1 /* 2 * QEMU Floppy disk emulator (Intel 82078) 3 * 4 * Copyright (c) 2003, 2007 Jocelyn Mayer 5 * Copyright (c) 2008 Hervé Poussineau 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 /* 26 * The controller is used in Sun4m systems in a slightly different 27 * way. There are changes in DOR register and DMA is not available. 28 */ 29 30 #include "qemu/osdep.h" 31 #include "hw/block/fdc.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 #include "qemu/timer.h" 35 #include "hw/acpi/aml-build.h" 36 #include "hw/irq.h" 37 #include "hw/isa/isa.h" 38 #include "hw/qdev-properties.h" 39 #include "hw/qdev-properties-system.h" 40 #include "hw/sysbus.h" 41 #include "migration/vmstate.h" 42 #include "hw/block/block.h" 43 #include "sysemu/block-backend.h" 44 #include "sysemu/blockdev.h" 45 #include "sysemu/sysemu.h" 46 #include "qemu/log.h" 47 #include "qemu/main-loop.h" 48 #include "qemu/module.h" 49 #include "trace.h" 50 #include "qom/object.h" 51 52 /********************************************************/ 53 /* debug Floppy devices */ 54 55 #define DEBUG_FLOPPY 0 56 57 #define FLOPPY_DPRINTF(fmt, ...) \ 58 do { \ 59 if (DEBUG_FLOPPY) { \ 60 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \ 61 } \ 62 } while (0) 63 64 65 /********************************************************/ 66 /* qdev floppy bus */ 67 68 #define TYPE_FLOPPY_BUS "floppy-bus" 69 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS) 70 71 typedef struct FDCtrl FDCtrl; 72 typedef struct FDrive FDrive; 73 static FDrive *get_drv(FDCtrl *fdctrl, int unit); 74 75 struct FloppyBus { 76 BusState bus; 77 FDCtrl *fdc; 78 }; 79 80 static const TypeInfo floppy_bus_info = { 81 .name = TYPE_FLOPPY_BUS, 82 .parent = TYPE_BUS, 83 .instance_size = sizeof(FloppyBus), 84 }; 85 86 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev) 87 { 88 qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL); 89 bus->fdc = fdc; 90 } 91 92 93 /********************************************************/ 94 /* Floppy drive emulation */ 95 96 typedef enum FDriveRate { 97 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */ 98 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */ 99 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */ 100 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */ 101 } FDriveRate; 102 103 typedef enum FDriveSize { 104 FDRIVE_SIZE_UNKNOWN, 105 FDRIVE_SIZE_350, 106 FDRIVE_SIZE_525, 107 } FDriveSize; 108 109 typedef struct FDFormat { 110 FloppyDriveType drive; 111 uint8_t last_sect; 112 uint8_t max_track; 113 uint8_t max_head; 114 FDriveRate rate; 115 } FDFormat; 116 117 /* In many cases, the total sector size of a format is enough to uniquely 118 * identify it. However, there are some total sector collisions between 119 * formats of different physical size, and these are noted below by 120 * highlighting the total sector size for entries with collisions. */ 121 static const FDFormat fd_formats[] = { 122 /* First entry is default format */ 123 /* 1.44 MB 3"1/2 floppy disks */ 124 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */ 125 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */ 126 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, }, 127 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, }, 128 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, }, 129 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, }, 130 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, }, 131 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, }, 132 /* 2.88 MB 3"1/2 floppy disks */ 133 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, }, 134 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, }, 135 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, }, 136 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, }, 137 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, }, 138 /* 720 kB 3"1/2 floppy disks */ 139 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */ 140 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, }, 141 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, }, 142 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, }, 143 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, }, 144 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, }, 145 /* 1.2 MB 5"1/4 floppy disks */ 146 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, }, 147 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */ 148 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, }, 149 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, }, 150 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */ 151 /* 720 kB 5"1/4 floppy disks */ 152 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */ 153 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, }, 154 /* 360 kB 5"1/4 floppy disks */ 155 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */ 156 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, }, 157 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, }, 158 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, }, 159 /* 320 kB 5"1/4 floppy disks */ 160 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, }, 161 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, }, 162 /* 360 kB must match 5"1/4 better than 3"1/2... */ 163 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */ 164 /* end */ 165 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, }, 166 }; 167 168 static FDriveSize drive_size(FloppyDriveType drive) 169 { 170 switch (drive) { 171 case FLOPPY_DRIVE_TYPE_120: 172 return FDRIVE_SIZE_525; 173 case FLOPPY_DRIVE_TYPE_144: 174 case FLOPPY_DRIVE_TYPE_288: 175 return FDRIVE_SIZE_350; 176 default: 177 return FDRIVE_SIZE_UNKNOWN; 178 } 179 } 180 181 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv) 182 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive)) 183 184 /* Will always be a fixed parameter for us */ 185 #define FD_SECTOR_LEN 512 186 #define FD_SECTOR_SC 2 /* Sector size code */ 187 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */ 188 189 /* Floppy disk drive emulation */ 190 typedef enum FDiskFlags { 191 FDISK_DBL_SIDES = 0x01, 192 } FDiskFlags; 193 194 struct FDrive { 195 FDCtrl *fdctrl; 196 BlockBackend *blk; 197 BlockConf *conf; 198 /* Drive status */ 199 FloppyDriveType drive; /* CMOS drive type */ 200 uint8_t perpendicular; /* 2.88 MB access mode */ 201 /* Position */ 202 uint8_t head; 203 uint8_t track; 204 uint8_t sect; 205 /* Media */ 206 FloppyDriveType disk; /* Current disk type */ 207 FDiskFlags flags; 208 uint8_t last_sect; /* Nb sector per track */ 209 uint8_t max_track; /* Nb of tracks */ 210 uint16_t bps; /* Bytes per sector */ 211 uint8_t ro; /* Is read-only */ 212 uint8_t media_changed; /* Is media changed */ 213 uint8_t media_rate; /* Data rate of medium */ 214 215 bool media_validated; /* Have we validated the media? */ 216 }; 217 218 219 static FloppyDriveType get_fallback_drive_type(FDrive *drv); 220 221 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU 222 * currently goes through some pains to keep seeks within the bounds 223 * established by last_sect and max_track. Correcting this is difficult, 224 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel. 225 * 226 * For now: allow empty drives to have large bounds so we can seek around, 227 * with the understanding that when a diskette is inserted, the bounds will 228 * properly tighten to match the geometry of that inserted medium. 229 */ 230 static void fd_empty_seek_hack(FDrive *drv) 231 { 232 drv->last_sect = 0xFF; 233 drv->max_track = 0xFF; 234 } 235 236 static void fd_init(FDrive *drv) 237 { 238 /* Drive */ 239 drv->perpendicular = 0; 240 /* Disk */ 241 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 242 drv->last_sect = 0; 243 drv->max_track = 0; 244 drv->ro = true; 245 drv->media_changed = 1; 246 } 247 248 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1) 249 250 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect, 251 uint8_t last_sect, uint8_t num_sides) 252 { 253 return (((track * num_sides) + head) * last_sect) + sect - 1; 254 } 255 256 /* Returns current position, in sectors, for given drive */ 257 static int fd_sector(FDrive *drv) 258 { 259 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect, 260 NUM_SIDES(drv)); 261 } 262 263 /* Returns current position, in bytes, for given drive */ 264 static int fd_offset(FDrive *drv) 265 { 266 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS); 267 return fd_sector(drv) << BDRV_SECTOR_BITS; 268 } 269 270 /* Seek to a new position: 271 * returns 0 if already on right track 272 * returns 1 if track changed 273 * returns 2 if track is invalid 274 * returns 3 if sector is invalid 275 * returns 4 if seek is disabled 276 */ 277 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect, 278 int enable_seek) 279 { 280 uint32_t sector; 281 int ret; 282 283 if (track > drv->max_track || 284 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) { 285 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", 286 head, track, sect, 1, 287 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, 288 drv->max_track, drv->last_sect); 289 return 2; 290 } 291 if (sect > drv->last_sect) { 292 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", 293 head, track, sect, 1, 294 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, 295 drv->max_track, drv->last_sect); 296 return 3; 297 } 298 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv)); 299 ret = 0; 300 if (sector != fd_sector(drv)) { 301 #if 0 302 if (!enable_seek) { 303 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x" 304 " (max=%d %02x %02x)\n", 305 head, track, sect, 1, drv->max_track, 306 drv->last_sect); 307 return 4; 308 } 309 #endif 310 drv->head = head; 311 if (drv->track != track) { 312 if (drv->blk != NULL && blk_is_inserted(drv->blk)) { 313 drv->media_changed = 0; 314 } 315 ret = 1; 316 } 317 drv->track = track; 318 drv->sect = sect; 319 } 320 321 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) { 322 ret = 2; 323 } 324 325 return ret; 326 } 327 328 /* Set drive back to track 0 */ 329 static void fd_recalibrate(FDrive *drv) 330 { 331 FLOPPY_DPRINTF("recalibrate\n"); 332 fd_seek(drv, 0, 0, 1, 1); 333 } 334 335 /** 336 * Determine geometry based on inserted diskette. 337 * Will not operate on an empty drive. 338 * 339 * @return: 0 on success, -1 if the drive is empty. 340 */ 341 static int pick_geometry(FDrive *drv) 342 { 343 BlockBackend *blk = drv->blk; 344 const FDFormat *parse; 345 uint64_t nb_sectors, size; 346 int i; 347 int match, size_match, type_match; 348 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO; 349 350 /* We can only pick a geometry if we have a diskette. */ 351 if (!drv->blk || !blk_is_inserted(drv->blk) || 352 drv->drive == FLOPPY_DRIVE_TYPE_NONE) 353 { 354 return -1; 355 } 356 357 /* We need to determine the likely geometry of the inserted medium. 358 * In order of preference, we look for: 359 * (1) The same drive type and number of sectors, 360 * (2) The same diskette size and number of sectors, 361 * (3) The same drive type. 362 * 363 * In all cases, matches that occur higher in the drive table will take 364 * precedence over matches that occur later in the table. 365 */ 366 blk_get_geometry(blk, &nb_sectors); 367 match = size_match = type_match = -1; 368 for (i = 0; ; i++) { 369 parse = &fd_formats[i]; 370 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) { 371 break; 372 } 373 size = (parse->max_head + 1) * parse->max_track * parse->last_sect; 374 if (nb_sectors == size) { 375 if (magic || parse->drive == drv->drive) { 376 /* (1) perfect match -- nb_sectors and drive type */ 377 goto out; 378 } else if (drive_size(parse->drive) == drive_size(drv->drive)) { 379 /* (2) size match -- nb_sectors and physical medium size */ 380 match = (match == -1) ? i : match; 381 } else { 382 /* This is suspicious -- Did the user misconfigure? */ 383 size_match = (size_match == -1) ? i : size_match; 384 } 385 } else if (type_match == -1) { 386 if ((parse->drive == drv->drive) || 387 (magic && (parse->drive == get_fallback_drive_type(drv)))) { 388 /* (3) type match -- nb_sectors mismatch, but matches the type 389 * specified explicitly by the user, or matches the fallback 390 * default type when using the drive autodetect mechanism */ 391 type_match = i; 392 } 393 } 394 } 395 396 /* No exact match found */ 397 if (match == -1) { 398 if (size_match != -1) { 399 parse = &fd_formats[size_match]; 400 FLOPPY_DPRINTF("User requested floppy drive type '%s', " 401 "but inserted medium appears to be a " 402 "%"PRId64" sector '%s' type\n", 403 FloppyDriveType_str(drv->drive), 404 nb_sectors, 405 FloppyDriveType_str(parse->drive)); 406 } 407 assert(type_match != -1 && "misconfigured fd_format"); 408 match = type_match; 409 } 410 parse = &(fd_formats[match]); 411 412 out: 413 if (parse->max_head == 0) { 414 drv->flags &= ~FDISK_DBL_SIDES; 415 } else { 416 drv->flags |= FDISK_DBL_SIDES; 417 } 418 drv->max_track = parse->max_track; 419 drv->last_sect = parse->last_sect; 420 drv->disk = parse->drive; 421 drv->media_rate = parse->rate; 422 return 0; 423 } 424 425 static void pick_drive_type(FDrive *drv) 426 { 427 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) { 428 return; 429 } 430 431 if (pick_geometry(drv) == 0) { 432 drv->drive = drv->disk; 433 } else { 434 drv->drive = get_fallback_drive_type(drv); 435 } 436 437 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO); 438 } 439 440 /* Revalidate a disk drive after a disk change */ 441 static void fd_revalidate(FDrive *drv) 442 { 443 int rc; 444 445 FLOPPY_DPRINTF("revalidate\n"); 446 if (drv->blk != NULL) { 447 drv->ro = !blk_is_writable(drv->blk); 448 if (!blk_is_inserted(drv->blk)) { 449 FLOPPY_DPRINTF("No disk in drive\n"); 450 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 451 fd_empty_seek_hack(drv); 452 } else if (!drv->media_validated) { 453 rc = pick_geometry(drv); 454 if (rc) { 455 FLOPPY_DPRINTF("Could not validate floppy drive media"); 456 } else { 457 drv->media_validated = true; 458 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n", 459 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1, 460 drv->max_track, drv->last_sect, 461 drv->ro ? "ro" : "rw"); 462 } 463 } 464 } else { 465 FLOPPY_DPRINTF("No drive connected\n"); 466 drv->last_sect = 0; 467 drv->max_track = 0; 468 drv->flags &= ~FDISK_DBL_SIDES; 469 drv->drive = FLOPPY_DRIVE_TYPE_NONE; 470 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 471 } 472 } 473 474 static void fd_change_cb(void *opaque, bool load, Error **errp) 475 { 476 FDrive *drive = opaque; 477 478 if (!load) { 479 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort); 480 } else { 481 if (!blkconf_apply_backend_options(drive->conf, 482 !blk_supports_write_perm(drive->blk), 483 false, errp)) { 484 return; 485 } 486 } 487 488 drive->media_changed = 1; 489 drive->media_validated = false; 490 fd_revalidate(drive); 491 } 492 493 static const BlockDevOps fd_block_ops = { 494 .change_media_cb = fd_change_cb, 495 }; 496 497 498 #define TYPE_FLOPPY_DRIVE "floppy" 499 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE) 500 501 struct FloppyDrive { 502 DeviceState qdev; 503 uint32_t unit; 504 BlockConf conf; 505 FloppyDriveType type; 506 }; 507 508 static Property floppy_drive_properties[] = { 509 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1), 510 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf), 511 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type, 512 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 513 FloppyDriveType), 514 DEFINE_PROP_END_OF_LIST(), 515 }; 516 517 static void floppy_drive_realize(DeviceState *qdev, Error **errp) 518 { 519 FloppyDrive *dev = FLOPPY_DRIVE(qdev); 520 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus); 521 FDrive *drive; 522 bool read_only; 523 int ret; 524 525 if (dev->unit == -1) { 526 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) { 527 drive = get_drv(bus->fdc, dev->unit); 528 if (!drive->blk) { 529 break; 530 } 531 } 532 } 533 534 if (dev->unit >= MAX_FD) { 535 error_setg(errp, "Can't create floppy unit %d, bus supports " 536 "only %d units", dev->unit, MAX_FD); 537 return; 538 } 539 540 drive = get_drv(bus->fdc, dev->unit); 541 if (drive->blk) { 542 error_setg(errp, "Floppy unit %d is in use", dev->unit); 543 return; 544 } 545 546 if (!dev->conf.blk) { 547 /* Anonymous BlockBackend for an empty drive */ 548 dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL); 549 ret = blk_attach_dev(dev->conf.blk, qdev); 550 assert(ret == 0); 551 552 /* Don't take write permissions on an empty drive to allow attaching a 553 * read-only node later */ 554 read_only = true; 555 } else { 556 read_only = !blk_bs(dev->conf.blk) || 557 !blk_supports_write_perm(dev->conf.blk); 558 } 559 560 if (!blkconf_blocksizes(&dev->conf, errp)) { 561 return; 562 } 563 564 if (dev->conf.logical_block_size != 512 || 565 dev->conf.physical_block_size != 512) 566 { 567 error_setg(errp, "Physical and logical block size must " 568 "be 512 for floppy"); 569 return; 570 } 571 572 /* rerror/werror aren't supported by fdc and therefore not even registered 573 * with qdev. So set the defaults manually before they are used in 574 * blkconf_apply_backend_options(). */ 575 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO; 576 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO; 577 578 if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) { 579 return; 580 } 581 582 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us 583 * for empty drives. */ 584 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC && 585 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) { 586 error_setg(errp, "fdc doesn't support drive option werror"); 587 return; 588 } 589 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) { 590 error_setg(errp, "fdc doesn't support drive option rerror"); 591 return; 592 } 593 594 drive->conf = &dev->conf; 595 drive->blk = dev->conf.blk; 596 drive->fdctrl = bus->fdc; 597 598 fd_init(drive); 599 blk_set_dev_ops(drive->blk, &fd_block_ops, drive); 600 601 /* Keep 'type' qdev property and FDrive->drive in sync */ 602 drive->drive = dev->type; 603 pick_drive_type(drive); 604 dev->type = drive->drive; 605 606 fd_revalidate(drive); 607 } 608 609 static void floppy_drive_class_init(ObjectClass *klass, void *data) 610 { 611 DeviceClass *k = DEVICE_CLASS(klass); 612 k->realize = floppy_drive_realize; 613 set_bit(DEVICE_CATEGORY_STORAGE, k->categories); 614 k->bus_type = TYPE_FLOPPY_BUS; 615 device_class_set_props(k, floppy_drive_properties); 616 k->desc = "virtual floppy drive"; 617 } 618 619 static const TypeInfo floppy_drive_info = { 620 .name = TYPE_FLOPPY_DRIVE, 621 .parent = TYPE_DEVICE, 622 .instance_size = sizeof(FloppyDrive), 623 .class_init = floppy_drive_class_init, 624 }; 625 626 /********************************************************/ 627 /* Intel 82078 floppy disk controller emulation */ 628 629 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq); 630 static void fdctrl_to_command_phase(FDCtrl *fdctrl); 631 static int fdctrl_transfer_handler (void *opaque, int nchan, 632 int dma_pos, int dma_len); 633 static void fdctrl_raise_irq(FDCtrl *fdctrl); 634 static FDrive *get_cur_drv(FDCtrl *fdctrl); 635 636 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl); 637 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl); 638 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl); 639 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value); 640 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl); 641 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value); 642 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl); 643 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value); 644 static uint32_t fdctrl_read_data(FDCtrl *fdctrl); 645 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value); 646 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl); 647 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value); 648 649 enum { 650 FD_DIR_WRITE = 0, 651 FD_DIR_READ = 1, 652 FD_DIR_SCANE = 2, 653 FD_DIR_SCANL = 3, 654 FD_DIR_SCANH = 4, 655 FD_DIR_VERIFY = 5, 656 }; 657 658 enum { 659 FD_STATE_MULTI = 0x01, /* multi track flag */ 660 FD_STATE_FORMAT = 0x02, /* format flag */ 661 }; 662 663 enum { 664 FD_REG_SRA = 0x00, 665 FD_REG_SRB = 0x01, 666 FD_REG_DOR = 0x02, 667 FD_REG_TDR = 0x03, 668 FD_REG_MSR = 0x04, 669 FD_REG_DSR = 0x04, 670 FD_REG_FIFO = 0x05, 671 FD_REG_DIR = 0x07, 672 FD_REG_CCR = 0x07, 673 }; 674 675 enum { 676 FD_CMD_READ_TRACK = 0x02, 677 FD_CMD_SPECIFY = 0x03, 678 FD_CMD_SENSE_DRIVE_STATUS = 0x04, 679 FD_CMD_WRITE = 0x05, 680 FD_CMD_READ = 0x06, 681 FD_CMD_RECALIBRATE = 0x07, 682 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08, 683 FD_CMD_WRITE_DELETED = 0x09, 684 FD_CMD_READ_ID = 0x0a, 685 FD_CMD_READ_DELETED = 0x0c, 686 FD_CMD_FORMAT_TRACK = 0x0d, 687 FD_CMD_DUMPREG = 0x0e, 688 FD_CMD_SEEK = 0x0f, 689 FD_CMD_VERSION = 0x10, 690 FD_CMD_SCAN_EQUAL = 0x11, 691 FD_CMD_PERPENDICULAR_MODE = 0x12, 692 FD_CMD_CONFIGURE = 0x13, 693 FD_CMD_LOCK = 0x14, 694 FD_CMD_VERIFY = 0x16, 695 FD_CMD_POWERDOWN_MODE = 0x17, 696 FD_CMD_PART_ID = 0x18, 697 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19, 698 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d, 699 FD_CMD_SAVE = 0x2e, 700 FD_CMD_OPTION = 0x33, 701 FD_CMD_RESTORE = 0x4e, 702 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e, 703 FD_CMD_RELATIVE_SEEK_OUT = 0x8f, 704 FD_CMD_FORMAT_AND_WRITE = 0xcd, 705 FD_CMD_RELATIVE_SEEK_IN = 0xcf, 706 }; 707 708 enum { 709 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */ 710 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */ 711 FD_CONFIG_POLL = 0x10, /* Poll enabled */ 712 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */ 713 FD_CONFIG_EIS = 0x40, /* No implied seeks */ 714 }; 715 716 enum { 717 FD_SR0_DS0 = 0x01, 718 FD_SR0_DS1 = 0x02, 719 FD_SR0_HEAD = 0x04, 720 FD_SR0_EQPMT = 0x10, 721 FD_SR0_SEEK = 0x20, 722 FD_SR0_ABNTERM = 0x40, 723 FD_SR0_INVCMD = 0x80, 724 FD_SR0_RDYCHG = 0xc0, 725 }; 726 727 enum { 728 FD_SR1_MA = 0x01, /* Missing address mark */ 729 FD_SR1_NW = 0x02, /* Not writable */ 730 FD_SR1_EC = 0x80, /* End of cylinder */ 731 }; 732 733 enum { 734 FD_SR2_SNS = 0x04, /* Scan not satisfied */ 735 FD_SR2_SEH = 0x08, /* Scan equal hit */ 736 }; 737 738 enum { 739 FD_SRA_DIR = 0x01, 740 FD_SRA_nWP = 0x02, 741 FD_SRA_nINDX = 0x04, 742 FD_SRA_HDSEL = 0x08, 743 FD_SRA_nTRK0 = 0x10, 744 FD_SRA_STEP = 0x20, 745 FD_SRA_nDRV2 = 0x40, 746 FD_SRA_INTPEND = 0x80, 747 }; 748 749 enum { 750 FD_SRB_MTR0 = 0x01, 751 FD_SRB_MTR1 = 0x02, 752 FD_SRB_WGATE = 0x04, 753 FD_SRB_RDATA = 0x08, 754 FD_SRB_WDATA = 0x10, 755 FD_SRB_DR0 = 0x20, 756 }; 757 758 enum { 759 #if MAX_FD == 4 760 FD_DOR_SELMASK = 0x03, 761 #else 762 FD_DOR_SELMASK = 0x01, 763 #endif 764 FD_DOR_nRESET = 0x04, 765 FD_DOR_DMAEN = 0x08, 766 FD_DOR_MOTEN0 = 0x10, 767 FD_DOR_MOTEN1 = 0x20, 768 FD_DOR_MOTEN2 = 0x40, 769 FD_DOR_MOTEN3 = 0x80, 770 }; 771 772 enum { 773 #if MAX_FD == 4 774 FD_TDR_BOOTSEL = 0x0c, 775 #else 776 FD_TDR_BOOTSEL = 0x04, 777 #endif 778 }; 779 780 enum { 781 FD_DSR_DRATEMASK= 0x03, 782 FD_DSR_PWRDOWN = 0x40, 783 FD_DSR_SWRESET = 0x80, 784 }; 785 786 enum { 787 FD_MSR_DRV0BUSY = 0x01, 788 FD_MSR_DRV1BUSY = 0x02, 789 FD_MSR_DRV2BUSY = 0x04, 790 FD_MSR_DRV3BUSY = 0x08, 791 FD_MSR_CMDBUSY = 0x10, 792 FD_MSR_NONDMA = 0x20, 793 FD_MSR_DIO = 0x40, 794 FD_MSR_RQM = 0x80, 795 }; 796 797 enum { 798 FD_DIR_DSKCHG = 0x80, 799 }; 800 801 /* 802 * See chapter 5.0 "Controller phases" of the spec: 803 * 804 * Command phase: 805 * The host writes a command and its parameters into the FIFO. The command 806 * phase is completed when all parameters for the command have been supplied, 807 * and execution phase is entered. 808 * 809 * Execution phase: 810 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO 811 * contains the payload now, otherwise it's unused. When all bytes of the 812 * required data have been transferred, the state is switched to either result 813 * phase (if the command produces status bytes) or directly back into the 814 * command phase for the next command. 815 * 816 * Result phase: 817 * The host reads out the FIFO, which contains one or more result bytes now. 818 */ 819 enum { 820 /* Only for migration: reconstruct phase from registers like qemu 2.3 */ 821 FD_PHASE_RECONSTRUCT = 0, 822 823 FD_PHASE_COMMAND = 1, 824 FD_PHASE_EXECUTION = 2, 825 FD_PHASE_RESULT = 3, 826 }; 827 828 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI) 829 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT) 830 831 struct FDCtrl { 832 MemoryRegion iomem; 833 qemu_irq irq; 834 /* Controller state */ 835 QEMUTimer *result_timer; 836 int dma_chann; 837 uint8_t phase; 838 IsaDma *dma; 839 /* Controller's identification */ 840 uint8_t version; 841 /* HW */ 842 uint8_t sra; 843 uint8_t srb; 844 uint8_t dor; 845 uint8_t dor_vmstate; /* only used as temp during vmstate */ 846 uint8_t tdr; 847 uint8_t dsr; 848 uint8_t msr; 849 uint8_t cur_drv; 850 uint8_t status0; 851 uint8_t status1; 852 uint8_t status2; 853 /* Command FIFO */ 854 uint8_t *fifo; 855 int32_t fifo_size; 856 uint32_t data_pos; 857 uint32_t data_len; 858 uint8_t data_state; 859 uint8_t data_dir; 860 uint8_t eot; /* last wanted sector */ 861 /* States kept only to be returned back */ 862 /* precompensation */ 863 uint8_t precomp_trk; 864 uint8_t config; 865 uint8_t lock; 866 /* Power down config (also with status regB access mode */ 867 uint8_t pwrd; 868 /* Floppy drives */ 869 FloppyBus bus; 870 uint8_t num_floppies; 871 FDrive drives[MAX_FD]; 872 struct { 873 FloppyDriveType type; 874 } qdev_for_drives[MAX_FD]; 875 int reset_sensei; 876 FloppyDriveType fallback; /* type=auto failure fallback */ 877 /* Timers state */ 878 uint8_t timer0; 879 uint8_t timer1; 880 PortioList portio_list; 881 }; 882 883 static FloppyDriveType get_fallback_drive_type(FDrive *drv) 884 { 885 return drv->fdctrl->fallback; 886 } 887 888 #define TYPE_SYSBUS_FDC "base-sysbus-fdc" 889 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlSysBus, SYSBUS_FDC) 890 891 struct FDCtrlSysBus { 892 /*< private >*/ 893 SysBusDevice parent_obj; 894 /*< public >*/ 895 896 struct FDCtrl state; 897 }; 898 899 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlISABus, ISA_FDC) 900 901 struct FDCtrlISABus { 902 ISADevice parent_obj; 903 904 uint32_t iobase; 905 uint32_t irq; 906 uint32_t dma; 907 struct FDCtrl state; 908 int32_t bootindexA; 909 int32_t bootindexB; 910 }; 911 912 static uint32_t fdctrl_read (void *opaque, uint32_t reg) 913 { 914 FDCtrl *fdctrl = opaque; 915 uint32_t retval; 916 917 reg &= 7; 918 switch (reg) { 919 case FD_REG_SRA: 920 retval = fdctrl_read_statusA(fdctrl); 921 break; 922 case FD_REG_SRB: 923 retval = fdctrl_read_statusB(fdctrl); 924 break; 925 case FD_REG_DOR: 926 retval = fdctrl_read_dor(fdctrl); 927 break; 928 case FD_REG_TDR: 929 retval = fdctrl_read_tape(fdctrl); 930 break; 931 case FD_REG_MSR: 932 retval = fdctrl_read_main_status(fdctrl); 933 break; 934 case FD_REG_FIFO: 935 retval = fdctrl_read_data(fdctrl); 936 break; 937 case FD_REG_DIR: 938 retval = fdctrl_read_dir(fdctrl); 939 break; 940 default: 941 retval = (uint32_t)(-1); 942 break; 943 } 944 trace_fdc_ioport_read(reg, retval); 945 946 return retval; 947 } 948 949 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value) 950 { 951 FDCtrl *fdctrl = opaque; 952 953 reg &= 7; 954 trace_fdc_ioport_write(reg, value); 955 switch (reg) { 956 case FD_REG_DOR: 957 fdctrl_write_dor(fdctrl, value); 958 break; 959 case FD_REG_TDR: 960 fdctrl_write_tape(fdctrl, value); 961 break; 962 case FD_REG_DSR: 963 fdctrl_write_rate(fdctrl, value); 964 break; 965 case FD_REG_FIFO: 966 fdctrl_write_data(fdctrl, value); 967 break; 968 case FD_REG_CCR: 969 fdctrl_write_ccr(fdctrl, value); 970 break; 971 default: 972 break; 973 } 974 } 975 976 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg, 977 unsigned ize) 978 { 979 return fdctrl_read(opaque, (uint32_t)reg); 980 } 981 982 static void fdctrl_write_mem (void *opaque, hwaddr reg, 983 uint64_t value, unsigned size) 984 { 985 fdctrl_write(opaque, (uint32_t)reg, value); 986 } 987 988 static const MemoryRegionOps fdctrl_mem_ops = { 989 .read = fdctrl_read_mem, 990 .write = fdctrl_write_mem, 991 .endianness = DEVICE_NATIVE_ENDIAN, 992 }; 993 994 static const MemoryRegionOps fdctrl_mem_strict_ops = { 995 .read = fdctrl_read_mem, 996 .write = fdctrl_write_mem, 997 .endianness = DEVICE_NATIVE_ENDIAN, 998 .valid = { 999 .min_access_size = 1, 1000 .max_access_size = 1, 1001 }, 1002 }; 1003 1004 static bool fdrive_media_changed_needed(void *opaque) 1005 { 1006 FDrive *drive = opaque; 1007 1008 return (drive->blk != NULL && drive->media_changed != 1); 1009 } 1010 1011 static const VMStateDescription vmstate_fdrive_media_changed = { 1012 .name = "fdrive/media_changed", 1013 .version_id = 1, 1014 .minimum_version_id = 1, 1015 .needed = fdrive_media_changed_needed, 1016 .fields = (VMStateField[]) { 1017 VMSTATE_UINT8(media_changed, FDrive), 1018 VMSTATE_END_OF_LIST() 1019 } 1020 }; 1021 1022 static const VMStateDescription vmstate_fdrive_media_rate = { 1023 .name = "fdrive/media_rate", 1024 .version_id = 1, 1025 .minimum_version_id = 1, 1026 .fields = (VMStateField[]) { 1027 VMSTATE_UINT8(media_rate, FDrive), 1028 VMSTATE_END_OF_LIST() 1029 } 1030 }; 1031 1032 static bool fdrive_perpendicular_needed(void *opaque) 1033 { 1034 FDrive *drive = opaque; 1035 1036 return drive->perpendicular != 0; 1037 } 1038 1039 static const VMStateDescription vmstate_fdrive_perpendicular = { 1040 .name = "fdrive/perpendicular", 1041 .version_id = 1, 1042 .minimum_version_id = 1, 1043 .needed = fdrive_perpendicular_needed, 1044 .fields = (VMStateField[]) { 1045 VMSTATE_UINT8(perpendicular, FDrive), 1046 VMSTATE_END_OF_LIST() 1047 } 1048 }; 1049 1050 static int fdrive_post_load(void *opaque, int version_id) 1051 { 1052 fd_revalidate(opaque); 1053 return 0; 1054 } 1055 1056 static const VMStateDescription vmstate_fdrive = { 1057 .name = "fdrive", 1058 .version_id = 1, 1059 .minimum_version_id = 1, 1060 .post_load = fdrive_post_load, 1061 .fields = (VMStateField[]) { 1062 VMSTATE_UINT8(head, FDrive), 1063 VMSTATE_UINT8(track, FDrive), 1064 VMSTATE_UINT8(sect, FDrive), 1065 VMSTATE_END_OF_LIST() 1066 }, 1067 .subsections = (const VMStateDescription*[]) { 1068 &vmstate_fdrive_media_changed, 1069 &vmstate_fdrive_media_rate, 1070 &vmstate_fdrive_perpendicular, 1071 NULL 1072 } 1073 }; 1074 1075 /* 1076 * Reconstructs the phase from register values according to the logic that was 1077 * implemented in qemu 2.3. This is the default value that is used if the phase 1078 * subsection is not present on migration. 1079 * 1080 * Don't change this function to reflect newer qemu versions, it is part of 1081 * the migration ABI. 1082 */ 1083 static int reconstruct_phase(FDCtrl *fdctrl) 1084 { 1085 if (fdctrl->msr & FD_MSR_NONDMA) { 1086 return FD_PHASE_EXECUTION; 1087 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) { 1088 /* qemu 2.3 disabled RQM only during DMA transfers */ 1089 return FD_PHASE_EXECUTION; 1090 } else if (fdctrl->msr & FD_MSR_DIO) { 1091 return FD_PHASE_RESULT; 1092 } else { 1093 return FD_PHASE_COMMAND; 1094 } 1095 } 1096 1097 static int fdc_pre_save(void *opaque) 1098 { 1099 FDCtrl *s = opaque; 1100 1101 s->dor_vmstate = s->dor | GET_CUR_DRV(s); 1102 1103 return 0; 1104 } 1105 1106 static int fdc_pre_load(void *opaque) 1107 { 1108 FDCtrl *s = opaque; 1109 s->phase = FD_PHASE_RECONSTRUCT; 1110 return 0; 1111 } 1112 1113 static int fdc_post_load(void *opaque, int version_id) 1114 { 1115 FDCtrl *s = opaque; 1116 1117 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK); 1118 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK; 1119 1120 if (s->phase == FD_PHASE_RECONSTRUCT) { 1121 s->phase = reconstruct_phase(s); 1122 } 1123 1124 return 0; 1125 } 1126 1127 static bool fdc_reset_sensei_needed(void *opaque) 1128 { 1129 FDCtrl *s = opaque; 1130 1131 return s->reset_sensei != 0; 1132 } 1133 1134 static const VMStateDescription vmstate_fdc_reset_sensei = { 1135 .name = "fdc/reset_sensei", 1136 .version_id = 1, 1137 .minimum_version_id = 1, 1138 .needed = fdc_reset_sensei_needed, 1139 .fields = (VMStateField[]) { 1140 VMSTATE_INT32(reset_sensei, FDCtrl), 1141 VMSTATE_END_OF_LIST() 1142 } 1143 }; 1144 1145 static bool fdc_result_timer_needed(void *opaque) 1146 { 1147 FDCtrl *s = opaque; 1148 1149 return timer_pending(s->result_timer); 1150 } 1151 1152 static const VMStateDescription vmstate_fdc_result_timer = { 1153 .name = "fdc/result_timer", 1154 .version_id = 1, 1155 .minimum_version_id = 1, 1156 .needed = fdc_result_timer_needed, 1157 .fields = (VMStateField[]) { 1158 VMSTATE_TIMER_PTR(result_timer, FDCtrl), 1159 VMSTATE_END_OF_LIST() 1160 } 1161 }; 1162 1163 static bool fdc_phase_needed(void *opaque) 1164 { 1165 FDCtrl *fdctrl = opaque; 1166 1167 return reconstruct_phase(fdctrl) != fdctrl->phase; 1168 } 1169 1170 static const VMStateDescription vmstate_fdc_phase = { 1171 .name = "fdc/phase", 1172 .version_id = 1, 1173 .minimum_version_id = 1, 1174 .needed = fdc_phase_needed, 1175 .fields = (VMStateField[]) { 1176 VMSTATE_UINT8(phase, FDCtrl), 1177 VMSTATE_END_OF_LIST() 1178 } 1179 }; 1180 1181 static const VMStateDescription vmstate_fdc = { 1182 .name = "fdc", 1183 .version_id = 2, 1184 .minimum_version_id = 2, 1185 .pre_save = fdc_pre_save, 1186 .pre_load = fdc_pre_load, 1187 .post_load = fdc_post_load, 1188 .fields = (VMStateField[]) { 1189 /* Controller State */ 1190 VMSTATE_UINT8(sra, FDCtrl), 1191 VMSTATE_UINT8(srb, FDCtrl), 1192 VMSTATE_UINT8(dor_vmstate, FDCtrl), 1193 VMSTATE_UINT8(tdr, FDCtrl), 1194 VMSTATE_UINT8(dsr, FDCtrl), 1195 VMSTATE_UINT8(msr, FDCtrl), 1196 VMSTATE_UINT8(status0, FDCtrl), 1197 VMSTATE_UINT8(status1, FDCtrl), 1198 VMSTATE_UINT8(status2, FDCtrl), 1199 /* Command FIFO */ 1200 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8, 1201 uint8_t), 1202 VMSTATE_UINT32(data_pos, FDCtrl), 1203 VMSTATE_UINT32(data_len, FDCtrl), 1204 VMSTATE_UINT8(data_state, FDCtrl), 1205 VMSTATE_UINT8(data_dir, FDCtrl), 1206 VMSTATE_UINT8(eot, FDCtrl), 1207 /* States kept only to be returned back */ 1208 VMSTATE_UINT8(timer0, FDCtrl), 1209 VMSTATE_UINT8(timer1, FDCtrl), 1210 VMSTATE_UINT8(precomp_trk, FDCtrl), 1211 VMSTATE_UINT8(config, FDCtrl), 1212 VMSTATE_UINT8(lock, FDCtrl), 1213 VMSTATE_UINT8(pwrd, FDCtrl), 1214 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL), 1215 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1, 1216 vmstate_fdrive, FDrive), 1217 VMSTATE_END_OF_LIST() 1218 }, 1219 .subsections = (const VMStateDescription*[]) { 1220 &vmstate_fdc_reset_sensei, 1221 &vmstate_fdc_result_timer, 1222 &vmstate_fdc_phase, 1223 NULL 1224 } 1225 }; 1226 1227 static void fdctrl_external_reset_sysbus(DeviceState *d) 1228 { 1229 FDCtrlSysBus *sys = SYSBUS_FDC(d); 1230 FDCtrl *s = &sys->state; 1231 1232 fdctrl_reset(s, 0); 1233 } 1234 1235 static void fdctrl_external_reset_isa(DeviceState *d) 1236 { 1237 FDCtrlISABus *isa = ISA_FDC(d); 1238 FDCtrl *s = &isa->state; 1239 1240 fdctrl_reset(s, 0); 1241 } 1242 1243 static void fdctrl_handle_tc(void *opaque, int irq, int level) 1244 { 1245 //FDCtrl *s = opaque; 1246 1247 if (level) { 1248 // XXX 1249 FLOPPY_DPRINTF("TC pulsed\n"); 1250 } 1251 } 1252 1253 /* Change IRQ state */ 1254 static void fdctrl_reset_irq(FDCtrl *fdctrl) 1255 { 1256 fdctrl->status0 = 0; 1257 if (!(fdctrl->sra & FD_SRA_INTPEND)) 1258 return; 1259 FLOPPY_DPRINTF("Reset interrupt\n"); 1260 qemu_set_irq(fdctrl->irq, 0); 1261 fdctrl->sra &= ~FD_SRA_INTPEND; 1262 } 1263 1264 static void fdctrl_raise_irq(FDCtrl *fdctrl) 1265 { 1266 if (!(fdctrl->sra & FD_SRA_INTPEND)) { 1267 qemu_set_irq(fdctrl->irq, 1); 1268 fdctrl->sra |= FD_SRA_INTPEND; 1269 } 1270 1271 fdctrl->reset_sensei = 0; 1272 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0); 1273 } 1274 1275 /* Reset controller */ 1276 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq) 1277 { 1278 int i; 1279 1280 FLOPPY_DPRINTF("reset controller\n"); 1281 fdctrl_reset_irq(fdctrl); 1282 /* Initialise controller */ 1283 fdctrl->sra = 0; 1284 fdctrl->srb = 0xc0; 1285 if (!fdctrl->drives[1].blk) { 1286 fdctrl->sra |= FD_SRA_nDRV2; 1287 } 1288 fdctrl->cur_drv = 0; 1289 fdctrl->dor = FD_DOR_nRESET; 1290 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0; 1291 fdctrl->msr = FD_MSR_RQM; 1292 fdctrl->reset_sensei = 0; 1293 timer_del(fdctrl->result_timer); 1294 /* FIFO state */ 1295 fdctrl->data_pos = 0; 1296 fdctrl->data_len = 0; 1297 fdctrl->data_state = 0; 1298 fdctrl->data_dir = FD_DIR_WRITE; 1299 for (i = 0; i < MAX_FD; i++) 1300 fd_recalibrate(&fdctrl->drives[i]); 1301 fdctrl_to_command_phase(fdctrl); 1302 if (do_irq) { 1303 fdctrl->status0 |= FD_SR0_RDYCHG; 1304 fdctrl_raise_irq(fdctrl); 1305 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT; 1306 } 1307 } 1308 1309 static inline FDrive *drv0(FDCtrl *fdctrl) 1310 { 1311 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2]; 1312 } 1313 1314 static inline FDrive *drv1(FDCtrl *fdctrl) 1315 { 1316 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2)) 1317 return &fdctrl->drives[1]; 1318 else 1319 return &fdctrl->drives[0]; 1320 } 1321 1322 #if MAX_FD == 4 1323 static inline FDrive *drv2(FDCtrl *fdctrl) 1324 { 1325 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2)) 1326 return &fdctrl->drives[2]; 1327 else 1328 return &fdctrl->drives[1]; 1329 } 1330 1331 static inline FDrive *drv3(FDCtrl *fdctrl) 1332 { 1333 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2)) 1334 return &fdctrl->drives[3]; 1335 else 1336 return &fdctrl->drives[2]; 1337 } 1338 #endif 1339 1340 static FDrive *get_drv(FDCtrl *fdctrl, int unit) 1341 { 1342 switch (unit) { 1343 case 0: return drv0(fdctrl); 1344 case 1: return drv1(fdctrl); 1345 #if MAX_FD == 4 1346 case 2: return drv2(fdctrl); 1347 case 3: return drv3(fdctrl); 1348 #endif 1349 default: return NULL; 1350 } 1351 } 1352 1353 static FDrive *get_cur_drv(FDCtrl *fdctrl) 1354 { 1355 return get_drv(fdctrl, fdctrl->cur_drv); 1356 } 1357 1358 /* Status A register : 0x00 (read-only) */ 1359 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl) 1360 { 1361 uint32_t retval = fdctrl->sra; 1362 1363 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval); 1364 1365 return retval; 1366 } 1367 1368 /* Status B register : 0x01 (read-only) */ 1369 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl) 1370 { 1371 uint32_t retval = fdctrl->srb; 1372 1373 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval); 1374 1375 return retval; 1376 } 1377 1378 /* Digital output register : 0x02 */ 1379 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl) 1380 { 1381 uint32_t retval = fdctrl->dor; 1382 1383 /* Selected drive */ 1384 retval |= fdctrl->cur_drv; 1385 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval); 1386 1387 return retval; 1388 } 1389 1390 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value) 1391 { 1392 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value); 1393 1394 /* Motors */ 1395 if (value & FD_DOR_MOTEN0) 1396 fdctrl->srb |= FD_SRB_MTR0; 1397 else 1398 fdctrl->srb &= ~FD_SRB_MTR0; 1399 if (value & FD_DOR_MOTEN1) 1400 fdctrl->srb |= FD_SRB_MTR1; 1401 else 1402 fdctrl->srb &= ~FD_SRB_MTR1; 1403 1404 /* Drive */ 1405 if (value & 1) 1406 fdctrl->srb |= FD_SRB_DR0; 1407 else 1408 fdctrl->srb &= ~FD_SRB_DR0; 1409 1410 /* Reset */ 1411 if (!(value & FD_DOR_nRESET)) { 1412 if (fdctrl->dor & FD_DOR_nRESET) { 1413 FLOPPY_DPRINTF("controller enter RESET state\n"); 1414 } 1415 } else { 1416 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1417 FLOPPY_DPRINTF("controller out of RESET state\n"); 1418 fdctrl_reset(fdctrl, 1); 1419 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1420 } 1421 } 1422 /* Selected drive */ 1423 fdctrl->cur_drv = value & FD_DOR_SELMASK; 1424 1425 fdctrl->dor = value; 1426 } 1427 1428 /* Tape drive register : 0x03 */ 1429 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl) 1430 { 1431 uint32_t retval = fdctrl->tdr; 1432 1433 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval); 1434 1435 return retval; 1436 } 1437 1438 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value) 1439 { 1440 /* Reset mode */ 1441 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1442 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1443 return; 1444 } 1445 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value); 1446 /* Disk boot selection indicator */ 1447 fdctrl->tdr = value & FD_TDR_BOOTSEL; 1448 /* Tape indicators: never allow */ 1449 } 1450 1451 /* Main status register : 0x04 (read) */ 1452 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl) 1453 { 1454 uint32_t retval = fdctrl->msr; 1455 1456 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1457 fdctrl->dor |= FD_DOR_nRESET; 1458 1459 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval); 1460 1461 return retval; 1462 } 1463 1464 /* Data select rate register : 0x04 (write) */ 1465 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value) 1466 { 1467 /* Reset mode */ 1468 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1469 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1470 return; 1471 } 1472 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value); 1473 /* Reset: autoclear */ 1474 if (value & FD_DSR_SWRESET) { 1475 fdctrl->dor &= ~FD_DOR_nRESET; 1476 fdctrl_reset(fdctrl, 1); 1477 fdctrl->dor |= FD_DOR_nRESET; 1478 } 1479 if (value & FD_DSR_PWRDOWN) { 1480 fdctrl_reset(fdctrl, 1); 1481 } 1482 fdctrl->dsr = value; 1483 } 1484 1485 /* Configuration control register: 0x07 (write) */ 1486 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value) 1487 { 1488 /* Reset mode */ 1489 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1490 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1491 return; 1492 } 1493 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value); 1494 1495 /* Only the rate selection bits used in AT mode, and we 1496 * store those in the DSR. 1497 */ 1498 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) | 1499 (value & FD_DSR_DRATEMASK); 1500 } 1501 1502 static int fdctrl_media_changed(FDrive *drv) 1503 { 1504 return drv->media_changed; 1505 } 1506 1507 /* Digital input register : 0x07 (read-only) */ 1508 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl) 1509 { 1510 uint32_t retval = 0; 1511 1512 if (fdctrl_media_changed(get_cur_drv(fdctrl))) { 1513 retval |= FD_DIR_DSKCHG; 1514 } 1515 if (retval != 0) { 1516 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval); 1517 } 1518 1519 return retval; 1520 } 1521 1522 /* Clear the FIFO and update the state for receiving the next command */ 1523 static void fdctrl_to_command_phase(FDCtrl *fdctrl) 1524 { 1525 fdctrl->phase = FD_PHASE_COMMAND; 1526 fdctrl->data_dir = FD_DIR_WRITE; 1527 fdctrl->data_pos = 0; 1528 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */ 1529 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO); 1530 fdctrl->msr |= FD_MSR_RQM; 1531 } 1532 1533 /* Update the state to allow the guest to read out the command status. 1534 * @fifo_len is the number of result bytes to be read out. */ 1535 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len) 1536 { 1537 fdctrl->phase = FD_PHASE_RESULT; 1538 fdctrl->data_dir = FD_DIR_READ; 1539 fdctrl->data_len = fifo_len; 1540 fdctrl->data_pos = 0; 1541 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO; 1542 } 1543 1544 /* Set an error: unimplemented/unknown command */ 1545 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction) 1546 { 1547 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n", 1548 fdctrl->fifo[0]); 1549 fdctrl->fifo[0] = FD_SR0_INVCMD; 1550 fdctrl_to_result_phase(fdctrl, 1); 1551 } 1552 1553 /* Seek to next sector 1554 * returns 0 when end of track reached (for DBL_SIDES on head 1) 1555 * otherwise returns 1 1556 */ 1557 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv) 1558 { 1559 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n", 1560 cur_drv->head, cur_drv->track, cur_drv->sect, 1561 fd_sector(cur_drv)); 1562 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an 1563 error in fact */ 1564 uint8_t new_head = cur_drv->head; 1565 uint8_t new_track = cur_drv->track; 1566 uint8_t new_sect = cur_drv->sect; 1567 1568 int ret = 1; 1569 1570 if (new_sect >= cur_drv->last_sect || 1571 new_sect == fdctrl->eot) { 1572 new_sect = 1; 1573 if (FD_MULTI_TRACK(fdctrl->data_state)) { 1574 if (new_head == 0 && 1575 (cur_drv->flags & FDISK_DBL_SIDES) != 0) { 1576 new_head = 1; 1577 } else { 1578 new_head = 0; 1579 new_track++; 1580 fdctrl->status0 |= FD_SR0_SEEK; 1581 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) { 1582 ret = 0; 1583 } 1584 } 1585 } else { 1586 fdctrl->status0 |= FD_SR0_SEEK; 1587 new_track++; 1588 ret = 0; 1589 } 1590 if (ret == 1) { 1591 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n", 1592 new_head, new_track, new_sect, fd_sector(cur_drv)); 1593 } 1594 } else { 1595 new_sect++; 1596 } 1597 fd_seek(cur_drv, new_head, new_track, new_sect, 1); 1598 return ret; 1599 } 1600 1601 /* Callback for transfer end (stop or abort) */ 1602 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0, 1603 uint8_t status1, uint8_t status2) 1604 { 1605 FDrive *cur_drv; 1606 cur_drv = get_cur_drv(fdctrl); 1607 1608 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD); 1609 fdctrl->status0 |= GET_CUR_DRV(fdctrl); 1610 if (cur_drv->head) { 1611 fdctrl->status0 |= FD_SR0_HEAD; 1612 } 1613 fdctrl->status0 |= status0; 1614 1615 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n", 1616 status0, status1, status2, fdctrl->status0); 1617 fdctrl->fifo[0] = fdctrl->status0; 1618 fdctrl->fifo[1] = status1; 1619 fdctrl->fifo[2] = status2; 1620 fdctrl->fifo[3] = cur_drv->track; 1621 fdctrl->fifo[4] = cur_drv->head; 1622 fdctrl->fifo[5] = cur_drv->sect; 1623 fdctrl->fifo[6] = FD_SECTOR_SC; 1624 fdctrl->data_dir = FD_DIR_READ; 1625 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) { 1626 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); 1627 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann); 1628 } 1629 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO; 1630 fdctrl->msr &= ~FD_MSR_NONDMA; 1631 1632 fdctrl_to_result_phase(fdctrl, 7); 1633 fdctrl_raise_irq(fdctrl); 1634 } 1635 1636 /* Prepare a data transfer (either DMA or FIFO) */ 1637 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction) 1638 { 1639 FDrive *cur_drv; 1640 uint8_t kh, kt, ks; 1641 1642 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1643 cur_drv = get_cur_drv(fdctrl); 1644 kt = fdctrl->fifo[2]; 1645 kh = fdctrl->fifo[3]; 1646 ks = fdctrl->fifo[4]; 1647 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n", 1648 GET_CUR_DRV(fdctrl), kh, kt, ks, 1649 fd_sector_calc(kh, kt, ks, cur_drv->last_sect, 1650 NUM_SIDES(cur_drv))); 1651 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { 1652 case 2: 1653 /* sect too big */ 1654 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1655 fdctrl->fifo[3] = kt; 1656 fdctrl->fifo[4] = kh; 1657 fdctrl->fifo[5] = ks; 1658 return; 1659 case 3: 1660 /* track too big */ 1661 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); 1662 fdctrl->fifo[3] = kt; 1663 fdctrl->fifo[4] = kh; 1664 fdctrl->fifo[5] = ks; 1665 return; 1666 case 4: 1667 /* No seek enabled */ 1668 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1669 fdctrl->fifo[3] = kt; 1670 fdctrl->fifo[4] = kh; 1671 fdctrl->fifo[5] = ks; 1672 return; 1673 case 1: 1674 fdctrl->status0 |= FD_SR0_SEEK; 1675 break; 1676 default: 1677 break; 1678 } 1679 1680 /* Check the data rate. If the programmed data rate does not match 1681 * the currently inserted medium, the operation has to fail. */ 1682 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { 1683 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n", 1684 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); 1685 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); 1686 fdctrl->fifo[3] = kt; 1687 fdctrl->fifo[4] = kh; 1688 fdctrl->fifo[5] = ks; 1689 return; 1690 } 1691 1692 /* Set the FIFO state */ 1693 fdctrl->data_dir = direction; 1694 fdctrl->data_pos = 0; 1695 assert(fdctrl->msr & FD_MSR_CMDBUSY); 1696 if (fdctrl->fifo[0] & 0x80) 1697 fdctrl->data_state |= FD_STATE_MULTI; 1698 else 1699 fdctrl->data_state &= ~FD_STATE_MULTI; 1700 if (fdctrl->fifo[5] == 0) { 1701 fdctrl->data_len = fdctrl->fifo[8]; 1702 } else { 1703 int tmp; 1704 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]); 1705 tmp = (fdctrl->fifo[6] - ks + 1); 1706 if (fdctrl->fifo[0] & 0x80) 1707 tmp += fdctrl->fifo[6]; 1708 fdctrl->data_len *= tmp; 1709 } 1710 fdctrl->eot = fdctrl->fifo[6]; 1711 if (fdctrl->dor & FD_DOR_DMAEN) { 1712 /* DMA transfer is enabled. */ 1713 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); 1714 1715 FLOPPY_DPRINTF("direction=%d (%d - %d)\n", 1716 direction, (128 << fdctrl->fifo[5]) * 1717 (cur_drv->last_sect - ks + 1), fdctrl->data_len); 1718 1719 /* No access is allowed until DMA transfer has completed */ 1720 fdctrl->msr &= ~FD_MSR_RQM; 1721 if (direction != FD_DIR_VERIFY) { 1722 /* 1723 * Now, we just have to wait for the DMA controller to 1724 * recall us... 1725 */ 1726 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann); 1727 k->schedule(fdctrl->dma); 1728 } else { 1729 /* Start transfer */ 1730 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0, 1731 fdctrl->data_len); 1732 } 1733 return; 1734 } 1735 FLOPPY_DPRINTF("start non-DMA transfer\n"); 1736 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM; 1737 if (direction != FD_DIR_WRITE) 1738 fdctrl->msr |= FD_MSR_DIO; 1739 /* IO based transfer: calculate len */ 1740 fdctrl_raise_irq(fdctrl); 1741 } 1742 1743 /* Prepare a transfer of deleted data */ 1744 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction) 1745 { 1746 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n"); 1747 1748 /* We don't handle deleted data, 1749 * so we don't return *ANYTHING* 1750 */ 1751 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1752 } 1753 1754 /* handlers for DMA transfers */ 1755 static int fdctrl_transfer_handler (void *opaque, int nchan, 1756 int dma_pos, int dma_len) 1757 { 1758 FDCtrl *fdctrl; 1759 FDrive *cur_drv; 1760 int len, start_pos, rel_pos; 1761 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00; 1762 IsaDmaClass *k; 1763 1764 fdctrl = opaque; 1765 if (fdctrl->msr & FD_MSR_RQM) { 1766 FLOPPY_DPRINTF("Not in DMA transfer mode !\n"); 1767 return 0; 1768 } 1769 k = ISADMA_GET_CLASS(fdctrl->dma); 1770 cur_drv = get_cur_drv(fdctrl); 1771 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL || 1772 fdctrl->data_dir == FD_DIR_SCANH) 1773 status2 = FD_SR2_SNS; 1774 if (dma_len > fdctrl->data_len) 1775 dma_len = fdctrl->data_len; 1776 if (cur_drv->blk == NULL) { 1777 if (fdctrl->data_dir == FD_DIR_WRITE) 1778 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1779 else 1780 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1781 len = 0; 1782 goto transfer_error; 1783 } 1784 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; 1785 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) { 1786 len = dma_len - fdctrl->data_pos; 1787 if (len + rel_pos > FD_SECTOR_LEN) 1788 len = FD_SECTOR_LEN - rel_pos; 1789 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x " 1790 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos, 1791 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head, 1792 cur_drv->track, cur_drv->sect, fd_sector(cur_drv), 1793 fd_sector(cur_drv) * FD_SECTOR_LEN); 1794 if (fdctrl->data_dir != FD_DIR_WRITE || 1795 len < FD_SECTOR_LEN || rel_pos != 0) { 1796 /* READ & SCAN commands and realign to a sector for WRITE */ 1797 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), 1798 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) { 1799 FLOPPY_DPRINTF("Floppy: error getting sector %d\n", 1800 fd_sector(cur_drv)); 1801 /* Sure, image size is too small... */ 1802 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 1803 } 1804 } 1805 switch (fdctrl->data_dir) { 1806 case FD_DIR_READ: 1807 /* READ commands */ 1808 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, 1809 fdctrl->data_pos, len); 1810 break; 1811 case FD_DIR_WRITE: 1812 /* WRITE commands */ 1813 if (cur_drv->ro) { 1814 /* Handle readonly medium early, no need to do DMA, touch the 1815 * LED or attempt any writes. A real floppy doesn't attempt 1816 * to write to readonly media either. */ 1817 fdctrl_stop_transfer(fdctrl, 1818 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW, 1819 0x00); 1820 goto transfer_error; 1821 } 1822 1823 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, 1824 fdctrl->data_pos, len); 1825 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), 1826 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) { 1827 FLOPPY_DPRINTF("error writing sector %d\n", 1828 fd_sector(cur_drv)); 1829 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1830 goto transfer_error; 1831 } 1832 break; 1833 case FD_DIR_VERIFY: 1834 /* VERIFY commands */ 1835 break; 1836 default: 1837 /* SCAN commands */ 1838 { 1839 uint8_t tmpbuf[FD_SECTOR_LEN]; 1840 int ret; 1841 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos, 1842 len); 1843 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len); 1844 if (ret == 0) { 1845 status2 = FD_SR2_SEH; 1846 goto end_transfer; 1847 } 1848 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) || 1849 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) { 1850 status2 = 0x00; 1851 goto end_transfer; 1852 } 1853 } 1854 break; 1855 } 1856 fdctrl->data_pos += len; 1857 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; 1858 if (rel_pos == 0) { 1859 /* Seek to next sector */ 1860 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) 1861 break; 1862 } 1863 } 1864 end_transfer: 1865 len = fdctrl->data_pos - start_pos; 1866 FLOPPY_DPRINTF("end transfer %d %d %d\n", 1867 fdctrl->data_pos, len, fdctrl->data_len); 1868 if (fdctrl->data_dir == FD_DIR_SCANE || 1869 fdctrl->data_dir == FD_DIR_SCANL || 1870 fdctrl->data_dir == FD_DIR_SCANH) 1871 status2 = FD_SR2_SEH; 1872 fdctrl->data_len -= len; 1873 fdctrl_stop_transfer(fdctrl, status0, status1, status2); 1874 transfer_error: 1875 1876 return len; 1877 } 1878 1879 /* Data register : 0x05 */ 1880 static uint32_t fdctrl_read_data(FDCtrl *fdctrl) 1881 { 1882 FDrive *cur_drv; 1883 uint32_t retval = 0; 1884 uint32_t pos; 1885 1886 cur_drv = get_cur_drv(fdctrl); 1887 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1888 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) { 1889 FLOPPY_DPRINTF("error: controller not ready for reading\n"); 1890 return 0; 1891 } 1892 1893 /* If data_len spans multiple sectors, the current position in the FIFO 1894 * wraps around while fdctrl->data_pos is the real position in the whole 1895 * request. */ 1896 pos = fdctrl->data_pos; 1897 pos %= FD_SECTOR_LEN; 1898 1899 switch (fdctrl->phase) { 1900 case FD_PHASE_EXECUTION: 1901 assert(fdctrl->msr & FD_MSR_NONDMA); 1902 if (pos == 0) { 1903 if (fdctrl->data_pos != 0) 1904 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { 1905 FLOPPY_DPRINTF("error seeking to next sector %d\n", 1906 fd_sector(cur_drv)); 1907 return 0; 1908 } 1909 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, 1910 BDRV_SECTOR_SIZE) 1911 < 0) { 1912 FLOPPY_DPRINTF("error getting sector %d\n", 1913 fd_sector(cur_drv)); 1914 /* Sure, image size is too small... */ 1915 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 1916 } 1917 } 1918 1919 if (++fdctrl->data_pos == fdctrl->data_len) { 1920 fdctrl->msr &= ~FD_MSR_RQM; 1921 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 1922 } 1923 break; 1924 1925 case FD_PHASE_RESULT: 1926 assert(!(fdctrl->msr & FD_MSR_NONDMA)); 1927 if (++fdctrl->data_pos == fdctrl->data_len) { 1928 fdctrl->msr &= ~FD_MSR_RQM; 1929 fdctrl_to_command_phase(fdctrl); 1930 fdctrl_reset_irq(fdctrl); 1931 } 1932 break; 1933 1934 case FD_PHASE_COMMAND: 1935 default: 1936 abort(); 1937 } 1938 1939 retval = fdctrl->fifo[pos]; 1940 FLOPPY_DPRINTF("data register: 0x%02x\n", retval); 1941 1942 return retval; 1943 } 1944 1945 static void fdctrl_format_sector(FDCtrl *fdctrl) 1946 { 1947 FDrive *cur_drv; 1948 uint8_t kh, kt, ks; 1949 1950 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1951 cur_drv = get_cur_drv(fdctrl); 1952 kt = fdctrl->fifo[6]; 1953 kh = fdctrl->fifo[7]; 1954 ks = fdctrl->fifo[8]; 1955 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n", 1956 GET_CUR_DRV(fdctrl), kh, kt, ks, 1957 fd_sector_calc(kh, kt, ks, cur_drv->last_sect, 1958 NUM_SIDES(cur_drv))); 1959 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { 1960 case 2: 1961 /* sect too big */ 1962 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1963 fdctrl->fifo[3] = kt; 1964 fdctrl->fifo[4] = kh; 1965 fdctrl->fifo[5] = ks; 1966 return; 1967 case 3: 1968 /* track too big */ 1969 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); 1970 fdctrl->fifo[3] = kt; 1971 fdctrl->fifo[4] = kh; 1972 fdctrl->fifo[5] = ks; 1973 return; 1974 case 4: 1975 /* No seek enabled */ 1976 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1977 fdctrl->fifo[3] = kt; 1978 fdctrl->fifo[4] = kh; 1979 fdctrl->fifo[5] = ks; 1980 return; 1981 case 1: 1982 fdctrl->status0 |= FD_SR0_SEEK; 1983 break; 1984 default: 1985 break; 1986 } 1987 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 1988 if (cur_drv->blk == NULL || 1989 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, 1990 BDRV_SECTOR_SIZE, 0) < 0) { 1991 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv)); 1992 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1993 } else { 1994 if (cur_drv->sect == cur_drv->last_sect) { 1995 fdctrl->data_state &= ~FD_STATE_FORMAT; 1996 /* Last sector done */ 1997 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 1998 } else { 1999 /* More to do */ 2000 fdctrl->data_pos = 0; 2001 fdctrl->data_len = 4; 2002 } 2003 } 2004 } 2005 2006 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction) 2007 { 2008 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0; 2009 fdctrl->fifo[0] = fdctrl->lock << 4; 2010 fdctrl_to_result_phase(fdctrl, 1); 2011 } 2012 2013 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction) 2014 { 2015 FDrive *cur_drv = get_cur_drv(fdctrl); 2016 2017 /* Drives position */ 2018 fdctrl->fifo[0] = drv0(fdctrl)->track; 2019 fdctrl->fifo[1] = drv1(fdctrl)->track; 2020 #if MAX_FD == 4 2021 fdctrl->fifo[2] = drv2(fdctrl)->track; 2022 fdctrl->fifo[3] = drv3(fdctrl)->track; 2023 #else 2024 fdctrl->fifo[2] = 0; 2025 fdctrl->fifo[3] = 0; 2026 #endif 2027 /* timers */ 2028 fdctrl->fifo[4] = fdctrl->timer0; 2029 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0); 2030 fdctrl->fifo[6] = cur_drv->last_sect; 2031 fdctrl->fifo[7] = (fdctrl->lock << 7) | 2032 (cur_drv->perpendicular << 2); 2033 fdctrl->fifo[8] = fdctrl->config; 2034 fdctrl->fifo[9] = fdctrl->precomp_trk; 2035 fdctrl_to_result_phase(fdctrl, 10); 2036 } 2037 2038 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction) 2039 { 2040 /* Controller's version */ 2041 fdctrl->fifo[0] = fdctrl->version; 2042 fdctrl_to_result_phase(fdctrl, 1); 2043 } 2044 2045 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction) 2046 { 2047 fdctrl->fifo[0] = 0x41; /* Stepping 1 */ 2048 fdctrl_to_result_phase(fdctrl, 1); 2049 } 2050 2051 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction) 2052 { 2053 FDrive *cur_drv = get_cur_drv(fdctrl); 2054 2055 /* Drives position */ 2056 drv0(fdctrl)->track = fdctrl->fifo[3]; 2057 drv1(fdctrl)->track = fdctrl->fifo[4]; 2058 #if MAX_FD == 4 2059 drv2(fdctrl)->track = fdctrl->fifo[5]; 2060 drv3(fdctrl)->track = fdctrl->fifo[6]; 2061 #endif 2062 /* timers */ 2063 fdctrl->timer0 = fdctrl->fifo[7]; 2064 fdctrl->timer1 = fdctrl->fifo[8]; 2065 cur_drv->last_sect = fdctrl->fifo[9]; 2066 fdctrl->lock = fdctrl->fifo[10] >> 7; 2067 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF; 2068 fdctrl->config = fdctrl->fifo[11]; 2069 fdctrl->precomp_trk = fdctrl->fifo[12]; 2070 fdctrl->pwrd = fdctrl->fifo[13]; 2071 fdctrl_to_command_phase(fdctrl); 2072 } 2073 2074 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction) 2075 { 2076 FDrive *cur_drv = get_cur_drv(fdctrl); 2077 2078 fdctrl->fifo[0] = 0; 2079 fdctrl->fifo[1] = 0; 2080 /* Drives position */ 2081 fdctrl->fifo[2] = drv0(fdctrl)->track; 2082 fdctrl->fifo[3] = drv1(fdctrl)->track; 2083 #if MAX_FD == 4 2084 fdctrl->fifo[4] = drv2(fdctrl)->track; 2085 fdctrl->fifo[5] = drv3(fdctrl)->track; 2086 #else 2087 fdctrl->fifo[4] = 0; 2088 fdctrl->fifo[5] = 0; 2089 #endif 2090 /* timers */ 2091 fdctrl->fifo[6] = fdctrl->timer0; 2092 fdctrl->fifo[7] = fdctrl->timer1; 2093 fdctrl->fifo[8] = cur_drv->last_sect; 2094 fdctrl->fifo[9] = (fdctrl->lock << 7) | 2095 (cur_drv->perpendicular << 2); 2096 fdctrl->fifo[10] = fdctrl->config; 2097 fdctrl->fifo[11] = fdctrl->precomp_trk; 2098 fdctrl->fifo[12] = fdctrl->pwrd; 2099 fdctrl->fifo[13] = 0; 2100 fdctrl->fifo[14] = 0; 2101 fdctrl_to_result_phase(fdctrl, 15); 2102 } 2103 2104 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction) 2105 { 2106 FDrive *cur_drv = get_cur_drv(fdctrl); 2107 2108 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; 2109 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 2110 (NANOSECONDS_PER_SECOND / 50)); 2111 } 2112 2113 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction) 2114 { 2115 FDrive *cur_drv; 2116 2117 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2118 cur_drv = get_cur_drv(fdctrl); 2119 fdctrl->data_state |= FD_STATE_FORMAT; 2120 if (fdctrl->fifo[0] & 0x80) 2121 fdctrl->data_state |= FD_STATE_MULTI; 2122 else 2123 fdctrl->data_state &= ~FD_STATE_MULTI; 2124 cur_drv->bps = 2125 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2]; 2126 #if 0 2127 cur_drv->last_sect = 2128 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] : 2129 fdctrl->fifo[3] / 2; 2130 #else 2131 cur_drv->last_sect = fdctrl->fifo[3]; 2132 #endif 2133 /* TODO: implement format using DMA expected by the Bochs BIOS 2134 * and Linux fdformat (read 3 bytes per sector via DMA and fill 2135 * the sector with the specified fill byte 2136 */ 2137 fdctrl->data_state &= ~FD_STATE_FORMAT; 2138 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 2139 } 2140 2141 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction) 2142 { 2143 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF; 2144 fdctrl->timer1 = fdctrl->fifo[2] >> 1; 2145 if (fdctrl->fifo[2] & 1) 2146 fdctrl->dor &= ~FD_DOR_DMAEN; 2147 else 2148 fdctrl->dor |= FD_DOR_DMAEN; 2149 /* No result back */ 2150 fdctrl_to_command_phase(fdctrl); 2151 } 2152 2153 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction) 2154 { 2155 FDrive *cur_drv; 2156 2157 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2158 cur_drv = get_cur_drv(fdctrl); 2159 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; 2160 /* 1 Byte status back */ 2161 fdctrl->fifo[0] = (cur_drv->ro << 6) | 2162 (cur_drv->track == 0 ? 0x10 : 0x00) | 2163 (cur_drv->head << 2) | 2164 GET_CUR_DRV(fdctrl) | 2165 0x28; 2166 fdctrl_to_result_phase(fdctrl, 1); 2167 } 2168 2169 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction) 2170 { 2171 FDrive *cur_drv; 2172 2173 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2174 cur_drv = get_cur_drv(fdctrl); 2175 fd_recalibrate(cur_drv); 2176 fdctrl_to_command_phase(fdctrl); 2177 /* Raise Interrupt */ 2178 fdctrl->status0 |= FD_SR0_SEEK; 2179 fdctrl_raise_irq(fdctrl); 2180 } 2181 2182 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction) 2183 { 2184 FDrive *cur_drv = get_cur_drv(fdctrl); 2185 2186 if (fdctrl->reset_sensei > 0) { 2187 fdctrl->fifo[0] = 2188 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei; 2189 fdctrl->reset_sensei--; 2190 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) { 2191 fdctrl->fifo[0] = FD_SR0_INVCMD; 2192 fdctrl_to_result_phase(fdctrl, 1); 2193 return; 2194 } else { 2195 fdctrl->fifo[0] = 2196 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0)) 2197 | GET_CUR_DRV(fdctrl); 2198 } 2199 2200 fdctrl->fifo[1] = cur_drv->track; 2201 fdctrl_to_result_phase(fdctrl, 2); 2202 fdctrl_reset_irq(fdctrl); 2203 fdctrl->status0 = FD_SR0_RDYCHG; 2204 } 2205 2206 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction) 2207 { 2208 FDrive *cur_drv; 2209 2210 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2211 cur_drv = get_cur_drv(fdctrl); 2212 fdctrl_to_command_phase(fdctrl); 2213 /* The seek command just sends step pulses to the drive and doesn't care if 2214 * there is a medium inserted of if it's banging the head against the drive. 2215 */ 2216 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1); 2217 /* Raise Interrupt */ 2218 fdctrl->status0 |= FD_SR0_SEEK; 2219 fdctrl_raise_irq(fdctrl); 2220 } 2221 2222 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction) 2223 { 2224 FDrive *cur_drv = get_cur_drv(fdctrl); 2225 2226 if (fdctrl->fifo[1] & 0x80) 2227 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7; 2228 /* No result back */ 2229 fdctrl_to_command_phase(fdctrl); 2230 } 2231 2232 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction) 2233 { 2234 fdctrl->config = fdctrl->fifo[2]; 2235 fdctrl->precomp_trk = fdctrl->fifo[3]; 2236 /* No result back */ 2237 fdctrl_to_command_phase(fdctrl); 2238 } 2239 2240 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction) 2241 { 2242 fdctrl->pwrd = fdctrl->fifo[1]; 2243 fdctrl->fifo[0] = fdctrl->fifo[1]; 2244 fdctrl_to_result_phase(fdctrl, 1); 2245 } 2246 2247 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction) 2248 { 2249 /* No result back */ 2250 fdctrl_to_command_phase(fdctrl); 2251 } 2252 2253 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction) 2254 { 2255 FDrive *cur_drv = get_cur_drv(fdctrl); 2256 uint32_t pos; 2257 2258 pos = fdctrl->data_pos - 1; 2259 pos %= FD_SECTOR_LEN; 2260 if (fdctrl->fifo[pos] & 0x80) { 2261 /* Command parameters done */ 2262 if (fdctrl->fifo[pos] & 0x40) { 2263 fdctrl->fifo[0] = fdctrl->fifo[1]; 2264 fdctrl->fifo[2] = 0; 2265 fdctrl->fifo[3] = 0; 2266 fdctrl_to_result_phase(fdctrl, 4); 2267 } else { 2268 fdctrl_to_command_phase(fdctrl); 2269 } 2270 } else if (fdctrl->data_len > 7) { 2271 /* ERROR */ 2272 fdctrl->fifo[0] = 0x80 | 2273 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl); 2274 fdctrl_to_result_phase(fdctrl, 1); 2275 } 2276 } 2277 2278 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction) 2279 { 2280 FDrive *cur_drv; 2281 2282 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2283 cur_drv = get_cur_drv(fdctrl); 2284 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) { 2285 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1, 2286 cur_drv->sect, 1); 2287 } else { 2288 fd_seek(cur_drv, cur_drv->head, 2289 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1); 2290 } 2291 fdctrl_to_command_phase(fdctrl); 2292 /* Raise Interrupt */ 2293 fdctrl->status0 |= FD_SR0_SEEK; 2294 fdctrl_raise_irq(fdctrl); 2295 } 2296 2297 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction) 2298 { 2299 FDrive *cur_drv; 2300 2301 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2302 cur_drv = get_cur_drv(fdctrl); 2303 if (fdctrl->fifo[2] > cur_drv->track) { 2304 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1); 2305 } else { 2306 fd_seek(cur_drv, cur_drv->head, 2307 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1); 2308 } 2309 fdctrl_to_command_phase(fdctrl); 2310 /* Raise Interrupt */ 2311 fdctrl->status0 |= FD_SR0_SEEK; 2312 fdctrl_raise_irq(fdctrl); 2313 } 2314 2315 /* 2316 * Handlers for the execution phase of each command 2317 */ 2318 typedef struct FDCtrlCommand { 2319 uint8_t value; 2320 uint8_t mask; 2321 const char* name; 2322 int parameters; 2323 void (*handler)(FDCtrl *fdctrl, int direction); 2324 int direction; 2325 } FDCtrlCommand; 2326 2327 static const FDCtrlCommand handlers[] = { 2328 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ }, 2329 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE }, 2330 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek }, 2331 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status }, 2332 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate }, 2333 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track }, 2334 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ }, 2335 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */ 2336 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */ 2337 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ }, 2338 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE }, 2339 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY }, 2340 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL }, 2341 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH }, 2342 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE }, 2343 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid }, 2344 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify }, 2345 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status }, 2346 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode }, 2347 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure }, 2348 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode }, 2349 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option }, 2350 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command }, 2351 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out }, 2352 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented }, 2353 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in }, 2354 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock }, 2355 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg }, 2356 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version }, 2357 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid }, 2358 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */ 2359 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */ 2360 }; 2361 /* Associate command to an index in the 'handlers' array */ 2362 static uint8_t command_to_handler[256]; 2363 2364 static const FDCtrlCommand *get_command(uint8_t cmd) 2365 { 2366 int idx; 2367 2368 idx = command_to_handler[cmd]; 2369 FLOPPY_DPRINTF("%s command\n", handlers[idx].name); 2370 return &handlers[idx]; 2371 } 2372 2373 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value) 2374 { 2375 FDrive *cur_drv; 2376 const FDCtrlCommand *cmd; 2377 uint32_t pos; 2378 2379 /* Reset mode */ 2380 if (!(fdctrl->dor & FD_DOR_nRESET)) { 2381 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 2382 return; 2383 } 2384 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) { 2385 FLOPPY_DPRINTF("error: controller not ready for writing\n"); 2386 return; 2387 } 2388 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 2389 2390 FLOPPY_DPRINTF("%s: %02x\n", __func__, value); 2391 2392 /* If data_len spans multiple sectors, the current position in the FIFO 2393 * wraps around while fdctrl->data_pos is the real position in the whole 2394 * request. */ 2395 pos = fdctrl->data_pos++; 2396 pos %= FD_SECTOR_LEN; 2397 fdctrl->fifo[pos] = value; 2398 2399 if (fdctrl->data_pos == fdctrl->data_len) { 2400 fdctrl->msr &= ~FD_MSR_RQM; 2401 } 2402 2403 switch (fdctrl->phase) { 2404 case FD_PHASE_EXECUTION: 2405 /* For DMA requests, RQM should be cleared during execution phase, so 2406 * we would have errored out above. */ 2407 assert(fdctrl->msr & FD_MSR_NONDMA); 2408 2409 /* FIFO data write */ 2410 if (pos == FD_SECTOR_LEN - 1 || 2411 fdctrl->data_pos == fdctrl->data_len) { 2412 cur_drv = get_cur_drv(fdctrl); 2413 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, 2414 BDRV_SECTOR_SIZE, 0) < 0) { 2415 FLOPPY_DPRINTF("error writing sector %d\n", 2416 fd_sector(cur_drv)); 2417 break; 2418 } 2419 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { 2420 FLOPPY_DPRINTF("error seeking to next sector %d\n", 2421 fd_sector(cur_drv)); 2422 break; 2423 } 2424 } 2425 2426 /* Switch to result phase when done with the transfer */ 2427 if (fdctrl->data_pos == fdctrl->data_len) { 2428 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 2429 } 2430 break; 2431 2432 case FD_PHASE_COMMAND: 2433 assert(!(fdctrl->msr & FD_MSR_NONDMA)); 2434 assert(fdctrl->data_pos < FD_SECTOR_LEN); 2435 2436 if (pos == 0) { 2437 /* The first byte specifies the command. Now we start reading 2438 * as many parameters as this command requires. */ 2439 cmd = get_command(value); 2440 fdctrl->data_len = cmd->parameters + 1; 2441 if (cmd->parameters) { 2442 fdctrl->msr |= FD_MSR_RQM; 2443 } 2444 fdctrl->msr |= FD_MSR_CMDBUSY; 2445 } 2446 2447 if (fdctrl->data_pos == fdctrl->data_len) { 2448 /* We have all parameters now, execute the command */ 2449 fdctrl->phase = FD_PHASE_EXECUTION; 2450 2451 if (fdctrl->data_state & FD_STATE_FORMAT) { 2452 fdctrl_format_sector(fdctrl); 2453 break; 2454 } 2455 2456 cmd = get_command(fdctrl->fifo[0]); 2457 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name); 2458 cmd->handler(fdctrl, cmd->direction); 2459 } 2460 break; 2461 2462 case FD_PHASE_RESULT: 2463 default: 2464 abort(); 2465 } 2466 } 2467 2468 static void fdctrl_result_timer(void *opaque) 2469 { 2470 FDCtrl *fdctrl = opaque; 2471 FDrive *cur_drv = get_cur_drv(fdctrl); 2472 2473 /* Pretend we are spinning. 2474 * This is needed for Coherent, which uses READ ID to check for 2475 * sector interleaving. 2476 */ 2477 if (cur_drv->last_sect != 0) { 2478 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1; 2479 } 2480 /* READ_ID can't automatically succeed! */ 2481 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { 2482 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n", 2483 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); 2484 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); 2485 } else { 2486 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 2487 } 2488 } 2489 2490 /* Init functions */ 2491 2492 static void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds) 2493 { 2494 DeviceState *dev; 2495 int i; 2496 2497 for (i = 0; i < MAX_FD; i++) { 2498 if (fds[i]) { 2499 dev = qdev_new("floppy"); 2500 qdev_prop_set_uint32(dev, "unit", i); 2501 qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO); 2502 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]), 2503 &error_fatal); 2504 qdev_realize_and_unref(dev, &bus->bus, &error_fatal); 2505 } 2506 } 2507 } 2508 2509 void isa_fdc_init_drives(ISADevice *fdc, DriveInfo **fds) 2510 { 2511 fdctrl_init_drives(&ISA_FDC(fdc)->state.bus, fds); 2512 } 2513 2514 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann, 2515 hwaddr mmio_base, DriveInfo **fds) 2516 { 2517 FDCtrl *fdctrl; 2518 DeviceState *dev; 2519 SysBusDevice *sbd; 2520 FDCtrlSysBus *sys; 2521 2522 dev = qdev_new("sysbus-fdc"); 2523 sys = SYSBUS_FDC(dev); 2524 fdctrl = &sys->state; 2525 fdctrl->dma_chann = dma_chann; /* FIXME */ 2526 sbd = SYS_BUS_DEVICE(dev); 2527 sysbus_realize_and_unref(sbd, &error_fatal); 2528 sysbus_connect_irq(sbd, 0, irq); 2529 sysbus_mmio_map(sbd, 0, mmio_base); 2530 2531 fdctrl_init_drives(&sys->state.bus, fds); 2532 } 2533 2534 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base, 2535 DriveInfo **fds, qemu_irq *fdc_tc) 2536 { 2537 DeviceState *dev; 2538 FDCtrlSysBus *sys; 2539 2540 dev = qdev_new("sun-fdtwo"); 2541 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2542 sys = SYSBUS_FDC(dev); 2543 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq); 2544 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base); 2545 *fdc_tc = qdev_get_gpio_in(dev, 0); 2546 2547 fdctrl_init_drives(&sys->state.bus, fds); 2548 } 2549 2550 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, 2551 Error **errp) 2552 { 2553 int i, j; 2554 FDrive *drive; 2555 static int command_tables_inited = 0; 2556 2557 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) { 2558 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'"); 2559 return; 2560 } 2561 2562 /* Fill 'command_to_handler' lookup table */ 2563 if (!command_tables_inited) { 2564 command_tables_inited = 1; 2565 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) { 2566 for (j = 0; j < sizeof(command_to_handler); j++) { 2567 if ((j & handlers[i].mask) == handlers[i].value) { 2568 command_to_handler[j] = i; 2569 } 2570 } 2571 } 2572 } 2573 2574 FLOPPY_DPRINTF("init controller\n"); 2575 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN); 2576 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 2577 fdctrl->fifo_size = 512; 2578 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 2579 fdctrl_result_timer, fdctrl); 2580 2581 fdctrl->version = 0x90; /* Intel 82078 controller */ 2582 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */ 2583 fdctrl->num_floppies = MAX_FD; 2584 2585 if (fdctrl->dma_chann != -1) { 2586 IsaDmaClass *k; 2587 assert(fdctrl->dma); 2588 k = ISADMA_GET_CLASS(fdctrl->dma); 2589 k->register_channel(fdctrl->dma, fdctrl->dma_chann, 2590 &fdctrl_transfer_handler, fdctrl); 2591 } 2592 2593 floppy_bus_create(fdctrl, &fdctrl->bus, dev); 2594 2595 for (i = 0; i < MAX_FD; i++) { 2596 drive = &fdctrl->drives[i]; 2597 drive->fdctrl = fdctrl; 2598 fd_init(drive); 2599 fd_revalidate(drive); 2600 } 2601 } 2602 2603 static const MemoryRegionPortio fdc_portio_list[] = { 2604 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write }, 2605 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write }, 2606 PORTIO_END_OF_LIST(), 2607 }; 2608 2609 static void isabus_fdc_realize(DeviceState *dev, Error **errp) 2610 { 2611 ISADevice *isadev = ISA_DEVICE(dev); 2612 FDCtrlISABus *isa = ISA_FDC(dev); 2613 FDCtrl *fdctrl = &isa->state; 2614 Error *err = NULL; 2615 2616 isa_register_portio_list(isadev, &fdctrl->portio_list, 2617 isa->iobase, fdc_portio_list, fdctrl, 2618 "fdc"); 2619 2620 isa_init_irq(isadev, &fdctrl->irq, isa->irq); 2621 fdctrl->dma_chann = isa->dma; 2622 if (fdctrl->dma_chann != -1) { 2623 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma); 2624 if (!fdctrl->dma) { 2625 error_setg(errp, "ISA controller does not support DMA"); 2626 return; 2627 } 2628 } 2629 2630 qdev_set_legacy_instance_id(dev, isa->iobase, 2); 2631 fdctrl_realize_common(dev, fdctrl, &err); 2632 if (err != NULL) { 2633 error_propagate(errp, err); 2634 return; 2635 } 2636 } 2637 2638 static void sysbus_fdc_initfn(Object *obj) 2639 { 2640 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2641 FDCtrlSysBus *sys = SYSBUS_FDC(obj); 2642 FDCtrl *fdctrl = &sys->state; 2643 2644 fdctrl->dma_chann = -1; 2645 2646 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl, 2647 "fdc", 0x08); 2648 sysbus_init_mmio(sbd, &fdctrl->iomem); 2649 } 2650 2651 static void sun4m_fdc_initfn(Object *obj) 2652 { 2653 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2654 FDCtrlSysBus *sys = SYSBUS_FDC(obj); 2655 FDCtrl *fdctrl = &sys->state; 2656 2657 fdctrl->dma_chann = -1; 2658 2659 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops, 2660 fdctrl, "fdctrl", 0x08); 2661 sysbus_init_mmio(sbd, &fdctrl->iomem); 2662 } 2663 2664 static void sysbus_fdc_common_initfn(Object *obj) 2665 { 2666 DeviceState *dev = DEVICE(obj); 2667 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 2668 FDCtrlSysBus *sys = SYSBUS_FDC(obj); 2669 FDCtrl *fdctrl = &sys->state; 2670 2671 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */ 2672 2673 sysbus_init_irq(sbd, &fdctrl->irq); 2674 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1); 2675 } 2676 2677 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp) 2678 { 2679 FDCtrlSysBus *sys = SYSBUS_FDC(dev); 2680 FDCtrl *fdctrl = &sys->state; 2681 2682 fdctrl_realize_common(dev, fdctrl, errp); 2683 } 2684 2685 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i) 2686 { 2687 FDCtrlISABus *isa = ISA_FDC(fdc); 2688 2689 return isa->state.drives[i].drive; 2690 } 2691 2692 static void isa_fdc_get_drive_max_chs(FloppyDriveType type, uint8_t *maxc, 2693 uint8_t *maxh, uint8_t *maxs) 2694 { 2695 const FDFormat *fdf; 2696 2697 *maxc = *maxh = *maxs = 0; 2698 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) { 2699 if (fdf->drive != type) { 2700 continue; 2701 } 2702 if (*maxc < fdf->max_track) { 2703 *maxc = fdf->max_track; 2704 } 2705 if (*maxh < fdf->max_head) { 2706 *maxh = fdf->max_head; 2707 } 2708 if (*maxs < fdf->last_sect) { 2709 *maxs = fdf->last_sect; 2710 } 2711 } 2712 (*maxc)--; 2713 } 2714 2715 static Aml *build_fdinfo_aml(int idx, FloppyDriveType type) 2716 { 2717 Aml *dev, *fdi; 2718 uint8_t maxc, maxh, maxs; 2719 2720 isa_fdc_get_drive_max_chs(type, &maxc, &maxh, &maxs); 2721 2722 dev = aml_device("FLP%c", 'A' + idx); 2723 2724 aml_append(dev, aml_name_decl("_ADR", aml_int(idx))); 2725 2726 fdi = aml_package(16); 2727 aml_append(fdi, aml_int(idx)); /* Drive Number */ 2728 aml_append(fdi, 2729 aml_int(cmos_get_fd_drive_type(type))); /* Device Type */ 2730 /* 2731 * the values below are the limits of the drive, and are thus independent 2732 * of the inserted media 2733 */ 2734 aml_append(fdi, aml_int(maxc)); /* Maximum Cylinder Number */ 2735 aml_append(fdi, aml_int(maxs)); /* Maximum Sector Number */ 2736 aml_append(fdi, aml_int(maxh)); /* Maximum Head Number */ 2737 /* 2738 * SeaBIOS returns the below values for int 0x13 func 0x08 regardless of 2739 * the drive type, so shall we 2740 */ 2741 aml_append(fdi, aml_int(0xAF)); /* disk_specify_1 */ 2742 aml_append(fdi, aml_int(0x02)); /* disk_specify_2 */ 2743 aml_append(fdi, aml_int(0x25)); /* disk_motor_wait */ 2744 aml_append(fdi, aml_int(0x02)); /* disk_sector_siz */ 2745 aml_append(fdi, aml_int(0x12)); /* disk_eot */ 2746 aml_append(fdi, aml_int(0x1B)); /* disk_rw_gap */ 2747 aml_append(fdi, aml_int(0xFF)); /* disk_dtl */ 2748 aml_append(fdi, aml_int(0x6C)); /* disk_formt_gap */ 2749 aml_append(fdi, aml_int(0xF6)); /* disk_fill */ 2750 aml_append(fdi, aml_int(0x0F)); /* disk_head_sttl */ 2751 aml_append(fdi, aml_int(0x08)); /* disk_motor_strt */ 2752 2753 aml_append(dev, aml_name_decl("_FDI", fdi)); 2754 return dev; 2755 } 2756 2757 int cmos_get_fd_drive_type(FloppyDriveType fd0) 2758 { 2759 int val; 2760 2761 switch (fd0) { 2762 case FLOPPY_DRIVE_TYPE_144: 2763 /* 1.44 Mb 3"5 drive */ 2764 val = 4; 2765 break; 2766 case FLOPPY_DRIVE_TYPE_288: 2767 /* 2.88 Mb 3"5 drive */ 2768 val = 5; 2769 break; 2770 case FLOPPY_DRIVE_TYPE_120: 2771 /* 1.2 Mb 5"5 drive */ 2772 val = 2; 2773 break; 2774 case FLOPPY_DRIVE_TYPE_NONE: 2775 default: 2776 val = 0; 2777 break; 2778 } 2779 return val; 2780 } 2781 2782 static void fdc_isa_build_aml(ISADevice *isadev, Aml *scope) 2783 { 2784 Aml *dev; 2785 Aml *crs; 2786 int i; 2787 2788 #define ACPI_FDE_MAX_FD 4 2789 uint32_t fde_buf[5] = { 2790 0, 0, 0, 0, /* presence of floppy drives #0 - #3 */ 2791 cpu_to_le32(2) /* tape presence (2 == never present) */ 2792 }; 2793 2794 crs = aml_resource_template(); 2795 aml_append(crs, aml_io(AML_DECODE16, 0x03F2, 0x03F2, 0x00, 0x04)); 2796 aml_append(crs, aml_io(AML_DECODE16, 0x03F7, 0x03F7, 0x00, 0x01)); 2797 aml_append(crs, aml_irq_no_flags(6)); 2798 aml_append(crs, 2799 aml_dma(AML_COMPATIBILITY, AML_NOTBUSMASTER, AML_TRANSFER8, 2)); 2800 2801 dev = aml_device("FDC0"); 2802 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0700"))); 2803 aml_append(dev, aml_name_decl("_CRS", crs)); 2804 2805 for (i = 0; i < MIN(MAX_FD, ACPI_FDE_MAX_FD); i++) { 2806 FloppyDriveType type = isa_fdc_get_drive_type(isadev, i); 2807 2808 if (type < FLOPPY_DRIVE_TYPE_NONE) { 2809 fde_buf[i] = cpu_to_le32(1); /* drive present */ 2810 aml_append(dev, build_fdinfo_aml(i, type)); 2811 } 2812 } 2813 aml_append(dev, aml_name_decl("_FDE", 2814 aml_buffer(sizeof(fde_buf), (uint8_t *)fde_buf))); 2815 2816 aml_append(scope, dev); 2817 } 2818 2819 static const VMStateDescription vmstate_isa_fdc ={ 2820 .name = "fdc", 2821 .version_id = 2, 2822 .minimum_version_id = 2, 2823 .fields = (VMStateField[]) { 2824 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl), 2825 VMSTATE_END_OF_LIST() 2826 } 2827 }; 2828 2829 static Property isa_fdc_properties[] = { 2830 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0), 2831 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6), 2832 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2), 2833 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type, 2834 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 2835 FloppyDriveType), 2836 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type, 2837 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 2838 FloppyDriveType), 2839 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback, 2840 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type, 2841 FloppyDriveType), 2842 DEFINE_PROP_END_OF_LIST(), 2843 }; 2844 2845 static void isabus_fdc_class_init(ObjectClass *klass, void *data) 2846 { 2847 DeviceClass *dc = DEVICE_CLASS(klass); 2848 ISADeviceClass *isa = ISA_DEVICE_CLASS(klass); 2849 2850 dc->realize = isabus_fdc_realize; 2851 dc->fw_name = "fdc"; 2852 dc->reset = fdctrl_external_reset_isa; 2853 dc->vmsd = &vmstate_isa_fdc; 2854 isa->build_aml = fdc_isa_build_aml; 2855 device_class_set_props(dc, isa_fdc_properties); 2856 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 2857 } 2858 2859 static void isabus_fdc_instance_init(Object *obj) 2860 { 2861 FDCtrlISABus *isa = ISA_FDC(obj); 2862 2863 device_add_bootindex_property(obj, &isa->bootindexA, 2864 "bootindexA", "/floppy@0", 2865 DEVICE(obj)); 2866 device_add_bootindex_property(obj, &isa->bootindexB, 2867 "bootindexB", "/floppy@1", 2868 DEVICE(obj)); 2869 } 2870 2871 static const TypeInfo isa_fdc_info = { 2872 .name = TYPE_ISA_FDC, 2873 .parent = TYPE_ISA_DEVICE, 2874 .instance_size = sizeof(FDCtrlISABus), 2875 .class_init = isabus_fdc_class_init, 2876 .instance_init = isabus_fdc_instance_init, 2877 }; 2878 2879 static const VMStateDescription vmstate_sysbus_fdc ={ 2880 .name = "fdc", 2881 .version_id = 2, 2882 .minimum_version_id = 2, 2883 .fields = (VMStateField[]) { 2884 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl), 2885 VMSTATE_END_OF_LIST() 2886 } 2887 }; 2888 2889 static Property sysbus_fdc_properties[] = { 2890 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type, 2891 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 2892 FloppyDriveType), 2893 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type, 2894 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 2895 FloppyDriveType), 2896 DEFINE_PROP_SIGNED("fallback", FDCtrlSysBus, state.fallback, 2897 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type, 2898 FloppyDriveType), 2899 DEFINE_PROP_END_OF_LIST(), 2900 }; 2901 2902 static void sysbus_fdc_class_init(ObjectClass *klass, void *data) 2903 { 2904 DeviceClass *dc = DEVICE_CLASS(klass); 2905 2906 device_class_set_props(dc, sysbus_fdc_properties); 2907 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 2908 } 2909 2910 static const TypeInfo sysbus_fdc_info = { 2911 .name = "sysbus-fdc", 2912 .parent = TYPE_SYSBUS_FDC, 2913 .instance_init = sysbus_fdc_initfn, 2914 .class_init = sysbus_fdc_class_init, 2915 }; 2916 2917 static Property sun4m_fdc_properties[] = { 2918 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type, 2919 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 2920 FloppyDriveType), 2921 DEFINE_PROP_SIGNED("fallback", FDCtrlSysBus, state.fallback, 2922 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type, 2923 FloppyDriveType), 2924 DEFINE_PROP_END_OF_LIST(), 2925 }; 2926 2927 static void sun4m_fdc_class_init(ObjectClass *klass, void *data) 2928 { 2929 DeviceClass *dc = DEVICE_CLASS(klass); 2930 2931 device_class_set_props(dc, sun4m_fdc_properties); 2932 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 2933 } 2934 2935 static const TypeInfo sun4m_fdc_info = { 2936 .name = "sun-fdtwo", 2937 .parent = TYPE_SYSBUS_FDC, 2938 .instance_init = sun4m_fdc_initfn, 2939 .class_init = sun4m_fdc_class_init, 2940 }; 2941 2942 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data) 2943 { 2944 DeviceClass *dc = DEVICE_CLASS(klass); 2945 2946 dc->realize = sysbus_fdc_common_realize; 2947 dc->reset = fdctrl_external_reset_sysbus; 2948 dc->vmsd = &vmstate_sysbus_fdc; 2949 } 2950 2951 static const TypeInfo sysbus_fdc_type_info = { 2952 .name = TYPE_SYSBUS_FDC, 2953 .parent = TYPE_SYS_BUS_DEVICE, 2954 .instance_size = sizeof(FDCtrlSysBus), 2955 .instance_init = sysbus_fdc_common_initfn, 2956 .abstract = true, 2957 .class_init = sysbus_fdc_common_class_init, 2958 }; 2959 2960 static void fdc_register_types(void) 2961 { 2962 type_register_static(&isa_fdc_info); 2963 type_register_static(&sysbus_fdc_type_info); 2964 type_register_static(&sysbus_fdc_info); 2965 type_register_static(&sun4m_fdc_info); 2966 type_register_static(&floppy_bus_info); 2967 type_register_static(&floppy_drive_info); 2968 } 2969 2970 type_init(fdc_register_types) 2971