1 /* 2 * QEMU Floppy disk emulator (Intel 82078) 3 * 4 * Copyright (c) 2003, 2007 Jocelyn Mayer 5 * Copyright (c) 2008 Hervé Poussineau 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 /* 26 * The controller is used in Sun4m systems in a slightly different 27 * way. There are changes in DOR register and DMA is not available. 28 */ 29 30 #include "qemu/osdep.h" 31 #include "hw/hw.h" 32 #include "hw/block/fdc.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 #include "qemu/timer.h" 36 #include "hw/isa/isa.h" 37 #include "hw/sysbus.h" 38 #include "hw/block/block.h" 39 #include "sysemu/block-backend.h" 40 #include "sysemu/blockdev.h" 41 #include "sysemu/sysemu.h" 42 #include "qemu/log.h" 43 44 /********************************************************/ 45 /* debug Floppy devices */ 46 47 #define DEBUG_FLOPPY 0 48 49 #define FLOPPY_DPRINTF(fmt, ...) \ 50 do { \ 51 if (DEBUG_FLOPPY) { \ 52 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \ 53 } \ 54 } while (0) 55 56 57 /********************************************************/ 58 /* qdev floppy bus */ 59 60 #define TYPE_FLOPPY_BUS "floppy-bus" 61 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS) 62 63 typedef struct FDCtrl FDCtrl; 64 typedef struct FDrive FDrive; 65 static FDrive *get_drv(FDCtrl *fdctrl, int unit); 66 67 typedef struct FloppyBus { 68 BusState bus; 69 FDCtrl *fdc; 70 } FloppyBus; 71 72 static const TypeInfo floppy_bus_info = { 73 .name = TYPE_FLOPPY_BUS, 74 .parent = TYPE_BUS, 75 .instance_size = sizeof(FloppyBus), 76 }; 77 78 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev) 79 { 80 qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL); 81 bus->fdc = fdc; 82 } 83 84 85 /********************************************************/ 86 /* Floppy drive emulation */ 87 88 typedef enum FDriveRate { 89 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */ 90 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */ 91 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */ 92 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */ 93 } FDriveRate; 94 95 typedef enum FDriveSize { 96 FDRIVE_SIZE_UNKNOWN, 97 FDRIVE_SIZE_350, 98 FDRIVE_SIZE_525, 99 } FDriveSize; 100 101 typedef struct FDFormat { 102 FloppyDriveType drive; 103 uint8_t last_sect; 104 uint8_t max_track; 105 uint8_t max_head; 106 FDriveRate rate; 107 } FDFormat; 108 109 /* In many cases, the total sector size of a format is enough to uniquely 110 * identify it. However, there are some total sector collisions between 111 * formats of different physical size, and these are noted below by 112 * highlighting the total sector size for entries with collisions. */ 113 static const FDFormat fd_formats[] = { 114 /* First entry is default format */ 115 /* 1.44 MB 3"1/2 floppy disks */ 116 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */ 117 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */ 118 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, }, 119 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, }, 120 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, }, 121 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, }, 122 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, }, 123 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, }, 124 /* 2.88 MB 3"1/2 floppy disks */ 125 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, }, 126 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, }, 127 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, }, 128 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, }, 129 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, }, 130 /* 720 kB 3"1/2 floppy disks */ 131 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */ 132 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, }, 133 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, }, 134 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, }, 135 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, }, 136 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, }, 137 /* 1.2 MB 5"1/4 floppy disks */ 138 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, }, 139 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */ 140 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, }, 141 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, }, 142 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */ 143 /* 720 kB 5"1/4 floppy disks */ 144 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */ 145 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, }, 146 /* 360 kB 5"1/4 floppy disks */ 147 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */ 148 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, }, 149 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, }, 150 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, }, 151 /* 320 kB 5"1/4 floppy disks */ 152 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, }, 153 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, }, 154 /* 360 kB must match 5"1/4 better than 3"1/2... */ 155 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */ 156 /* end */ 157 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, }, 158 }; 159 160 static FDriveSize drive_size(FloppyDriveType drive) 161 { 162 switch (drive) { 163 case FLOPPY_DRIVE_TYPE_120: 164 return FDRIVE_SIZE_525; 165 case FLOPPY_DRIVE_TYPE_144: 166 case FLOPPY_DRIVE_TYPE_288: 167 return FDRIVE_SIZE_350; 168 default: 169 return FDRIVE_SIZE_UNKNOWN; 170 } 171 } 172 173 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv) 174 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive)) 175 176 /* Will always be a fixed parameter for us */ 177 #define FD_SECTOR_LEN 512 178 #define FD_SECTOR_SC 2 /* Sector size code */ 179 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */ 180 181 /* Floppy disk drive emulation */ 182 typedef enum FDiskFlags { 183 FDISK_DBL_SIDES = 0x01, 184 } FDiskFlags; 185 186 struct FDrive { 187 FDCtrl *fdctrl; 188 BlockBackend *blk; 189 BlockConf *conf; 190 /* Drive status */ 191 FloppyDriveType drive; /* CMOS drive type */ 192 uint8_t perpendicular; /* 2.88 MB access mode */ 193 /* Position */ 194 uint8_t head; 195 uint8_t track; 196 uint8_t sect; 197 /* Media */ 198 FloppyDriveType disk; /* Current disk type */ 199 FDiskFlags flags; 200 uint8_t last_sect; /* Nb sector per track */ 201 uint8_t max_track; /* Nb of tracks */ 202 uint16_t bps; /* Bytes per sector */ 203 uint8_t ro; /* Is read-only */ 204 uint8_t media_changed; /* Is media changed */ 205 uint8_t media_rate; /* Data rate of medium */ 206 207 bool media_validated; /* Have we validated the media? */ 208 }; 209 210 211 static FloppyDriveType get_fallback_drive_type(FDrive *drv); 212 213 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU 214 * currently goes through some pains to keep seeks within the bounds 215 * established by last_sect and max_track. Correcting this is difficult, 216 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel. 217 * 218 * For now: allow empty drives to have large bounds so we can seek around, 219 * with the understanding that when a diskette is inserted, the bounds will 220 * properly tighten to match the geometry of that inserted medium. 221 */ 222 static void fd_empty_seek_hack(FDrive *drv) 223 { 224 drv->last_sect = 0xFF; 225 drv->max_track = 0xFF; 226 } 227 228 static void fd_init(FDrive *drv) 229 { 230 /* Drive */ 231 drv->perpendicular = 0; 232 /* Disk */ 233 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 234 drv->last_sect = 0; 235 drv->max_track = 0; 236 drv->ro = true; 237 drv->media_changed = 1; 238 } 239 240 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1) 241 242 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect, 243 uint8_t last_sect, uint8_t num_sides) 244 { 245 return (((track * num_sides) + head) * last_sect) + sect - 1; 246 } 247 248 /* Returns current position, in sectors, for given drive */ 249 static int fd_sector(FDrive *drv) 250 { 251 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect, 252 NUM_SIDES(drv)); 253 } 254 255 /* Returns current position, in bytes, for given drive */ 256 static int fd_offset(FDrive *drv) 257 { 258 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS); 259 return fd_sector(drv) << BDRV_SECTOR_BITS; 260 } 261 262 /* Seek to a new position: 263 * returns 0 if already on right track 264 * returns 1 if track changed 265 * returns 2 if track is invalid 266 * returns 3 if sector is invalid 267 * returns 4 if seek is disabled 268 */ 269 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect, 270 int enable_seek) 271 { 272 uint32_t sector; 273 int ret; 274 275 if (track > drv->max_track || 276 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) { 277 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", 278 head, track, sect, 1, 279 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, 280 drv->max_track, drv->last_sect); 281 return 2; 282 } 283 if (sect > drv->last_sect) { 284 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", 285 head, track, sect, 1, 286 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, 287 drv->max_track, drv->last_sect); 288 return 3; 289 } 290 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv)); 291 ret = 0; 292 if (sector != fd_sector(drv)) { 293 #if 0 294 if (!enable_seek) { 295 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x" 296 " (max=%d %02x %02x)\n", 297 head, track, sect, 1, drv->max_track, 298 drv->last_sect); 299 return 4; 300 } 301 #endif 302 drv->head = head; 303 if (drv->track != track) { 304 if (drv->blk != NULL && blk_is_inserted(drv->blk)) { 305 drv->media_changed = 0; 306 } 307 ret = 1; 308 } 309 drv->track = track; 310 drv->sect = sect; 311 } 312 313 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) { 314 ret = 2; 315 } 316 317 return ret; 318 } 319 320 /* Set drive back to track 0 */ 321 static void fd_recalibrate(FDrive *drv) 322 { 323 FLOPPY_DPRINTF("recalibrate\n"); 324 fd_seek(drv, 0, 0, 1, 1); 325 } 326 327 /** 328 * Determine geometry based on inserted diskette. 329 * Will not operate on an empty drive. 330 * 331 * @return: 0 on success, -1 if the drive is empty. 332 */ 333 static int pick_geometry(FDrive *drv) 334 { 335 BlockBackend *blk = drv->blk; 336 const FDFormat *parse; 337 uint64_t nb_sectors, size; 338 int i; 339 int match, size_match, type_match; 340 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO; 341 342 /* We can only pick a geometry if we have a diskette. */ 343 if (!drv->blk || !blk_is_inserted(drv->blk) || 344 drv->drive == FLOPPY_DRIVE_TYPE_NONE) 345 { 346 return -1; 347 } 348 349 /* We need to determine the likely geometry of the inserted medium. 350 * In order of preference, we look for: 351 * (1) The same drive type and number of sectors, 352 * (2) The same diskette size and number of sectors, 353 * (3) The same drive type. 354 * 355 * In all cases, matches that occur higher in the drive table will take 356 * precedence over matches that occur later in the table. 357 */ 358 blk_get_geometry(blk, &nb_sectors); 359 match = size_match = type_match = -1; 360 for (i = 0; ; i++) { 361 parse = &fd_formats[i]; 362 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) { 363 break; 364 } 365 size = (parse->max_head + 1) * parse->max_track * parse->last_sect; 366 if (nb_sectors == size) { 367 if (magic || parse->drive == drv->drive) { 368 /* (1) perfect match -- nb_sectors and drive type */ 369 goto out; 370 } else if (drive_size(parse->drive) == drive_size(drv->drive)) { 371 /* (2) size match -- nb_sectors and physical medium size */ 372 match = (match == -1) ? i : match; 373 } else { 374 /* This is suspicious -- Did the user misconfigure? */ 375 size_match = (size_match == -1) ? i : size_match; 376 } 377 } else if (type_match == -1) { 378 if ((parse->drive == drv->drive) || 379 (magic && (parse->drive == get_fallback_drive_type(drv)))) { 380 /* (3) type match -- nb_sectors mismatch, but matches the type 381 * specified explicitly by the user, or matches the fallback 382 * default type when using the drive autodetect mechanism */ 383 type_match = i; 384 } 385 } 386 } 387 388 /* No exact match found */ 389 if (match == -1) { 390 if (size_match != -1) { 391 parse = &fd_formats[size_match]; 392 FLOPPY_DPRINTF("User requested floppy drive type '%s', " 393 "but inserted medium appears to be a " 394 "%"PRId64" sector '%s' type\n", 395 FloppyDriveType_lookup[drv->drive], 396 nb_sectors, 397 FloppyDriveType_lookup[parse->drive]); 398 } 399 match = type_match; 400 } 401 402 /* No match of any kind found -- fd_format is misconfigured, abort. */ 403 if (match == -1) { 404 error_setg(&error_abort, "No candidate geometries present in table " 405 " for floppy drive type '%s'", 406 FloppyDriveType_lookup[drv->drive]); 407 } 408 409 parse = &(fd_formats[match]); 410 411 out: 412 if (parse->max_head == 0) { 413 drv->flags &= ~FDISK_DBL_SIDES; 414 } else { 415 drv->flags |= FDISK_DBL_SIDES; 416 } 417 drv->max_track = parse->max_track; 418 drv->last_sect = parse->last_sect; 419 drv->disk = parse->drive; 420 drv->media_rate = parse->rate; 421 return 0; 422 } 423 424 static void pick_drive_type(FDrive *drv) 425 { 426 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) { 427 return; 428 } 429 430 if (pick_geometry(drv) == 0) { 431 drv->drive = drv->disk; 432 } else { 433 drv->drive = get_fallback_drive_type(drv); 434 } 435 436 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO); 437 } 438 439 /* Revalidate a disk drive after a disk change */ 440 static void fd_revalidate(FDrive *drv) 441 { 442 int rc; 443 444 FLOPPY_DPRINTF("revalidate\n"); 445 if (drv->blk != NULL) { 446 drv->ro = blk_is_read_only(drv->blk); 447 if (!blk_is_inserted(drv->blk)) { 448 FLOPPY_DPRINTF("No disk in drive\n"); 449 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 450 fd_empty_seek_hack(drv); 451 } else if (!drv->media_validated) { 452 rc = pick_geometry(drv); 453 if (rc) { 454 FLOPPY_DPRINTF("Could not validate floppy drive media"); 455 } else { 456 drv->media_validated = true; 457 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n", 458 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1, 459 drv->max_track, drv->last_sect, 460 drv->ro ? "ro" : "rw"); 461 } 462 } 463 } else { 464 FLOPPY_DPRINTF("No drive connected\n"); 465 drv->last_sect = 0; 466 drv->max_track = 0; 467 drv->flags &= ~FDISK_DBL_SIDES; 468 drv->drive = FLOPPY_DRIVE_TYPE_NONE; 469 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 470 } 471 } 472 473 static void fd_change_cb(void *opaque, bool load, Error **errp) 474 { 475 FDrive *drive = opaque; 476 Error *local_err = NULL; 477 478 if (!load) { 479 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort); 480 } else { 481 blkconf_apply_backend_options(drive->conf, 482 blk_is_read_only(drive->blk), false, 483 &local_err); 484 if (local_err) { 485 error_propagate(errp, local_err); 486 return; 487 } 488 } 489 490 drive->media_changed = 1; 491 drive->media_validated = false; 492 fd_revalidate(drive); 493 } 494 495 static const BlockDevOps fd_block_ops = { 496 .change_media_cb = fd_change_cb, 497 }; 498 499 500 #define TYPE_FLOPPY_DRIVE "floppy" 501 #define FLOPPY_DRIVE(obj) \ 502 OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE) 503 504 typedef struct FloppyDrive { 505 DeviceState qdev; 506 uint32_t unit; 507 BlockConf conf; 508 FloppyDriveType type; 509 } FloppyDrive; 510 511 static Property floppy_drive_properties[] = { 512 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1), 513 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf), 514 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type, 515 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 516 FloppyDriveType), 517 DEFINE_PROP_END_OF_LIST(), 518 }; 519 520 static int floppy_drive_init(DeviceState *qdev) 521 { 522 FloppyDrive *dev = FLOPPY_DRIVE(qdev); 523 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus); 524 FDrive *drive; 525 Error *local_err = NULL; 526 int ret; 527 528 if (dev->unit == -1) { 529 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) { 530 drive = get_drv(bus->fdc, dev->unit); 531 if (!drive->blk) { 532 break; 533 } 534 } 535 } 536 537 if (dev->unit >= MAX_FD) { 538 error_report("Can't create floppy unit %d, bus supports only %d units", 539 dev->unit, MAX_FD); 540 return -1; 541 } 542 543 drive = get_drv(bus->fdc, dev->unit); 544 if (drive->blk) { 545 error_report("Floppy unit %d is in use", dev->unit); 546 return -1; 547 } 548 549 if (!dev->conf.blk) { 550 /* Anonymous BlockBackend for an empty drive */ 551 dev->conf.blk = blk_new(0, BLK_PERM_ALL); 552 ret = blk_attach_dev(dev->conf.blk, qdev); 553 assert(ret == 0); 554 } 555 556 blkconf_blocksizes(&dev->conf); 557 if (dev->conf.logical_block_size != 512 || 558 dev->conf.physical_block_size != 512) 559 { 560 error_report("Physical and logical block size must be 512 for floppy"); 561 return -1; 562 } 563 564 /* rerror/werror aren't supported by fdc and therefore not even registered 565 * with qdev. So set the defaults manually before they are used in 566 * blkconf_apply_backend_options(). */ 567 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO; 568 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO; 569 570 blkconf_apply_backend_options(&dev->conf, blk_is_read_only(dev->conf.blk), 571 false, &local_err); 572 if (local_err) { 573 error_report_err(local_err); 574 return -1; 575 } 576 577 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us 578 * for empty drives. */ 579 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC && 580 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) { 581 error_report("fdc doesn't support drive option werror"); 582 return -1; 583 } 584 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) { 585 error_report("fdc doesn't support drive option rerror"); 586 return -1; 587 } 588 589 drive->conf = &dev->conf; 590 drive->blk = dev->conf.blk; 591 drive->fdctrl = bus->fdc; 592 593 fd_init(drive); 594 blk_set_dev_ops(drive->blk, &fd_block_ops, drive); 595 596 /* Keep 'type' qdev property and FDrive->drive in sync */ 597 drive->drive = dev->type; 598 pick_drive_type(drive); 599 dev->type = drive->drive; 600 601 fd_revalidate(drive); 602 603 return 0; 604 } 605 606 static void floppy_drive_class_init(ObjectClass *klass, void *data) 607 { 608 DeviceClass *k = DEVICE_CLASS(klass); 609 k->init = floppy_drive_init; 610 set_bit(DEVICE_CATEGORY_STORAGE, k->categories); 611 k->bus_type = TYPE_FLOPPY_BUS; 612 k->props = floppy_drive_properties; 613 k->desc = "virtual floppy drive"; 614 } 615 616 static const TypeInfo floppy_drive_info = { 617 .name = TYPE_FLOPPY_DRIVE, 618 .parent = TYPE_DEVICE, 619 .instance_size = sizeof(FloppyDrive), 620 .class_init = floppy_drive_class_init, 621 }; 622 623 /********************************************************/ 624 /* Intel 82078 floppy disk controller emulation */ 625 626 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq); 627 static void fdctrl_to_command_phase(FDCtrl *fdctrl); 628 static int fdctrl_transfer_handler (void *opaque, int nchan, 629 int dma_pos, int dma_len); 630 static void fdctrl_raise_irq(FDCtrl *fdctrl); 631 static FDrive *get_cur_drv(FDCtrl *fdctrl); 632 633 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl); 634 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl); 635 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl); 636 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value); 637 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl); 638 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value); 639 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl); 640 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value); 641 static uint32_t fdctrl_read_data(FDCtrl *fdctrl); 642 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value); 643 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl); 644 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value); 645 646 enum { 647 FD_DIR_WRITE = 0, 648 FD_DIR_READ = 1, 649 FD_DIR_SCANE = 2, 650 FD_DIR_SCANL = 3, 651 FD_DIR_SCANH = 4, 652 FD_DIR_VERIFY = 5, 653 }; 654 655 enum { 656 FD_STATE_MULTI = 0x01, /* multi track flag */ 657 FD_STATE_FORMAT = 0x02, /* format flag */ 658 }; 659 660 enum { 661 FD_REG_SRA = 0x00, 662 FD_REG_SRB = 0x01, 663 FD_REG_DOR = 0x02, 664 FD_REG_TDR = 0x03, 665 FD_REG_MSR = 0x04, 666 FD_REG_DSR = 0x04, 667 FD_REG_FIFO = 0x05, 668 FD_REG_DIR = 0x07, 669 FD_REG_CCR = 0x07, 670 }; 671 672 enum { 673 FD_CMD_READ_TRACK = 0x02, 674 FD_CMD_SPECIFY = 0x03, 675 FD_CMD_SENSE_DRIVE_STATUS = 0x04, 676 FD_CMD_WRITE = 0x05, 677 FD_CMD_READ = 0x06, 678 FD_CMD_RECALIBRATE = 0x07, 679 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08, 680 FD_CMD_WRITE_DELETED = 0x09, 681 FD_CMD_READ_ID = 0x0a, 682 FD_CMD_READ_DELETED = 0x0c, 683 FD_CMD_FORMAT_TRACK = 0x0d, 684 FD_CMD_DUMPREG = 0x0e, 685 FD_CMD_SEEK = 0x0f, 686 FD_CMD_VERSION = 0x10, 687 FD_CMD_SCAN_EQUAL = 0x11, 688 FD_CMD_PERPENDICULAR_MODE = 0x12, 689 FD_CMD_CONFIGURE = 0x13, 690 FD_CMD_LOCK = 0x14, 691 FD_CMD_VERIFY = 0x16, 692 FD_CMD_POWERDOWN_MODE = 0x17, 693 FD_CMD_PART_ID = 0x18, 694 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19, 695 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d, 696 FD_CMD_SAVE = 0x2e, 697 FD_CMD_OPTION = 0x33, 698 FD_CMD_RESTORE = 0x4e, 699 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e, 700 FD_CMD_RELATIVE_SEEK_OUT = 0x8f, 701 FD_CMD_FORMAT_AND_WRITE = 0xcd, 702 FD_CMD_RELATIVE_SEEK_IN = 0xcf, 703 }; 704 705 enum { 706 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */ 707 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */ 708 FD_CONFIG_POLL = 0x10, /* Poll enabled */ 709 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */ 710 FD_CONFIG_EIS = 0x40, /* No implied seeks */ 711 }; 712 713 enum { 714 FD_SR0_DS0 = 0x01, 715 FD_SR0_DS1 = 0x02, 716 FD_SR0_HEAD = 0x04, 717 FD_SR0_EQPMT = 0x10, 718 FD_SR0_SEEK = 0x20, 719 FD_SR0_ABNTERM = 0x40, 720 FD_SR0_INVCMD = 0x80, 721 FD_SR0_RDYCHG = 0xc0, 722 }; 723 724 enum { 725 FD_SR1_MA = 0x01, /* Missing address mark */ 726 FD_SR1_NW = 0x02, /* Not writable */ 727 FD_SR1_EC = 0x80, /* End of cylinder */ 728 }; 729 730 enum { 731 FD_SR2_SNS = 0x04, /* Scan not satisfied */ 732 FD_SR2_SEH = 0x08, /* Scan equal hit */ 733 }; 734 735 enum { 736 FD_SRA_DIR = 0x01, 737 FD_SRA_nWP = 0x02, 738 FD_SRA_nINDX = 0x04, 739 FD_SRA_HDSEL = 0x08, 740 FD_SRA_nTRK0 = 0x10, 741 FD_SRA_STEP = 0x20, 742 FD_SRA_nDRV2 = 0x40, 743 FD_SRA_INTPEND = 0x80, 744 }; 745 746 enum { 747 FD_SRB_MTR0 = 0x01, 748 FD_SRB_MTR1 = 0x02, 749 FD_SRB_WGATE = 0x04, 750 FD_SRB_RDATA = 0x08, 751 FD_SRB_WDATA = 0x10, 752 FD_SRB_DR0 = 0x20, 753 }; 754 755 enum { 756 #if MAX_FD == 4 757 FD_DOR_SELMASK = 0x03, 758 #else 759 FD_DOR_SELMASK = 0x01, 760 #endif 761 FD_DOR_nRESET = 0x04, 762 FD_DOR_DMAEN = 0x08, 763 FD_DOR_MOTEN0 = 0x10, 764 FD_DOR_MOTEN1 = 0x20, 765 FD_DOR_MOTEN2 = 0x40, 766 FD_DOR_MOTEN3 = 0x80, 767 }; 768 769 enum { 770 #if MAX_FD == 4 771 FD_TDR_BOOTSEL = 0x0c, 772 #else 773 FD_TDR_BOOTSEL = 0x04, 774 #endif 775 }; 776 777 enum { 778 FD_DSR_DRATEMASK= 0x03, 779 FD_DSR_PWRDOWN = 0x40, 780 FD_DSR_SWRESET = 0x80, 781 }; 782 783 enum { 784 FD_MSR_DRV0BUSY = 0x01, 785 FD_MSR_DRV1BUSY = 0x02, 786 FD_MSR_DRV2BUSY = 0x04, 787 FD_MSR_DRV3BUSY = 0x08, 788 FD_MSR_CMDBUSY = 0x10, 789 FD_MSR_NONDMA = 0x20, 790 FD_MSR_DIO = 0x40, 791 FD_MSR_RQM = 0x80, 792 }; 793 794 enum { 795 FD_DIR_DSKCHG = 0x80, 796 }; 797 798 /* 799 * See chapter 5.0 "Controller phases" of the spec: 800 * 801 * Command phase: 802 * The host writes a command and its parameters into the FIFO. The command 803 * phase is completed when all parameters for the command have been supplied, 804 * and execution phase is entered. 805 * 806 * Execution phase: 807 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO 808 * contains the payload now, otherwise it's unused. When all bytes of the 809 * required data have been transferred, the state is switched to either result 810 * phase (if the command produces status bytes) or directly back into the 811 * command phase for the next command. 812 * 813 * Result phase: 814 * The host reads out the FIFO, which contains one or more result bytes now. 815 */ 816 enum { 817 /* Only for migration: reconstruct phase from registers like qemu 2.3 */ 818 FD_PHASE_RECONSTRUCT = 0, 819 820 FD_PHASE_COMMAND = 1, 821 FD_PHASE_EXECUTION = 2, 822 FD_PHASE_RESULT = 3, 823 }; 824 825 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI) 826 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT) 827 828 struct FDCtrl { 829 MemoryRegion iomem; 830 qemu_irq irq; 831 /* Controller state */ 832 QEMUTimer *result_timer; 833 int dma_chann; 834 uint8_t phase; 835 IsaDma *dma; 836 /* Controller's identification */ 837 uint8_t version; 838 /* HW */ 839 uint8_t sra; 840 uint8_t srb; 841 uint8_t dor; 842 uint8_t dor_vmstate; /* only used as temp during vmstate */ 843 uint8_t tdr; 844 uint8_t dsr; 845 uint8_t msr; 846 uint8_t cur_drv; 847 uint8_t status0; 848 uint8_t status1; 849 uint8_t status2; 850 /* Command FIFO */ 851 uint8_t *fifo; 852 int32_t fifo_size; 853 uint32_t data_pos; 854 uint32_t data_len; 855 uint8_t data_state; 856 uint8_t data_dir; 857 uint8_t eot; /* last wanted sector */ 858 /* States kept only to be returned back */ 859 /* precompensation */ 860 uint8_t precomp_trk; 861 uint8_t config; 862 uint8_t lock; 863 /* Power down config (also with status regB access mode */ 864 uint8_t pwrd; 865 /* Floppy drives */ 866 FloppyBus bus; 867 uint8_t num_floppies; 868 FDrive drives[MAX_FD]; 869 struct { 870 BlockBackend *blk; 871 FloppyDriveType type; 872 } qdev_for_drives[MAX_FD]; 873 int reset_sensei; 874 uint32_t check_media_rate; 875 FloppyDriveType fallback; /* type=auto failure fallback */ 876 /* Timers state */ 877 uint8_t timer0; 878 uint8_t timer1; 879 PortioList portio_list; 880 }; 881 882 static FloppyDriveType get_fallback_drive_type(FDrive *drv) 883 { 884 return drv->fdctrl->fallback; 885 } 886 887 #define TYPE_SYSBUS_FDC "base-sysbus-fdc" 888 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC) 889 890 typedef struct FDCtrlSysBus { 891 /*< private >*/ 892 SysBusDevice parent_obj; 893 /*< public >*/ 894 895 struct FDCtrl state; 896 } FDCtrlSysBus; 897 898 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC) 899 900 typedef struct FDCtrlISABus { 901 ISADevice parent_obj; 902 903 uint32_t iobase; 904 uint32_t irq; 905 uint32_t dma; 906 struct FDCtrl state; 907 int32_t bootindexA; 908 int32_t bootindexB; 909 } FDCtrlISABus; 910 911 static uint32_t fdctrl_read (void *opaque, uint32_t reg) 912 { 913 FDCtrl *fdctrl = opaque; 914 uint32_t retval; 915 916 reg &= 7; 917 switch (reg) { 918 case FD_REG_SRA: 919 retval = fdctrl_read_statusA(fdctrl); 920 break; 921 case FD_REG_SRB: 922 retval = fdctrl_read_statusB(fdctrl); 923 break; 924 case FD_REG_DOR: 925 retval = fdctrl_read_dor(fdctrl); 926 break; 927 case FD_REG_TDR: 928 retval = fdctrl_read_tape(fdctrl); 929 break; 930 case FD_REG_MSR: 931 retval = fdctrl_read_main_status(fdctrl); 932 break; 933 case FD_REG_FIFO: 934 retval = fdctrl_read_data(fdctrl); 935 break; 936 case FD_REG_DIR: 937 retval = fdctrl_read_dir(fdctrl); 938 break; 939 default: 940 retval = (uint32_t)(-1); 941 break; 942 } 943 FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval); 944 945 return retval; 946 } 947 948 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value) 949 { 950 FDCtrl *fdctrl = opaque; 951 952 FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value); 953 954 reg &= 7; 955 switch (reg) { 956 case FD_REG_DOR: 957 fdctrl_write_dor(fdctrl, value); 958 break; 959 case FD_REG_TDR: 960 fdctrl_write_tape(fdctrl, value); 961 break; 962 case FD_REG_DSR: 963 fdctrl_write_rate(fdctrl, value); 964 break; 965 case FD_REG_FIFO: 966 fdctrl_write_data(fdctrl, value); 967 break; 968 case FD_REG_CCR: 969 fdctrl_write_ccr(fdctrl, value); 970 break; 971 default: 972 break; 973 } 974 } 975 976 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg, 977 unsigned ize) 978 { 979 return fdctrl_read(opaque, (uint32_t)reg); 980 } 981 982 static void fdctrl_write_mem (void *opaque, hwaddr reg, 983 uint64_t value, unsigned size) 984 { 985 fdctrl_write(opaque, (uint32_t)reg, value); 986 } 987 988 static const MemoryRegionOps fdctrl_mem_ops = { 989 .read = fdctrl_read_mem, 990 .write = fdctrl_write_mem, 991 .endianness = DEVICE_NATIVE_ENDIAN, 992 }; 993 994 static const MemoryRegionOps fdctrl_mem_strict_ops = { 995 .read = fdctrl_read_mem, 996 .write = fdctrl_write_mem, 997 .endianness = DEVICE_NATIVE_ENDIAN, 998 .valid = { 999 .min_access_size = 1, 1000 .max_access_size = 1, 1001 }, 1002 }; 1003 1004 static bool fdrive_media_changed_needed(void *opaque) 1005 { 1006 FDrive *drive = opaque; 1007 1008 return (drive->blk != NULL && drive->media_changed != 1); 1009 } 1010 1011 static const VMStateDescription vmstate_fdrive_media_changed = { 1012 .name = "fdrive/media_changed", 1013 .version_id = 1, 1014 .minimum_version_id = 1, 1015 .needed = fdrive_media_changed_needed, 1016 .fields = (VMStateField[]) { 1017 VMSTATE_UINT8(media_changed, FDrive), 1018 VMSTATE_END_OF_LIST() 1019 } 1020 }; 1021 1022 static bool fdrive_media_rate_needed(void *opaque) 1023 { 1024 FDrive *drive = opaque; 1025 1026 return drive->fdctrl->check_media_rate; 1027 } 1028 1029 static const VMStateDescription vmstate_fdrive_media_rate = { 1030 .name = "fdrive/media_rate", 1031 .version_id = 1, 1032 .minimum_version_id = 1, 1033 .needed = fdrive_media_rate_needed, 1034 .fields = (VMStateField[]) { 1035 VMSTATE_UINT8(media_rate, FDrive), 1036 VMSTATE_END_OF_LIST() 1037 } 1038 }; 1039 1040 static bool fdrive_perpendicular_needed(void *opaque) 1041 { 1042 FDrive *drive = opaque; 1043 1044 return drive->perpendicular != 0; 1045 } 1046 1047 static const VMStateDescription vmstate_fdrive_perpendicular = { 1048 .name = "fdrive/perpendicular", 1049 .version_id = 1, 1050 .minimum_version_id = 1, 1051 .needed = fdrive_perpendicular_needed, 1052 .fields = (VMStateField[]) { 1053 VMSTATE_UINT8(perpendicular, FDrive), 1054 VMSTATE_END_OF_LIST() 1055 } 1056 }; 1057 1058 static int fdrive_post_load(void *opaque, int version_id) 1059 { 1060 fd_revalidate(opaque); 1061 return 0; 1062 } 1063 1064 static const VMStateDescription vmstate_fdrive = { 1065 .name = "fdrive", 1066 .version_id = 1, 1067 .minimum_version_id = 1, 1068 .post_load = fdrive_post_load, 1069 .fields = (VMStateField[]) { 1070 VMSTATE_UINT8(head, FDrive), 1071 VMSTATE_UINT8(track, FDrive), 1072 VMSTATE_UINT8(sect, FDrive), 1073 VMSTATE_END_OF_LIST() 1074 }, 1075 .subsections = (const VMStateDescription*[]) { 1076 &vmstate_fdrive_media_changed, 1077 &vmstate_fdrive_media_rate, 1078 &vmstate_fdrive_perpendicular, 1079 NULL 1080 } 1081 }; 1082 1083 /* 1084 * Reconstructs the phase from register values according to the logic that was 1085 * implemented in qemu 2.3. This is the default value that is used if the phase 1086 * subsection is not present on migration. 1087 * 1088 * Don't change this function to reflect newer qemu versions, it is part of 1089 * the migration ABI. 1090 */ 1091 static int reconstruct_phase(FDCtrl *fdctrl) 1092 { 1093 if (fdctrl->msr & FD_MSR_NONDMA) { 1094 return FD_PHASE_EXECUTION; 1095 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) { 1096 /* qemu 2.3 disabled RQM only during DMA transfers */ 1097 return FD_PHASE_EXECUTION; 1098 } else if (fdctrl->msr & FD_MSR_DIO) { 1099 return FD_PHASE_RESULT; 1100 } else { 1101 return FD_PHASE_COMMAND; 1102 } 1103 } 1104 1105 static void fdc_pre_save(void *opaque) 1106 { 1107 FDCtrl *s = opaque; 1108 1109 s->dor_vmstate = s->dor | GET_CUR_DRV(s); 1110 } 1111 1112 static int fdc_pre_load(void *opaque) 1113 { 1114 FDCtrl *s = opaque; 1115 s->phase = FD_PHASE_RECONSTRUCT; 1116 return 0; 1117 } 1118 1119 static int fdc_post_load(void *opaque, int version_id) 1120 { 1121 FDCtrl *s = opaque; 1122 1123 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK); 1124 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK; 1125 1126 if (s->phase == FD_PHASE_RECONSTRUCT) { 1127 s->phase = reconstruct_phase(s); 1128 } 1129 1130 return 0; 1131 } 1132 1133 static bool fdc_reset_sensei_needed(void *opaque) 1134 { 1135 FDCtrl *s = opaque; 1136 1137 return s->reset_sensei != 0; 1138 } 1139 1140 static const VMStateDescription vmstate_fdc_reset_sensei = { 1141 .name = "fdc/reset_sensei", 1142 .version_id = 1, 1143 .minimum_version_id = 1, 1144 .needed = fdc_reset_sensei_needed, 1145 .fields = (VMStateField[]) { 1146 VMSTATE_INT32(reset_sensei, FDCtrl), 1147 VMSTATE_END_OF_LIST() 1148 } 1149 }; 1150 1151 static bool fdc_result_timer_needed(void *opaque) 1152 { 1153 FDCtrl *s = opaque; 1154 1155 return timer_pending(s->result_timer); 1156 } 1157 1158 static const VMStateDescription vmstate_fdc_result_timer = { 1159 .name = "fdc/result_timer", 1160 .version_id = 1, 1161 .minimum_version_id = 1, 1162 .needed = fdc_result_timer_needed, 1163 .fields = (VMStateField[]) { 1164 VMSTATE_TIMER_PTR(result_timer, FDCtrl), 1165 VMSTATE_END_OF_LIST() 1166 } 1167 }; 1168 1169 static bool fdc_phase_needed(void *opaque) 1170 { 1171 FDCtrl *fdctrl = opaque; 1172 1173 return reconstruct_phase(fdctrl) != fdctrl->phase; 1174 } 1175 1176 static const VMStateDescription vmstate_fdc_phase = { 1177 .name = "fdc/phase", 1178 .version_id = 1, 1179 .minimum_version_id = 1, 1180 .needed = fdc_phase_needed, 1181 .fields = (VMStateField[]) { 1182 VMSTATE_UINT8(phase, FDCtrl), 1183 VMSTATE_END_OF_LIST() 1184 } 1185 }; 1186 1187 static const VMStateDescription vmstate_fdc = { 1188 .name = "fdc", 1189 .version_id = 2, 1190 .minimum_version_id = 2, 1191 .pre_save = fdc_pre_save, 1192 .pre_load = fdc_pre_load, 1193 .post_load = fdc_post_load, 1194 .fields = (VMStateField[]) { 1195 /* Controller State */ 1196 VMSTATE_UINT8(sra, FDCtrl), 1197 VMSTATE_UINT8(srb, FDCtrl), 1198 VMSTATE_UINT8(dor_vmstate, FDCtrl), 1199 VMSTATE_UINT8(tdr, FDCtrl), 1200 VMSTATE_UINT8(dsr, FDCtrl), 1201 VMSTATE_UINT8(msr, FDCtrl), 1202 VMSTATE_UINT8(status0, FDCtrl), 1203 VMSTATE_UINT8(status1, FDCtrl), 1204 VMSTATE_UINT8(status2, FDCtrl), 1205 /* Command FIFO */ 1206 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8, 1207 uint8_t), 1208 VMSTATE_UINT32(data_pos, FDCtrl), 1209 VMSTATE_UINT32(data_len, FDCtrl), 1210 VMSTATE_UINT8(data_state, FDCtrl), 1211 VMSTATE_UINT8(data_dir, FDCtrl), 1212 VMSTATE_UINT8(eot, FDCtrl), 1213 /* States kept only to be returned back */ 1214 VMSTATE_UINT8(timer0, FDCtrl), 1215 VMSTATE_UINT8(timer1, FDCtrl), 1216 VMSTATE_UINT8(precomp_trk, FDCtrl), 1217 VMSTATE_UINT8(config, FDCtrl), 1218 VMSTATE_UINT8(lock, FDCtrl), 1219 VMSTATE_UINT8(pwrd, FDCtrl), 1220 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl), 1221 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1, 1222 vmstate_fdrive, FDrive), 1223 VMSTATE_END_OF_LIST() 1224 }, 1225 .subsections = (const VMStateDescription*[]) { 1226 &vmstate_fdc_reset_sensei, 1227 &vmstate_fdc_result_timer, 1228 &vmstate_fdc_phase, 1229 NULL 1230 } 1231 }; 1232 1233 static void fdctrl_external_reset_sysbus(DeviceState *d) 1234 { 1235 FDCtrlSysBus *sys = SYSBUS_FDC(d); 1236 FDCtrl *s = &sys->state; 1237 1238 fdctrl_reset(s, 0); 1239 } 1240 1241 static void fdctrl_external_reset_isa(DeviceState *d) 1242 { 1243 FDCtrlISABus *isa = ISA_FDC(d); 1244 FDCtrl *s = &isa->state; 1245 1246 fdctrl_reset(s, 0); 1247 } 1248 1249 static void fdctrl_handle_tc(void *opaque, int irq, int level) 1250 { 1251 //FDCtrl *s = opaque; 1252 1253 if (level) { 1254 // XXX 1255 FLOPPY_DPRINTF("TC pulsed\n"); 1256 } 1257 } 1258 1259 /* Change IRQ state */ 1260 static void fdctrl_reset_irq(FDCtrl *fdctrl) 1261 { 1262 fdctrl->status0 = 0; 1263 if (!(fdctrl->sra & FD_SRA_INTPEND)) 1264 return; 1265 FLOPPY_DPRINTF("Reset interrupt\n"); 1266 qemu_set_irq(fdctrl->irq, 0); 1267 fdctrl->sra &= ~FD_SRA_INTPEND; 1268 } 1269 1270 static void fdctrl_raise_irq(FDCtrl *fdctrl) 1271 { 1272 if (!(fdctrl->sra & FD_SRA_INTPEND)) { 1273 qemu_set_irq(fdctrl->irq, 1); 1274 fdctrl->sra |= FD_SRA_INTPEND; 1275 } 1276 1277 fdctrl->reset_sensei = 0; 1278 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0); 1279 } 1280 1281 /* Reset controller */ 1282 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq) 1283 { 1284 int i; 1285 1286 FLOPPY_DPRINTF("reset controller\n"); 1287 fdctrl_reset_irq(fdctrl); 1288 /* Initialise controller */ 1289 fdctrl->sra = 0; 1290 fdctrl->srb = 0xc0; 1291 if (!fdctrl->drives[1].blk) { 1292 fdctrl->sra |= FD_SRA_nDRV2; 1293 } 1294 fdctrl->cur_drv = 0; 1295 fdctrl->dor = FD_DOR_nRESET; 1296 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0; 1297 fdctrl->msr = FD_MSR_RQM; 1298 fdctrl->reset_sensei = 0; 1299 timer_del(fdctrl->result_timer); 1300 /* FIFO state */ 1301 fdctrl->data_pos = 0; 1302 fdctrl->data_len = 0; 1303 fdctrl->data_state = 0; 1304 fdctrl->data_dir = FD_DIR_WRITE; 1305 for (i = 0; i < MAX_FD; i++) 1306 fd_recalibrate(&fdctrl->drives[i]); 1307 fdctrl_to_command_phase(fdctrl); 1308 if (do_irq) { 1309 fdctrl->status0 |= FD_SR0_RDYCHG; 1310 fdctrl_raise_irq(fdctrl); 1311 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT; 1312 } 1313 } 1314 1315 static inline FDrive *drv0(FDCtrl *fdctrl) 1316 { 1317 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2]; 1318 } 1319 1320 static inline FDrive *drv1(FDCtrl *fdctrl) 1321 { 1322 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2)) 1323 return &fdctrl->drives[1]; 1324 else 1325 return &fdctrl->drives[0]; 1326 } 1327 1328 #if MAX_FD == 4 1329 static inline FDrive *drv2(FDCtrl *fdctrl) 1330 { 1331 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2)) 1332 return &fdctrl->drives[2]; 1333 else 1334 return &fdctrl->drives[1]; 1335 } 1336 1337 static inline FDrive *drv3(FDCtrl *fdctrl) 1338 { 1339 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2)) 1340 return &fdctrl->drives[3]; 1341 else 1342 return &fdctrl->drives[2]; 1343 } 1344 #endif 1345 1346 static FDrive *get_drv(FDCtrl *fdctrl, int unit) 1347 { 1348 switch (unit) { 1349 case 0: return drv0(fdctrl); 1350 case 1: return drv1(fdctrl); 1351 #if MAX_FD == 4 1352 case 2: return drv2(fdctrl); 1353 case 3: return drv3(fdctrl); 1354 #endif 1355 default: return NULL; 1356 } 1357 } 1358 1359 static FDrive *get_cur_drv(FDCtrl *fdctrl) 1360 { 1361 return get_drv(fdctrl, fdctrl->cur_drv); 1362 } 1363 1364 /* Status A register : 0x00 (read-only) */ 1365 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl) 1366 { 1367 uint32_t retval = fdctrl->sra; 1368 1369 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval); 1370 1371 return retval; 1372 } 1373 1374 /* Status B register : 0x01 (read-only) */ 1375 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl) 1376 { 1377 uint32_t retval = fdctrl->srb; 1378 1379 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval); 1380 1381 return retval; 1382 } 1383 1384 /* Digital output register : 0x02 */ 1385 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl) 1386 { 1387 uint32_t retval = fdctrl->dor; 1388 1389 /* Selected drive */ 1390 retval |= fdctrl->cur_drv; 1391 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval); 1392 1393 return retval; 1394 } 1395 1396 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value) 1397 { 1398 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value); 1399 1400 /* Motors */ 1401 if (value & FD_DOR_MOTEN0) 1402 fdctrl->srb |= FD_SRB_MTR0; 1403 else 1404 fdctrl->srb &= ~FD_SRB_MTR0; 1405 if (value & FD_DOR_MOTEN1) 1406 fdctrl->srb |= FD_SRB_MTR1; 1407 else 1408 fdctrl->srb &= ~FD_SRB_MTR1; 1409 1410 /* Drive */ 1411 if (value & 1) 1412 fdctrl->srb |= FD_SRB_DR0; 1413 else 1414 fdctrl->srb &= ~FD_SRB_DR0; 1415 1416 /* Reset */ 1417 if (!(value & FD_DOR_nRESET)) { 1418 if (fdctrl->dor & FD_DOR_nRESET) { 1419 FLOPPY_DPRINTF("controller enter RESET state\n"); 1420 } 1421 } else { 1422 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1423 FLOPPY_DPRINTF("controller out of RESET state\n"); 1424 fdctrl_reset(fdctrl, 1); 1425 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1426 } 1427 } 1428 /* Selected drive */ 1429 fdctrl->cur_drv = value & FD_DOR_SELMASK; 1430 1431 fdctrl->dor = value; 1432 } 1433 1434 /* Tape drive register : 0x03 */ 1435 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl) 1436 { 1437 uint32_t retval = fdctrl->tdr; 1438 1439 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval); 1440 1441 return retval; 1442 } 1443 1444 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value) 1445 { 1446 /* Reset mode */ 1447 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1448 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1449 return; 1450 } 1451 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value); 1452 /* Disk boot selection indicator */ 1453 fdctrl->tdr = value & FD_TDR_BOOTSEL; 1454 /* Tape indicators: never allow */ 1455 } 1456 1457 /* Main status register : 0x04 (read) */ 1458 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl) 1459 { 1460 uint32_t retval = fdctrl->msr; 1461 1462 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1463 fdctrl->dor |= FD_DOR_nRESET; 1464 1465 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval); 1466 1467 return retval; 1468 } 1469 1470 /* Data select rate register : 0x04 (write) */ 1471 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value) 1472 { 1473 /* Reset mode */ 1474 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1475 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1476 return; 1477 } 1478 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value); 1479 /* Reset: autoclear */ 1480 if (value & FD_DSR_SWRESET) { 1481 fdctrl->dor &= ~FD_DOR_nRESET; 1482 fdctrl_reset(fdctrl, 1); 1483 fdctrl->dor |= FD_DOR_nRESET; 1484 } 1485 if (value & FD_DSR_PWRDOWN) { 1486 fdctrl_reset(fdctrl, 1); 1487 } 1488 fdctrl->dsr = value; 1489 } 1490 1491 /* Configuration control register: 0x07 (write) */ 1492 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value) 1493 { 1494 /* Reset mode */ 1495 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1496 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1497 return; 1498 } 1499 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value); 1500 1501 /* Only the rate selection bits used in AT mode, and we 1502 * store those in the DSR. 1503 */ 1504 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) | 1505 (value & FD_DSR_DRATEMASK); 1506 } 1507 1508 static int fdctrl_media_changed(FDrive *drv) 1509 { 1510 return drv->media_changed; 1511 } 1512 1513 /* Digital input register : 0x07 (read-only) */ 1514 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl) 1515 { 1516 uint32_t retval = 0; 1517 1518 if (fdctrl_media_changed(get_cur_drv(fdctrl))) { 1519 retval |= FD_DIR_DSKCHG; 1520 } 1521 if (retval != 0) { 1522 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval); 1523 } 1524 1525 return retval; 1526 } 1527 1528 /* Clear the FIFO and update the state for receiving the next command */ 1529 static void fdctrl_to_command_phase(FDCtrl *fdctrl) 1530 { 1531 fdctrl->phase = FD_PHASE_COMMAND; 1532 fdctrl->data_dir = FD_DIR_WRITE; 1533 fdctrl->data_pos = 0; 1534 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */ 1535 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO); 1536 fdctrl->msr |= FD_MSR_RQM; 1537 } 1538 1539 /* Update the state to allow the guest to read out the command status. 1540 * @fifo_len is the number of result bytes to be read out. */ 1541 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len) 1542 { 1543 fdctrl->phase = FD_PHASE_RESULT; 1544 fdctrl->data_dir = FD_DIR_READ; 1545 fdctrl->data_len = fifo_len; 1546 fdctrl->data_pos = 0; 1547 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO; 1548 } 1549 1550 /* Set an error: unimplemented/unknown command */ 1551 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction) 1552 { 1553 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n", 1554 fdctrl->fifo[0]); 1555 fdctrl->fifo[0] = FD_SR0_INVCMD; 1556 fdctrl_to_result_phase(fdctrl, 1); 1557 } 1558 1559 /* Seek to next sector 1560 * returns 0 when end of track reached (for DBL_SIDES on head 1) 1561 * otherwise returns 1 1562 */ 1563 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv) 1564 { 1565 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n", 1566 cur_drv->head, cur_drv->track, cur_drv->sect, 1567 fd_sector(cur_drv)); 1568 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an 1569 error in fact */ 1570 uint8_t new_head = cur_drv->head; 1571 uint8_t new_track = cur_drv->track; 1572 uint8_t new_sect = cur_drv->sect; 1573 1574 int ret = 1; 1575 1576 if (new_sect >= cur_drv->last_sect || 1577 new_sect == fdctrl->eot) { 1578 new_sect = 1; 1579 if (FD_MULTI_TRACK(fdctrl->data_state)) { 1580 if (new_head == 0 && 1581 (cur_drv->flags & FDISK_DBL_SIDES) != 0) { 1582 new_head = 1; 1583 } else { 1584 new_head = 0; 1585 new_track++; 1586 fdctrl->status0 |= FD_SR0_SEEK; 1587 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) { 1588 ret = 0; 1589 } 1590 } 1591 } else { 1592 fdctrl->status0 |= FD_SR0_SEEK; 1593 new_track++; 1594 ret = 0; 1595 } 1596 if (ret == 1) { 1597 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n", 1598 new_head, new_track, new_sect, fd_sector(cur_drv)); 1599 } 1600 } else { 1601 new_sect++; 1602 } 1603 fd_seek(cur_drv, new_head, new_track, new_sect, 1); 1604 return ret; 1605 } 1606 1607 /* Callback for transfer end (stop or abort) */ 1608 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0, 1609 uint8_t status1, uint8_t status2) 1610 { 1611 FDrive *cur_drv; 1612 cur_drv = get_cur_drv(fdctrl); 1613 1614 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD); 1615 fdctrl->status0 |= GET_CUR_DRV(fdctrl); 1616 if (cur_drv->head) { 1617 fdctrl->status0 |= FD_SR0_HEAD; 1618 } 1619 fdctrl->status0 |= status0; 1620 1621 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n", 1622 status0, status1, status2, fdctrl->status0); 1623 fdctrl->fifo[0] = fdctrl->status0; 1624 fdctrl->fifo[1] = status1; 1625 fdctrl->fifo[2] = status2; 1626 fdctrl->fifo[3] = cur_drv->track; 1627 fdctrl->fifo[4] = cur_drv->head; 1628 fdctrl->fifo[5] = cur_drv->sect; 1629 fdctrl->fifo[6] = FD_SECTOR_SC; 1630 fdctrl->data_dir = FD_DIR_READ; 1631 if (!(fdctrl->msr & FD_MSR_NONDMA)) { 1632 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); 1633 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann); 1634 } 1635 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO; 1636 fdctrl->msr &= ~FD_MSR_NONDMA; 1637 1638 fdctrl_to_result_phase(fdctrl, 7); 1639 fdctrl_raise_irq(fdctrl); 1640 } 1641 1642 /* Prepare a data transfer (either DMA or FIFO) */ 1643 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction) 1644 { 1645 FDrive *cur_drv; 1646 uint8_t kh, kt, ks; 1647 1648 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1649 cur_drv = get_cur_drv(fdctrl); 1650 kt = fdctrl->fifo[2]; 1651 kh = fdctrl->fifo[3]; 1652 ks = fdctrl->fifo[4]; 1653 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n", 1654 GET_CUR_DRV(fdctrl), kh, kt, ks, 1655 fd_sector_calc(kh, kt, ks, cur_drv->last_sect, 1656 NUM_SIDES(cur_drv))); 1657 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { 1658 case 2: 1659 /* sect too big */ 1660 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1661 fdctrl->fifo[3] = kt; 1662 fdctrl->fifo[4] = kh; 1663 fdctrl->fifo[5] = ks; 1664 return; 1665 case 3: 1666 /* track too big */ 1667 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); 1668 fdctrl->fifo[3] = kt; 1669 fdctrl->fifo[4] = kh; 1670 fdctrl->fifo[5] = ks; 1671 return; 1672 case 4: 1673 /* No seek enabled */ 1674 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1675 fdctrl->fifo[3] = kt; 1676 fdctrl->fifo[4] = kh; 1677 fdctrl->fifo[5] = ks; 1678 return; 1679 case 1: 1680 fdctrl->status0 |= FD_SR0_SEEK; 1681 break; 1682 default: 1683 break; 1684 } 1685 1686 /* Check the data rate. If the programmed data rate does not match 1687 * the currently inserted medium, the operation has to fail. */ 1688 if (fdctrl->check_media_rate && 1689 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { 1690 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n", 1691 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); 1692 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); 1693 fdctrl->fifo[3] = kt; 1694 fdctrl->fifo[4] = kh; 1695 fdctrl->fifo[5] = ks; 1696 return; 1697 } 1698 1699 /* Set the FIFO state */ 1700 fdctrl->data_dir = direction; 1701 fdctrl->data_pos = 0; 1702 assert(fdctrl->msr & FD_MSR_CMDBUSY); 1703 if (fdctrl->fifo[0] & 0x80) 1704 fdctrl->data_state |= FD_STATE_MULTI; 1705 else 1706 fdctrl->data_state &= ~FD_STATE_MULTI; 1707 if (fdctrl->fifo[5] == 0) { 1708 fdctrl->data_len = fdctrl->fifo[8]; 1709 } else { 1710 int tmp; 1711 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]); 1712 tmp = (fdctrl->fifo[6] - ks + 1); 1713 if (fdctrl->fifo[0] & 0x80) 1714 tmp += fdctrl->fifo[6]; 1715 fdctrl->data_len *= tmp; 1716 } 1717 fdctrl->eot = fdctrl->fifo[6]; 1718 if (fdctrl->dor & FD_DOR_DMAEN) { 1719 IsaDmaTransferMode dma_mode; 1720 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); 1721 bool dma_mode_ok; 1722 /* DMA transfer are enabled. Check if DMA channel is well programmed */ 1723 dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann); 1724 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n", 1725 dma_mode, direction, 1726 (128 << fdctrl->fifo[5]) * 1727 (cur_drv->last_sect - ks + 1), fdctrl->data_len); 1728 switch (direction) { 1729 case FD_DIR_SCANE: 1730 case FD_DIR_SCANL: 1731 case FD_DIR_SCANH: 1732 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY); 1733 break; 1734 case FD_DIR_WRITE: 1735 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE); 1736 break; 1737 case FD_DIR_READ: 1738 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ); 1739 break; 1740 case FD_DIR_VERIFY: 1741 dma_mode_ok = true; 1742 break; 1743 default: 1744 dma_mode_ok = false; 1745 break; 1746 } 1747 if (dma_mode_ok) { 1748 /* No access is allowed until DMA transfer has completed */ 1749 fdctrl->msr &= ~FD_MSR_RQM; 1750 if (direction != FD_DIR_VERIFY) { 1751 /* Now, we just have to wait for the DMA controller to 1752 * recall us... 1753 */ 1754 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann); 1755 k->schedule(fdctrl->dma); 1756 } else { 1757 /* Start transfer */ 1758 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0, 1759 fdctrl->data_len); 1760 } 1761 return; 1762 } else { 1763 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode, 1764 direction); 1765 } 1766 } 1767 FLOPPY_DPRINTF("start non-DMA transfer\n"); 1768 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM; 1769 if (direction != FD_DIR_WRITE) 1770 fdctrl->msr |= FD_MSR_DIO; 1771 /* IO based transfer: calculate len */ 1772 fdctrl_raise_irq(fdctrl); 1773 } 1774 1775 /* Prepare a transfer of deleted data */ 1776 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction) 1777 { 1778 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n"); 1779 1780 /* We don't handle deleted data, 1781 * so we don't return *ANYTHING* 1782 */ 1783 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1784 } 1785 1786 /* handlers for DMA transfers */ 1787 static int fdctrl_transfer_handler (void *opaque, int nchan, 1788 int dma_pos, int dma_len) 1789 { 1790 FDCtrl *fdctrl; 1791 FDrive *cur_drv; 1792 int len, start_pos, rel_pos; 1793 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00; 1794 IsaDmaClass *k; 1795 1796 fdctrl = opaque; 1797 if (fdctrl->msr & FD_MSR_RQM) { 1798 FLOPPY_DPRINTF("Not in DMA transfer mode !\n"); 1799 return 0; 1800 } 1801 k = ISADMA_GET_CLASS(fdctrl->dma); 1802 cur_drv = get_cur_drv(fdctrl); 1803 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL || 1804 fdctrl->data_dir == FD_DIR_SCANH) 1805 status2 = FD_SR2_SNS; 1806 if (dma_len > fdctrl->data_len) 1807 dma_len = fdctrl->data_len; 1808 if (cur_drv->blk == NULL) { 1809 if (fdctrl->data_dir == FD_DIR_WRITE) 1810 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1811 else 1812 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1813 len = 0; 1814 goto transfer_error; 1815 } 1816 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; 1817 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) { 1818 len = dma_len - fdctrl->data_pos; 1819 if (len + rel_pos > FD_SECTOR_LEN) 1820 len = FD_SECTOR_LEN - rel_pos; 1821 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x " 1822 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos, 1823 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head, 1824 cur_drv->track, cur_drv->sect, fd_sector(cur_drv), 1825 fd_sector(cur_drv) * FD_SECTOR_LEN); 1826 if (fdctrl->data_dir != FD_DIR_WRITE || 1827 len < FD_SECTOR_LEN || rel_pos != 0) { 1828 /* READ & SCAN commands and realign to a sector for WRITE */ 1829 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), 1830 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) { 1831 FLOPPY_DPRINTF("Floppy: error getting sector %d\n", 1832 fd_sector(cur_drv)); 1833 /* Sure, image size is too small... */ 1834 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 1835 } 1836 } 1837 switch (fdctrl->data_dir) { 1838 case FD_DIR_READ: 1839 /* READ commands */ 1840 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, 1841 fdctrl->data_pos, len); 1842 break; 1843 case FD_DIR_WRITE: 1844 /* WRITE commands */ 1845 if (cur_drv->ro) { 1846 /* Handle readonly medium early, no need to do DMA, touch the 1847 * LED or attempt any writes. A real floppy doesn't attempt 1848 * to write to readonly media either. */ 1849 fdctrl_stop_transfer(fdctrl, 1850 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW, 1851 0x00); 1852 goto transfer_error; 1853 } 1854 1855 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, 1856 fdctrl->data_pos, len); 1857 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), 1858 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) { 1859 FLOPPY_DPRINTF("error writing sector %d\n", 1860 fd_sector(cur_drv)); 1861 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1862 goto transfer_error; 1863 } 1864 break; 1865 case FD_DIR_VERIFY: 1866 /* VERIFY commands */ 1867 break; 1868 default: 1869 /* SCAN commands */ 1870 { 1871 uint8_t tmpbuf[FD_SECTOR_LEN]; 1872 int ret; 1873 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos, 1874 len); 1875 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len); 1876 if (ret == 0) { 1877 status2 = FD_SR2_SEH; 1878 goto end_transfer; 1879 } 1880 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) || 1881 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) { 1882 status2 = 0x00; 1883 goto end_transfer; 1884 } 1885 } 1886 break; 1887 } 1888 fdctrl->data_pos += len; 1889 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; 1890 if (rel_pos == 0) { 1891 /* Seek to next sector */ 1892 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) 1893 break; 1894 } 1895 } 1896 end_transfer: 1897 len = fdctrl->data_pos - start_pos; 1898 FLOPPY_DPRINTF("end transfer %d %d %d\n", 1899 fdctrl->data_pos, len, fdctrl->data_len); 1900 if (fdctrl->data_dir == FD_DIR_SCANE || 1901 fdctrl->data_dir == FD_DIR_SCANL || 1902 fdctrl->data_dir == FD_DIR_SCANH) 1903 status2 = FD_SR2_SEH; 1904 fdctrl->data_len -= len; 1905 fdctrl_stop_transfer(fdctrl, status0, status1, status2); 1906 transfer_error: 1907 1908 return len; 1909 } 1910 1911 /* Data register : 0x05 */ 1912 static uint32_t fdctrl_read_data(FDCtrl *fdctrl) 1913 { 1914 FDrive *cur_drv; 1915 uint32_t retval = 0; 1916 uint32_t pos; 1917 1918 cur_drv = get_cur_drv(fdctrl); 1919 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1920 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) { 1921 FLOPPY_DPRINTF("error: controller not ready for reading\n"); 1922 return 0; 1923 } 1924 1925 /* If data_len spans multiple sectors, the current position in the FIFO 1926 * wraps around while fdctrl->data_pos is the real position in the whole 1927 * request. */ 1928 pos = fdctrl->data_pos; 1929 pos %= FD_SECTOR_LEN; 1930 1931 switch (fdctrl->phase) { 1932 case FD_PHASE_EXECUTION: 1933 assert(fdctrl->msr & FD_MSR_NONDMA); 1934 if (pos == 0) { 1935 if (fdctrl->data_pos != 0) 1936 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { 1937 FLOPPY_DPRINTF("error seeking to next sector %d\n", 1938 fd_sector(cur_drv)); 1939 return 0; 1940 } 1941 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, 1942 BDRV_SECTOR_SIZE) 1943 < 0) { 1944 FLOPPY_DPRINTF("error getting sector %d\n", 1945 fd_sector(cur_drv)); 1946 /* Sure, image size is too small... */ 1947 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 1948 } 1949 } 1950 1951 if (++fdctrl->data_pos == fdctrl->data_len) { 1952 fdctrl->msr &= ~FD_MSR_RQM; 1953 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 1954 } 1955 break; 1956 1957 case FD_PHASE_RESULT: 1958 assert(!(fdctrl->msr & FD_MSR_NONDMA)); 1959 if (++fdctrl->data_pos == fdctrl->data_len) { 1960 fdctrl->msr &= ~FD_MSR_RQM; 1961 fdctrl_to_command_phase(fdctrl); 1962 fdctrl_reset_irq(fdctrl); 1963 } 1964 break; 1965 1966 case FD_PHASE_COMMAND: 1967 default: 1968 abort(); 1969 } 1970 1971 retval = fdctrl->fifo[pos]; 1972 FLOPPY_DPRINTF("data register: 0x%02x\n", retval); 1973 1974 return retval; 1975 } 1976 1977 static void fdctrl_format_sector(FDCtrl *fdctrl) 1978 { 1979 FDrive *cur_drv; 1980 uint8_t kh, kt, ks; 1981 1982 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1983 cur_drv = get_cur_drv(fdctrl); 1984 kt = fdctrl->fifo[6]; 1985 kh = fdctrl->fifo[7]; 1986 ks = fdctrl->fifo[8]; 1987 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n", 1988 GET_CUR_DRV(fdctrl), kh, kt, ks, 1989 fd_sector_calc(kh, kt, ks, cur_drv->last_sect, 1990 NUM_SIDES(cur_drv))); 1991 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { 1992 case 2: 1993 /* sect too big */ 1994 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1995 fdctrl->fifo[3] = kt; 1996 fdctrl->fifo[4] = kh; 1997 fdctrl->fifo[5] = ks; 1998 return; 1999 case 3: 2000 /* track too big */ 2001 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); 2002 fdctrl->fifo[3] = kt; 2003 fdctrl->fifo[4] = kh; 2004 fdctrl->fifo[5] = ks; 2005 return; 2006 case 4: 2007 /* No seek enabled */ 2008 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 2009 fdctrl->fifo[3] = kt; 2010 fdctrl->fifo[4] = kh; 2011 fdctrl->fifo[5] = ks; 2012 return; 2013 case 1: 2014 fdctrl->status0 |= FD_SR0_SEEK; 2015 break; 2016 default: 2017 break; 2018 } 2019 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 2020 if (cur_drv->blk == NULL || 2021 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, 2022 BDRV_SECTOR_SIZE, 0) < 0) { 2023 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv)); 2024 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 2025 } else { 2026 if (cur_drv->sect == cur_drv->last_sect) { 2027 fdctrl->data_state &= ~FD_STATE_FORMAT; 2028 /* Last sector done */ 2029 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 2030 } else { 2031 /* More to do */ 2032 fdctrl->data_pos = 0; 2033 fdctrl->data_len = 4; 2034 } 2035 } 2036 } 2037 2038 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction) 2039 { 2040 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0; 2041 fdctrl->fifo[0] = fdctrl->lock << 4; 2042 fdctrl_to_result_phase(fdctrl, 1); 2043 } 2044 2045 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction) 2046 { 2047 FDrive *cur_drv = get_cur_drv(fdctrl); 2048 2049 /* Drives position */ 2050 fdctrl->fifo[0] = drv0(fdctrl)->track; 2051 fdctrl->fifo[1] = drv1(fdctrl)->track; 2052 #if MAX_FD == 4 2053 fdctrl->fifo[2] = drv2(fdctrl)->track; 2054 fdctrl->fifo[3] = drv3(fdctrl)->track; 2055 #else 2056 fdctrl->fifo[2] = 0; 2057 fdctrl->fifo[3] = 0; 2058 #endif 2059 /* timers */ 2060 fdctrl->fifo[4] = fdctrl->timer0; 2061 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0); 2062 fdctrl->fifo[6] = cur_drv->last_sect; 2063 fdctrl->fifo[7] = (fdctrl->lock << 7) | 2064 (cur_drv->perpendicular << 2); 2065 fdctrl->fifo[8] = fdctrl->config; 2066 fdctrl->fifo[9] = fdctrl->precomp_trk; 2067 fdctrl_to_result_phase(fdctrl, 10); 2068 } 2069 2070 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction) 2071 { 2072 /* Controller's version */ 2073 fdctrl->fifo[0] = fdctrl->version; 2074 fdctrl_to_result_phase(fdctrl, 1); 2075 } 2076 2077 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction) 2078 { 2079 fdctrl->fifo[0] = 0x41; /* Stepping 1 */ 2080 fdctrl_to_result_phase(fdctrl, 1); 2081 } 2082 2083 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction) 2084 { 2085 FDrive *cur_drv = get_cur_drv(fdctrl); 2086 2087 /* Drives position */ 2088 drv0(fdctrl)->track = fdctrl->fifo[3]; 2089 drv1(fdctrl)->track = fdctrl->fifo[4]; 2090 #if MAX_FD == 4 2091 drv2(fdctrl)->track = fdctrl->fifo[5]; 2092 drv3(fdctrl)->track = fdctrl->fifo[6]; 2093 #endif 2094 /* timers */ 2095 fdctrl->timer0 = fdctrl->fifo[7]; 2096 fdctrl->timer1 = fdctrl->fifo[8]; 2097 cur_drv->last_sect = fdctrl->fifo[9]; 2098 fdctrl->lock = fdctrl->fifo[10] >> 7; 2099 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF; 2100 fdctrl->config = fdctrl->fifo[11]; 2101 fdctrl->precomp_trk = fdctrl->fifo[12]; 2102 fdctrl->pwrd = fdctrl->fifo[13]; 2103 fdctrl_to_command_phase(fdctrl); 2104 } 2105 2106 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction) 2107 { 2108 FDrive *cur_drv = get_cur_drv(fdctrl); 2109 2110 fdctrl->fifo[0] = 0; 2111 fdctrl->fifo[1] = 0; 2112 /* Drives position */ 2113 fdctrl->fifo[2] = drv0(fdctrl)->track; 2114 fdctrl->fifo[3] = drv1(fdctrl)->track; 2115 #if MAX_FD == 4 2116 fdctrl->fifo[4] = drv2(fdctrl)->track; 2117 fdctrl->fifo[5] = drv3(fdctrl)->track; 2118 #else 2119 fdctrl->fifo[4] = 0; 2120 fdctrl->fifo[5] = 0; 2121 #endif 2122 /* timers */ 2123 fdctrl->fifo[6] = fdctrl->timer0; 2124 fdctrl->fifo[7] = fdctrl->timer1; 2125 fdctrl->fifo[8] = cur_drv->last_sect; 2126 fdctrl->fifo[9] = (fdctrl->lock << 7) | 2127 (cur_drv->perpendicular << 2); 2128 fdctrl->fifo[10] = fdctrl->config; 2129 fdctrl->fifo[11] = fdctrl->precomp_trk; 2130 fdctrl->fifo[12] = fdctrl->pwrd; 2131 fdctrl->fifo[13] = 0; 2132 fdctrl->fifo[14] = 0; 2133 fdctrl_to_result_phase(fdctrl, 15); 2134 } 2135 2136 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction) 2137 { 2138 FDrive *cur_drv = get_cur_drv(fdctrl); 2139 2140 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; 2141 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 2142 (NANOSECONDS_PER_SECOND / 50)); 2143 } 2144 2145 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction) 2146 { 2147 FDrive *cur_drv; 2148 2149 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2150 cur_drv = get_cur_drv(fdctrl); 2151 fdctrl->data_state |= FD_STATE_FORMAT; 2152 if (fdctrl->fifo[0] & 0x80) 2153 fdctrl->data_state |= FD_STATE_MULTI; 2154 else 2155 fdctrl->data_state &= ~FD_STATE_MULTI; 2156 cur_drv->bps = 2157 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2]; 2158 #if 0 2159 cur_drv->last_sect = 2160 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] : 2161 fdctrl->fifo[3] / 2; 2162 #else 2163 cur_drv->last_sect = fdctrl->fifo[3]; 2164 #endif 2165 /* TODO: implement format using DMA expected by the Bochs BIOS 2166 * and Linux fdformat (read 3 bytes per sector via DMA and fill 2167 * the sector with the specified fill byte 2168 */ 2169 fdctrl->data_state &= ~FD_STATE_FORMAT; 2170 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 2171 } 2172 2173 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction) 2174 { 2175 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF; 2176 fdctrl->timer1 = fdctrl->fifo[2] >> 1; 2177 if (fdctrl->fifo[2] & 1) 2178 fdctrl->dor &= ~FD_DOR_DMAEN; 2179 else 2180 fdctrl->dor |= FD_DOR_DMAEN; 2181 /* No result back */ 2182 fdctrl_to_command_phase(fdctrl); 2183 } 2184 2185 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction) 2186 { 2187 FDrive *cur_drv; 2188 2189 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2190 cur_drv = get_cur_drv(fdctrl); 2191 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; 2192 /* 1 Byte status back */ 2193 fdctrl->fifo[0] = (cur_drv->ro << 6) | 2194 (cur_drv->track == 0 ? 0x10 : 0x00) | 2195 (cur_drv->head << 2) | 2196 GET_CUR_DRV(fdctrl) | 2197 0x28; 2198 fdctrl_to_result_phase(fdctrl, 1); 2199 } 2200 2201 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction) 2202 { 2203 FDrive *cur_drv; 2204 2205 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2206 cur_drv = get_cur_drv(fdctrl); 2207 fd_recalibrate(cur_drv); 2208 fdctrl_to_command_phase(fdctrl); 2209 /* Raise Interrupt */ 2210 fdctrl->status0 |= FD_SR0_SEEK; 2211 fdctrl_raise_irq(fdctrl); 2212 } 2213 2214 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction) 2215 { 2216 FDrive *cur_drv = get_cur_drv(fdctrl); 2217 2218 if (fdctrl->reset_sensei > 0) { 2219 fdctrl->fifo[0] = 2220 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei; 2221 fdctrl->reset_sensei--; 2222 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) { 2223 fdctrl->fifo[0] = FD_SR0_INVCMD; 2224 fdctrl_to_result_phase(fdctrl, 1); 2225 return; 2226 } else { 2227 fdctrl->fifo[0] = 2228 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0)) 2229 | GET_CUR_DRV(fdctrl); 2230 } 2231 2232 fdctrl->fifo[1] = cur_drv->track; 2233 fdctrl_to_result_phase(fdctrl, 2); 2234 fdctrl_reset_irq(fdctrl); 2235 fdctrl->status0 = FD_SR0_RDYCHG; 2236 } 2237 2238 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction) 2239 { 2240 FDrive *cur_drv; 2241 2242 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2243 cur_drv = get_cur_drv(fdctrl); 2244 fdctrl_to_command_phase(fdctrl); 2245 /* The seek command just sends step pulses to the drive and doesn't care if 2246 * there is a medium inserted of if it's banging the head against the drive. 2247 */ 2248 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1); 2249 /* Raise Interrupt */ 2250 fdctrl->status0 |= FD_SR0_SEEK; 2251 fdctrl_raise_irq(fdctrl); 2252 } 2253 2254 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction) 2255 { 2256 FDrive *cur_drv = get_cur_drv(fdctrl); 2257 2258 if (fdctrl->fifo[1] & 0x80) 2259 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7; 2260 /* No result back */ 2261 fdctrl_to_command_phase(fdctrl); 2262 } 2263 2264 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction) 2265 { 2266 fdctrl->config = fdctrl->fifo[2]; 2267 fdctrl->precomp_trk = fdctrl->fifo[3]; 2268 /* No result back */ 2269 fdctrl_to_command_phase(fdctrl); 2270 } 2271 2272 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction) 2273 { 2274 fdctrl->pwrd = fdctrl->fifo[1]; 2275 fdctrl->fifo[0] = fdctrl->fifo[1]; 2276 fdctrl_to_result_phase(fdctrl, 1); 2277 } 2278 2279 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction) 2280 { 2281 /* No result back */ 2282 fdctrl_to_command_phase(fdctrl); 2283 } 2284 2285 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction) 2286 { 2287 FDrive *cur_drv = get_cur_drv(fdctrl); 2288 uint32_t pos; 2289 2290 pos = fdctrl->data_pos - 1; 2291 pos %= FD_SECTOR_LEN; 2292 if (fdctrl->fifo[pos] & 0x80) { 2293 /* Command parameters done */ 2294 if (fdctrl->fifo[pos] & 0x40) { 2295 fdctrl->fifo[0] = fdctrl->fifo[1]; 2296 fdctrl->fifo[2] = 0; 2297 fdctrl->fifo[3] = 0; 2298 fdctrl_to_result_phase(fdctrl, 4); 2299 } else { 2300 fdctrl_to_command_phase(fdctrl); 2301 } 2302 } else if (fdctrl->data_len > 7) { 2303 /* ERROR */ 2304 fdctrl->fifo[0] = 0x80 | 2305 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl); 2306 fdctrl_to_result_phase(fdctrl, 1); 2307 } 2308 } 2309 2310 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction) 2311 { 2312 FDrive *cur_drv; 2313 2314 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2315 cur_drv = get_cur_drv(fdctrl); 2316 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) { 2317 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1, 2318 cur_drv->sect, 1); 2319 } else { 2320 fd_seek(cur_drv, cur_drv->head, 2321 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1); 2322 } 2323 fdctrl_to_command_phase(fdctrl); 2324 /* Raise Interrupt */ 2325 fdctrl->status0 |= FD_SR0_SEEK; 2326 fdctrl_raise_irq(fdctrl); 2327 } 2328 2329 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction) 2330 { 2331 FDrive *cur_drv; 2332 2333 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2334 cur_drv = get_cur_drv(fdctrl); 2335 if (fdctrl->fifo[2] > cur_drv->track) { 2336 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1); 2337 } else { 2338 fd_seek(cur_drv, cur_drv->head, 2339 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1); 2340 } 2341 fdctrl_to_command_phase(fdctrl); 2342 /* Raise Interrupt */ 2343 fdctrl->status0 |= FD_SR0_SEEK; 2344 fdctrl_raise_irq(fdctrl); 2345 } 2346 2347 /* 2348 * Handlers for the execution phase of each command 2349 */ 2350 typedef struct FDCtrlCommand { 2351 uint8_t value; 2352 uint8_t mask; 2353 const char* name; 2354 int parameters; 2355 void (*handler)(FDCtrl *fdctrl, int direction); 2356 int direction; 2357 } FDCtrlCommand; 2358 2359 static const FDCtrlCommand handlers[] = { 2360 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ }, 2361 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE }, 2362 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek }, 2363 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status }, 2364 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate }, 2365 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track }, 2366 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ }, 2367 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */ 2368 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */ 2369 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ }, 2370 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE }, 2371 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY }, 2372 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL }, 2373 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH }, 2374 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE }, 2375 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid }, 2376 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify }, 2377 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status }, 2378 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode }, 2379 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure }, 2380 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode }, 2381 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option }, 2382 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command }, 2383 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out }, 2384 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented }, 2385 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in }, 2386 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock }, 2387 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg }, 2388 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version }, 2389 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid }, 2390 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */ 2391 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */ 2392 }; 2393 /* Associate command to an index in the 'handlers' array */ 2394 static uint8_t command_to_handler[256]; 2395 2396 static const FDCtrlCommand *get_command(uint8_t cmd) 2397 { 2398 int idx; 2399 2400 idx = command_to_handler[cmd]; 2401 FLOPPY_DPRINTF("%s command\n", handlers[idx].name); 2402 return &handlers[idx]; 2403 } 2404 2405 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value) 2406 { 2407 FDrive *cur_drv; 2408 const FDCtrlCommand *cmd; 2409 uint32_t pos; 2410 2411 /* Reset mode */ 2412 if (!(fdctrl->dor & FD_DOR_nRESET)) { 2413 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 2414 return; 2415 } 2416 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) { 2417 FLOPPY_DPRINTF("error: controller not ready for writing\n"); 2418 return; 2419 } 2420 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 2421 2422 FLOPPY_DPRINTF("%s: %02x\n", __func__, value); 2423 2424 /* If data_len spans multiple sectors, the current position in the FIFO 2425 * wraps around while fdctrl->data_pos is the real position in the whole 2426 * request. */ 2427 pos = fdctrl->data_pos++; 2428 pos %= FD_SECTOR_LEN; 2429 fdctrl->fifo[pos] = value; 2430 2431 if (fdctrl->data_pos == fdctrl->data_len) { 2432 fdctrl->msr &= ~FD_MSR_RQM; 2433 } 2434 2435 switch (fdctrl->phase) { 2436 case FD_PHASE_EXECUTION: 2437 /* For DMA requests, RQM should be cleared during execution phase, so 2438 * we would have errored out above. */ 2439 assert(fdctrl->msr & FD_MSR_NONDMA); 2440 2441 /* FIFO data write */ 2442 if (pos == FD_SECTOR_LEN - 1 || 2443 fdctrl->data_pos == fdctrl->data_len) { 2444 cur_drv = get_cur_drv(fdctrl); 2445 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, 2446 BDRV_SECTOR_SIZE, 0) < 0) { 2447 FLOPPY_DPRINTF("error writing sector %d\n", 2448 fd_sector(cur_drv)); 2449 break; 2450 } 2451 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { 2452 FLOPPY_DPRINTF("error seeking to next sector %d\n", 2453 fd_sector(cur_drv)); 2454 break; 2455 } 2456 } 2457 2458 /* Switch to result phase when done with the transfer */ 2459 if (fdctrl->data_pos == fdctrl->data_len) { 2460 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 2461 } 2462 break; 2463 2464 case FD_PHASE_COMMAND: 2465 assert(!(fdctrl->msr & FD_MSR_NONDMA)); 2466 assert(fdctrl->data_pos < FD_SECTOR_LEN); 2467 2468 if (pos == 0) { 2469 /* The first byte specifies the command. Now we start reading 2470 * as many parameters as this command requires. */ 2471 cmd = get_command(value); 2472 fdctrl->data_len = cmd->parameters + 1; 2473 if (cmd->parameters) { 2474 fdctrl->msr |= FD_MSR_RQM; 2475 } 2476 fdctrl->msr |= FD_MSR_CMDBUSY; 2477 } 2478 2479 if (fdctrl->data_pos == fdctrl->data_len) { 2480 /* We have all parameters now, execute the command */ 2481 fdctrl->phase = FD_PHASE_EXECUTION; 2482 2483 if (fdctrl->data_state & FD_STATE_FORMAT) { 2484 fdctrl_format_sector(fdctrl); 2485 break; 2486 } 2487 2488 cmd = get_command(fdctrl->fifo[0]); 2489 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name); 2490 cmd->handler(fdctrl, cmd->direction); 2491 } 2492 break; 2493 2494 case FD_PHASE_RESULT: 2495 default: 2496 abort(); 2497 } 2498 } 2499 2500 static void fdctrl_result_timer(void *opaque) 2501 { 2502 FDCtrl *fdctrl = opaque; 2503 FDrive *cur_drv = get_cur_drv(fdctrl); 2504 2505 /* Pretend we are spinning. 2506 * This is needed for Coherent, which uses READ ID to check for 2507 * sector interleaving. 2508 */ 2509 if (cur_drv->last_sect != 0) { 2510 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1; 2511 } 2512 /* READ_ID can't automatically succeed! */ 2513 if (fdctrl->check_media_rate && 2514 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { 2515 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n", 2516 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); 2517 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); 2518 } else { 2519 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 2520 } 2521 } 2522 2523 /* Init functions */ 2524 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev, 2525 Error **errp) 2526 { 2527 unsigned int i; 2528 FDrive *drive; 2529 DeviceState *dev; 2530 BlockBackend *blk; 2531 Error *local_err = NULL; 2532 2533 for (i = 0; i < MAX_FD; i++) { 2534 drive = &fdctrl->drives[i]; 2535 drive->fdctrl = fdctrl; 2536 2537 /* If the drive is not present, we skip creating the qdev device, but 2538 * still have to initialise the controller. */ 2539 blk = fdctrl->qdev_for_drives[i].blk; 2540 if (!blk) { 2541 fd_init(drive); 2542 fd_revalidate(drive); 2543 continue; 2544 } 2545 2546 dev = qdev_create(&fdctrl->bus.bus, "floppy"); 2547 qdev_prop_set_uint32(dev, "unit", i); 2548 qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type); 2549 2550 blk_ref(blk); 2551 blk_detach_dev(blk, fdc_dev); 2552 fdctrl->qdev_for_drives[i].blk = NULL; 2553 qdev_prop_set_drive(dev, "drive", blk, &local_err); 2554 blk_unref(blk); 2555 2556 if (local_err) { 2557 error_propagate(errp, local_err); 2558 return; 2559 } 2560 2561 object_property_set_bool(OBJECT(dev), true, "realized", &local_err); 2562 if (local_err) { 2563 error_propagate(errp, local_err); 2564 return; 2565 } 2566 } 2567 } 2568 2569 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds) 2570 { 2571 DeviceState *dev; 2572 ISADevice *isadev; 2573 2574 isadev = isa_try_create(bus, TYPE_ISA_FDC); 2575 if (!isadev) { 2576 return NULL; 2577 } 2578 dev = DEVICE(isadev); 2579 2580 if (fds[0]) { 2581 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]), 2582 &error_fatal); 2583 } 2584 if (fds[1]) { 2585 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]), 2586 &error_fatal); 2587 } 2588 qdev_init_nofail(dev); 2589 2590 return isadev; 2591 } 2592 2593 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann, 2594 hwaddr mmio_base, DriveInfo **fds) 2595 { 2596 FDCtrl *fdctrl; 2597 DeviceState *dev; 2598 SysBusDevice *sbd; 2599 FDCtrlSysBus *sys; 2600 2601 dev = qdev_create(NULL, "sysbus-fdc"); 2602 sys = SYSBUS_FDC(dev); 2603 fdctrl = &sys->state; 2604 fdctrl->dma_chann = dma_chann; /* FIXME */ 2605 if (fds[0]) { 2606 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]), 2607 &error_fatal); 2608 } 2609 if (fds[1]) { 2610 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]), 2611 &error_fatal); 2612 } 2613 qdev_init_nofail(dev); 2614 sbd = SYS_BUS_DEVICE(dev); 2615 sysbus_connect_irq(sbd, 0, irq); 2616 sysbus_mmio_map(sbd, 0, mmio_base); 2617 } 2618 2619 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base, 2620 DriveInfo **fds, qemu_irq *fdc_tc) 2621 { 2622 DeviceState *dev; 2623 FDCtrlSysBus *sys; 2624 2625 dev = qdev_create(NULL, "SUNW,fdtwo"); 2626 if (fds[0]) { 2627 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]), 2628 &error_fatal); 2629 } 2630 qdev_init_nofail(dev); 2631 sys = SYSBUS_FDC(dev); 2632 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq); 2633 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base); 2634 *fdc_tc = qdev_get_gpio_in(dev, 0); 2635 } 2636 2637 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, 2638 Error **errp) 2639 { 2640 int i, j; 2641 static int command_tables_inited = 0; 2642 2643 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) { 2644 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'"); 2645 } 2646 2647 /* Fill 'command_to_handler' lookup table */ 2648 if (!command_tables_inited) { 2649 command_tables_inited = 1; 2650 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) { 2651 for (j = 0; j < sizeof(command_to_handler); j++) { 2652 if ((j & handlers[i].mask) == handlers[i].value) { 2653 command_to_handler[j] = i; 2654 } 2655 } 2656 } 2657 } 2658 2659 FLOPPY_DPRINTF("init controller\n"); 2660 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN); 2661 fdctrl->fifo_size = 512; 2662 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 2663 fdctrl_result_timer, fdctrl); 2664 2665 fdctrl->version = 0x90; /* Intel 82078 controller */ 2666 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */ 2667 fdctrl->num_floppies = MAX_FD; 2668 2669 if (fdctrl->dma_chann != -1) { 2670 IsaDmaClass *k; 2671 assert(fdctrl->dma); 2672 k = ISADMA_GET_CLASS(fdctrl->dma); 2673 k->register_channel(fdctrl->dma, fdctrl->dma_chann, 2674 &fdctrl_transfer_handler, fdctrl); 2675 } 2676 2677 floppy_bus_create(fdctrl, &fdctrl->bus, dev); 2678 fdctrl_connect_drives(fdctrl, dev, errp); 2679 } 2680 2681 static const MemoryRegionPortio fdc_portio_list[] = { 2682 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write }, 2683 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write }, 2684 PORTIO_END_OF_LIST(), 2685 }; 2686 2687 static void isabus_fdc_realize(DeviceState *dev, Error **errp) 2688 { 2689 ISADevice *isadev = ISA_DEVICE(dev); 2690 FDCtrlISABus *isa = ISA_FDC(dev); 2691 FDCtrl *fdctrl = &isa->state; 2692 Error *err = NULL; 2693 2694 isa_register_portio_list(isadev, &fdctrl->portio_list, 2695 isa->iobase, fdc_portio_list, fdctrl, 2696 "fdc"); 2697 2698 isa_init_irq(isadev, &fdctrl->irq, isa->irq); 2699 fdctrl->dma_chann = isa->dma; 2700 if (fdctrl->dma_chann != -1) { 2701 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma); 2702 assert(fdctrl->dma); 2703 } 2704 2705 qdev_set_legacy_instance_id(dev, isa->iobase, 2); 2706 fdctrl_realize_common(dev, fdctrl, &err); 2707 if (err != NULL) { 2708 error_propagate(errp, err); 2709 return; 2710 } 2711 } 2712 2713 static void sysbus_fdc_initfn(Object *obj) 2714 { 2715 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2716 FDCtrlSysBus *sys = SYSBUS_FDC(obj); 2717 FDCtrl *fdctrl = &sys->state; 2718 2719 fdctrl->dma_chann = -1; 2720 2721 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl, 2722 "fdc", 0x08); 2723 sysbus_init_mmio(sbd, &fdctrl->iomem); 2724 } 2725 2726 static void sun4m_fdc_initfn(Object *obj) 2727 { 2728 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2729 FDCtrlSysBus *sys = SYSBUS_FDC(obj); 2730 FDCtrl *fdctrl = &sys->state; 2731 2732 fdctrl->dma_chann = -1; 2733 2734 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops, 2735 fdctrl, "fdctrl", 0x08); 2736 sysbus_init_mmio(sbd, &fdctrl->iomem); 2737 } 2738 2739 static void sysbus_fdc_common_initfn(Object *obj) 2740 { 2741 DeviceState *dev = DEVICE(obj); 2742 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 2743 FDCtrlSysBus *sys = SYSBUS_FDC(obj); 2744 FDCtrl *fdctrl = &sys->state; 2745 2746 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */ 2747 2748 sysbus_init_irq(sbd, &fdctrl->irq); 2749 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1); 2750 } 2751 2752 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp) 2753 { 2754 FDCtrlSysBus *sys = SYSBUS_FDC(dev); 2755 FDCtrl *fdctrl = &sys->state; 2756 2757 fdctrl_realize_common(dev, fdctrl, errp); 2758 } 2759 2760 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i) 2761 { 2762 FDCtrlISABus *isa = ISA_FDC(fdc); 2763 2764 return isa->state.drives[i].drive; 2765 } 2766 2767 void isa_fdc_get_drive_max_chs(FloppyDriveType type, 2768 uint8_t *maxc, uint8_t *maxh, uint8_t *maxs) 2769 { 2770 const FDFormat *fdf; 2771 2772 *maxc = *maxh = *maxs = 0; 2773 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) { 2774 if (fdf->drive != type) { 2775 continue; 2776 } 2777 if (*maxc < fdf->max_track) { 2778 *maxc = fdf->max_track; 2779 } 2780 if (*maxh < fdf->max_head) { 2781 *maxh = fdf->max_head; 2782 } 2783 if (*maxs < fdf->last_sect) { 2784 *maxs = fdf->last_sect; 2785 } 2786 } 2787 (*maxc)--; 2788 } 2789 2790 static const VMStateDescription vmstate_isa_fdc ={ 2791 .name = "fdc", 2792 .version_id = 2, 2793 .minimum_version_id = 2, 2794 .fields = (VMStateField[]) { 2795 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl), 2796 VMSTATE_END_OF_LIST() 2797 } 2798 }; 2799 2800 static Property isa_fdc_properties[] = { 2801 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0), 2802 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6), 2803 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2), 2804 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk), 2805 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk), 2806 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate, 2807 0, true), 2808 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type, 2809 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 2810 FloppyDriveType), 2811 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type, 2812 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 2813 FloppyDriveType), 2814 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback, 2815 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type, 2816 FloppyDriveType), 2817 DEFINE_PROP_END_OF_LIST(), 2818 }; 2819 2820 static void isabus_fdc_class_init(ObjectClass *klass, void *data) 2821 { 2822 DeviceClass *dc = DEVICE_CLASS(klass); 2823 2824 dc->realize = isabus_fdc_realize; 2825 dc->fw_name = "fdc"; 2826 dc->reset = fdctrl_external_reset_isa; 2827 dc->vmsd = &vmstate_isa_fdc; 2828 dc->props = isa_fdc_properties; 2829 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 2830 } 2831 2832 static void isabus_fdc_instance_init(Object *obj) 2833 { 2834 FDCtrlISABus *isa = ISA_FDC(obj); 2835 2836 device_add_bootindex_property(obj, &isa->bootindexA, 2837 "bootindexA", "/floppy@0", 2838 DEVICE(obj), NULL); 2839 device_add_bootindex_property(obj, &isa->bootindexB, 2840 "bootindexB", "/floppy@1", 2841 DEVICE(obj), NULL); 2842 } 2843 2844 static const TypeInfo isa_fdc_info = { 2845 .name = TYPE_ISA_FDC, 2846 .parent = TYPE_ISA_DEVICE, 2847 .instance_size = sizeof(FDCtrlISABus), 2848 .class_init = isabus_fdc_class_init, 2849 .instance_init = isabus_fdc_instance_init, 2850 }; 2851 2852 static const VMStateDescription vmstate_sysbus_fdc ={ 2853 .name = "fdc", 2854 .version_id = 2, 2855 .minimum_version_id = 2, 2856 .fields = (VMStateField[]) { 2857 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl), 2858 VMSTATE_END_OF_LIST() 2859 } 2860 }; 2861 2862 static Property sysbus_fdc_properties[] = { 2863 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk), 2864 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk), 2865 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type, 2866 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 2867 FloppyDriveType), 2868 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type, 2869 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 2870 FloppyDriveType), 2871 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback, 2872 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type, 2873 FloppyDriveType), 2874 DEFINE_PROP_END_OF_LIST(), 2875 }; 2876 2877 static void sysbus_fdc_class_init(ObjectClass *klass, void *data) 2878 { 2879 DeviceClass *dc = DEVICE_CLASS(klass); 2880 2881 dc->props = sysbus_fdc_properties; 2882 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 2883 } 2884 2885 static const TypeInfo sysbus_fdc_info = { 2886 .name = "sysbus-fdc", 2887 .parent = TYPE_SYSBUS_FDC, 2888 .instance_init = sysbus_fdc_initfn, 2889 .class_init = sysbus_fdc_class_init, 2890 }; 2891 2892 static Property sun4m_fdc_properties[] = { 2893 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk), 2894 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type, 2895 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 2896 FloppyDriveType), 2897 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback, 2898 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type, 2899 FloppyDriveType), 2900 DEFINE_PROP_END_OF_LIST(), 2901 }; 2902 2903 static void sun4m_fdc_class_init(ObjectClass *klass, void *data) 2904 { 2905 DeviceClass *dc = DEVICE_CLASS(klass); 2906 2907 dc->props = sun4m_fdc_properties; 2908 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 2909 } 2910 2911 static const TypeInfo sun4m_fdc_info = { 2912 .name = "SUNW,fdtwo", 2913 .parent = TYPE_SYSBUS_FDC, 2914 .instance_init = sun4m_fdc_initfn, 2915 .class_init = sun4m_fdc_class_init, 2916 }; 2917 2918 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data) 2919 { 2920 DeviceClass *dc = DEVICE_CLASS(klass); 2921 2922 dc->realize = sysbus_fdc_common_realize; 2923 dc->reset = fdctrl_external_reset_sysbus; 2924 dc->vmsd = &vmstate_sysbus_fdc; 2925 } 2926 2927 static const TypeInfo sysbus_fdc_type_info = { 2928 .name = TYPE_SYSBUS_FDC, 2929 .parent = TYPE_SYS_BUS_DEVICE, 2930 .instance_size = sizeof(FDCtrlSysBus), 2931 .instance_init = sysbus_fdc_common_initfn, 2932 .abstract = true, 2933 .class_init = sysbus_fdc_common_class_init, 2934 }; 2935 2936 static void fdc_register_types(void) 2937 { 2938 type_register_static(&isa_fdc_info); 2939 type_register_static(&sysbus_fdc_type_info); 2940 type_register_static(&sysbus_fdc_info); 2941 type_register_static(&sun4m_fdc_info); 2942 type_register_static(&floppy_bus_info); 2943 type_register_static(&floppy_drive_info); 2944 } 2945 2946 type_init(fdc_register_types) 2947