xref: /openbmc/qemu/hw/block/fdc.c (revision 354908ce)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/irq.h"
36 #include "hw/isa/isa.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/sysbus.h"
39 #include "migration/vmstate.h"
40 #include "hw/block/block.h"
41 #include "sysemu/block-backend.h"
42 #include "sysemu/blockdev.h"
43 #include "sysemu/sysemu.h"
44 #include "qemu/log.h"
45 #include "qemu/main-loop.h"
46 #include "qemu/module.h"
47 #include "trace.h"
48 
49 /********************************************************/
50 /* debug Floppy devices */
51 
52 #define DEBUG_FLOPPY 0
53 
54 #define FLOPPY_DPRINTF(fmt, ...)                                \
55     do {                                                        \
56         if (DEBUG_FLOPPY) {                                     \
57             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
58         }                                                       \
59     } while (0)
60 
61 
62 /********************************************************/
63 /* qdev floppy bus                                      */
64 
65 #define TYPE_FLOPPY_BUS "floppy-bus"
66 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
67 
68 typedef struct FDCtrl FDCtrl;
69 typedef struct FDrive FDrive;
70 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
71 
72 typedef struct FloppyBus {
73     BusState bus;
74     FDCtrl *fdc;
75 } FloppyBus;
76 
77 static const TypeInfo floppy_bus_info = {
78     .name = TYPE_FLOPPY_BUS,
79     .parent = TYPE_BUS,
80     .instance_size = sizeof(FloppyBus),
81 };
82 
83 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
84 {
85     qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
86     bus->fdc = fdc;
87 }
88 
89 
90 /********************************************************/
91 /* Floppy drive emulation                               */
92 
93 typedef enum FDriveRate {
94     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
95     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
96     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
97     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
98 } FDriveRate;
99 
100 typedef enum FDriveSize {
101     FDRIVE_SIZE_UNKNOWN,
102     FDRIVE_SIZE_350,
103     FDRIVE_SIZE_525,
104 } FDriveSize;
105 
106 typedef struct FDFormat {
107     FloppyDriveType drive;
108     uint8_t last_sect;
109     uint8_t max_track;
110     uint8_t max_head;
111     FDriveRate rate;
112 } FDFormat;
113 
114 /* In many cases, the total sector size of a format is enough to uniquely
115  * identify it. However, there are some total sector collisions between
116  * formats of different physical size, and these are noted below by
117  * highlighting the total sector size for entries with collisions. */
118 static const FDFormat fd_formats[] = {
119     /* First entry is default format */
120     /* 1.44 MB 3"1/2 floppy disks */
121     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
122     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
123     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
124     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
125     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
126     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
127     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
128     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
129     /* 2.88 MB 3"1/2 floppy disks */
130     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
131     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
132     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
133     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
134     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
135     /* 720 kB 3"1/2 floppy disks */
136     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
137     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
138     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
139     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
140     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
141     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
142     /* 1.2 MB 5"1/4 floppy disks */
143     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
144     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
145     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
146     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
147     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
148     /* 720 kB 5"1/4 floppy disks */
149     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
150     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
151     /* 360 kB 5"1/4 floppy disks */
152     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
153     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
154     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
155     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
156     /* 320 kB 5"1/4 floppy disks */
157     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
158     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
159     /* 360 kB must match 5"1/4 better than 3"1/2... */
160     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
161     /* end */
162     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
163 };
164 
165 static FDriveSize drive_size(FloppyDriveType drive)
166 {
167     switch (drive) {
168     case FLOPPY_DRIVE_TYPE_120:
169         return FDRIVE_SIZE_525;
170     case FLOPPY_DRIVE_TYPE_144:
171     case FLOPPY_DRIVE_TYPE_288:
172         return FDRIVE_SIZE_350;
173     default:
174         return FDRIVE_SIZE_UNKNOWN;
175     }
176 }
177 
178 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
179 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
180 
181 /* Will always be a fixed parameter for us */
182 #define FD_SECTOR_LEN          512
183 #define FD_SECTOR_SC           2   /* Sector size code */
184 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
185 
186 /* Floppy disk drive emulation */
187 typedef enum FDiskFlags {
188     FDISK_DBL_SIDES  = 0x01,
189 } FDiskFlags;
190 
191 struct FDrive {
192     FDCtrl *fdctrl;
193     BlockBackend *blk;
194     BlockConf *conf;
195     /* Drive status */
196     FloppyDriveType drive;    /* CMOS drive type        */
197     uint8_t perpendicular;    /* 2.88 MB access mode    */
198     /* Position */
199     uint8_t head;
200     uint8_t track;
201     uint8_t sect;
202     /* Media */
203     FloppyDriveType disk;     /* Current disk type      */
204     FDiskFlags flags;
205     uint8_t last_sect;        /* Nb sector per track    */
206     uint8_t max_track;        /* Nb of tracks           */
207     uint16_t bps;             /* Bytes per sector       */
208     uint8_t ro;               /* Is read-only           */
209     uint8_t media_changed;    /* Is media changed       */
210     uint8_t media_rate;       /* Data rate of medium    */
211 
212     bool media_validated;     /* Have we validated the media? */
213 };
214 
215 
216 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
217 
218 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
219  * currently goes through some pains to keep seeks within the bounds
220  * established by last_sect and max_track. Correcting this is difficult,
221  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
222  *
223  * For now: allow empty drives to have large bounds so we can seek around,
224  * with the understanding that when a diskette is inserted, the bounds will
225  * properly tighten to match the geometry of that inserted medium.
226  */
227 static void fd_empty_seek_hack(FDrive *drv)
228 {
229     drv->last_sect = 0xFF;
230     drv->max_track = 0xFF;
231 }
232 
233 static void fd_init(FDrive *drv)
234 {
235     /* Drive */
236     drv->perpendicular = 0;
237     /* Disk */
238     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
239     drv->last_sect = 0;
240     drv->max_track = 0;
241     drv->ro = true;
242     drv->media_changed = 1;
243 }
244 
245 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
246 
247 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
248                           uint8_t last_sect, uint8_t num_sides)
249 {
250     return (((track * num_sides) + head) * last_sect) + sect - 1;
251 }
252 
253 /* Returns current position, in sectors, for given drive */
254 static int fd_sector(FDrive *drv)
255 {
256     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
257                           NUM_SIDES(drv));
258 }
259 
260 /* Returns current position, in bytes, for given drive */
261 static int fd_offset(FDrive *drv)
262 {
263     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
264     return fd_sector(drv) << BDRV_SECTOR_BITS;
265 }
266 
267 /* Seek to a new position:
268  * returns 0 if already on right track
269  * returns 1 if track changed
270  * returns 2 if track is invalid
271  * returns 3 if sector is invalid
272  * returns 4 if seek is disabled
273  */
274 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
275                    int enable_seek)
276 {
277     uint32_t sector;
278     int ret;
279 
280     if (track > drv->max_track ||
281         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
282         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
283                        head, track, sect, 1,
284                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
285                        drv->max_track, drv->last_sect);
286         return 2;
287     }
288     if (sect > drv->last_sect) {
289         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
290                        head, track, sect, 1,
291                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
292                        drv->max_track, drv->last_sect);
293         return 3;
294     }
295     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
296     ret = 0;
297     if (sector != fd_sector(drv)) {
298 #if 0
299         if (!enable_seek) {
300             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
301                            " (max=%d %02x %02x)\n",
302                            head, track, sect, 1, drv->max_track,
303                            drv->last_sect);
304             return 4;
305         }
306 #endif
307         drv->head = head;
308         if (drv->track != track) {
309             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
310                 drv->media_changed = 0;
311             }
312             ret = 1;
313         }
314         drv->track = track;
315         drv->sect = sect;
316     }
317 
318     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
319         ret = 2;
320     }
321 
322     return ret;
323 }
324 
325 /* Set drive back to track 0 */
326 static void fd_recalibrate(FDrive *drv)
327 {
328     FLOPPY_DPRINTF("recalibrate\n");
329     fd_seek(drv, 0, 0, 1, 1);
330 }
331 
332 /**
333  * Determine geometry based on inserted diskette.
334  * Will not operate on an empty drive.
335  *
336  * @return: 0 on success, -1 if the drive is empty.
337  */
338 static int pick_geometry(FDrive *drv)
339 {
340     BlockBackend *blk = drv->blk;
341     const FDFormat *parse;
342     uint64_t nb_sectors, size;
343     int i;
344     int match, size_match, type_match;
345     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
346 
347     /* We can only pick a geometry if we have a diskette. */
348     if (!drv->blk || !blk_is_inserted(drv->blk) ||
349         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
350     {
351         return -1;
352     }
353 
354     /* We need to determine the likely geometry of the inserted medium.
355      * In order of preference, we look for:
356      * (1) The same drive type and number of sectors,
357      * (2) The same diskette size and number of sectors,
358      * (3) The same drive type.
359      *
360      * In all cases, matches that occur higher in the drive table will take
361      * precedence over matches that occur later in the table.
362      */
363     blk_get_geometry(blk, &nb_sectors);
364     match = size_match = type_match = -1;
365     for (i = 0; ; i++) {
366         parse = &fd_formats[i];
367         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
368             break;
369         }
370         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
371         if (nb_sectors == size) {
372             if (magic || parse->drive == drv->drive) {
373                 /* (1) perfect match -- nb_sectors and drive type */
374                 goto out;
375             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
376                 /* (2) size match -- nb_sectors and physical medium size */
377                 match = (match == -1) ? i : match;
378             } else {
379                 /* This is suspicious -- Did the user misconfigure? */
380                 size_match = (size_match == -1) ? i : size_match;
381             }
382         } else if (type_match == -1) {
383             if ((parse->drive == drv->drive) ||
384                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
385                 /* (3) type match -- nb_sectors mismatch, but matches the type
386                  *     specified explicitly by the user, or matches the fallback
387                  *     default type when using the drive autodetect mechanism */
388                 type_match = i;
389             }
390         }
391     }
392 
393     /* No exact match found */
394     if (match == -1) {
395         if (size_match != -1) {
396             parse = &fd_formats[size_match];
397             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
398                            "but inserted medium appears to be a "
399                            "%"PRId64" sector '%s' type\n",
400                            FloppyDriveType_str(drv->drive),
401                            nb_sectors,
402                            FloppyDriveType_str(parse->drive));
403         }
404         assert(type_match != -1 && "misconfigured fd_format");
405         match = type_match;
406     }
407     parse = &(fd_formats[match]);
408 
409  out:
410     if (parse->max_head == 0) {
411         drv->flags &= ~FDISK_DBL_SIDES;
412     } else {
413         drv->flags |= FDISK_DBL_SIDES;
414     }
415     drv->max_track = parse->max_track;
416     drv->last_sect = parse->last_sect;
417     drv->disk = parse->drive;
418     drv->media_rate = parse->rate;
419     return 0;
420 }
421 
422 static void pick_drive_type(FDrive *drv)
423 {
424     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
425         return;
426     }
427 
428     if (pick_geometry(drv) == 0) {
429         drv->drive = drv->disk;
430     } else {
431         drv->drive = get_fallback_drive_type(drv);
432     }
433 
434     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
435 }
436 
437 /* Revalidate a disk drive after a disk change */
438 static void fd_revalidate(FDrive *drv)
439 {
440     int rc;
441 
442     FLOPPY_DPRINTF("revalidate\n");
443     if (drv->blk != NULL) {
444         drv->ro = blk_is_read_only(drv->blk);
445         if (!blk_is_inserted(drv->blk)) {
446             FLOPPY_DPRINTF("No disk in drive\n");
447             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
448             fd_empty_seek_hack(drv);
449         } else if (!drv->media_validated) {
450             rc = pick_geometry(drv);
451             if (rc) {
452                 FLOPPY_DPRINTF("Could not validate floppy drive media");
453             } else {
454                 drv->media_validated = true;
455                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
456                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
457                                drv->max_track, drv->last_sect,
458                                drv->ro ? "ro" : "rw");
459             }
460         }
461     } else {
462         FLOPPY_DPRINTF("No drive connected\n");
463         drv->last_sect = 0;
464         drv->max_track = 0;
465         drv->flags &= ~FDISK_DBL_SIDES;
466         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
467         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
468     }
469 }
470 
471 static void fd_change_cb(void *opaque, bool load, Error **errp)
472 {
473     FDrive *drive = opaque;
474 
475     if (!load) {
476         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
477     } else {
478         if (!blkconf_apply_backend_options(drive->conf,
479                                            blk_is_read_only(drive->blk), false,
480                                            errp)) {
481             return;
482         }
483     }
484 
485     drive->media_changed = 1;
486     drive->media_validated = false;
487     fd_revalidate(drive);
488 }
489 
490 static const BlockDevOps fd_block_ops = {
491     .change_media_cb = fd_change_cb,
492 };
493 
494 
495 #define TYPE_FLOPPY_DRIVE "floppy"
496 #define FLOPPY_DRIVE(obj) \
497      OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
498 
499 typedef struct FloppyDrive {
500     DeviceState     qdev;
501     uint32_t        unit;
502     BlockConf       conf;
503     FloppyDriveType type;
504 } FloppyDrive;
505 
506 static Property floppy_drive_properties[] = {
507     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
508     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
509     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
510                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
511                         FloppyDriveType),
512     DEFINE_PROP_END_OF_LIST(),
513 };
514 
515 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
516 {
517     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
518     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
519     FDrive *drive;
520     bool read_only;
521     int ret;
522 
523     if (dev->unit == -1) {
524         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
525             drive = get_drv(bus->fdc, dev->unit);
526             if (!drive->blk) {
527                 break;
528             }
529         }
530     }
531 
532     if (dev->unit >= MAX_FD) {
533         error_setg(errp, "Can't create floppy unit %d, bus supports "
534                    "only %d units", dev->unit, MAX_FD);
535         return;
536     }
537 
538     drive = get_drv(bus->fdc, dev->unit);
539     if (drive->blk) {
540         error_setg(errp, "Floppy unit %d is in use", dev->unit);
541         return;
542     }
543 
544     if (!dev->conf.blk) {
545         /* Anonymous BlockBackend for an empty drive */
546         dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
547         ret = blk_attach_dev(dev->conf.blk, qdev);
548         assert(ret == 0);
549 
550         /* Don't take write permissions on an empty drive to allow attaching a
551          * read-only node later */
552         read_only = true;
553     } else {
554         read_only = !blk_bs(dev->conf.blk) || blk_is_read_only(dev->conf.blk);
555     }
556 
557     if (!blkconf_blocksizes(&dev->conf, errp)) {
558         return;
559     }
560 
561     if (dev->conf.logical_block_size != 512 ||
562         dev->conf.physical_block_size != 512)
563     {
564         error_setg(errp, "Physical and logical block size must "
565                    "be 512 for floppy");
566         return;
567     }
568 
569     /* rerror/werror aren't supported by fdc and therefore not even registered
570      * with qdev. So set the defaults manually before they are used in
571      * blkconf_apply_backend_options(). */
572     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
573     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
574 
575     if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
576         return;
577     }
578 
579     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
580      * for empty drives. */
581     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
582         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
583         error_setg(errp, "fdc doesn't support drive option werror");
584         return;
585     }
586     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
587         error_setg(errp, "fdc doesn't support drive option rerror");
588         return;
589     }
590 
591     drive->conf = &dev->conf;
592     drive->blk = dev->conf.blk;
593     drive->fdctrl = bus->fdc;
594 
595     fd_init(drive);
596     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
597 
598     /* Keep 'type' qdev property and FDrive->drive in sync */
599     drive->drive = dev->type;
600     pick_drive_type(drive);
601     dev->type = drive->drive;
602 
603     fd_revalidate(drive);
604 }
605 
606 static void floppy_drive_class_init(ObjectClass *klass, void *data)
607 {
608     DeviceClass *k = DEVICE_CLASS(klass);
609     k->realize = floppy_drive_realize;
610     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
611     k->bus_type = TYPE_FLOPPY_BUS;
612     device_class_set_props(k, floppy_drive_properties);
613     k->desc = "virtual floppy drive";
614 }
615 
616 static const TypeInfo floppy_drive_info = {
617     .name = TYPE_FLOPPY_DRIVE,
618     .parent = TYPE_DEVICE,
619     .instance_size = sizeof(FloppyDrive),
620     .class_init = floppy_drive_class_init,
621 };
622 
623 /********************************************************/
624 /* Intel 82078 floppy disk controller emulation          */
625 
626 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
627 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
628 static int fdctrl_transfer_handler (void *opaque, int nchan,
629                                     int dma_pos, int dma_len);
630 static void fdctrl_raise_irq(FDCtrl *fdctrl);
631 static FDrive *get_cur_drv(FDCtrl *fdctrl);
632 
633 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
634 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
635 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
636 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
637 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
638 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
639 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
640 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
641 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
642 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
643 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
644 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
645 
646 enum {
647     FD_DIR_WRITE   = 0,
648     FD_DIR_READ    = 1,
649     FD_DIR_SCANE   = 2,
650     FD_DIR_SCANL   = 3,
651     FD_DIR_SCANH   = 4,
652     FD_DIR_VERIFY  = 5,
653 };
654 
655 enum {
656     FD_STATE_MULTI  = 0x01,	/* multi track flag */
657     FD_STATE_FORMAT = 0x02,	/* format flag */
658 };
659 
660 enum {
661     FD_REG_SRA = 0x00,
662     FD_REG_SRB = 0x01,
663     FD_REG_DOR = 0x02,
664     FD_REG_TDR = 0x03,
665     FD_REG_MSR = 0x04,
666     FD_REG_DSR = 0x04,
667     FD_REG_FIFO = 0x05,
668     FD_REG_DIR = 0x07,
669     FD_REG_CCR = 0x07,
670 };
671 
672 enum {
673     FD_CMD_READ_TRACK = 0x02,
674     FD_CMD_SPECIFY = 0x03,
675     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
676     FD_CMD_WRITE = 0x05,
677     FD_CMD_READ = 0x06,
678     FD_CMD_RECALIBRATE = 0x07,
679     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
680     FD_CMD_WRITE_DELETED = 0x09,
681     FD_CMD_READ_ID = 0x0a,
682     FD_CMD_READ_DELETED = 0x0c,
683     FD_CMD_FORMAT_TRACK = 0x0d,
684     FD_CMD_DUMPREG = 0x0e,
685     FD_CMD_SEEK = 0x0f,
686     FD_CMD_VERSION = 0x10,
687     FD_CMD_SCAN_EQUAL = 0x11,
688     FD_CMD_PERPENDICULAR_MODE = 0x12,
689     FD_CMD_CONFIGURE = 0x13,
690     FD_CMD_LOCK = 0x14,
691     FD_CMD_VERIFY = 0x16,
692     FD_CMD_POWERDOWN_MODE = 0x17,
693     FD_CMD_PART_ID = 0x18,
694     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
695     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
696     FD_CMD_SAVE = 0x2e,
697     FD_CMD_OPTION = 0x33,
698     FD_CMD_RESTORE = 0x4e,
699     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
700     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
701     FD_CMD_FORMAT_AND_WRITE = 0xcd,
702     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
703 };
704 
705 enum {
706     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
707     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
708     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
709     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
710     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
711 };
712 
713 enum {
714     FD_SR0_DS0      = 0x01,
715     FD_SR0_DS1      = 0x02,
716     FD_SR0_HEAD     = 0x04,
717     FD_SR0_EQPMT    = 0x10,
718     FD_SR0_SEEK     = 0x20,
719     FD_SR0_ABNTERM  = 0x40,
720     FD_SR0_INVCMD   = 0x80,
721     FD_SR0_RDYCHG   = 0xc0,
722 };
723 
724 enum {
725     FD_SR1_MA       = 0x01, /* Missing address mark */
726     FD_SR1_NW       = 0x02, /* Not writable */
727     FD_SR1_EC       = 0x80, /* End of cylinder */
728 };
729 
730 enum {
731     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
732     FD_SR2_SEH      = 0x08, /* Scan equal hit */
733 };
734 
735 enum {
736     FD_SRA_DIR      = 0x01,
737     FD_SRA_nWP      = 0x02,
738     FD_SRA_nINDX    = 0x04,
739     FD_SRA_HDSEL    = 0x08,
740     FD_SRA_nTRK0    = 0x10,
741     FD_SRA_STEP     = 0x20,
742     FD_SRA_nDRV2    = 0x40,
743     FD_SRA_INTPEND  = 0x80,
744 };
745 
746 enum {
747     FD_SRB_MTR0     = 0x01,
748     FD_SRB_MTR1     = 0x02,
749     FD_SRB_WGATE    = 0x04,
750     FD_SRB_RDATA    = 0x08,
751     FD_SRB_WDATA    = 0x10,
752     FD_SRB_DR0      = 0x20,
753 };
754 
755 enum {
756 #if MAX_FD == 4
757     FD_DOR_SELMASK  = 0x03,
758 #else
759     FD_DOR_SELMASK  = 0x01,
760 #endif
761     FD_DOR_nRESET   = 0x04,
762     FD_DOR_DMAEN    = 0x08,
763     FD_DOR_MOTEN0   = 0x10,
764     FD_DOR_MOTEN1   = 0x20,
765     FD_DOR_MOTEN2   = 0x40,
766     FD_DOR_MOTEN3   = 0x80,
767 };
768 
769 enum {
770 #if MAX_FD == 4
771     FD_TDR_BOOTSEL  = 0x0c,
772 #else
773     FD_TDR_BOOTSEL  = 0x04,
774 #endif
775 };
776 
777 enum {
778     FD_DSR_DRATEMASK= 0x03,
779     FD_DSR_PWRDOWN  = 0x40,
780     FD_DSR_SWRESET  = 0x80,
781 };
782 
783 enum {
784     FD_MSR_DRV0BUSY = 0x01,
785     FD_MSR_DRV1BUSY = 0x02,
786     FD_MSR_DRV2BUSY = 0x04,
787     FD_MSR_DRV3BUSY = 0x08,
788     FD_MSR_CMDBUSY  = 0x10,
789     FD_MSR_NONDMA   = 0x20,
790     FD_MSR_DIO      = 0x40,
791     FD_MSR_RQM      = 0x80,
792 };
793 
794 enum {
795     FD_DIR_DSKCHG   = 0x80,
796 };
797 
798 /*
799  * See chapter 5.0 "Controller phases" of the spec:
800  *
801  * Command phase:
802  * The host writes a command and its parameters into the FIFO. The command
803  * phase is completed when all parameters for the command have been supplied,
804  * and execution phase is entered.
805  *
806  * Execution phase:
807  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
808  * contains the payload now, otherwise it's unused. When all bytes of the
809  * required data have been transferred, the state is switched to either result
810  * phase (if the command produces status bytes) or directly back into the
811  * command phase for the next command.
812  *
813  * Result phase:
814  * The host reads out the FIFO, which contains one or more result bytes now.
815  */
816 enum {
817     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
818     FD_PHASE_RECONSTRUCT    = 0,
819 
820     FD_PHASE_COMMAND        = 1,
821     FD_PHASE_EXECUTION      = 2,
822     FD_PHASE_RESULT         = 3,
823 };
824 
825 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
826 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
827 
828 struct FDCtrl {
829     MemoryRegion iomem;
830     qemu_irq irq;
831     /* Controller state */
832     QEMUTimer *result_timer;
833     int dma_chann;
834     uint8_t phase;
835     IsaDma *dma;
836     /* Controller's identification */
837     uint8_t version;
838     /* HW */
839     uint8_t sra;
840     uint8_t srb;
841     uint8_t dor;
842     uint8_t dor_vmstate; /* only used as temp during vmstate */
843     uint8_t tdr;
844     uint8_t dsr;
845     uint8_t msr;
846     uint8_t cur_drv;
847     uint8_t status0;
848     uint8_t status1;
849     uint8_t status2;
850     /* Command FIFO */
851     uint8_t *fifo;
852     int32_t fifo_size;
853     uint32_t data_pos;
854     uint32_t data_len;
855     uint8_t data_state;
856     uint8_t data_dir;
857     uint8_t eot; /* last wanted sector */
858     /* States kept only to be returned back */
859     /* precompensation */
860     uint8_t precomp_trk;
861     uint8_t config;
862     uint8_t lock;
863     /* Power down config (also with status regB access mode */
864     uint8_t pwrd;
865     /* Floppy drives */
866     FloppyBus bus;
867     uint8_t num_floppies;
868     FDrive drives[MAX_FD];
869     struct {
870         BlockBackend *blk;
871         FloppyDriveType type;
872     } qdev_for_drives[MAX_FD];
873     int reset_sensei;
874     uint32_t check_media_rate;
875     FloppyDriveType fallback; /* type=auto failure fallback */
876     /* Timers state */
877     uint8_t timer0;
878     uint8_t timer1;
879     PortioList portio_list;
880 };
881 
882 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
883 {
884     return drv->fdctrl->fallback;
885 }
886 
887 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
888 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
889 
890 typedef struct FDCtrlSysBus {
891     /*< private >*/
892     SysBusDevice parent_obj;
893     /*< public >*/
894 
895     struct FDCtrl state;
896 } FDCtrlSysBus;
897 
898 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
899 
900 typedef struct FDCtrlISABus {
901     ISADevice parent_obj;
902 
903     uint32_t iobase;
904     uint32_t irq;
905     uint32_t dma;
906     struct FDCtrl state;
907     int32_t bootindexA;
908     int32_t bootindexB;
909 } FDCtrlISABus;
910 
911 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
912 {
913     FDCtrl *fdctrl = opaque;
914     uint32_t retval;
915 
916     reg &= 7;
917     switch (reg) {
918     case FD_REG_SRA:
919         retval = fdctrl_read_statusA(fdctrl);
920         break;
921     case FD_REG_SRB:
922         retval = fdctrl_read_statusB(fdctrl);
923         break;
924     case FD_REG_DOR:
925         retval = fdctrl_read_dor(fdctrl);
926         break;
927     case FD_REG_TDR:
928         retval = fdctrl_read_tape(fdctrl);
929         break;
930     case FD_REG_MSR:
931         retval = fdctrl_read_main_status(fdctrl);
932         break;
933     case FD_REG_FIFO:
934         retval = fdctrl_read_data(fdctrl);
935         break;
936     case FD_REG_DIR:
937         retval = fdctrl_read_dir(fdctrl);
938         break;
939     default:
940         retval = (uint32_t)(-1);
941         break;
942     }
943     trace_fdc_ioport_read(reg, retval);
944 
945     return retval;
946 }
947 
948 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
949 {
950     FDCtrl *fdctrl = opaque;
951 
952     reg &= 7;
953     trace_fdc_ioport_write(reg, value);
954     switch (reg) {
955     case FD_REG_DOR:
956         fdctrl_write_dor(fdctrl, value);
957         break;
958     case FD_REG_TDR:
959         fdctrl_write_tape(fdctrl, value);
960         break;
961     case FD_REG_DSR:
962         fdctrl_write_rate(fdctrl, value);
963         break;
964     case FD_REG_FIFO:
965         fdctrl_write_data(fdctrl, value);
966         break;
967     case FD_REG_CCR:
968         fdctrl_write_ccr(fdctrl, value);
969         break;
970     default:
971         break;
972     }
973 }
974 
975 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
976                                  unsigned ize)
977 {
978     return fdctrl_read(opaque, (uint32_t)reg);
979 }
980 
981 static void fdctrl_write_mem (void *opaque, hwaddr reg,
982                               uint64_t value, unsigned size)
983 {
984     fdctrl_write(opaque, (uint32_t)reg, value);
985 }
986 
987 static const MemoryRegionOps fdctrl_mem_ops = {
988     .read = fdctrl_read_mem,
989     .write = fdctrl_write_mem,
990     .endianness = DEVICE_NATIVE_ENDIAN,
991 };
992 
993 static const MemoryRegionOps fdctrl_mem_strict_ops = {
994     .read = fdctrl_read_mem,
995     .write = fdctrl_write_mem,
996     .endianness = DEVICE_NATIVE_ENDIAN,
997     .valid = {
998         .min_access_size = 1,
999         .max_access_size = 1,
1000     },
1001 };
1002 
1003 static bool fdrive_media_changed_needed(void *opaque)
1004 {
1005     FDrive *drive = opaque;
1006 
1007     return (drive->blk != NULL && drive->media_changed != 1);
1008 }
1009 
1010 static const VMStateDescription vmstate_fdrive_media_changed = {
1011     .name = "fdrive/media_changed",
1012     .version_id = 1,
1013     .minimum_version_id = 1,
1014     .needed = fdrive_media_changed_needed,
1015     .fields = (VMStateField[]) {
1016         VMSTATE_UINT8(media_changed, FDrive),
1017         VMSTATE_END_OF_LIST()
1018     }
1019 };
1020 
1021 static bool fdrive_media_rate_needed(void *opaque)
1022 {
1023     FDrive *drive = opaque;
1024 
1025     return drive->fdctrl->check_media_rate;
1026 }
1027 
1028 static const VMStateDescription vmstate_fdrive_media_rate = {
1029     .name = "fdrive/media_rate",
1030     .version_id = 1,
1031     .minimum_version_id = 1,
1032     .needed = fdrive_media_rate_needed,
1033     .fields = (VMStateField[]) {
1034         VMSTATE_UINT8(media_rate, FDrive),
1035         VMSTATE_END_OF_LIST()
1036     }
1037 };
1038 
1039 static bool fdrive_perpendicular_needed(void *opaque)
1040 {
1041     FDrive *drive = opaque;
1042 
1043     return drive->perpendicular != 0;
1044 }
1045 
1046 static const VMStateDescription vmstate_fdrive_perpendicular = {
1047     .name = "fdrive/perpendicular",
1048     .version_id = 1,
1049     .minimum_version_id = 1,
1050     .needed = fdrive_perpendicular_needed,
1051     .fields = (VMStateField[]) {
1052         VMSTATE_UINT8(perpendicular, FDrive),
1053         VMSTATE_END_OF_LIST()
1054     }
1055 };
1056 
1057 static int fdrive_post_load(void *opaque, int version_id)
1058 {
1059     fd_revalidate(opaque);
1060     return 0;
1061 }
1062 
1063 static const VMStateDescription vmstate_fdrive = {
1064     .name = "fdrive",
1065     .version_id = 1,
1066     .minimum_version_id = 1,
1067     .post_load = fdrive_post_load,
1068     .fields = (VMStateField[]) {
1069         VMSTATE_UINT8(head, FDrive),
1070         VMSTATE_UINT8(track, FDrive),
1071         VMSTATE_UINT8(sect, FDrive),
1072         VMSTATE_END_OF_LIST()
1073     },
1074     .subsections = (const VMStateDescription*[]) {
1075         &vmstate_fdrive_media_changed,
1076         &vmstate_fdrive_media_rate,
1077         &vmstate_fdrive_perpendicular,
1078         NULL
1079     }
1080 };
1081 
1082 /*
1083  * Reconstructs the phase from register values according to the logic that was
1084  * implemented in qemu 2.3. This is the default value that is used if the phase
1085  * subsection is not present on migration.
1086  *
1087  * Don't change this function to reflect newer qemu versions, it is part of
1088  * the migration ABI.
1089  */
1090 static int reconstruct_phase(FDCtrl *fdctrl)
1091 {
1092     if (fdctrl->msr & FD_MSR_NONDMA) {
1093         return FD_PHASE_EXECUTION;
1094     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1095         /* qemu 2.3 disabled RQM only during DMA transfers */
1096         return FD_PHASE_EXECUTION;
1097     } else if (fdctrl->msr & FD_MSR_DIO) {
1098         return FD_PHASE_RESULT;
1099     } else {
1100         return FD_PHASE_COMMAND;
1101     }
1102 }
1103 
1104 static int fdc_pre_save(void *opaque)
1105 {
1106     FDCtrl *s = opaque;
1107 
1108     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1109 
1110     return 0;
1111 }
1112 
1113 static int fdc_pre_load(void *opaque)
1114 {
1115     FDCtrl *s = opaque;
1116     s->phase = FD_PHASE_RECONSTRUCT;
1117     return 0;
1118 }
1119 
1120 static int fdc_post_load(void *opaque, int version_id)
1121 {
1122     FDCtrl *s = opaque;
1123 
1124     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1125     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1126 
1127     if (s->phase == FD_PHASE_RECONSTRUCT) {
1128         s->phase = reconstruct_phase(s);
1129     }
1130 
1131     return 0;
1132 }
1133 
1134 static bool fdc_reset_sensei_needed(void *opaque)
1135 {
1136     FDCtrl *s = opaque;
1137 
1138     return s->reset_sensei != 0;
1139 }
1140 
1141 static const VMStateDescription vmstate_fdc_reset_sensei = {
1142     .name = "fdc/reset_sensei",
1143     .version_id = 1,
1144     .minimum_version_id = 1,
1145     .needed = fdc_reset_sensei_needed,
1146     .fields = (VMStateField[]) {
1147         VMSTATE_INT32(reset_sensei, FDCtrl),
1148         VMSTATE_END_OF_LIST()
1149     }
1150 };
1151 
1152 static bool fdc_result_timer_needed(void *opaque)
1153 {
1154     FDCtrl *s = opaque;
1155 
1156     return timer_pending(s->result_timer);
1157 }
1158 
1159 static const VMStateDescription vmstate_fdc_result_timer = {
1160     .name = "fdc/result_timer",
1161     .version_id = 1,
1162     .minimum_version_id = 1,
1163     .needed = fdc_result_timer_needed,
1164     .fields = (VMStateField[]) {
1165         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1166         VMSTATE_END_OF_LIST()
1167     }
1168 };
1169 
1170 static bool fdc_phase_needed(void *opaque)
1171 {
1172     FDCtrl *fdctrl = opaque;
1173 
1174     return reconstruct_phase(fdctrl) != fdctrl->phase;
1175 }
1176 
1177 static const VMStateDescription vmstate_fdc_phase = {
1178     .name = "fdc/phase",
1179     .version_id = 1,
1180     .minimum_version_id = 1,
1181     .needed = fdc_phase_needed,
1182     .fields = (VMStateField[]) {
1183         VMSTATE_UINT8(phase, FDCtrl),
1184         VMSTATE_END_OF_LIST()
1185     }
1186 };
1187 
1188 static const VMStateDescription vmstate_fdc = {
1189     .name = "fdc",
1190     .version_id = 2,
1191     .minimum_version_id = 2,
1192     .pre_save = fdc_pre_save,
1193     .pre_load = fdc_pre_load,
1194     .post_load = fdc_post_load,
1195     .fields = (VMStateField[]) {
1196         /* Controller State */
1197         VMSTATE_UINT8(sra, FDCtrl),
1198         VMSTATE_UINT8(srb, FDCtrl),
1199         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1200         VMSTATE_UINT8(tdr, FDCtrl),
1201         VMSTATE_UINT8(dsr, FDCtrl),
1202         VMSTATE_UINT8(msr, FDCtrl),
1203         VMSTATE_UINT8(status0, FDCtrl),
1204         VMSTATE_UINT8(status1, FDCtrl),
1205         VMSTATE_UINT8(status2, FDCtrl),
1206         /* Command FIFO */
1207         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1208                              uint8_t),
1209         VMSTATE_UINT32(data_pos, FDCtrl),
1210         VMSTATE_UINT32(data_len, FDCtrl),
1211         VMSTATE_UINT8(data_state, FDCtrl),
1212         VMSTATE_UINT8(data_dir, FDCtrl),
1213         VMSTATE_UINT8(eot, FDCtrl),
1214         /* States kept only to be returned back */
1215         VMSTATE_UINT8(timer0, FDCtrl),
1216         VMSTATE_UINT8(timer1, FDCtrl),
1217         VMSTATE_UINT8(precomp_trk, FDCtrl),
1218         VMSTATE_UINT8(config, FDCtrl),
1219         VMSTATE_UINT8(lock, FDCtrl),
1220         VMSTATE_UINT8(pwrd, FDCtrl),
1221         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1222         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1223                              vmstate_fdrive, FDrive),
1224         VMSTATE_END_OF_LIST()
1225     },
1226     .subsections = (const VMStateDescription*[]) {
1227         &vmstate_fdc_reset_sensei,
1228         &vmstate_fdc_result_timer,
1229         &vmstate_fdc_phase,
1230         NULL
1231     }
1232 };
1233 
1234 static void fdctrl_external_reset_sysbus(DeviceState *d)
1235 {
1236     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1237     FDCtrl *s = &sys->state;
1238 
1239     fdctrl_reset(s, 0);
1240 }
1241 
1242 static void fdctrl_external_reset_isa(DeviceState *d)
1243 {
1244     FDCtrlISABus *isa = ISA_FDC(d);
1245     FDCtrl *s = &isa->state;
1246 
1247     fdctrl_reset(s, 0);
1248 }
1249 
1250 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1251 {
1252     //FDCtrl *s = opaque;
1253 
1254     if (level) {
1255         // XXX
1256         FLOPPY_DPRINTF("TC pulsed\n");
1257     }
1258 }
1259 
1260 /* Change IRQ state */
1261 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1262 {
1263     fdctrl->status0 = 0;
1264     if (!(fdctrl->sra & FD_SRA_INTPEND))
1265         return;
1266     FLOPPY_DPRINTF("Reset interrupt\n");
1267     qemu_set_irq(fdctrl->irq, 0);
1268     fdctrl->sra &= ~FD_SRA_INTPEND;
1269 }
1270 
1271 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1272 {
1273     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1274         qemu_set_irq(fdctrl->irq, 1);
1275         fdctrl->sra |= FD_SRA_INTPEND;
1276     }
1277 
1278     fdctrl->reset_sensei = 0;
1279     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1280 }
1281 
1282 /* Reset controller */
1283 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1284 {
1285     int i;
1286 
1287     FLOPPY_DPRINTF("reset controller\n");
1288     fdctrl_reset_irq(fdctrl);
1289     /* Initialise controller */
1290     fdctrl->sra = 0;
1291     fdctrl->srb = 0xc0;
1292     if (!fdctrl->drives[1].blk) {
1293         fdctrl->sra |= FD_SRA_nDRV2;
1294     }
1295     fdctrl->cur_drv = 0;
1296     fdctrl->dor = FD_DOR_nRESET;
1297     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1298     fdctrl->msr = FD_MSR_RQM;
1299     fdctrl->reset_sensei = 0;
1300     timer_del(fdctrl->result_timer);
1301     /* FIFO state */
1302     fdctrl->data_pos = 0;
1303     fdctrl->data_len = 0;
1304     fdctrl->data_state = 0;
1305     fdctrl->data_dir = FD_DIR_WRITE;
1306     for (i = 0; i < MAX_FD; i++)
1307         fd_recalibrate(&fdctrl->drives[i]);
1308     fdctrl_to_command_phase(fdctrl);
1309     if (do_irq) {
1310         fdctrl->status0 |= FD_SR0_RDYCHG;
1311         fdctrl_raise_irq(fdctrl);
1312         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1313     }
1314 }
1315 
1316 static inline FDrive *drv0(FDCtrl *fdctrl)
1317 {
1318     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1319 }
1320 
1321 static inline FDrive *drv1(FDCtrl *fdctrl)
1322 {
1323     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1324         return &fdctrl->drives[1];
1325     else
1326         return &fdctrl->drives[0];
1327 }
1328 
1329 #if MAX_FD == 4
1330 static inline FDrive *drv2(FDCtrl *fdctrl)
1331 {
1332     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1333         return &fdctrl->drives[2];
1334     else
1335         return &fdctrl->drives[1];
1336 }
1337 
1338 static inline FDrive *drv3(FDCtrl *fdctrl)
1339 {
1340     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1341         return &fdctrl->drives[3];
1342     else
1343         return &fdctrl->drives[2];
1344 }
1345 #endif
1346 
1347 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1348 {
1349     switch (unit) {
1350         case 0: return drv0(fdctrl);
1351         case 1: return drv1(fdctrl);
1352 #if MAX_FD == 4
1353         case 2: return drv2(fdctrl);
1354         case 3: return drv3(fdctrl);
1355 #endif
1356         default: return NULL;
1357     }
1358 }
1359 
1360 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1361 {
1362     return get_drv(fdctrl, fdctrl->cur_drv);
1363 }
1364 
1365 /* Status A register : 0x00 (read-only) */
1366 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1367 {
1368     uint32_t retval = fdctrl->sra;
1369 
1370     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1371 
1372     return retval;
1373 }
1374 
1375 /* Status B register : 0x01 (read-only) */
1376 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1377 {
1378     uint32_t retval = fdctrl->srb;
1379 
1380     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1381 
1382     return retval;
1383 }
1384 
1385 /* Digital output register : 0x02 */
1386 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1387 {
1388     uint32_t retval = fdctrl->dor;
1389 
1390     /* Selected drive */
1391     retval |= fdctrl->cur_drv;
1392     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1393 
1394     return retval;
1395 }
1396 
1397 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1398 {
1399     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1400 
1401     /* Motors */
1402     if (value & FD_DOR_MOTEN0)
1403         fdctrl->srb |= FD_SRB_MTR0;
1404     else
1405         fdctrl->srb &= ~FD_SRB_MTR0;
1406     if (value & FD_DOR_MOTEN1)
1407         fdctrl->srb |= FD_SRB_MTR1;
1408     else
1409         fdctrl->srb &= ~FD_SRB_MTR1;
1410 
1411     /* Drive */
1412     if (value & 1)
1413         fdctrl->srb |= FD_SRB_DR0;
1414     else
1415         fdctrl->srb &= ~FD_SRB_DR0;
1416 
1417     /* Reset */
1418     if (!(value & FD_DOR_nRESET)) {
1419         if (fdctrl->dor & FD_DOR_nRESET) {
1420             FLOPPY_DPRINTF("controller enter RESET state\n");
1421         }
1422     } else {
1423         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1424             FLOPPY_DPRINTF("controller out of RESET state\n");
1425             fdctrl_reset(fdctrl, 1);
1426             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1427         }
1428     }
1429     /* Selected drive */
1430     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1431 
1432     fdctrl->dor = value;
1433 }
1434 
1435 /* Tape drive register : 0x03 */
1436 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1437 {
1438     uint32_t retval = fdctrl->tdr;
1439 
1440     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1441 
1442     return retval;
1443 }
1444 
1445 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1446 {
1447     /* Reset mode */
1448     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1449         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1450         return;
1451     }
1452     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1453     /* Disk boot selection indicator */
1454     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1455     /* Tape indicators: never allow */
1456 }
1457 
1458 /* Main status register : 0x04 (read) */
1459 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1460 {
1461     uint32_t retval = fdctrl->msr;
1462 
1463     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1464     fdctrl->dor |= FD_DOR_nRESET;
1465 
1466     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1467 
1468     return retval;
1469 }
1470 
1471 /* Data select rate register : 0x04 (write) */
1472 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1473 {
1474     /* Reset mode */
1475     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1476         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1477         return;
1478     }
1479     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1480     /* Reset: autoclear */
1481     if (value & FD_DSR_SWRESET) {
1482         fdctrl->dor &= ~FD_DOR_nRESET;
1483         fdctrl_reset(fdctrl, 1);
1484         fdctrl->dor |= FD_DOR_nRESET;
1485     }
1486     if (value & FD_DSR_PWRDOWN) {
1487         fdctrl_reset(fdctrl, 1);
1488     }
1489     fdctrl->dsr = value;
1490 }
1491 
1492 /* Configuration control register: 0x07 (write) */
1493 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1494 {
1495     /* Reset mode */
1496     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1497         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1498         return;
1499     }
1500     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1501 
1502     /* Only the rate selection bits used in AT mode, and we
1503      * store those in the DSR.
1504      */
1505     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1506                   (value & FD_DSR_DRATEMASK);
1507 }
1508 
1509 static int fdctrl_media_changed(FDrive *drv)
1510 {
1511     return drv->media_changed;
1512 }
1513 
1514 /* Digital input register : 0x07 (read-only) */
1515 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1516 {
1517     uint32_t retval = 0;
1518 
1519     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1520         retval |= FD_DIR_DSKCHG;
1521     }
1522     if (retval != 0) {
1523         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1524     }
1525 
1526     return retval;
1527 }
1528 
1529 /* Clear the FIFO and update the state for receiving the next command */
1530 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1531 {
1532     fdctrl->phase = FD_PHASE_COMMAND;
1533     fdctrl->data_dir = FD_DIR_WRITE;
1534     fdctrl->data_pos = 0;
1535     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1536     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1537     fdctrl->msr |= FD_MSR_RQM;
1538 }
1539 
1540 /* Update the state to allow the guest to read out the command status.
1541  * @fifo_len is the number of result bytes to be read out. */
1542 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1543 {
1544     fdctrl->phase = FD_PHASE_RESULT;
1545     fdctrl->data_dir = FD_DIR_READ;
1546     fdctrl->data_len = fifo_len;
1547     fdctrl->data_pos = 0;
1548     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1549 }
1550 
1551 /* Set an error: unimplemented/unknown command */
1552 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1553 {
1554     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1555                   fdctrl->fifo[0]);
1556     fdctrl->fifo[0] = FD_SR0_INVCMD;
1557     fdctrl_to_result_phase(fdctrl, 1);
1558 }
1559 
1560 /* Seek to next sector
1561  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1562  * otherwise returns 1
1563  */
1564 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1565 {
1566     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1567                    cur_drv->head, cur_drv->track, cur_drv->sect,
1568                    fd_sector(cur_drv));
1569     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1570        error in fact */
1571     uint8_t new_head = cur_drv->head;
1572     uint8_t new_track = cur_drv->track;
1573     uint8_t new_sect = cur_drv->sect;
1574 
1575     int ret = 1;
1576 
1577     if (new_sect >= cur_drv->last_sect ||
1578         new_sect == fdctrl->eot) {
1579         new_sect = 1;
1580         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1581             if (new_head == 0 &&
1582                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1583                 new_head = 1;
1584             } else {
1585                 new_head = 0;
1586                 new_track++;
1587                 fdctrl->status0 |= FD_SR0_SEEK;
1588                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1589                     ret = 0;
1590                 }
1591             }
1592         } else {
1593             fdctrl->status0 |= FD_SR0_SEEK;
1594             new_track++;
1595             ret = 0;
1596         }
1597         if (ret == 1) {
1598             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1599                     new_head, new_track, new_sect, fd_sector(cur_drv));
1600         }
1601     } else {
1602         new_sect++;
1603     }
1604     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1605     return ret;
1606 }
1607 
1608 /* Callback for transfer end (stop or abort) */
1609 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1610                                  uint8_t status1, uint8_t status2)
1611 {
1612     FDrive *cur_drv;
1613     cur_drv = get_cur_drv(fdctrl);
1614 
1615     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1616     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1617     if (cur_drv->head) {
1618         fdctrl->status0 |= FD_SR0_HEAD;
1619     }
1620     fdctrl->status0 |= status0;
1621 
1622     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1623                    status0, status1, status2, fdctrl->status0);
1624     fdctrl->fifo[0] = fdctrl->status0;
1625     fdctrl->fifo[1] = status1;
1626     fdctrl->fifo[2] = status2;
1627     fdctrl->fifo[3] = cur_drv->track;
1628     fdctrl->fifo[4] = cur_drv->head;
1629     fdctrl->fifo[5] = cur_drv->sect;
1630     fdctrl->fifo[6] = FD_SECTOR_SC;
1631     fdctrl->data_dir = FD_DIR_READ;
1632     if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1633         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1634         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1635     }
1636     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1637     fdctrl->msr &= ~FD_MSR_NONDMA;
1638 
1639     fdctrl_to_result_phase(fdctrl, 7);
1640     fdctrl_raise_irq(fdctrl);
1641 }
1642 
1643 /* Prepare a data transfer (either DMA or FIFO) */
1644 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1645 {
1646     FDrive *cur_drv;
1647     uint8_t kh, kt, ks;
1648 
1649     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1650     cur_drv = get_cur_drv(fdctrl);
1651     kt = fdctrl->fifo[2];
1652     kh = fdctrl->fifo[3];
1653     ks = fdctrl->fifo[4];
1654     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1655                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1656                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1657                                   NUM_SIDES(cur_drv)));
1658     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1659     case 2:
1660         /* sect too big */
1661         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1662         fdctrl->fifo[3] = kt;
1663         fdctrl->fifo[4] = kh;
1664         fdctrl->fifo[5] = ks;
1665         return;
1666     case 3:
1667         /* track too big */
1668         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1669         fdctrl->fifo[3] = kt;
1670         fdctrl->fifo[4] = kh;
1671         fdctrl->fifo[5] = ks;
1672         return;
1673     case 4:
1674         /* No seek enabled */
1675         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1676         fdctrl->fifo[3] = kt;
1677         fdctrl->fifo[4] = kh;
1678         fdctrl->fifo[5] = ks;
1679         return;
1680     case 1:
1681         fdctrl->status0 |= FD_SR0_SEEK;
1682         break;
1683     default:
1684         break;
1685     }
1686 
1687     /* Check the data rate. If the programmed data rate does not match
1688      * the currently inserted medium, the operation has to fail. */
1689     if (fdctrl->check_media_rate &&
1690         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1691         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1692                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1693         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1694         fdctrl->fifo[3] = kt;
1695         fdctrl->fifo[4] = kh;
1696         fdctrl->fifo[5] = ks;
1697         return;
1698     }
1699 
1700     /* Set the FIFO state */
1701     fdctrl->data_dir = direction;
1702     fdctrl->data_pos = 0;
1703     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1704     if (fdctrl->fifo[0] & 0x80)
1705         fdctrl->data_state |= FD_STATE_MULTI;
1706     else
1707         fdctrl->data_state &= ~FD_STATE_MULTI;
1708     if (fdctrl->fifo[5] == 0) {
1709         fdctrl->data_len = fdctrl->fifo[8];
1710     } else {
1711         int tmp;
1712         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1713         tmp = (fdctrl->fifo[6] - ks + 1);
1714         if (fdctrl->fifo[0] & 0x80)
1715             tmp += fdctrl->fifo[6];
1716         fdctrl->data_len *= tmp;
1717     }
1718     fdctrl->eot = fdctrl->fifo[6];
1719     if (fdctrl->dor & FD_DOR_DMAEN) {
1720         /* DMA transfer is enabled. */
1721         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1722 
1723         FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1724                        direction, (128 << fdctrl->fifo[5]) *
1725                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1726 
1727         /* No access is allowed until DMA transfer has completed */
1728         fdctrl->msr &= ~FD_MSR_RQM;
1729         if (direction != FD_DIR_VERIFY) {
1730             /*
1731              * Now, we just have to wait for the DMA controller to
1732              * recall us...
1733              */
1734             k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1735             k->schedule(fdctrl->dma);
1736         } else {
1737             /* Start transfer */
1738             fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1739                     fdctrl->data_len);
1740         }
1741         return;
1742     }
1743     FLOPPY_DPRINTF("start non-DMA transfer\n");
1744     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1745     if (direction != FD_DIR_WRITE)
1746         fdctrl->msr |= FD_MSR_DIO;
1747     /* IO based transfer: calculate len */
1748     fdctrl_raise_irq(fdctrl);
1749 }
1750 
1751 /* Prepare a transfer of deleted data */
1752 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1753 {
1754     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1755 
1756     /* We don't handle deleted data,
1757      * so we don't return *ANYTHING*
1758      */
1759     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1760 }
1761 
1762 /* handlers for DMA transfers */
1763 static int fdctrl_transfer_handler (void *opaque, int nchan,
1764                                     int dma_pos, int dma_len)
1765 {
1766     FDCtrl *fdctrl;
1767     FDrive *cur_drv;
1768     int len, start_pos, rel_pos;
1769     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1770     IsaDmaClass *k;
1771 
1772     fdctrl = opaque;
1773     if (fdctrl->msr & FD_MSR_RQM) {
1774         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1775         return 0;
1776     }
1777     k = ISADMA_GET_CLASS(fdctrl->dma);
1778     cur_drv = get_cur_drv(fdctrl);
1779     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1780         fdctrl->data_dir == FD_DIR_SCANH)
1781         status2 = FD_SR2_SNS;
1782     if (dma_len > fdctrl->data_len)
1783         dma_len = fdctrl->data_len;
1784     if (cur_drv->blk == NULL) {
1785         if (fdctrl->data_dir == FD_DIR_WRITE)
1786             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1787         else
1788             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1789         len = 0;
1790         goto transfer_error;
1791     }
1792     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1793     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1794         len = dma_len - fdctrl->data_pos;
1795         if (len + rel_pos > FD_SECTOR_LEN)
1796             len = FD_SECTOR_LEN - rel_pos;
1797         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1798                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1799                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1800                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1801                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1802         if (fdctrl->data_dir != FD_DIR_WRITE ||
1803             len < FD_SECTOR_LEN || rel_pos != 0) {
1804             /* READ & SCAN commands and realign to a sector for WRITE */
1805             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1806                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1807                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1808                                fd_sector(cur_drv));
1809                 /* Sure, image size is too small... */
1810                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1811             }
1812         }
1813         switch (fdctrl->data_dir) {
1814         case FD_DIR_READ:
1815             /* READ commands */
1816             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1817                             fdctrl->data_pos, len);
1818             break;
1819         case FD_DIR_WRITE:
1820             /* WRITE commands */
1821             if (cur_drv->ro) {
1822                 /* Handle readonly medium early, no need to do DMA, touch the
1823                  * LED or attempt any writes. A real floppy doesn't attempt
1824                  * to write to readonly media either. */
1825                 fdctrl_stop_transfer(fdctrl,
1826                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1827                                      0x00);
1828                 goto transfer_error;
1829             }
1830 
1831             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1832                            fdctrl->data_pos, len);
1833             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1834                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1835                 FLOPPY_DPRINTF("error writing sector %d\n",
1836                                fd_sector(cur_drv));
1837                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1838                 goto transfer_error;
1839             }
1840             break;
1841         case FD_DIR_VERIFY:
1842             /* VERIFY commands */
1843             break;
1844         default:
1845             /* SCAN commands */
1846             {
1847                 uint8_t tmpbuf[FD_SECTOR_LEN];
1848                 int ret;
1849                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1850                                len);
1851                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1852                 if (ret == 0) {
1853                     status2 = FD_SR2_SEH;
1854                     goto end_transfer;
1855                 }
1856                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1857                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1858                     status2 = 0x00;
1859                     goto end_transfer;
1860                 }
1861             }
1862             break;
1863         }
1864         fdctrl->data_pos += len;
1865         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1866         if (rel_pos == 0) {
1867             /* Seek to next sector */
1868             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1869                 break;
1870         }
1871     }
1872  end_transfer:
1873     len = fdctrl->data_pos - start_pos;
1874     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1875                    fdctrl->data_pos, len, fdctrl->data_len);
1876     if (fdctrl->data_dir == FD_DIR_SCANE ||
1877         fdctrl->data_dir == FD_DIR_SCANL ||
1878         fdctrl->data_dir == FD_DIR_SCANH)
1879         status2 = FD_SR2_SEH;
1880     fdctrl->data_len -= len;
1881     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1882  transfer_error:
1883 
1884     return len;
1885 }
1886 
1887 /* Data register : 0x05 */
1888 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1889 {
1890     FDrive *cur_drv;
1891     uint32_t retval = 0;
1892     uint32_t pos;
1893 
1894     cur_drv = get_cur_drv(fdctrl);
1895     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1896     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1897         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1898         return 0;
1899     }
1900 
1901     /* If data_len spans multiple sectors, the current position in the FIFO
1902      * wraps around while fdctrl->data_pos is the real position in the whole
1903      * request. */
1904     pos = fdctrl->data_pos;
1905     pos %= FD_SECTOR_LEN;
1906 
1907     switch (fdctrl->phase) {
1908     case FD_PHASE_EXECUTION:
1909         assert(fdctrl->msr & FD_MSR_NONDMA);
1910         if (pos == 0) {
1911             if (fdctrl->data_pos != 0)
1912                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1913                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1914                                    fd_sector(cur_drv));
1915                     return 0;
1916                 }
1917             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1918                           BDRV_SECTOR_SIZE)
1919                 < 0) {
1920                 FLOPPY_DPRINTF("error getting sector %d\n",
1921                                fd_sector(cur_drv));
1922                 /* Sure, image size is too small... */
1923                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1924             }
1925         }
1926 
1927         if (++fdctrl->data_pos == fdctrl->data_len) {
1928             fdctrl->msr &= ~FD_MSR_RQM;
1929             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1930         }
1931         break;
1932 
1933     case FD_PHASE_RESULT:
1934         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1935         if (++fdctrl->data_pos == fdctrl->data_len) {
1936             fdctrl->msr &= ~FD_MSR_RQM;
1937             fdctrl_to_command_phase(fdctrl);
1938             fdctrl_reset_irq(fdctrl);
1939         }
1940         break;
1941 
1942     case FD_PHASE_COMMAND:
1943     default:
1944         abort();
1945     }
1946 
1947     retval = fdctrl->fifo[pos];
1948     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1949 
1950     return retval;
1951 }
1952 
1953 static void fdctrl_format_sector(FDCtrl *fdctrl)
1954 {
1955     FDrive *cur_drv;
1956     uint8_t kh, kt, ks;
1957 
1958     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1959     cur_drv = get_cur_drv(fdctrl);
1960     kt = fdctrl->fifo[6];
1961     kh = fdctrl->fifo[7];
1962     ks = fdctrl->fifo[8];
1963     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1964                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1965                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1966                                   NUM_SIDES(cur_drv)));
1967     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1968     case 2:
1969         /* sect too big */
1970         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1971         fdctrl->fifo[3] = kt;
1972         fdctrl->fifo[4] = kh;
1973         fdctrl->fifo[5] = ks;
1974         return;
1975     case 3:
1976         /* track too big */
1977         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1978         fdctrl->fifo[3] = kt;
1979         fdctrl->fifo[4] = kh;
1980         fdctrl->fifo[5] = ks;
1981         return;
1982     case 4:
1983         /* No seek enabled */
1984         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1985         fdctrl->fifo[3] = kt;
1986         fdctrl->fifo[4] = kh;
1987         fdctrl->fifo[5] = ks;
1988         return;
1989     case 1:
1990         fdctrl->status0 |= FD_SR0_SEEK;
1991         break;
1992     default:
1993         break;
1994     }
1995     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1996     if (cur_drv->blk == NULL ||
1997         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1998                    BDRV_SECTOR_SIZE, 0) < 0) {
1999         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2000         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2001     } else {
2002         if (cur_drv->sect == cur_drv->last_sect) {
2003             fdctrl->data_state &= ~FD_STATE_FORMAT;
2004             /* Last sector done */
2005             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2006         } else {
2007             /* More to do */
2008             fdctrl->data_pos = 0;
2009             fdctrl->data_len = 4;
2010         }
2011     }
2012 }
2013 
2014 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2015 {
2016     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2017     fdctrl->fifo[0] = fdctrl->lock << 4;
2018     fdctrl_to_result_phase(fdctrl, 1);
2019 }
2020 
2021 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2022 {
2023     FDrive *cur_drv = get_cur_drv(fdctrl);
2024 
2025     /* Drives position */
2026     fdctrl->fifo[0] = drv0(fdctrl)->track;
2027     fdctrl->fifo[1] = drv1(fdctrl)->track;
2028 #if MAX_FD == 4
2029     fdctrl->fifo[2] = drv2(fdctrl)->track;
2030     fdctrl->fifo[3] = drv3(fdctrl)->track;
2031 #else
2032     fdctrl->fifo[2] = 0;
2033     fdctrl->fifo[3] = 0;
2034 #endif
2035     /* timers */
2036     fdctrl->fifo[4] = fdctrl->timer0;
2037     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2038     fdctrl->fifo[6] = cur_drv->last_sect;
2039     fdctrl->fifo[7] = (fdctrl->lock << 7) |
2040         (cur_drv->perpendicular << 2);
2041     fdctrl->fifo[8] = fdctrl->config;
2042     fdctrl->fifo[9] = fdctrl->precomp_trk;
2043     fdctrl_to_result_phase(fdctrl, 10);
2044 }
2045 
2046 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2047 {
2048     /* Controller's version */
2049     fdctrl->fifo[0] = fdctrl->version;
2050     fdctrl_to_result_phase(fdctrl, 1);
2051 }
2052 
2053 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2054 {
2055     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2056     fdctrl_to_result_phase(fdctrl, 1);
2057 }
2058 
2059 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2060 {
2061     FDrive *cur_drv = get_cur_drv(fdctrl);
2062 
2063     /* Drives position */
2064     drv0(fdctrl)->track = fdctrl->fifo[3];
2065     drv1(fdctrl)->track = fdctrl->fifo[4];
2066 #if MAX_FD == 4
2067     drv2(fdctrl)->track = fdctrl->fifo[5];
2068     drv3(fdctrl)->track = fdctrl->fifo[6];
2069 #endif
2070     /* timers */
2071     fdctrl->timer0 = fdctrl->fifo[7];
2072     fdctrl->timer1 = fdctrl->fifo[8];
2073     cur_drv->last_sect = fdctrl->fifo[9];
2074     fdctrl->lock = fdctrl->fifo[10] >> 7;
2075     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2076     fdctrl->config = fdctrl->fifo[11];
2077     fdctrl->precomp_trk = fdctrl->fifo[12];
2078     fdctrl->pwrd = fdctrl->fifo[13];
2079     fdctrl_to_command_phase(fdctrl);
2080 }
2081 
2082 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2083 {
2084     FDrive *cur_drv = get_cur_drv(fdctrl);
2085 
2086     fdctrl->fifo[0] = 0;
2087     fdctrl->fifo[1] = 0;
2088     /* Drives position */
2089     fdctrl->fifo[2] = drv0(fdctrl)->track;
2090     fdctrl->fifo[3] = drv1(fdctrl)->track;
2091 #if MAX_FD == 4
2092     fdctrl->fifo[4] = drv2(fdctrl)->track;
2093     fdctrl->fifo[5] = drv3(fdctrl)->track;
2094 #else
2095     fdctrl->fifo[4] = 0;
2096     fdctrl->fifo[5] = 0;
2097 #endif
2098     /* timers */
2099     fdctrl->fifo[6] = fdctrl->timer0;
2100     fdctrl->fifo[7] = fdctrl->timer1;
2101     fdctrl->fifo[8] = cur_drv->last_sect;
2102     fdctrl->fifo[9] = (fdctrl->lock << 7) |
2103         (cur_drv->perpendicular << 2);
2104     fdctrl->fifo[10] = fdctrl->config;
2105     fdctrl->fifo[11] = fdctrl->precomp_trk;
2106     fdctrl->fifo[12] = fdctrl->pwrd;
2107     fdctrl->fifo[13] = 0;
2108     fdctrl->fifo[14] = 0;
2109     fdctrl_to_result_phase(fdctrl, 15);
2110 }
2111 
2112 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2113 {
2114     FDrive *cur_drv = get_cur_drv(fdctrl);
2115 
2116     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2117     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2118              (NANOSECONDS_PER_SECOND / 50));
2119 }
2120 
2121 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2122 {
2123     FDrive *cur_drv;
2124 
2125     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2126     cur_drv = get_cur_drv(fdctrl);
2127     fdctrl->data_state |= FD_STATE_FORMAT;
2128     if (fdctrl->fifo[0] & 0x80)
2129         fdctrl->data_state |= FD_STATE_MULTI;
2130     else
2131         fdctrl->data_state &= ~FD_STATE_MULTI;
2132     cur_drv->bps =
2133         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2134 #if 0
2135     cur_drv->last_sect =
2136         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2137         fdctrl->fifo[3] / 2;
2138 #else
2139     cur_drv->last_sect = fdctrl->fifo[3];
2140 #endif
2141     /* TODO: implement format using DMA expected by the Bochs BIOS
2142      * and Linux fdformat (read 3 bytes per sector via DMA and fill
2143      * the sector with the specified fill byte
2144      */
2145     fdctrl->data_state &= ~FD_STATE_FORMAT;
2146     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2147 }
2148 
2149 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2150 {
2151     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2152     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2153     if (fdctrl->fifo[2] & 1)
2154         fdctrl->dor &= ~FD_DOR_DMAEN;
2155     else
2156         fdctrl->dor |= FD_DOR_DMAEN;
2157     /* No result back */
2158     fdctrl_to_command_phase(fdctrl);
2159 }
2160 
2161 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2162 {
2163     FDrive *cur_drv;
2164 
2165     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2166     cur_drv = get_cur_drv(fdctrl);
2167     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2168     /* 1 Byte status back */
2169     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2170         (cur_drv->track == 0 ? 0x10 : 0x00) |
2171         (cur_drv->head << 2) |
2172         GET_CUR_DRV(fdctrl) |
2173         0x28;
2174     fdctrl_to_result_phase(fdctrl, 1);
2175 }
2176 
2177 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2178 {
2179     FDrive *cur_drv;
2180 
2181     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2182     cur_drv = get_cur_drv(fdctrl);
2183     fd_recalibrate(cur_drv);
2184     fdctrl_to_command_phase(fdctrl);
2185     /* Raise Interrupt */
2186     fdctrl->status0 |= FD_SR0_SEEK;
2187     fdctrl_raise_irq(fdctrl);
2188 }
2189 
2190 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2191 {
2192     FDrive *cur_drv = get_cur_drv(fdctrl);
2193 
2194     if (fdctrl->reset_sensei > 0) {
2195         fdctrl->fifo[0] =
2196             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2197         fdctrl->reset_sensei--;
2198     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2199         fdctrl->fifo[0] = FD_SR0_INVCMD;
2200         fdctrl_to_result_phase(fdctrl, 1);
2201         return;
2202     } else {
2203         fdctrl->fifo[0] =
2204                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2205                 | GET_CUR_DRV(fdctrl);
2206     }
2207 
2208     fdctrl->fifo[1] = cur_drv->track;
2209     fdctrl_to_result_phase(fdctrl, 2);
2210     fdctrl_reset_irq(fdctrl);
2211     fdctrl->status0 = FD_SR0_RDYCHG;
2212 }
2213 
2214 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2215 {
2216     FDrive *cur_drv;
2217 
2218     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2219     cur_drv = get_cur_drv(fdctrl);
2220     fdctrl_to_command_phase(fdctrl);
2221     /* The seek command just sends step pulses to the drive and doesn't care if
2222      * there is a medium inserted of if it's banging the head against the drive.
2223      */
2224     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2225     /* Raise Interrupt */
2226     fdctrl->status0 |= FD_SR0_SEEK;
2227     fdctrl_raise_irq(fdctrl);
2228 }
2229 
2230 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2231 {
2232     FDrive *cur_drv = get_cur_drv(fdctrl);
2233 
2234     if (fdctrl->fifo[1] & 0x80)
2235         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2236     /* No result back */
2237     fdctrl_to_command_phase(fdctrl);
2238 }
2239 
2240 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2241 {
2242     fdctrl->config = fdctrl->fifo[2];
2243     fdctrl->precomp_trk =  fdctrl->fifo[3];
2244     /* No result back */
2245     fdctrl_to_command_phase(fdctrl);
2246 }
2247 
2248 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2249 {
2250     fdctrl->pwrd = fdctrl->fifo[1];
2251     fdctrl->fifo[0] = fdctrl->fifo[1];
2252     fdctrl_to_result_phase(fdctrl, 1);
2253 }
2254 
2255 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2256 {
2257     /* No result back */
2258     fdctrl_to_command_phase(fdctrl);
2259 }
2260 
2261 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2262 {
2263     FDrive *cur_drv = get_cur_drv(fdctrl);
2264     uint32_t pos;
2265 
2266     pos = fdctrl->data_pos - 1;
2267     pos %= FD_SECTOR_LEN;
2268     if (fdctrl->fifo[pos] & 0x80) {
2269         /* Command parameters done */
2270         if (fdctrl->fifo[pos] & 0x40) {
2271             fdctrl->fifo[0] = fdctrl->fifo[1];
2272             fdctrl->fifo[2] = 0;
2273             fdctrl->fifo[3] = 0;
2274             fdctrl_to_result_phase(fdctrl, 4);
2275         } else {
2276             fdctrl_to_command_phase(fdctrl);
2277         }
2278     } else if (fdctrl->data_len > 7) {
2279         /* ERROR */
2280         fdctrl->fifo[0] = 0x80 |
2281             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2282         fdctrl_to_result_phase(fdctrl, 1);
2283     }
2284 }
2285 
2286 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2287 {
2288     FDrive *cur_drv;
2289 
2290     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2291     cur_drv = get_cur_drv(fdctrl);
2292     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2293         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2294                 cur_drv->sect, 1);
2295     } else {
2296         fd_seek(cur_drv, cur_drv->head,
2297                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2298     }
2299     fdctrl_to_command_phase(fdctrl);
2300     /* Raise Interrupt */
2301     fdctrl->status0 |= FD_SR0_SEEK;
2302     fdctrl_raise_irq(fdctrl);
2303 }
2304 
2305 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2306 {
2307     FDrive *cur_drv;
2308 
2309     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2310     cur_drv = get_cur_drv(fdctrl);
2311     if (fdctrl->fifo[2] > cur_drv->track) {
2312         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2313     } else {
2314         fd_seek(cur_drv, cur_drv->head,
2315                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2316     }
2317     fdctrl_to_command_phase(fdctrl);
2318     /* Raise Interrupt */
2319     fdctrl->status0 |= FD_SR0_SEEK;
2320     fdctrl_raise_irq(fdctrl);
2321 }
2322 
2323 /*
2324  * Handlers for the execution phase of each command
2325  */
2326 typedef struct FDCtrlCommand {
2327     uint8_t value;
2328     uint8_t mask;
2329     const char* name;
2330     int parameters;
2331     void (*handler)(FDCtrl *fdctrl, int direction);
2332     int direction;
2333 } FDCtrlCommand;
2334 
2335 static const FDCtrlCommand handlers[] = {
2336     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2337     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2338     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2339     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2340     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2341     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2342     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2343     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2344     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2345     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2346     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2347     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2348     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2349     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2350     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2351     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2352     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2353     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2354     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2355     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2356     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2357     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2358     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2359     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2360     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2361     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2362     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2363     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2364     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2365     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2366     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2367     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2368 };
2369 /* Associate command to an index in the 'handlers' array */
2370 static uint8_t command_to_handler[256];
2371 
2372 static const FDCtrlCommand *get_command(uint8_t cmd)
2373 {
2374     int idx;
2375 
2376     idx = command_to_handler[cmd];
2377     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2378     return &handlers[idx];
2379 }
2380 
2381 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2382 {
2383     FDrive *cur_drv;
2384     const FDCtrlCommand *cmd;
2385     uint32_t pos;
2386 
2387     /* Reset mode */
2388     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2389         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2390         return;
2391     }
2392     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2393         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2394         return;
2395     }
2396     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2397 
2398     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2399 
2400     /* If data_len spans multiple sectors, the current position in the FIFO
2401      * wraps around while fdctrl->data_pos is the real position in the whole
2402      * request. */
2403     pos = fdctrl->data_pos++;
2404     pos %= FD_SECTOR_LEN;
2405     fdctrl->fifo[pos] = value;
2406 
2407     if (fdctrl->data_pos == fdctrl->data_len) {
2408         fdctrl->msr &= ~FD_MSR_RQM;
2409     }
2410 
2411     switch (fdctrl->phase) {
2412     case FD_PHASE_EXECUTION:
2413         /* For DMA requests, RQM should be cleared during execution phase, so
2414          * we would have errored out above. */
2415         assert(fdctrl->msr & FD_MSR_NONDMA);
2416 
2417         /* FIFO data write */
2418         if (pos == FD_SECTOR_LEN - 1 ||
2419             fdctrl->data_pos == fdctrl->data_len) {
2420             cur_drv = get_cur_drv(fdctrl);
2421             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2422                            BDRV_SECTOR_SIZE, 0) < 0) {
2423                 FLOPPY_DPRINTF("error writing sector %d\n",
2424                                fd_sector(cur_drv));
2425                 break;
2426             }
2427             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2428                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2429                                fd_sector(cur_drv));
2430                 break;
2431             }
2432         }
2433 
2434         /* Switch to result phase when done with the transfer */
2435         if (fdctrl->data_pos == fdctrl->data_len) {
2436             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2437         }
2438         break;
2439 
2440     case FD_PHASE_COMMAND:
2441         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2442         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2443 
2444         if (pos == 0) {
2445             /* The first byte specifies the command. Now we start reading
2446              * as many parameters as this command requires. */
2447             cmd = get_command(value);
2448             fdctrl->data_len = cmd->parameters + 1;
2449             if (cmd->parameters) {
2450                 fdctrl->msr |= FD_MSR_RQM;
2451             }
2452             fdctrl->msr |= FD_MSR_CMDBUSY;
2453         }
2454 
2455         if (fdctrl->data_pos == fdctrl->data_len) {
2456             /* We have all parameters now, execute the command */
2457             fdctrl->phase = FD_PHASE_EXECUTION;
2458 
2459             if (fdctrl->data_state & FD_STATE_FORMAT) {
2460                 fdctrl_format_sector(fdctrl);
2461                 break;
2462             }
2463 
2464             cmd = get_command(fdctrl->fifo[0]);
2465             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2466             cmd->handler(fdctrl, cmd->direction);
2467         }
2468         break;
2469 
2470     case FD_PHASE_RESULT:
2471     default:
2472         abort();
2473     }
2474 }
2475 
2476 static void fdctrl_result_timer(void *opaque)
2477 {
2478     FDCtrl *fdctrl = opaque;
2479     FDrive *cur_drv = get_cur_drv(fdctrl);
2480 
2481     /* Pretend we are spinning.
2482      * This is needed for Coherent, which uses READ ID to check for
2483      * sector interleaving.
2484      */
2485     if (cur_drv->last_sect != 0) {
2486         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2487     }
2488     /* READ_ID can't automatically succeed! */
2489     if (fdctrl->check_media_rate &&
2490         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2491         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2492                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2493         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2494     } else {
2495         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2496     }
2497 }
2498 
2499 /* Init functions */
2500 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2501                                   Error **errp)
2502 {
2503     unsigned int i;
2504     FDrive *drive;
2505     DeviceState *dev;
2506     BlockBackend *blk;
2507     Error *local_err = NULL;
2508 
2509     for (i = 0; i < MAX_FD; i++) {
2510         drive = &fdctrl->drives[i];
2511         drive->fdctrl = fdctrl;
2512 
2513         /* If the drive is not present, we skip creating the qdev device, but
2514          * still have to initialise the controller. */
2515         blk = fdctrl->qdev_for_drives[i].blk;
2516         if (!blk) {
2517             fd_init(drive);
2518             fd_revalidate(drive);
2519             continue;
2520         }
2521 
2522         dev = qdev_new("floppy");
2523         qdev_prop_set_uint32(dev, "unit", i);
2524         qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2525 
2526         blk_ref(blk);
2527         blk_detach_dev(blk, fdc_dev);
2528         fdctrl->qdev_for_drives[i].blk = NULL;
2529         qdev_prop_set_drive(dev, "drive", blk, &local_err);
2530         blk_unref(blk);
2531 
2532         if (local_err) {
2533             error_propagate(errp, local_err);
2534             return;
2535         }
2536 
2537         qdev_realize_and_unref(dev, &fdctrl->bus.bus, &local_err);
2538         if (local_err) {
2539             error_propagate(errp, local_err);
2540             return;
2541         }
2542     }
2543 }
2544 
2545 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2546 {
2547     DeviceState *dev;
2548     ISADevice *isadev;
2549 
2550     isadev = isa_try_new(TYPE_ISA_FDC);
2551     if (!isadev) {
2552         return NULL;
2553     }
2554     dev = DEVICE(isadev);
2555 
2556     if (fds[0]) {
2557         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2558                             &error_fatal);
2559     }
2560     if (fds[1]) {
2561         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2562                             &error_fatal);
2563     }
2564     isa_realize_and_unref(isadev, bus, &error_fatal);
2565 
2566     return isadev;
2567 }
2568 
2569 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2570                         hwaddr mmio_base, DriveInfo **fds)
2571 {
2572     FDCtrl *fdctrl;
2573     DeviceState *dev;
2574     SysBusDevice *sbd;
2575     FDCtrlSysBus *sys;
2576 
2577     dev = qdev_new("sysbus-fdc");
2578     sys = SYSBUS_FDC(dev);
2579     fdctrl = &sys->state;
2580     fdctrl->dma_chann = dma_chann; /* FIXME */
2581     if (fds[0]) {
2582         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2583                             &error_fatal);
2584     }
2585     if (fds[1]) {
2586         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2587                             &error_fatal);
2588     }
2589     sbd = SYS_BUS_DEVICE(dev);
2590     sysbus_realize_and_unref(sbd, &error_fatal);
2591     sysbus_connect_irq(sbd, 0, irq);
2592     sysbus_mmio_map(sbd, 0, mmio_base);
2593 }
2594 
2595 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2596                        DriveInfo **fds, qemu_irq *fdc_tc)
2597 {
2598     DeviceState *dev;
2599     FDCtrlSysBus *sys;
2600 
2601     dev = qdev_new("SUNW,fdtwo");
2602     if (fds[0]) {
2603         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2604                             &error_fatal);
2605     }
2606     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2607     sys = SYSBUS_FDC(dev);
2608     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2609     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2610     *fdc_tc = qdev_get_gpio_in(dev, 0);
2611 }
2612 
2613 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2614                                   Error **errp)
2615 {
2616     int i, j;
2617     static int command_tables_inited = 0;
2618 
2619     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2620         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2621         return;
2622     }
2623 
2624     /* Fill 'command_to_handler' lookup table */
2625     if (!command_tables_inited) {
2626         command_tables_inited = 1;
2627         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2628             for (j = 0; j < sizeof(command_to_handler); j++) {
2629                 if ((j & handlers[i].mask) == handlers[i].value) {
2630                     command_to_handler[j] = i;
2631                 }
2632             }
2633         }
2634     }
2635 
2636     FLOPPY_DPRINTF("init controller\n");
2637     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2638     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2639     fdctrl->fifo_size = 512;
2640     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2641                                              fdctrl_result_timer, fdctrl);
2642 
2643     fdctrl->version = 0x90; /* Intel 82078 controller */
2644     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2645     fdctrl->num_floppies = MAX_FD;
2646 
2647     if (fdctrl->dma_chann != -1) {
2648         IsaDmaClass *k;
2649         assert(fdctrl->dma);
2650         k = ISADMA_GET_CLASS(fdctrl->dma);
2651         k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2652                             &fdctrl_transfer_handler, fdctrl);
2653     }
2654 
2655     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2656     fdctrl_connect_drives(fdctrl, dev, errp);
2657 }
2658 
2659 static const MemoryRegionPortio fdc_portio_list[] = {
2660     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2661     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2662     PORTIO_END_OF_LIST(),
2663 };
2664 
2665 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2666 {
2667     ISADevice *isadev = ISA_DEVICE(dev);
2668     FDCtrlISABus *isa = ISA_FDC(dev);
2669     FDCtrl *fdctrl = &isa->state;
2670     Error *err = NULL;
2671 
2672     isa_register_portio_list(isadev, &fdctrl->portio_list,
2673                              isa->iobase, fdc_portio_list, fdctrl,
2674                              "fdc");
2675 
2676     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2677     fdctrl->dma_chann = isa->dma;
2678     if (fdctrl->dma_chann != -1) {
2679         fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2680         if (!fdctrl->dma) {
2681             error_setg(errp, "ISA controller does not support DMA");
2682             return;
2683         }
2684     }
2685 
2686     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2687     fdctrl_realize_common(dev, fdctrl, &err);
2688     if (err != NULL) {
2689         error_propagate(errp, err);
2690         return;
2691     }
2692 }
2693 
2694 static void sysbus_fdc_initfn(Object *obj)
2695 {
2696     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2697     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2698     FDCtrl *fdctrl = &sys->state;
2699 
2700     fdctrl->dma_chann = -1;
2701 
2702     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2703                           "fdc", 0x08);
2704     sysbus_init_mmio(sbd, &fdctrl->iomem);
2705 }
2706 
2707 static void sun4m_fdc_initfn(Object *obj)
2708 {
2709     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2710     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2711     FDCtrl *fdctrl = &sys->state;
2712 
2713     fdctrl->dma_chann = -1;
2714 
2715     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2716                           fdctrl, "fdctrl", 0x08);
2717     sysbus_init_mmio(sbd, &fdctrl->iomem);
2718 }
2719 
2720 static void sysbus_fdc_common_initfn(Object *obj)
2721 {
2722     DeviceState *dev = DEVICE(obj);
2723     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2724     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2725     FDCtrl *fdctrl = &sys->state;
2726 
2727     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2728 
2729     sysbus_init_irq(sbd, &fdctrl->irq);
2730     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2731 }
2732 
2733 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2734 {
2735     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2736     FDCtrl *fdctrl = &sys->state;
2737 
2738     fdctrl_realize_common(dev, fdctrl, errp);
2739 }
2740 
2741 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2742 {
2743     FDCtrlISABus *isa = ISA_FDC(fdc);
2744 
2745     return isa->state.drives[i].drive;
2746 }
2747 
2748 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2749                                uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2750 {
2751     const FDFormat *fdf;
2752 
2753     *maxc = *maxh = *maxs = 0;
2754     for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2755         if (fdf->drive != type) {
2756             continue;
2757         }
2758         if (*maxc < fdf->max_track) {
2759             *maxc = fdf->max_track;
2760         }
2761         if (*maxh < fdf->max_head) {
2762             *maxh = fdf->max_head;
2763         }
2764         if (*maxs < fdf->last_sect) {
2765             *maxs = fdf->last_sect;
2766         }
2767     }
2768     (*maxc)--;
2769 }
2770 
2771 static const VMStateDescription vmstate_isa_fdc ={
2772     .name = "fdc",
2773     .version_id = 2,
2774     .minimum_version_id = 2,
2775     .fields = (VMStateField[]) {
2776         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2777         VMSTATE_END_OF_LIST()
2778     }
2779 };
2780 
2781 static Property isa_fdc_properties[] = {
2782     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2783     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2784     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2785     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2786     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2787     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2788                     0, true),
2789     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2790                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2791                         FloppyDriveType),
2792     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2793                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2794                         FloppyDriveType),
2795     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2796                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2797                         FloppyDriveType),
2798     DEFINE_PROP_END_OF_LIST(),
2799 };
2800 
2801 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2802 {
2803     DeviceClass *dc = DEVICE_CLASS(klass);
2804 
2805     dc->realize = isabus_fdc_realize;
2806     dc->fw_name = "fdc";
2807     dc->reset = fdctrl_external_reset_isa;
2808     dc->vmsd = &vmstate_isa_fdc;
2809     device_class_set_props(dc, isa_fdc_properties);
2810     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2811 }
2812 
2813 static void isabus_fdc_instance_init(Object *obj)
2814 {
2815     FDCtrlISABus *isa = ISA_FDC(obj);
2816 
2817     device_add_bootindex_property(obj, &isa->bootindexA,
2818                                   "bootindexA", "/floppy@0",
2819                                   DEVICE(obj));
2820     device_add_bootindex_property(obj, &isa->bootindexB,
2821                                   "bootindexB", "/floppy@1",
2822                                   DEVICE(obj));
2823 }
2824 
2825 static const TypeInfo isa_fdc_info = {
2826     .name          = TYPE_ISA_FDC,
2827     .parent        = TYPE_ISA_DEVICE,
2828     .instance_size = sizeof(FDCtrlISABus),
2829     .class_init    = isabus_fdc_class_init,
2830     .instance_init = isabus_fdc_instance_init,
2831 };
2832 
2833 static const VMStateDescription vmstate_sysbus_fdc ={
2834     .name = "fdc",
2835     .version_id = 2,
2836     .minimum_version_id = 2,
2837     .fields = (VMStateField[]) {
2838         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2839         VMSTATE_END_OF_LIST()
2840     }
2841 };
2842 
2843 static Property sysbus_fdc_properties[] = {
2844     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2845     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2846     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2847                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2848                         FloppyDriveType),
2849     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2850                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2851                         FloppyDriveType),
2852     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2853                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2854                         FloppyDriveType),
2855     DEFINE_PROP_END_OF_LIST(),
2856 };
2857 
2858 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2859 {
2860     DeviceClass *dc = DEVICE_CLASS(klass);
2861 
2862     device_class_set_props(dc, sysbus_fdc_properties);
2863     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2864 }
2865 
2866 static const TypeInfo sysbus_fdc_info = {
2867     .name          = "sysbus-fdc",
2868     .parent        = TYPE_SYSBUS_FDC,
2869     .instance_init = sysbus_fdc_initfn,
2870     .class_init    = sysbus_fdc_class_init,
2871 };
2872 
2873 static Property sun4m_fdc_properties[] = {
2874     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2875     DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2876                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2877                         FloppyDriveType),
2878     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2879                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2880                         FloppyDriveType),
2881     DEFINE_PROP_END_OF_LIST(),
2882 };
2883 
2884 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2885 {
2886     DeviceClass *dc = DEVICE_CLASS(klass);
2887 
2888     device_class_set_props(dc, sun4m_fdc_properties);
2889     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2890 }
2891 
2892 static const TypeInfo sun4m_fdc_info = {
2893     .name          = "SUNW,fdtwo",
2894     .parent        = TYPE_SYSBUS_FDC,
2895     .instance_init = sun4m_fdc_initfn,
2896     .class_init    = sun4m_fdc_class_init,
2897 };
2898 
2899 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2900 {
2901     DeviceClass *dc = DEVICE_CLASS(klass);
2902 
2903     dc->realize = sysbus_fdc_common_realize;
2904     dc->reset = fdctrl_external_reset_sysbus;
2905     dc->vmsd = &vmstate_sysbus_fdc;
2906 }
2907 
2908 static const TypeInfo sysbus_fdc_type_info = {
2909     .name          = TYPE_SYSBUS_FDC,
2910     .parent        = TYPE_SYS_BUS_DEVICE,
2911     .instance_size = sizeof(FDCtrlSysBus),
2912     .instance_init = sysbus_fdc_common_initfn,
2913     .abstract      = true,
2914     .class_init    = sysbus_fdc_common_class_init,
2915 };
2916 
2917 static void fdc_register_types(void)
2918 {
2919     type_register_static(&isa_fdc_info);
2920     type_register_static(&sysbus_fdc_type_info);
2921     type_register_static(&sysbus_fdc_info);
2922     type_register_static(&sun4m_fdc_info);
2923     type_register_static(&floppy_bus_info);
2924     type_register_static(&floppy_drive_info);
2925 }
2926 
2927 type_init(fdc_register_types)
2928