983         /* sect too big */
1984         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1985         fdctrl->fifo[3] = kt;
1986         fdctrl->fifo[4] = kh;
1987         fdctrl->fifo[5] = ks;
1988         return;
1989     case 3:
1990         /* track too big */
1991         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1992         fdctrl->fifo[3] = kt;
1993         fdctrl->fifo[4] = kh;
1994         fdctrl->fifo[5] = ks;
1995         return;
1996     case 4:
1997         /* No seek enabled */
1998         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1999         fdctrl->fifo[3] = kt;
2000         fdctrl->fifo[4] = kh;
2001         fdctrl->fifo[5] = ks;
2002         return;
2003     case 1:
2004         fdctrl->status0 |= FD_SR0_SEEK;
2005         break;
2006     default:
2007         break;
2008     }
2009     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2010     if (cur_drv->blk == NULL ||
2011         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2012                    BDRV_SECTOR_SIZE, 0) < 0) {
2013         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2014         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2015     } else {
2016         if (cur_drv->sect == cur_drv->last_sect) {
2017             fdctrl->data_state &= ~FD_STATE_FORMAT;
2018             /* Last sector done */
2019             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2020         } else {
2021             /* More to do */
2022             fdctrl->data_pos = 0;
2023             fdctrl->data_len = 4;
2024         }
2025     }
2026 }
2027 
2028 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2029 {
2030     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2031     fdctrl->fifo[0] = fdctrl->lock << 4;
2032     fdctrl_to_result_phase(fdctrl, 1);
2033 }
2034 
2035 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2036 {
2037     FDrive *cur_drv = get_cur_drv(fdctrl);
2038 
2039     /* Drives position */
2040     fdctrl->fifo[0] = drv0(fdctrl)->track;
2041     fdctrl->fifo[1] = drv1(fdctrl)->track;
2042 #if MAX_FD == 4
2043     fdctrl->fifo[2] = drv2(fdctrl)->track;
2044     fdctrl->fifo[3] = drv3(fdctrl)->track;
2045 #else
2046     fdctrl->fifo[2] = 0;
2047     fdctrl->fifo[3] = 0;
2048 #endif
2049     /* timers */
2050     fdctrl->fifo[4] = fdctrl->timer0;
2051     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2052     fdctrl->fifo[6] = cur_drv->last_sect;
2053     fdctrl->fifo[7] = (fdctrl->lock << 7) |
2054         (cur_drv->perpendicular << 2);
2055     fdctrl->fifo[8] = fdctrl->config;
2056     fdctrl->fifo[9] = fdctrl->precomp_trk;
2057     fdctrl_to_result_phase(fdctrl, 10);
2058 }
2059 
2060 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2061 {
2062     /* Controller's version */
2063     fdctrl->fifo[0] = fdctrl->version;
2064     fdctrl_to_result_phase(fdctrl, 1);
2065 }
2066 
2067 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2068 {
2069     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2070     fdctrl_to_result_phase(fdctrl, 1);
2071 }
2072 
2073 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2074 {
2075     FDrive *cur_drv = get_cur_drv(fdctrl);
2076 
2077     /* Drives position */
2078     drv0(fdctrl)->track = fdctrl->fifo[3];
2079     drv1(fdctrl)->track = fdctrl->fifo[4];
2080 #if MAX_FD == 4
2081     drv2(fdctrl)->track = fdctrl->fifo[5];
2082     drv3(fdctrl)->track = fdctrl->fifo[6];
2083 #endif
2084     /* timers */
2085     fdctrl->timer0 = fdctrl->fifo[7];
2086     fdctrl->timer1 = fdctrl->fifo[8];
2087     cur_drv->last_sect = fdctrl->fifo[9];
2088     fdctrl->lock = fdctrl->fifo[10] >> 7;
2089     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2090     fdctrl->config = fdctrl->fifo[11];
2091     fdctrl->precomp_trk = fdctrl->fifo[12];
2092     fdctrl->pwrd = fdctrl->fifo[13];
2093     fdctrl_to_command_phase(fdctrl);
2094 }
2095 
2096 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2097 {
2098     FDrive *cur_drv = get_cur_drv(fdctrl);
2099 
2100     fdctrl->fifo[0] = 0;
2101     fdctrl->fifo[1] = 0;
2102     /* Drives position */
2103     fdctrl->fifo[2] = drv0(fdctrl)->track;
2104     fdctrl->fifo[3] = drv1(fdctrl)->track;
2105 #if MAX_FD == 4
2106     fdctrl->fifo[4] = drv2(fdctrl)->track;
2107     fdctrl->fifo[5] = drv3(fdctrl)->track;
2108 #else
2109     fdctrl->fifo[4] = 0;
2110     fdctrl->fifo[5] = 0;
2111 #endif
2112     /* timers */
2113     fdctrl->fifo[6] = fdctrl->timer0;
2114     fdctrl->fifo[7] = fdctrl->timer1;
2115     fdctrl->fifo[8] = cur_drv->last_sect;
2116     fdctrl->fifo[9] = (fdctrl->lock << 7) |
2117         (cur_drv->perpendicular << 2);
2118     fdctrl->fifo[10] = fdctrl->config;
2119     fdctrl->fifo[11] = fdctrl->precomp_trk;
2120     fdctrl->fifo[12] = fdctrl->pwrd;
2121     fdctrl->fifo[13] = 0;
2122     fdctrl->fifo[14] = 0;
2123     fdctrl_to_result_phase(fdctrl, 15);
2124 }
2125 
2126 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2127 {
2128     FDrive *cur_drv = get_cur_drv(fdctrl);
2129 
2130     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2131     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2132              (NANOSECONDS_PER_SECOND / 50));
2133 }
2134 
2135 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2136 {
2137     FDrive *cur_drv;
2138 
2139     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2140     cur_drv = get_cur_drv(fdctrl);
2141     fdctrl->data_state |= FD_STATE_FORMAT;
2142     if (fdctrl->fifo[0] & 0x80)
2143         fdctrl->data_state |= FD_STATE_MULTI;
2144     else
2145         fdctrl->data_state &= ~FD_STATE_MULTI;
2146     cur_drv->bps =
2147         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2148 #if 0
2149     cur_drv->last_sect =
2150         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2151         fdctrl->fifo[3] / 2;
2152 #else
2153     cur_drv->last_sect = fdctrl->fifo[3];
2154 #endif
2155     /* TODO: implement format using DMA expected by the Bochs BIOS
2156      * and Linux fdformat (read 3 bytes per sector via DMA and fill
2157      * the sector with the specified fill byte
2158      */
2159     fdctrl->data_state &= ~FD_STATE_FORMAT;
2160     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2161 }
2162 
2163 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2164 {
2165     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2166     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2167     if (fdctrl->fifo[2] & 1)
2168         fdctrl->dor &= ~FD_DOR_DMAEN;
2169     else
2170         fdctrl->dor |= FD_DOR_DMAEN;
2171     /* No result back */
2172     fdctrl_to_command_phase(fdctrl);
2173 }
2174 
2175 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2176 {
2177     FDrive *cur_drv;
2178 
2179     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2180     cur_drv = get_cur_drv(fdctrl);
2181     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2182     /* 1 Byte status back */
2183     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2184         (cur_drv->track == 0 ? 0x10 : 0x00) |
2185         (cur_drv->head << 2) |
2186         GET_CUR_DRV(fdctrl) |
2187         0x28;
2188     fdctrl_to_result_phase(fdctrl, 1);
2189 }
2190 
2191 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2192 {
2193     FDrive *cur_drv;
2194 
2195     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2196     cur_drv = get_cur_drv(fdctrl);
2197     fd_recalibrate(cur_drv);
2198     fdctrl_to_command_phase(fdctrl);
2199     /* Raise Interrupt */
2200     fdctrl->status0 |= FD_SR0_SEEK;
2201     fdctrl_raise_irq(fdctrl);
2202 }
2203 
2204 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2205 {
2206     FDrive *cur_drv = get_cur_drv(fdctrl);
2207 
2208     if (fdctrl->reset_sensei > 0) {
2209         fdctrl->fifo[0] =
2210             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2211         fdctrl->reset_sensei--;
2212     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2213         fdctrl->fifo[0] = FD_SR0_INVCMD;
2214         fdctrl_to_result_phase(fdctrl, 1);
2215         return;
2216     } else {
2217         fdctrl->fifo[0] =
2218                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2219                 | GET_CUR_DRV(fdctrl);
2220     }
2221 
2222     fdctrl->fifo[1] = cur_drv->track;
2223     fdctrl_to_result_phase(fdctrl, 2);
2224     fdctrl_reset_irq(fdctrl);
2225     fdctrl->status0 = FD_SR0_RDYCHG;
2226 }
2227 
2228 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2229 {
2230     FDrive *cur_drv;
2231 
2232     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2233     cur_drv = get_cur_drv(fdctrl);
2234     fdctrl_to_command_phase(fdctrl);
2235     /* The seek command just sends step pulses to the drive and doesn't care if
2236      * there is a medium inserted of if it's banging the head against the drive.
2237      */
2238     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2239     /* Raise Interrupt */
2240     fdctrl->status0 |= FD_SR0_SEEK;
2241     fdctrl_raise_irq(fdctrl);
2242 }
2243 
2244 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2245 {
2246     FDrive *cur_drv = get_cur_drv(fdctrl);
2247 
2248     if (fdctrl->fifo[1] & 0x80)
2249         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2250     /* No result back */
2251     fdctrl_to_command_phase(fdctrl);
2252 }
2253 
2254 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2255 {
2256     fdctrl->config = fdctrl->fifo[2];
2257     fdctrl->precomp_trk =  fdctrl->fifo[3];
2258     /* No result back */
2259     fdctrl_to_command_phase(fdctrl);
2260 }
2261 
2262 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2263 {
2264     fdctrl->pwrd = fdctrl->fifo[1];
2265     fdctrl->fifo[0] = fdctrl->fifo[1];
2266     fdctrl_to_result_phase(fdctrl, 1);
2267 }
2268 
2269 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2270 {
2271     /* No result back */
2272     fdctrl_to_command_phase(fdctrl);
2273 }
2274 
2275 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2276 {
2277     FDrive *cur_drv = get_cur_drv(fdctrl);
2278     uint32_t pos;
2279 
2280     pos = fdctrl->data_pos - 1;
2281     pos %= FD_SECTOR_LEN;
2282     if (fdctrl->fifo[pos] & 0x80) {
2283         /* Command parameters done */
2284         if (fdctrl->fifo[pos] & 0x40) {
2285             fdctrl->fifo[0] = fdctrl->fifo[1];
2286             fdctrl->fifo[2] = 0;
2287             fdctrl->fifo[3] = 0;
2288             fdctrl_to_result_phase(fdctrl, 4);
2289         } else {
2290             fdctrl_to_command_phase(fdctrl);
2291         }
2292     } else if (fdctrl->data_len > 7) {
2293         /* ERROR */
2294         fdctrl->fifo[0] = 0x80 |
2295             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2296         fdctrl_to_result_phase(fdctrl, 1);
2297     }
2298 }
2299 
2300 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2301 {
2302     FDrive *cur_drv;
2303 
2304     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2305     cur_drv = get_cur_drv(fdctrl);
2306     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2307         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2308                 cur_drv->sect, 1);
2309     } else {
2310         fd_seek(cur_drv, cur_drv->head,
2311                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2312     }
2313     fdctrl_to_command_phase(fdctrl);
2314     /* Raise Interrupt */
2315     fdctrl->status0 |= FD_SR0_SEEK;
2316     fdctrl_raise_irq(fdctrl);
2317 }
2318 
2319 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2320 {
2321     FDrive *cur_drv;
2322 
2323     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2324     cur_drv = get_cur_drv(fdctrl);
2325     if (fdctrl->fifo[2] > cur_drv->track) {
2326         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2327     } else {
2328         fd_seek(cur_drv, cur_drv->head,
2329                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2330     }
2331     fdctrl_to_command_phase(fdctrl);
2332     /* Raise Interrupt */
2333     fdctrl->status0 |= FD_SR0_SEEK;
2334     fdctrl_raise_irq(fdctrl);
2335 }
2336 
2337 /*
2338  * Handlers for the execution phase of each command
2339  */
2340 typedef struct FDCtrlCommand {
2341     uint8_t value;
2342     uint8_t mask;
2343     const char* name;
2344     int parameters;
2345     void (*handler)(FDCtrl *fdctrl, int direction);
2346     int direction;
2347 } FDCtrlCommand;
2348 
2349 static const FDCtrlCommand handlers[] = {
2350     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2351     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2352     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2353     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2354     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2355     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2356     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2357     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2358     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2359     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2360     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2361     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2362     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2363     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2364     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2365     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2366     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2367     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2368     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2369     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2370     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2371     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2372     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2373     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2374     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2375     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2376     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2377     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2378     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2379     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2380     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2381     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2382 };
2383 /* Associate command to an index in the 'handlers' array */
2384 static uint8_t command_to_handler[256];
2385 
2386 static const FDCtrlCommand *get_command(uint8_t cmd)
2387 {
2388     int idx;
2389 
2390     idx = command_to_handler[cmd];
2391     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2392     return &handlers[idx];
2393 }
2394 
2395 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2396 {
2397     FDrive *cur_drv;
2398     const FDCtrlCommand *cmd;
2399     uint32_t pos;
2400 
2401     /* Reset mode */
2402     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2403         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2404         return;
2405     }
2406     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2407         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2408         return;
2409     }
2410     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2411 
2412     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2413 
2414     /* If data_len spans multiple sectors, the current position in the FIFO
2415      * wraps around while fdctrl->data_pos is the real position in the whole
2416      * request. */
2417     pos = fdctrl->data_pos++;
2418     pos %= FD_SECTOR_LEN;
2419     fdctrl->fifo[pos] = value;
2420 
2421     if (fdctrl->data_pos == fdctrl->data_len) {
2422         fdctrl->msr &= ~FD_MSR_RQM;
2423     }
2424 
2425     switch (fdctrl->phase) {
2426     case FD_PHASE_EXECUTION:
2427         /* For DMA requests, RQM should be cleared during execution phase, so
2428          * we would have errored out above. */
2429         assert(fdctrl->msr & FD_MSR_NONDMA);
2430 
2431         /* FIFO data write */
2432         if (pos == FD_SECTOR_LEN - 1 ||
2433             fdctrl->data_pos == fdctrl->data_len) {
2434             cur_drv = get_cur_drv(fdctrl);
2435             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2436                            BDRV_SECTOR_SIZE, 0) < 0) {
2437                 FLOPPY_DPRINTF("error writing sector %d\n",
2438                                fd_sector(cur_drv));
2439                 break;
2440             }
2441             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2442                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2443                                fd_sector(cur_drv));
2444                 break;
2445             }
2446         }
2447 
2448         /* Switch to result phase when done with the transfer */
2449         if (fdctrl->data_pos == fdctrl->data_len) {
2450             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2451         }
2452         break;
2453 
2454     case FD_PHASE_COMMAND:
2455         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2456         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2457 
2458         if (pos == 0) {
2459             /* The first byte specifies the command. Now we start reading
2460              * as many parameters as this command requires. */
2461             cmd = get_command(value);
2462             fdctrl->data_len = cmd->parameters + 1;
2463             if (cmd->parameters) {
2464                 fdctrl->msr |= FD_MSR_RQM;
2465             }
2466             fdctrl->msr |= FD_MSR_CMDBUSY;
2467         }
2468 
2469         if (fdctrl->data_pos == fdctrl->data_len) {
2470             /* We have all parameters now, execute the command */
2471             fdctrl->phase = FD_PHASE_EXECUTION;
2472 
2473             if (fdctrl->data_state & FD_STATE_FORMAT) {
2474                 fdctrl_format_sector(fdctrl);
2475                 break;
2476             }
2477 
2478             cmd = get_command(fdctrl->fifo[0]);
2479             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2480             cmd->handler(fdctrl, cmd->direction);
2481         }
2482         break;
2483 
2484     case FD_PHASE_RESULT:
2485     default:
2486         abort();
2487     }
2488 }
2489 
2490 static void fdctrl_result_timer(void *opaque)
2491 {
2492     FDCtrl *fdctrl = opaque;
2493     FDrive *cur_drv = get_cur_drv(fdctrl);
2494 
2495     /* Pretend we are spinning.
2496      * This is needed for Coherent, which uses READ ID to check for
2497      * sector interleaving.
2498      */
2499     if (cur_drv->last_sect != 0) {
2500         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2501     }
2502     /* READ_ID can't automatically succeed! */
2503     if (fdctrl->check_media_rate &&
2504         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2505         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2506                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2507         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2508     } else {
2509         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2510     }
2511 }
2512 
2513 /* Init functions */
2514 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2515                                   Error **errp)
2516 {
2517     unsigned int i;
2518     FDrive *drive;
2519     DeviceState *dev;
2520     BlockBackend *blk;
2521     Error *local_err = NULL;
2522 
2523     for (i = 0; i < MAX_FD; i++) {
2524         drive = &fdctrl->drives[i];
2525         drive->fdctrl = fdctrl;
2526 
2527         /* If the drive is not present, we skip creating the qdev device, but
2528          * still have to initialise the controller. */
2529         blk = fdctrl->qdev_for_drives[i].blk;
2530         if (!blk) {
2531             fd_init(drive);
2532             fd_revalidate(drive);
2533             continue;
2534         }
2535 
2536         dev = qdev_create(&fdctrl->bus.bus, "floppy");
2537         qdev_prop_set_uint32(dev, "unit", i);
2538         qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2539 
2540         blk_ref(blk);
2541         blk_detach_dev(blk, fdc_dev);
2542         fdctrl->qdev_for_drives[i].blk = NULL;
2543         qdev_prop_set_drive(dev, "drive", blk, &local_err);
2544         blk_unref(blk);
2545 
2546         if (local_err) {
2547             error_propagate(errp, local_err);
2548             return;
2549         }
2550 
2551         object_property_set_bool(OBJECT(dev), true, "realized", &local_err);
2552         if (local_err) {
2553             error_propagate(errp, local_err);
2554             return;
2555         }
2556     }
2557 }
2558 
2559 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2560 {
2561     DeviceState *dev;
2562     ISADevice *isadev;
2563 
2564     isadev = isa_try_create(bus, TYPE_ISA_FDC);
2565     if (!isadev) {
2566         return NULL;
2567     }
2568     dev = DEVICE(isadev);
2569 
2570     if (fds[0]) {
2571         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2572                             &error_fatal);
2573     }
2574     if (fds[1]) {
2575         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2576                             &error_fatal);
2577     }
2578     qdev_init_nofail(dev);
2579 
2580     return isadev;
2581 }
2582 
2583 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2584                         hwaddr mmio_base, DriveInfo **fds)
2585 {
2586     FDCtrl *fdctrl;
2587     DeviceState *dev;
2588     SysBusDevice *sbd;
2589     FDCtrlSysBus *sys;
2590 
2591     dev = qdev_create(NULL, "sysbus-fdc");
2592     sys = SYSBUS_FDC(dev);
2593     fdctrl = &sys->state;
2594     fdctrl->dma_chann = dma_chann; /* FIXME */
2595     if (fds[0]) {
2596         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2597                             &error_fatal);
2598     }
2599     if (fds[1]) {
2600         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2601                             &error_fatal);
2602     }
2603     qdev_init_nofail(dev);
2604     sbd = SYS_BUS_DEVICE(dev);
2605     sysbus_connect_irq(sbd, 0, irq);
2606     sysbus_mmio_map(sbd, 0, mmio_base);
2607 }
2608 
2609 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2610                        DriveInfo **fds, qemu_irq *fdc_tc)
2611 {
2612     DeviceState *dev;
2613     FDCtrlSysBus *sys;
2614 
2615     dev = qdev_create(NULL, "SUNW,fdtwo");
2616     if (fds[0]) {
2617         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2618                             &error_fatal);
2619     }
2620     qdev_init_nofail(dev);
2621     sys = SYSBUS_FDC(dev);
2622     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2623     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2624     *fdc_tc = qdev_get_gpio_in(dev, 0);
2625 }
2626 
2627 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2628                                   Error **errp)
2629 {
2630     int i, j;
2631     static int command_tables_inited = 0;
2632 
2633     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2634         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2635     }
2636 
2637     /* Fill 'command_to_handler' lookup table */
2638     if (!command_tables_inited) {
2639         command_tables_inited = 1;
2640         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2641             for (j = 0; j < sizeof(command_to_handler); j++) {
2642                 if ((j & handlers[i].mask) == handlers[i].value) {
2643                     command_to_handler[j] = i;
2644                 }
2645             }
2646         }
2647     }
2648 
2649     FLOPPY_DPRINTF("init controller\n");
2650     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2651     fdctrl->fifo_size = 512;
2652     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2653                                              fdctrl_result_timer, fdctrl);
2654 
2655     fdctrl->version = 0x90; /* Intel 82078 controller */
2656     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2657     fdctrl->num_floppies = MAX_FD;
2658 
2659     if (fdctrl->dma_chann != -1) {
2660         IsaDmaClass *k;
2661         assert(fdctrl->dma);
2662         k = ISADMA_GET_CLASS(fdctrl->dma);
2663         k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2664                             &fdctrl_transfer_handler, fdctrl);
2665     }
2666 
2667     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2668     fdctrl_connect_drives(fdctrl, dev, errp);
2669 }
2670 
2671 static const MemoryRegionPortio fdc_portio_list[] = {
2672     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2673     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2674     PORTIO_END_OF_LIST(),
2675 };
2676 
2677 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2678 {
2679     ISADevice *isadev = ISA_DEVICE(dev);
2680     FDCtrlISABus *isa = ISA_FDC(dev);
2681     FDCtrl *fdctrl = &isa->state;
2682     Error *err = NULL;
2683 
2684     isa_register_portio_list(isadev, &fdctrl->portio_list,
2685                              isa->iobase, fdc_portio_list, fdctrl,
2686                              "fdc");
2687 
2688     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2689     fdctrl->dma_chann = isa->dma;
2690     if (fdctrl->dma_chann != -1) {
2691         fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2692         if (!fdctrl->dma) {
2693             error_setg(errp, "ISA controller does not support DMA");
2694             return;
2695         }
2696     }
2697 
2698     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2699     fdctrl_realize_common(dev, fdctrl, &err);
2700     if (err != NULL) {
2701         error_propagate(errp, err);
2702         return;
2703     }
2704 }
2705 
2706 static void sysbus_fdc_initfn(Object *obj)
2707 {
2708     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2709     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2710     FDCtrl *fdctrl = &sys->state;
2711 
2712     fdctrl->dma_chann = -1;
2713 
2714     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2715                           "fdc", 0x08);
2716     sysbus_init_mmio(sbd, &fdctrl->iomem);
2717 }
2718 
2719 static void sun4m_fdc_initfn(Object *obj)
2720 {
2721     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2722     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2723     FDCtrl *fdctrl = &sys->state;
2724 
2725     fdctrl->dma_chann = -1;
2726 
2727     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2728                           fdctrl, "fdctrl", 0x08);
2729     sysbus_init_mmio(sbd, &fdctrl->iomem);
2730 }
2731 
2732 static void sysbus_fdc_common_initfn(Object *obj)
2733 {
2734     DeviceState *dev = DEVICE(obj);
2735     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2736     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2737     FDCtrl *fdctrl = &sys->state;
2738 
2739     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2740 
2741     sysbus_init_irq(sbd, &fdctrl->irq);
2742     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2743 }
2744 
2745 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2746 {
2747     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2748     FDCtrl *fdctrl = &sys->state;
2749 
2750     fdctrl_realize_common(dev, fdctrl, errp);
2751 }
2752 
2753 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2754 {
2755     FDCtrlISABus *isa = ISA_FDC(fdc);
2756 
2757     return isa->state.drives[i].drive;
2758 }
2759 
2760 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2761                                uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2762 {
2763     const FDFormat *fdf;
2764 
2765     *maxc = *maxh = *maxs = 0;
2766     for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2767         if (fdf->drive != type) {
2768             continue;
2769         }
2770         if (*maxc < fdf->max_track) {
2771             *maxc = fdf->max_track;
2772         }
2773         if (*maxh < fdf->max_head) {
2774             *maxh = fdf->max_head;
2775         }
2776         if (*maxs < fdf->last_sect) {
2777             *maxs = fdf->last_sect;
2778         }
2779     }
2780     (*maxc)--;
2781 }
2782 
2783 static const VMStateDescription vmstate_isa_fdc ={
2784     .name = "fdc",
2785     .version_id = 2,
2786     .minimum_version_id = 2,
2787     .fields = (VMStateField[]) {
2788         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2789         VMSTATE_END_OF_LIST()
2790     }
2791 };
2792 
2793 static Property isa_fdc_properties[] = {
2794     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2795     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2796     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2797     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2798     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2799     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2800                     0, true),
2801     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2802                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2803                         FloppyDriveType),
2804     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2805                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2806                         FloppyDriveType),
2807     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2808                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2809                         FloppyDriveType),
2810     DEFINE_PROP_END_OF_LIST(),
2811 };
2812 
2813 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2814 {
2815     DeviceClass *dc = DEVICE_CLASS(klass);
2816 
2817     dc->realize = isabus_fdc_realize;
2818     dc->fw_name = "fdc";
2819     dc->reset = fdctrl_external_reset_isa;
2820     dc->vmsd = &vmstate_isa_fdc;
2821     dc->props = isa_fdc_properties;
2822     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2823 }
2824 
2825 static void isabus_fdc_instance_init(Object *obj)
2826 {
2827     FDCtrlISABus *isa = ISA_FDC(obj);
2828 
2829     device_add_bootindex_property(obj, &isa->bootindexA,
2830                                   "bootindexA", "/floppy@0",
2831                                   DEVICE(obj), NULL);
2832     device_add_bootindex_property(obj, &isa->bootindexB,
2833                                   "bootindexB", "/floppy@1",
2834                                   DEVICE(obj), NULL);
2835 }
2836 
2837 static const TypeInfo isa_fdc_info = {
2838     .name          = TYPE_ISA_FDC,
2839     .parent        = TYPE_ISA_DEVICE,
2840     .instance_size = sizeof(FDCtrlISABus),
2841     .class_init    = isabus_fdc_class_init,
2842     .instance_init = isabus_fdc_instance_init,
2843 };
2844 
2845 static const VMStateDescription vmstate_sysbus_fdc ={
2846     .name = "fdc",
2847     .version_id = 2,
2848     .minimum_version_id = 2,
2849     .fields = (VMStateField[]) {
2850         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2851         VMSTATE_END_OF_LIST()
2852     }
2853 };
2854 
2855 static Property sysbus_fdc_properties[] = {
2856     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2857     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2858     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2859                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2860                         FloppyDriveType),
2861     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2862                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2863                         FloppyDriveType),
2864     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2865                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2866                         FloppyDriveType),
2867     DEFINE_PROP_END_OF_LIST(),
2868 };
2869 
2870 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2871 {
2872     DeviceClass *dc = DEVICE_CLASS(klass);
2873 
2874     dc->props = sysbus_fdc_properties;
2875     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2876 }
2877 
2878 static const TypeInfo sysbus_fdc_info = {
2879     .name          = "sysbus-fdc",
2880     .parent        = TYPE_SYSBUS_FDC,
2881     .instance_init = sysbus_fdc_initfn,
2882     .class_init    = sysbus_fdc_class_init,
2883 };
2884 
2885 static Property sun4m_fdc_properties[] = {
2886     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2887     DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2888                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2889                         FloppyDriveType),
2890     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2891                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2892                         FloppyDriveType),
2893     DEFINE_PROP_END_OF_LIST(),
2894 };
2895 
2896 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2897 {
2898     DeviceClass *dc = DEVICE_CLASS(klass);
2899 
2900     dc->props = sun4m_fdc_properties;
2901     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2902 }
2903 
2904 static const TypeInfo sun4m_fdc_info = {
2905     .name          = "SUNW,fdtwo",
2906     .parent        = TYPE_SYSBUS_FDC,
2907     .instance_init = sun4m_fdc_initfn,
2908     .class_init    = sun4m_fdc_class_init,
2909 };
2910 
2911 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2912 {
2913     DeviceClass *dc = DEVICE_CLASS(klass);
2914 
2915     dc->realize = sysbus_fdc_common_realize;
2916     dc->reset = fdctrl_external_reset_sysbus;
2917     dc->vmsd = &vmstate_sysbus_fdc;
2918 }
2919 
2920 static const TypeInfo sysbus_fdc_type_info = {
2921     .name          = TYPE_SYSBUS_FDC,
2922     .parent        = TYPE_SYS_BUS_DEVICE,
2923     .instance_size = sizeof(FDCtrlSysBus),
2924     .instance_init = sysbus_fdc_common_initfn,
2925     .abstract      = true,
2926     .class_init    = sysbus_fdc_common_class_init,
2927 };
2928 
2929 static void fdc_register_types(void)
2930 {
2931     type_register_static(&isa_fdc_info);
2932     type_register_static(&sysbus_fdc_type_info);
2933     type_register_static(&sysbus_fdc_info);
2934     type_register_static(&sun4m_fdc_info);
2935     type_register_static(&floppy_bus_info);
2936     type_register_static(&floppy_drive_info);
2937 }
2938 
2939 type_init(fdc_register_types)
2940