xref: /openbmc/qemu/hw/block/fdc.c (revision 19f4ed36)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/acpi/aml-build.h"
36 #include "hw/irq.h"
37 #include "hw/isa/isa.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/qdev-properties-system.h"
40 #include "hw/sysbus.h"
41 #include "migration/vmstate.h"
42 #include "hw/block/block.h"
43 #include "sysemu/block-backend.h"
44 #include "sysemu/blockdev.h"
45 #include "sysemu/sysemu.h"
46 #include "qemu/log.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/module.h"
49 #include "trace.h"
50 #include "qom/object.h"
51 
52 /********************************************************/
53 /* debug Floppy devices */
54 
55 #define DEBUG_FLOPPY 0
56 
57 #define FLOPPY_DPRINTF(fmt, ...)                                \
58     do {                                                        \
59         if (DEBUG_FLOPPY) {                                     \
60             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
61         }                                                       \
62     } while (0)
63 
64 
65 /********************************************************/
66 /* qdev floppy bus                                      */
67 
68 #define TYPE_FLOPPY_BUS "floppy-bus"
69 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS)
70 
71 typedef struct FDCtrl FDCtrl;
72 typedef struct FDrive FDrive;
73 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
74 
75 struct FloppyBus {
76     BusState bus;
77     FDCtrl *fdc;
78 };
79 
80 static const TypeInfo floppy_bus_info = {
81     .name = TYPE_FLOPPY_BUS,
82     .parent = TYPE_BUS,
83     .instance_size = sizeof(FloppyBus),
84 };
85 
86 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
87 {
88     qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
89     bus->fdc = fdc;
90 }
91 
92 
93 /********************************************************/
94 /* Floppy drive emulation                               */
95 
96 typedef enum FDriveRate {
97     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
98     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
99     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
100     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
101 } FDriveRate;
102 
103 typedef enum FDriveSize {
104     FDRIVE_SIZE_UNKNOWN,
105     FDRIVE_SIZE_350,
106     FDRIVE_SIZE_525,
107 } FDriveSize;
108 
109 typedef struct FDFormat {
110     FloppyDriveType drive;
111     uint8_t last_sect;
112     uint8_t max_track;
113     uint8_t max_head;
114     FDriveRate rate;
115 } FDFormat;
116 
117 /* In many cases, the total sector size of a format is enough to uniquely
118  * identify it. However, there are some total sector collisions between
119  * formats of different physical size, and these are noted below by
120  * highlighting the total sector size for entries with collisions. */
121 static const FDFormat fd_formats[] = {
122     /* First entry is default format */
123     /* 1.44 MB 3"1/2 floppy disks */
124     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
125     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
126     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
127     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
128     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
129     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
130     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
131     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
132     /* 2.88 MB 3"1/2 floppy disks */
133     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
134     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
135     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
136     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
137     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
138     /* 720 kB 3"1/2 floppy disks */
139     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
140     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
141     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
142     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
143     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
144     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
145     /* 1.2 MB 5"1/4 floppy disks */
146     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
147     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
148     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
149     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
150     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
151     /* 720 kB 5"1/4 floppy disks */
152     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
153     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
154     /* 360 kB 5"1/4 floppy disks */
155     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
156     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
157     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
158     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
159     /* 320 kB 5"1/4 floppy disks */
160     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
161     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
162     /* 360 kB must match 5"1/4 better than 3"1/2... */
163     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
164     /* end */
165     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
166 };
167 
168 static FDriveSize drive_size(FloppyDriveType drive)
169 {
170     switch (drive) {
171     case FLOPPY_DRIVE_TYPE_120:
172         return FDRIVE_SIZE_525;
173     case FLOPPY_DRIVE_TYPE_144:
174     case FLOPPY_DRIVE_TYPE_288:
175         return FDRIVE_SIZE_350;
176     default:
177         return FDRIVE_SIZE_UNKNOWN;
178     }
179 }
180 
181 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
182 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
183 
184 /* Will always be a fixed parameter for us */
185 #define FD_SECTOR_LEN          512
186 #define FD_SECTOR_SC           2   /* Sector size code */
187 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
188 
189 /* Floppy disk drive emulation */
190 typedef enum FDiskFlags {
191     FDISK_DBL_SIDES  = 0x01,
192 } FDiskFlags;
193 
194 struct FDrive {
195     FDCtrl *fdctrl;
196     BlockBackend *blk;
197     BlockConf *conf;
198     /* Drive status */
199     FloppyDriveType drive;    /* CMOS drive type        */
200     uint8_t perpendicular;    /* 2.88 MB access mode    */
201     /* Position */
202     uint8_t head;
203     uint8_t track;
204     uint8_t sect;
205     /* Media */
206     FloppyDriveType disk;     /* Current disk type      */
207     FDiskFlags flags;
208     uint8_t last_sect;        /* Nb sector per track    */
209     uint8_t max_track;        /* Nb of tracks           */
210     uint16_t bps;             /* Bytes per sector       */
211     uint8_t ro;               /* Is read-only           */
212     uint8_t media_changed;    /* Is media changed       */
213     uint8_t media_rate;       /* Data rate of medium    */
214 
215     bool media_validated;     /* Have we validated the media? */
216 };
217 
218 
219 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
220 
221 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
222  * currently goes through some pains to keep seeks within the bounds
223  * established by last_sect and max_track. Correcting this is difficult,
224  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
225  *
226  * For now: allow empty drives to have large bounds so we can seek around,
227  * with the understanding that when a diskette is inserted, the bounds will
228  * properly tighten to match the geometry of that inserted medium.
229  */
230 static void fd_empty_seek_hack(FDrive *drv)
231 {
232     drv->last_sect = 0xFF;
233     drv->max_track = 0xFF;
234 }
235 
236 static void fd_init(FDrive *drv)
237 {
238     /* Drive */
239     drv->perpendicular = 0;
240     /* Disk */
241     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
242     drv->last_sect = 0;
243     drv->max_track = 0;
244     drv->ro = true;
245     drv->media_changed = 1;
246 }
247 
248 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
249 
250 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
251                           uint8_t last_sect, uint8_t num_sides)
252 {
253     return (((track * num_sides) + head) * last_sect) + sect - 1;
254 }
255 
256 /* Returns current position, in sectors, for given drive */
257 static int fd_sector(FDrive *drv)
258 {
259     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
260                           NUM_SIDES(drv));
261 }
262 
263 /* Returns current position, in bytes, for given drive */
264 static int fd_offset(FDrive *drv)
265 {
266     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
267     return fd_sector(drv) << BDRV_SECTOR_BITS;
268 }
269 
270 /* Seek to a new position:
271  * returns 0 if already on right track
272  * returns 1 if track changed
273  * returns 2 if track is invalid
274  * returns 3 if sector is invalid
275  * returns 4 if seek is disabled
276  */
277 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
278                    int enable_seek)
279 {
280     uint32_t sector;
281     int ret;
282 
283     if (track > drv->max_track ||
284         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
285         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
286                        head, track, sect, 1,
287                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
288                        drv->max_track, drv->last_sect);
289         return 2;
290     }
291     if (sect > drv->last_sect) {
292         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
293                        head, track, sect, 1,
294                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
295                        drv->max_track, drv->last_sect);
296         return 3;
297     }
298     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
299     ret = 0;
300     if (sector != fd_sector(drv)) {
301 #if 0
302         if (!enable_seek) {
303             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
304                            " (max=%d %02x %02x)\n",
305                            head, track, sect, 1, drv->max_track,
306                            drv->last_sect);
307             return 4;
308         }
309 #endif
310         drv->head = head;
311         if (drv->track != track) {
312             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
313                 drv->media_changed = 0;
314             }
315             ret = 1;
316         }
317         drv->track = track;
318         drv->sect = sect;
319     }
320 
321     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
322         ret = 2;
323     }
324 
325     return ret;
326 }
327 
328 /* Set drive back to track 0 */
329 static void fd_recalibrate(FDrive *drv)
330 {
331     FLOPPY_DPRINTF("recalibrate\n");
332     fd_seek(drv, 0, 0, 1, 1);
333 }
334 
335 /**
336  * Determine geometry based on inserted diskette.
337  * Will not operate on an empty drive.
338  *
339  * @return: 0 on success, -1 if the drive is empty.
340  */
341 static int pick_geometry(FDrive *drv)
342 {
343     BlockBackend *blk = drv->blk;
344     const FDFormat *parse;
345     uint64_t nb_sectors, size;
346     int i;
347     int match, size_match, type_match;
348     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
349 
350     /* We can only pick a geometry if we have a diskette. */
351     if (!drv->blk || !blk_is_inserted(drv->blk) ||
352         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
353     {
354         return -1;
355     }
356 
357     /* We need to determine the likely geometry of the inserted medium.
358      * In order of preference, we look for:
359      * (1) The same drive type and number of sectors,
360      * (2) The same diskette size and number of sectors,
361      * (3) The same drive type.
362      *
363      * In all cases, matches that occur higher in the drive table will take
364      * precedence over matches that occur later in the table.
365      */
366     blk_get_geometry(blk, &nb_sectors);
367     match = size_match = type_match = -1;
368     for (i = 0; ; i++) {
369         parse = &fd_formats[i];
370         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
371             break;
372         }
373         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
374         if (nb_sectors == size) {
375             if (magic || parse->drive == drv->drive) {
376                 /* (1) perfect match -- nb_sectors and drive type */
377                 goto out;
378             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
379                 /* (2) size match -- nb_sectors and physical medium size */
380                 match = (match == -1) ? i : match;
381             } else {
382                 /* This is suspicious -- Did the user misconfigure? */
383                 size_match = (size_match == -1) ? i : size_match;
384             }
385         } else if (type_match == -1) {
386             if ((parse->drive == drv->drive) ||
387                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
388                 /* (3) type match -- nb_sectors mismatch, but matches the type
389                  *     specified explicitly by the user, or matches the fallback
390                  *     default type when using the drive autodetect mechanism */
391                 type_match = i;
392             }
393         }
394     }
395 
396     /* No exact match found */
397     if (match == -1) {
398         if (size_match != -1) {
399             parse = &fd_formats[size_match];
400             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
401                            "but inserted medium appears to be a "
402                            "%"PRId64" sector '%s' type\n",
403                            FloppyDriveType_str(drv->drive),
404                            nb_sectors,
405                            FloppyDriveType_str(parse->drive));
406         }
407         assert(type_match != -1 && "misconfigured fd_format");
408         match = type_match;
409     }
410     parse = &(fd_formats[match]);
411 
412  out:
413     if (parse->max_head == 0) {
414         drv->flags &= ~FDISK_DBL_SIDES;
415     } else {
416         drv->flags |= FDISK_DBL_SIDES;
417     }
418     drv->max_track = parse->max_track;
419     drv->last_sect = parse->last_sect;
420     drv->disk = parse->drive;
421     drv->media_rate = parse->rate;
422     return 0;
423 }
424 
425 static void pick_drive_type(FDrive *drv)
426 {
427     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
428         return;
429     }
430 
431     if (pick_geometry(drv) == 0) {
432         drv->drive = drv->disk;
433     } else {
434         drv->drive = get_fallback_drive_type(drv);
435     }
436 
437     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
438 }
439 
440 /* Revalidate a disk drive after a disk change */
441 static void fd_revalidate(FDrive *drv)
442 {
443     int rc;
444 
445     FLOPPY_DPRINTF("revalidate\n");
446     if (drv->blk != NULL) {
447         drv->ro = !blk_is_writable(drv->blk);
448         if (!blk_is_inserted(drv->blk)) {
449             FLOPPY_DPRINTF("No disk in drive\n");
450             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
451             fd_empty_seek_hack(drv);
452         } else if (!drv->media_validated) {
453             rc = pick_geometry(drv);
454             if (rc) {
455                 FLOPPY_DPRINTF("Could not validate floppy drive media");
456             } else {
457                 drv->media_validated = true;
458                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
459                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
460                                drv->max_track, drv->last_sect,
461                                drv->ro ? "ro" : "rw");
462             }
463         }
464     } else {
465         FLOPPY_DPRINTF("No drive connected\n");
466         drv->last_sect = 0;
467         drv->max_track = 0;
468         drv->flags &= ~FDISK_DBL_SIDES;
469         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
470         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
471     }
472 }
473 
474 static void fd_change_cb(void *opaque, bool load, Error **errp)
475 {
476     FDrive *drive = opaque;
477 
478     if (!load) {
479         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
480     } else {
481         if (!blkconf_apply_backend_options(drive->conf,
482                                            !blk_supports_write_perm(drive->blk),
483                                            false, errp)) {
484             return;
485         }
486     }
487 
488     drive->media_changed = 1;
489     drive->media_validated = false;
490     fd_revalidate(drive);
491 }
492 
493 static const BlockDevOps fd_block_ops = {
494     .change_media_cb = fd_change_cb,
495 };
496 
497 
498 #define TYPE_FLOPPY_DRIVE "floppy"
499 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE)
500 
501 struct FloppyDrive {
502     DeviceState     qdev;
503     uint32_t        unit;
504     BlockConf       conf;
505     FloppyDriveType type;
506 };
507 
508 static Property floppy_drive_properties[] = {
509     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
510     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
511     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
512                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
513                         FloppyDriveType),
514     DEFINE_PROP_END_OF_LIST(),
515 };
516 
517 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
518 {
519     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
520     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
521     FDrive *drive;
522     bool read_only;
523     int ret;
524 
525     if (dev->unit == -1) {
526         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
527             drive = get_drv(bus->fdc, dev->unit);
528             if (!drive->blk) {
529                 break;
530             }
531         }
532     }
533 
534     if (dev->unit >= MAX_FD) {
535         error_setg(errp, "Can't create floppy unit %d, bus supports "
536                    "only %d units", dev->unit, MAX_FD);
537         return;
538     }
539 
540     drive = get_drv(bus->fdc, dev->unit);
541     if (drive->blk) {
542         error_setg(errp, "Floppy unit %d is in use", dev->unit);
543         return;
544     }
545 
546     if (!dev->conf.blk) {
547         /* Anonymous BlockBackend for an empty drive */
548         dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
549         ret = blk_attach_dev(dev->conf.blk, qdev);
550         assert(ret == 0);
551 
552         /* Don't take write permissions on an empty drive to allow attaching a
553          * read-only node later */
554         read_only = true;
555     } else {
556         read_only = !blk_bs(dev->conf.blk) ||
557                     !blk_supports_write_perm(dev->conf.blk);
558     }
559 
560     if (!blkconf_blocksizes(&dev->conf, errp)) {
561         return;
562     }
563 
564     if (dev->conf.logical_block_size != 512 ||
565         dev->conf.physical_block_size != 512)
566     {
567         error_setg(errp, "Physical and logical block size must "
568                    "be 512 for floppy");
569         return;
570     }
571 
572     /* rerror/werror aren't supported by fdc and therefore not even registered
573      * with qdev. So set the defaults manually before they are used in
574      * blkconf_apply_backend_options(). */
575     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
576     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
577 
578     if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
579         return;
580     }
581 
582     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
583      * for empty drives. */
584     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
585         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
586         error_setg(errp, "fdc doesn't support drive option werror");
587         return;
588     }
589     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
590         error_setg(errp, "fdc doesn't support drive option rerror");
591         return;
592     }
593 
594     drive->conf = &dev->conf;
595     drive->blk = dev->conf.blk;
596     drive->fdctrl = bus->fdc;
597 
598     fd_init(drive);
599     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
600 
601     /* Keep 'type' qdev property and FDrive->drive in sync */
602     drive->drive = dev->type;
603     pick_drive_type(drive);
604     dev->type = drive->drive;
605 
606     fd_revalidate(drive);
607 }
608 
609 static void floppy_drive_class_init(ObjectClass *klass, void *data)
610 {
611     DeviceClass *k = DEVICE_CLASS(klass);
612     k->realize = floppy_drive_realize;
613     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
614     k->bus_type = TYPE_FLOPPY_BUS;
615     device_class_set_props(k, floppy_drive_properties);
616     k->desc = "virtual floppy drive";
617 }
618 
619 static const TypeInfo floppy_drive_info = {
620     .name = TYPE_FLOPPY_DRIVE,
621     .parent = TYPE_DEVICE,
622     .instance_size = sizeof(FloppyDrive),
623     .class_init = floppy_drive_class_init,
624 };
625 
626 /********************************************************/
627 /* Intel 82078 floppy disk controller emulation          */
628 
629 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
630 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
631 static int fdctrl_transfer_handler (void *opaque, int nchan,
632                                     int dma_pos, int dma_len);
633 static void fdctrl_raise_irq(FDCtrl *fdctrl);
634 static FDrive *get_cur_drv(FDCtrl *fdctrl);
635 
636 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
637 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
638 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
639 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
640 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
641 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
642 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
643 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
644 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
645 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
646 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
647 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
648 
649 enum {
650     FD_DIR_WRITE   = 0,
651     FD_DIR_READ    = 1,
652     FD_DIR_SCANE   = 2,
653     FD_DIR_SCANL   = 3,
654     FD_DIR_SCANH   = 4,
655     FD_DIR_VERIFY  = 5,
656 };
657 
658 enum {
659     FD_STATE_MULTI  = 0x01,	/* multi track flag */
660     FD_STATE_FORMAT = 0x02,	/* format flag */
661 };
662 
663 enum {
664     FD_REG_SRA = 0x00,
665     FD_REG_SRB = 0x01,
666     FD_REG_DOR = 0x02,
667     FD_REG_TDR = 0x03,
668     FD_REG_MSR = 0x04,
669     FD_REG_DSR = 0x04,
670     FD_REG_FIFO = 0x05,
671     FD_REG_DIR = 0x07,
672     FD_REG_CCR = 0x07,
673 };
674 
675 enum {
676     FD_CMD_READ_TRACK = 0x02,
677     FD_CMD_SPECIFY = 0x03,
678     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
679     FD_CMD_WRITE = 0x05,
680     FD_CMD_READ = 0x06,
681     FD_CMD_RECALIBRATE = 0x07,
682     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
683     FD_CMD_WRITE_DELETED = 0x09,
684     FD_CMD_READ_ID = 0x0a,
685     FD_CMD_READ_DELETED = 0x0c,
686     FD_CMD_FORMAT_TRACK = 0x0d,
687     FD_CMD_DUMPREG = 0x0e,
688     FD_CMD_SEEK = 0x0f,
689     FD_CMD_VERSION = 0x10,
690     FD_CMD_SCAN_EQUAL = 0x11,
691     FD_CMD_PERPENDICULAR_MODE = 0x12,
692     FD_CMD_CONFIGURE = 0x13,
693     FD_CMD_LOCK = 0x14,
694     FD_CMD_VERIFY = 0x16,
695     FD_CMD_POWERDOWN_MODE = 0x17,
696     FD_CMD_PART_ID = 0x18,
697     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
698     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
699     FD_CMD_SAVE = 0x2e,
700     FD_CMD_OPTION = 0x33,
701     FD_CMD_RESTORE = 0x4e,
702     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
703     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
704     FD_CMD_FORMAT_AND_WRITE = 0xcd,
705     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
706 };
707 
708 enum {
709     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
710     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
711     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
712     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
713     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
714 };
715 
716 enum {
717     FD_SR0_DS0      = 0x01,
718     FD_SR0_DS1      = 0x02,
719     FD_SR0_HEAD     = 0x04,
720     FD_SR0_EQPMT    = 0x10,
721     FD_SR0_SEEK     = 0x20,
722     FD_SR0_ABNTERM  = 0x40,
723     FD_SR0_INVCMD   = 0x80,
724     FD_SR0_RDYCHG   = 0xc0,
725 };
726 
727 enum {
728     FD_SR1_MA       = 0x01, /* Missing address mark */
729     FD_SR1_NW       = 0x02, /* Not writable */
730     FD_SR1_EC       = 0x80, /* End of cylinder */
731 };
732 
733 enum {
734     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
735     FD_SR2_SEH      = 0x08, /* Scan equal hit */
736 };
737 
738 enum {
739     FD_SRA_DIR      = 0x01,
740     FD_SRA_nWP      = 0x02,
741     FD_SRA_nINDX    = 0x04,
742     FD_SRA_HDSEL    = 0x08,
743     FD_SRA_nTRK0    = 0x10,
744     FD_SRA_STEP     = 0x20,
745     FD_SRA_nDRV2    = 0x40,
746     FD_SRA_INTPEND  = 0x80,
747 };
748 
749 enum {
750     FD_SRB_MTR0     = 0x01,
751     FD_SRB_MTR1     = 0x02,
752     FD_SRB_WGATE    = 0x04,
753     FD_SRB_RDATA    = 0x08,
754     FD_SRB_WDATA    = 0x10,
755     FD_SRB_DR0      = 0x20,
756 };
757 
758 enum {
759 #if MAX_FD == 4
760     FD_DOR_SELMASK  = 0x03,
761 #else
762     FD_DOR_SELMASK  = 0x01,
763 #endif
764     FD_DOR_nRESET   = 0x04,
765     FD_DOR_DMAEN    = 0x08,
766     FD_DOR_MOTEN0   = 0x10,
767     FD_DOR_MOTEN1   = 0x20,
768     FD_DOR_MOTEN2   = 0x40,
769     FD_DOR_MOTEN3   = 0x80,
770 };
771 
772 enum {
773 #if MAX_FD == 4
774     FD_TDR_BOOTSEL  = 0x0c,
775 #else
776     FD_TDR_BOOTSEL  = 0x04,
777 #endif
778 };
779 
780 enum {
781     FD_DSR_DRATEMASK= 0x03,
782     FD_DSR_PWRDOWN  = 0x40,
783     FD_DSR_SWRESET  = 0x80,
784 };
785 
786 enum {
787     FD_MSR_DRV0BUSY = 0x01,
788     FD_MSR_DRV1BUSY = 0x02,
789     FD_MSR_DRV2BUSY = 0x04,
790     FD_MSR_DRV3BUSY = 0x08,
791     FD_MSR_CMDBUSY  = 0x10,
792     FD_MSR_NONDMA   = 0x20,
793     FD_MSR_DIO      = 0x40,
794     FD_MSR_RQM      = 0x80,
795 };
796 
797 enum {
798     FD_DIR_DSKCHG   = 0x80,
799 };
800 
801 /*
802  * See chapter 5.0 "Controller phases" of the spec:
803  *
804  * Command phase:
805  * The host writes a command and its parameters into the FIFO. The command
806  * phase is completed when all parameters for the command have been supplied,
807  * and execution phase is entered.
808  *
809  * Execution phase:
810  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
811  * contains the payload now, otherwise it's unused. When all bytes of the
812  * required data have been transferred, the state is switched to either result
813  * phase (if the command produces status bytes) or directly back into the
814  * command phase for the next command.
815  *
816  * Result phase:
817  * The host reads out the FIFO, which contains one or more result bytes now.
818  */
819 enum {
820     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
821     FD_PHASE_RECONSTRUCT    = 0,
822 
823     FD_PHASE_COMMAND        = 1,
824     FD_PHASE_EXECUTION      = 2,
825     FD_PHASE_RESULT         = 3,
826 };
827 
828 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
829 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
830 
831 struct FDCtrl {
832     MemoryRegion iomem;
833     qemu_irq irq;
834     /* Controller state */
835     QEMUTimer *result_timer;
836     int dma_chann;
837     uint8_t phase;
838     IsaDma *dma;
839     /* Controller's identification */
840     uint8_t version;
841     /* HW */
842     uint8_t sra;
843     uint8_t srb;
844     uint8_t dor;
845     uint8_t dor_vmstate; /* only used as temp during vmstate */
846     uint8_t tdr;
847     uint8_t dsr;
848     uint8_t msr;
849     uint8_t cur_drv;
850     uint8_t status0;
851     uint8_t status1;
852     uint8_t status2;
853     /* Command FIFO */
854     uint8_t *fifo;
855     int32_t fifo_size;
856     uint32_t data_pos;
857     uint32_t data_len;
858     uint8_t data_state;
859     uint8_t data_dir;
860     uint8_t eot; /* last wanted sector */
861     /* States kept only to be returned back */
862     /* precompensation */
863     uint8_t precomp_trk;
864     uint8_t config;
865     uint8_t lock;
866     /* Power down config (also with status regB access mode */
867     uint8_t pwrd;
868     /* Floppy drives */
869     FloppyBus bus;
870     uint8_t num_floppies;
871     FDrive drives[MAX_FD];
872     struct {
873         FloppyDriveType type;
874     } qdev_for_drives[MAX_FD];
875     int reset_sensei;
876     FloppyDriveType fallback; /* type=auto failure fallback */
877     /* Timers state */
878     uint8_t timer0;
879     uint8_t timer1;
880     PortioList portio_list;
881 };
882 
883 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
884 {
885     return drv->fdctrl->fallback;
886 }
887 
888 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
889 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlSysBus, SYSBUS_FDC)
890 
891 struct FDCtrlSysBus {
892     /*< private >*/
893     SysBusDevice parent_obj;
894     /*< public >*/
895 
896     struct FDCtrl state;
897 };
898 
899 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlISABus, ISA_FDC)
900 
901 struct FDCtrlISABus {
902     ISADevice parent_obj;
903 
904     uint32_t iobase;
905     uint32_t irq;
906     uint32_t dma;
907     struct FDCtrl state;
908     int32_t bootindexA;
909     int32_t bootindexB;
910 };
911 
912 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
913 {
914     FDCtrl *fdctrl = opaque;
915     uint32_t retval;
916 
917     reg &= 7;
918     switch (reg) {
919     case FD_REG_SRA:
920         retval = fdctrl_read_statusA(fdctrl);
921         break;
922     case FD_REG_SRB:
923         retval = fdctrl_read_statusB(fdctrl);
924         break;
925     case FD_REG_DOR:
926         retval = fdctrl_read_dor(fdctrl);
927         break;
928     case FD_REG_TDR:
929         retval = fdctrl_read_tape(fdctrl);
930         break;
931     case FD_REG_MSR:
932         retval = fdctrl_read_main_status(fdctrl);
933         break;
934     case FD_REG_FIFO:
935         retval = fdctrl_read_data(fdctrl);
936         break;
937     case FD_REG_DIR:
938         retval = fdctrl_read_dir(fdctrl);
939         break;
940     default:
941         retval = (uint32_t)(-1);
942         break;
943     }
944     trace_fdc_ioport_read(reg, retval);
945 
946     return retval;
947 }
948 
949 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
950 {
951     FDCtrl *fdctrl = opaque;
952 
953     reg &= 7;
954     trace_fdc_ioport_write(reg, value);
955     switch (reg) {
956     case FD_REG_DOR:
957         fdctrl_write_dor(fdctrl, value);
958         break;
959     case FD_REG_TDR:
960         fdctrl_write_tape(fdctrl, value);
961         break;
962     case FD_REG_DSR:
963         fdctrl_write_rate(fdctrl, value);
964         break;
965     case FD_REG_FIFO:
966         fdctrl_write_data(fdctrl, value);
967         break;
968     case FD_REG_CCR:
969         fdctrl_write_ccr(fdctrl, value);
970         break;
971     default:
972         break;
973     }
974 }
975 
976 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
977                                  unsigned ize)
978 {
979     return fdctrl_read(opaque, (uint32_t)reg);
980 }
981 
982 static void fdctrl_write_mem (void *opaque, hwaddr reg,
983                               uint64_t value, unsigned size)
984 {
985     fdctrl_write(opaque, (uint32_t)reg, value);
986 }
987 
988 static const MemoryRegionOps fdctrl_mem_ops = {
989     .read = fdctrl_read_mem,
990     .write = fdctrl_write_mem,
991     .endianness = DEVICE_NATIVE_ENDIAN,
992 };
993 
994 static const MemoryRegionOps fdctrl_mem_strict_ops = {
995     .read = fdctrl_read_mem,
996     .write = fdctrl_write_mem,
997     .endianness = DEVICE_NATIVE_ENDIAN,
998     .valid = {
999         .min_access_size = 1,
1000         .max_access_size = 1,
1001     },
1002 };
1003 
1004 static bool fdrive_media_changed_needed(void *opaque)
1005 {
1006     FDrive *drive = opaque;
1007 
1008     return (drive->blk != NULL && drive->media_changed != 1);
1009 }
1010 
1011 static const VMStateDescription vmstate_fdrive_media_changed = {
1012     .name = "fdrive/media_changed",
1013     .version_id = 1,
1014     .minimum_version_id = 1,
1015     .needed = fdrive_media_changed_needed,
1016     .fields = (VMStateField[]) {
1017         VMSTATE_UINT8(media_changed, FDrive),
1018         VMSTATE_END_OF_LIST()
1019     }
1020 };
1021 
1022 static const VMStateDescription vmstate_fdrive_media_rate = {
1023     .name = "fdrive/media_rate",
1024     .version_id = 1,
1025     .minimum_version_id = 1,
1026     .fields = (VMStateField[]) {
1027         VMSTATE_UINT8(media_rate, FDrive),
1028         VMSTATE_END_OF_LIST()
1029     }
1030 };
1031 
1032 static bool fdrive_perpendicular_needed(void *opaque)
1033 {
1034     FDrive *drive = opaque;
1035 
1036     return drive->perpendicular != 0;
1037 }
1038 
1039 static const VMStateDescription vmstate_fdrive_perpendicular = {
1040     .name = "fdrive/perpendicular",
1041     .version_id = 1,
1042     .minimum_version_id = 1,
1043     .needed = fdrive_perpendicular_needed,
1044     .fields = (VMStateField[]) {
1045         VMSTATE_UINT8(perpendicular, FDrive),
1046         VMSTATE_END_OF_LIST()
1047     }
1048 };
1049 
1050 static int fdrive_post_load(void *opaque, int version_id)
1051 {
1052     fd_revalidate(opaque);
1053     return 0;
1054 }
1055 
1056 static const VMStateDescription vmstate_fdrive = {
1057     .name = "fdrive",
1058     .version_id = 1,
1059     .minimum_version_id = 1,
1060     .post_load = fdrive_post_load,
1061     .fields = (VMStateField[]) {
1062         VMSTATE_UINT8(head, FDrive),
1063         VMSTATE_UINT8(track, FDrive),
1064         VMSTATE_UINT8(sect, FDrive),
1065         VMSTATE_END_OF_LIST()
1066     },
1067     .subsections = (const VMStateDescription*[]) {
1068         &vmstate_fdrive_media_changed,
1069         &vmstate_fdrive_media_rate,
1070         &vmstate_fdrive_perpendicular,
1071         NULL
1072     }
1073 };
1074 
1075 /*
1076  * Reconstructs the phase from register values according to the logic that was
1077  * implemented in qemu 2.3. This is the default value that is used if the phase
1078  * subsection is not present on migration.
1079  *
1080  * Don't change this function to reflect newer qemu versions, it is part of
1081  * the migration ABI.
1082  */
1083 static int reconstruct_phase(FDCtrl *fdctrl)
1084 {
1085     if (fdctrl->msr & FD_MSR_NONDMA) {
1086         return FD_PHASE_EXECUTION;
1087     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1088         /* qemu 2.3 disabled RQM only during DMA transfers */
1089         return FD_PHASE_EXECUTION;
1090     } else if (fdctrl->msr & FD_MSR_DIO) {
1091         return FD_PHASE_RESULT;
1092     } else {
1093         return FD_PHASE_COMMAND;
1094     }
1095 }
1096 
1097 static int fdc_pre_save(void *opaque)
1098 {
1099     FDCtrl *s = opaque;
1100 
1101     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1102 
1103     return 0;
1104 }
1105 
1106 static int fdc_pre_load(void *opaque)
1107 {
1108     FDCtrl *s = opaque;
1109     s->phase = FD_PHASE_RECONSTRUCT;
1110     return 0;
1111 }
1112 
1113 static int fdc_post_load(void *opaque, int version_id)
1114 {
1115     FDCtrl *s = opaque;
1116 
1117     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1118     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1119 
1120     if (s->phase == FD_PHASE_RECONSTRUCT) {
1121         s->phase = reconstruct_phase(s);
1122     }
1123 
1124     return 0;
1125 }
1126 
1127 static bool fdc_reset_sensei_needed(void *opaque)
1128 {
1129     FDCtrl *s = opaque;
1130 
1131     return s->reset_sensei != 0;
1132 }
1133 
1134 static const VMStateDescription vmstate_fdc_reset_sensei = {
1135     .name = "fdc/reset_sensei",
1136     .version_id = 1,
1137     .minimum_version_id = 1,
1138     .needed = fdc_reset_sensei_needed,
1139     .fields = (VMStateField[]) {
1140         VMSTATE_INT32(reset_sensei, FDCtrl),
1141         VMSTATE_END_OF_LIST()
1142     }
1143 };
1144 
1145 static bool fdc_result_timer_needed(void *opaque)
1146 {
1147     FDCtrl *s = opaque;
1148 
1149     return timer_pending(s->result_timer);
1150 }
1151 
1152 static const VMStateDescription vmstate_fdc_result_timer = {
1153     .name = "fdc/result_timer",
1154     .version_id = 1,
1155     .minimum_version_id = 1,
1156     .needed = fdc_result_timer_needed,
1157     .fields = (VMStateField[]) {
1158         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1159         VMSTATE_END_OF_LIST()
1160     }
1161 };
1162 
1163 static bool fdc_phase_needed(void *opaque)
1164 {
1165     FDCtrl *fdctrl = opaque;
1166 
1167     return reconstruct_phase(fdctrl) != fdctrl->phase;
1168 }
1169 
1170 static const VMStateDescription vmstate_fdc_phase = {
1171     .name = "fdc/phase",
1172     .version_id = 1,
1173     .minimum_version_id = 1,
1174     .needed = fdc_phase_needed,
1175     .fields = (VMStateField[]) {
1176         VMSTATE_UINT8(phase, FDCtrl),
1177         VMSTATE_END_OF_LIST()
1178     }
1179 };
1180 
1181 static const VMStateDescription vmstate_fdc = {
1182     .name = "fdc",
1183     .version_id = 2,
1184     .minimum_version_id = 2,
1185     .pre_save = fdc_pre_save,
1186     .pre_load = fdc_pre_load,
1187     .post_load = fdc_post_load,
1188     .fields = (VMStateField[]) {
1189         /* Controller State */
1190         VMSTATE_UINT8(sra, FDCtrl),
1191         VMSTATE_UINT8(srb, FDCtrl),
1192         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1193         VMSTATE_UINT8(tdr, FDCtrl),
1194         VMSTATE_UINT8(dsr, FDCtrl),
1195         VMSTATE_UINT8(msr, FDCtrl),
1196         VMSTATE_UINT8(status0, FDCtrl),
1197         VMSTATE_UINT8(status1, FDCtrl),
1198         VMSTATE_UINT8(status2, FDCtrl),
1199         /* Command FIFO */
1200         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1201                              uint8_t),
1202         VMSTATE_UINT32(data_pos, FDCtrl),
1203         VMSTATE_UINT32(data_len, FDCtrl),
1204         VMSTATE_UINT8(data_state, FDCtrl),
1205         VMSTATE_UINT8(data_dir, FDCtrl),
1206         VMSTATE_UINT8(eot, FDCtrl),
1207         /* States kept only to be returned back */
1208         VMSTATE_UINT8(timer0, FDCtrl),
1209         VMSTATE_UINT8(timer1, FDCtrl),
1210         VMSTATE_UINT8(precomp_trk, FDCtrl),
1211         VMSTATE_UINT8(config, FDCtrl),
1212         VMSTATE_UINT8(lock, FDCtrl),
1213         VMSTATE_UINT8(pwrd, FDCtrl),
1214         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1215         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1216                              vmstate_fdrive, FDrive),
1217         VMSTATE_END_OF_LIST()
1218     },
1219     .subsections = (const VMStateDescription*[]) {
1220         &vmstate_fdc_reset_sensei,
1221         &vmstate_fdc_result_timer,
1222         &vmstate_fdc_phase,
1223         NULL
1224     }
1225 };
1226 
1227 static void fdctrl_external_reset_sysbus(DeviceState *d)
1228 {
1229     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1230     FDCtrl *s = &sys->state;
1231 
1232     fdctrl_reset(s, 0);
1233 }
1234 
1235 static void fdctrl_external_reset_isa(DeviceState *d)
1236 {
1237     FDCtrlISABus *isa = ISA_FDC(d);
1238     FDCtrl *s = &isa->state;
1239 
1240     fdctrl_reset(s, 0);
1241 }
1242 
1243 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1244 {
1245     //FDCtrl *s = opaque;
1246 
1247     if (level) {
1248         // XXX
1249         FLOPPY_DPRINTF("TC pulsed\n");
1250     }
1251 }
1252 
1253 /* Change IRQ state */
1254 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1255 {
1256     fdctrl->status0 = 0;
1257     if (!(fdctrl->sra & FD_SRA_INTPEND))
1258         return;
1259     FLOPPY_DPRINTF("Reset interrupt\n");
1260     qemu_set_irq(fdctrl->irq, 0);
1261     fdctrl->sra &= ~FD_SRA_INTPEND;
1262 }
1263 
1264 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1265 {
1266     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1267         qemu_set_irq(fdctrl->irq, 1);
1268         fdctrl->sra |= FD_SRA_INTPEND;
1269     }
1270 
1271     fdctrl->reset_sensei = 0;
1272     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1273 }
1274 
1275 /* Reset controller */
1276 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1277 {
1278     int i;
1279 
1280     FLOPPY_DPRINTF("reset controller\n");
1281     fdctrl_reset_irq(fdctrl);
1282     /* Initialise controller */
1283     fdctrl->sra = 0;
1284     fdctrl->srb = 0xc0;
1285     if (!fdctrl->drives[1].blk) {
1286         fdctrl->sra |= FD_SRA_nDRV2;
1287     }
1288     fdctrl->cur_drv = 0;
1289     fdctrl->dor = FD_DOR_nRESET;
1290     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1291     fdctrl->msr = FD_MSR_RQM;
1292     fdctrl->reset_sensei = 0;
1293     timer_del(fdctrl->result_timer);
1294     /* FIFO state */
1295     fdctrl->data_pos = 0;
1296     fdctrl->data_len = 0;
1297     fdctrl->data_state = 0;
1298     fdctrl->data_dir = FD_DIR_WRITE;
1299     for (i = 0; i < MAX_FD; i++)
1300         fd_recalibrate(&fdctrl->drives[i]);
1301     fdctrl_to_command_phase(fdctrl);
1302     if (do_irq) {
1303         fdctrl->status0 |= FD_SR0_RDYCHG;
1304         fdctrl_raise_irq(fdctrl);
1305         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1306     }
1307 }
1308 
1309 static inline FDrive *drv0(FDCtrl *fdctrl)
1310 {
1311     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1312 }
1313 
1314 static inline FDrive *drv1(FDCtrl *fdctrl)
1315 {
1316     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1317         return &fdctrl->drives[1];
1318     else
1319         return &fdctrl->drives[0];
1320 }
1321 
1322 #if MAX_FD == 4
1323 static inline FDrive *drv2(FDCtrl *fdctrl)
1324 {
1325     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1326         return &fdctrl->drives[2];
1327     else
1328         return &fdctrl->drives[1];
1329 }
1330 
1331 static inline FDrive *drv3(FDCtrl *fdctrl)
1332 {
1333     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1334         return &fdctrl->drives[3];
1335     else
1336         return &fdctrl->drives[2];
1337 }
1338 #endif
1339 
1340 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1341 {
1342     switch (unit) {
1343         case 0: return drv0(fdctrl);
1344         case 1: return drv1(fdctrl);
1345 #if MAX_FD == 4
1346         case 2: return drv2(fdctrl);
1347         case 3: return drv3(fdctrl);
1348 #endif
1349         default: return NULL;
1350     }
1351 }
1352 
1353 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1354 {
1355     return get_drv(fdctrl, fdctrl->cur_drv);
1356 }
1357 
1358 /* Status A register : 0x00 (read-only) */
1359 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1360 {
1361     uint32_t retval = fdctrl->sra;
1362 
1363     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1364 
1365     return retval;
1366 }
1367 
1368 /* Status B register : 0x01 (read-only) */
1369 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1370 {
1371     uint32_t retval = fdctrl->srb;
1372 
1373     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1374 
1375     return retval;
1376 }
1377 
1378 /* Digital output register : 0x02 */
1379 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1380 {
1381     uint32_t retval = fdctrl->dor;
1382 
1383     /* Selected drive */
1384     retval |= fdctrl->cur_drv;
1385     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1386 
1387     return retval;
1388 }
1389 
1390 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1391 {
1392     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1393 
1394     /* Motors */
1395     if (value & FD_DOR_MOTEN0)
1396         fdctrl->srb |= FD_SRB_MTR0;
1397     else
1398         fdctrl->srb &= ~FD_SRB_MTR0;
1399     if (value & FD_DOR_MOTEN1)
1400         fdctrl->srb |= FD_SRB_MTR1;
1401     else
1402         fdctrl->srb &= ~FD_SRB_MTR1;
1403 
1404     /* Drive */
1405     if (value & 1)
1406         fdctrl->srb |= FD_SRB_DR0;
1407     else
1408         fdctrl->srb &= ~FD_SRB_DR0;
1409 
1410     /* Reset */
1411     if (!(value & FD_DOR_nRESET)) {
1412         if (fdctrl->dor & FD_DOR_nRESET) {
1413             FLOPPY_DPRINTF("controller enter RESET state\n");
1414         }
1415     } else {
1416         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1417             FLOPPY_DPRINTF("controller out of RESET state\n");
1418             fdctrl_reset(fdctrl, 1);
1419             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1420         }
1421     }
1422     /* Selected drive */
1423     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1424 
1425     fdctrl->dor = value;
1426 }
1427 
1428 /* Tape drive register : 0x03 */
1429 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1430 {
1431     uint32_t retval = fdctrl->tdr;
1432 
1433     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1434 
1435     return retval;
1436 }
1437 
1438 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1439 {
1440     /* Reset mode */
1441     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1442         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1443         return;
1444     }
1445     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1446     /* Disk boot selection indicator */
1447     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1448     /* Tape indicators: never allow */
1449 }
1450 
1451 /* Main status register : 0x04 (read) */
1452 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1453 {
1454     uint32_t retval = fdctrl->msr;
1455 
1456     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1457     fdctrl->dor |= FD_DOR_nRESET;
1458 
1459     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1460 
1461     return retval;
1462 }
1463 
1464 /* Data select rate register : 0x04 (write) */
1465 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1466 {
1467     /* Reset mode */
1468     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1469         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1470         return;
1471     }
1472     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1473     /* Reset: autoclear */
1474     if (value & FD_DSR_SWRESET) {
1475         fdctrl->dor &= ~FD_DOR_nRESET;
1476         fdctrl_reset(fdctrl, 1);
1477         fdctrl->dor |= FD_DOR_nRESET;
1478     }
1479     if (value & FD_DSR_PWRDOWN) {
1480         fdctrl_reset(fdctrl, 1);
1481     }
1482     fdctrl->dsr = value;
1483 }
1484 
1485 /* Configuration control register: 0x07 (write) */
1486 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1487 {
1488     /* Reset mode */
1489     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1490         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1491         return;
1492     }
1493     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1494 
1495     /* Only the rate selection bits used in AT mode, and we
1496      * store those in the DSR.
1497      */
1498     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1499                   (value & FD_DSR_DRATEMASK);
1500 }
1501 
1502 static int fdctrl_media_changed(FDrive *drv)
1503 {
1504     return drv->media_changed;
1505 }
1506 
1507 /* Digital input register : 0x07 (read-only) */
1508 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1509 {
1510     uint32_t retval = 0;
1511 
1512     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1513         retval |= FD_DIR_DSKCHG;
1514     }
1515     if (retval != 0) {
1516         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1517     }
1518 
1519     return retval;
1520 }
1521 
1522 /* Clear the FIFO and update the state for receiving the next command */
1523 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1524 {
1525     fdctrl->phase = FD_PHASE_COMMAND;
1526     fdctrl->data_dir = FD_DIR_WRITE;
1527     fdctrl->data_pos = 0;
1528     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1529     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1530     fdctrl->msr |= FD_MSR_RQM;
1531 }
1532 
1533 /* Update the state to allow the guest to read out the command status.
1534  * @fifo_len is the number of result bytes to be read out. */
1535 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1536 {
1537     fdctrl->phase = FD_PHASE_RESULT;
1538     fdctrl->data_dir = FD_DIR_READ;
1539     fdctrl->data_len = fifo_len;
1540     fdctrl->data_pos = 0;
1541     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1542 }
1543 
1544 /* Set an error: unimplemented/unknown command */
1545 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1546 {
1547     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1548                   fdctrl->fifo[0]);
1549     fdctrl->fifo[0] = FD_SR0_INVCMD;
1550     fdctrl_to_result_phase(fdctrl, 1);
1551 }
1552 
1553 /* Seek to next sector
1554  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1555  * otherwise returns 1
1556  */
1557 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1558 {
1559     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1560                    cur_drv->head, cur_drv->track, cur_drv->sect,
1561                    fd_sector(cur_drv));
1562     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1563        error in fact */
1564     uint8_t new_head = cur_drv->head;
1565     uint8_t new_track = cur_drv->track;
1566     uint8_t new_sect = cur_drv->sect;
1567 
1568     int ret = 1;
1569 
1570     if (new_sect >= cur_drv->last_sect ||
1571         new_sect == fdctrl->eot) {
1572         new_sect = 1;
1573         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1574             if (new_head == 0 &&
1575                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1576                 new_head = 1;
1577             } else {
1578                 new_head = 0;
1579                 new_track++;
1580                 fdctrl->status0 |= FD_SR0_SEEK;
1581                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1582                     ret = 0;
1583                 }
1584             }
1585         } else {
1586             fdctrl->status0 |= FD_SR0_SEEK;
1587             new_track++;
1588             ret = 0;
1589         }
1590         if (ret == 1) {
1591             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1592                     new_head, new_track, new_sect, fd_sector(cur_drv));
1593         }
1594     } else {
1595         new_sect++;
1596     }
1597     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1598     return ret;
1599 }
1600 
1601 /* Callback for transfer end (stop or abort) */
1602 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1603                                  uint8_t status1, uint8_t status2)
1604 {
1605     FDrive *cur_drv;
1606     cur_drv = get_cur_drv(fdctrl);
1607 
1608     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1609     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1610     if (cur_drv->head) {
1611         fdctrl->status0 |= FD_SR0_HEAD;
1612     }
1613     fdctrl->status0 |= status0;
1614 
1615     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1616                    status0, status1, status2, fdctrl->status0);
1617     fdctrl->fifo[0] = fdctrl->status0;
1618     fdctrl->fifo[1] = status1;
1619     fdctrl->fifo[2] = status2;
1620     fdctrl->fifo[3] = cur_drv->track;
1621     fdctrl->fifo[4] = cur_drv->head;
1622     fdctrl->fifo[5] = cur_drv->sect;
1623     fdctrl->fifo[6] = FD_SECTOR_SC;
1624     fdctrl->data_dir = FD_DIR_READ;
1625     if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1626         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1627         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1628     }
1629     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1630     fdctrl->msr &= ~FD_MSR_NONDMA;
1631 
1632     fdctrl_to_result_phase(fdctrl, 7);
1633     fdctrl_raise_irq(fdctrl);
1634 }
1635 
1636 /* Prepare a data transfer (either DMA or FIFO) */
1637 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1638 {
1639     FDrive *cur_drv;
1640     uint8_t kh, kt, ks;
1641 
1642     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1643     cur_drv = get_cur_drv(fdctrl);
1644     kt = fdctrl->fifo[2];
1645     kh = fdctrl->fifo[3];
1646     ks = fdctrl->fifo[4];
1647     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1648                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1649                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1650                                   NUM_SIDES(cur_drv)));
1651     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1652     case 2:
1653         /* sect too big */
1654         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1655         fdctrl->fifo[3] = kt;
1656         fdctrl->fifo[4] = kh;
1657         fdctrl->fifo[5] = ks;
1658         return;
1659     case 3:
1660         /* track too big */
1661         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1662         fdctrl->fifo[3] = kt;
1663         fdctrl->fifo[4] = kh;
1664         fdctrl->fifo[5] = ks;
1665         return;
1666     case 4:
1667         /* No seek enabled */
1668         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1669         fdctrl->fifo[3] = kt;
1670         fdctrl->fifo[4] = kh;
1671         fdctrl->fifo[5] = ks;
1672         return;
1673     case 1:
1674         fdctrl->status0 |= FD_SR0_SEEK;
1675         break;
1676     default:
1677         break;
1678     }
1679 
1680     /* Check the data rate. If the programmed data rate does not match
1681      * the currently inserted medium, the operation has to fail. */
1682     if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1683         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1684                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1685         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1686         fdctrl->fifo[3] = kt;
1687         fdctrl->fifo[4] = kh;
1688         fdctrl->fifo[5] = ks;
1689         return;
1690     }
1691 
1692     /* Set the FIFO state */
1693     fdctrl->data_dir = direction;
1694     fdctrl->data_pos = 0;
1695     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1696     if (fdctrl->fifo[0] & 0x80)
1697         fdctrl->data_state |= FD_STATE_MULTI;
1698     else
1699         fdctrl->data_state &= ~FD_STATE_MULTI;
1700     if (fdctrl->fifo[5] == 0) {
1701         fdctrl->data_len = fdctrl->fifo[8];
1702     } else {
1703         int tmp;
1704         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1705         tmp = (fdctrl->fifo[6] - ks + 1);
1706         if (fdctrl->fifo[0] & 0x80)
1707             tmp += fdctrl->fifo[6];
1708         fdctrl->data_len *= tmp;
1709     }
1710     fdctrl->eot = fdctrl->fifo[6];
1711     if (fdctrl->dor & FD_DOR_DMAEN) {
1712         /* DMA transfer is enabled. */
1713         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1714 
1715         FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1716                        direction, (128 << fdctrl->fifo[5]) *
1717                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1718 
1719         /* No access is allowed until DMA transfer has completed */
1720         fdctrl->msr &= ~FD_MSR_RQM;
1721         if (direction != FD_DIR_VERIFY) {
1722             /*
1723              * Now, we just have to wait for the DMA controller to
1724              * recall us...
1725              */
1726             k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1727             k->schedule(fdctrl->dma);
1728         } else {
1729             /* Start transfer */
1730             fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1731                     fdctrl->data_len);
1732         }
1733         return;
1734     }
1735     FLOPPY_DPRINTF("start non-DMA transfer\n");
1736     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1737     if (direction != FD_DIR_WRITE)
1738         fdctrl->msr |= FD_MSR_DIO;
1739     /* IO based transfer: calculate len */
1740     fdctrl_raise_irq(fdctrl);
1741 }
1742 
1743 /* Prepare a transfer of deleted data */
1744 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1745 {
1746     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1747 
1748     /* We don't handle deleted data,
1749      * so we don't return *ANYTHING*
1750      */
1751     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1752 }
1753 
1754 /* handlers for DMA transfers */
1755 static int fdctrl_transfer_handler (void *opaque, int nchan,
1756                                     int dma_pos, int dma_len)
1757 {
1758     FDCtrl *fdctrl;
1759     FDrive *cur_drv;
1760     int len, start_pos, rel_pos;
1761     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1762     IsaDmaClass *k;
1763 
1764     fdctrl = opaque;
1765     if (fdctrl->msr & FD_MSR_RQM) {
1766         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1767         return 0;
1768     }
1769     k = ISADMA_GET_CLASS(fdctrl->dma);
1770     cur_drv = get_cur_drv(fdctrl);
1771     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1772         fdctrl->data_dir == FD_DIR_SCANH)
1773         status2 = FD_SR2_SNS;
1774     if (dma_len > fdctrl->data_len)
1775         dma_len = fdctrl->data_len;
1776     if (cur_drv->blk == NULL) {
1777         if (fdctrl->data_dir == FD_DIR_WRITE)
1778             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1779         else
1780             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1781         len = 0;
1782         goto transfer_error;
1783     }
1784     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1785     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1786         len = dma_len - fdctrl->data_pos;
1787         if (len + rel_pos > FD_SECTOR_LEN)
1788             len = FD_SECTOR_LEN - rel_pos;
1789         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1790                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1791                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1792                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1793                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1794         if (fdctrl->data_dir != FD_DIR_WRITE ||
1795             len < FD_SECTOR_LEN || rel_pos != 0) {
1796             /* READ & SCAN commands and realign to a sector for WRITE */
1797             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1798                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1799                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1800                                fd_sector(cur_drv));
1801                 /* Sure, image size is too small... */
1802                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1803             }
1804         }
1805         switch (fdctrl->data_dir) {
1806         case FD_DIR_READ:
1807             /* READ commands */
1808             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1809                             fdctrl->data_pos, len);
1810             break;
1811         case FD_DIR_WRITE:
1812             /* WRITE commands */
1813             if (cur_drv->ro) {
1814                 /* Handle readonly medium early, no need to do DMA, touch the
1815                  * LED or attempt any writes. A real floppy doesn't attempt
1816                  * to write to readonly media either. */
1817                 fdctrl_stop_transfer(fdctrl,
1818                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1819                                      0x00);
1820                 goto transfer_error;
1821             }
1822 
1823             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1824                            fdctrl->data_pos, len);
1825             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1826                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1827                 FLOPPY_DPRINTF("error writing sector %d\n",
1828                                fd_sector(cur_drv));
1829                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1830                 goto transfer_error;
1831             }
1832             break;
1833         case FD_DIR_VERIFY:
1834             /* VERIFY commands */
1835             break;
1836         default:
1837             /* SCAN commands */
1838             {
1839                 uint8_t tmpbuf[FD_SECTOR_LEN];
1840                 int ret;
1841                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1842                                len);
1843                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1844                 if (ret == 0) {
1845                     status2 = FD_SR2_SEH;
1846                     goto end_transfer;
1847                 }
1848                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1849                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1850                     status2 = 0x00;
1851                     goto end_transfer;
1852                 }
1853             }
1854             break;
1855         }
1856         fdctrl->data_pos += len;
1857         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1858         if (rel_pos == 0) {
1859             /* Seek to next sector */
1860             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1861                 break;
1862         }
1863     }
1864  end_transfer:
1865     len = fdctrl->data_pos - start_pos;
1866     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1867                    fdctrl->data_pos, len, fdctrl->data_len);
1868     if (fdctrl->data_dir == FD_DIR_SCANE ||
1869         fdctrl->data_dir == FD_DIR_SCANL ||
1870         fdctrl->data_dir == FD_DIR_SCANH)
1871         status2 = FD_SR2_SEH;
1872     fdctrl->data_len -= len;
1873     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1874  transfer_error:
1875 
1876     return len;
1877 }
1878 
1879 /* Data register : 0x05 */
1880 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1881 {
1882     FDrive *cur_drv;
1883     uint32_t retval = 0;
1884     uint32_t pos;
1885 
1886     cur_drv = get_cur_drv(fdctrl);
1887     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1888     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1889         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1890         return 0;
1891     }
1892 
1893     /* If data_len spans multiple sectors, the current position in the FIFO
1894      * wraps around while fdctrl->data_pos is the real position in the whole
1895      * request. */
1896     pos = fdctrl->data_pos;
1897     pos %= FD_SECTOR_LEN;
1898 
1899     switch (fdctrl->phase) {
1900     case FD_PHASE_EXECUTION:
1901         assert(fdctrl->msr & FD_MSR_NONDMA);
1902         if (pos == 0) {
1903             if (fdctrl->data_pos != 0)
1904                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1905                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1906                                    fd_sector(cur_drv));
1907                     return 0;
1908                 }
1909             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1910                           BDRV_SECTOR_SIZE)
1911                 < 0) {
1912                 FLOPPY_DPRINTF("error getting sector %d\n",
1913                                fd_sector(cur_drv));
1914                 /* Sure, image size is too small... */
1915                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1916             }
1917         }
1918 
1919         if (++fdctrl->data_pos == fdctrl->data_len) {
1920             fdctrl->msr &= ~FD_MSR_RQM;
1921             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1922         }
1923         break;
1924 
1925     case FD_PHASE_RESULT:
1926         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1927         if (++fdctrl->data_pos == fdctrl->data_len) {
1928             fdctrl->msr &= ~FD_MSR_RQM;
1929             fdctrl_to_command_phase(fdctrl);
1930             fdctrl_reset_irq(fdctrl);
1931         }
1932         break;
1933 
1934     case FD_PHASE_COMMAND:
1935     default:
1936         abort();
1937     }
1938 
1939     retval = fdctrl->fifo[pos];
1940     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1941 
1942     return retval;
1943 }
1944 
1945 static void fdctrl_format_sector(FDCtrl *fdctrl)
1946 {
1947     FDrive *cur_drv;
1948     uint8_t kh, kt, ks;
1949 
1950     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1951     cur_drv = get_cur_drv(fdctrl);
1952     kt = fdctrl->fifo[6];
1953     kh = fdctrl->fifo[7];
1954     ks = fdctrl->fifo[8];
1955     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1956                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1957                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1958                                   NUM_SIDES(cur_drv)));
1959     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1960     case 2:
1961         /* sect too big */
1962         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1963         fdctrl->fifo[3] = kt;
1964         fdctrl->fifo[4] = kh;
1965         fdctrl->fifo[5] = ks;
1966         return;
1967     case 3:
1968         /* track too big */
1969         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1970         fdctrl->fifo[3] = kt;
1971         fdctrl->fifo[4] = kh;
1972         fdctrl->fifo[5] = ks;
1973         return;
1974     case 4:
1975         /* No seek enabled */
1976         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1977         fdctrl->fifo[3] = kt;
1978         fdctrl->fifo[4] = kh;
1979         fdctrl->fifo[5] = ks;
1980         return;
1981     case 1:
1982         fdctrl->status0 |= FD_SR0_SEEK;
1983         break;
1984     default:
1985         break;
1986     }
1987     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1988     if (cur_drv->blk == NULL ||
1989         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1990                    BDRV_SECTOR_SIZE, 0) < 0) {
1991         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1992         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1993     } else {
1994         if (cur_drv->sect == cur_drv->last_sect) {
1995             fdctrl->data_state &= ~FD_STATE_FORMAT;
1996             /* Last sector done */
1997             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1998         } else {
1999             /* More to do */
2000             fdctrl->data_pos = 0;
2001             fdctrl->data_len = 4;
2002         }
2003     }
2004 }
2005 
2006 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2007 {
2008     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2009     fdctrl->fifo[0] = fdctrl->lock << 4;
2010     fdctrl_to_result_phase(fdctrl, 1);
2011 }
2012 
2013 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2014 {
2015     FDrive *cur_drv = get_cur_drv(fdctrl);
2016 
2017     /* Drives position */
2018     fdctrl->fifo[0] = drv0(fdctrl)->track;
2019     fdctrl->fifo[1] = drv1(fdctrl)->track;
2020 #if MAX_FD == 4
2021     fdctrl->fifo[2] = drv2(fdctrl)->track;
2022     fdctrl->fifo[3] = drv3(fdctrl)->track;
2023 #else
2024     fdctrl->fifo[2] = 0;
2025     fdctrl->fifo[3] = 0;
2026 #endif
2027     /* timers */
2028     fdctrl->fifo[4] = fdctrl->timer0;
2029     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2030     fdctrl->fifo[6] = cur_drv->last_sect;
2031     fdctrl->fifo[7] = (fdctrl->lock << 7) |
2032         (cur_drv->perpendicular << 2);
2033     fdctrl->fifo[8] = fdctrl->config;
2034     fdctrl->fifo[9] = fdctrl->precomp_trk;
2035     fdctrl_to_result_phase(fdctrl, 10);
2036 }
2037 
2038 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2039 {
2040     /* Controller's version */
2041     fdctrl->fifo[0] = fdctrl->version;
2042     fdctrl_to_result_phase(fdctrl, 1);
2043 }
2044 
2045 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2046 {
2047     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2048     fdctrl_to_result_phase(fdctrl, 1);
2049 }
2050 
2051 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2052 {
2053     FDrive *cur_drv = get_cur_drv(fdctrl);
2054 
2055     /* Drives position */
2056     drv0(fdctrl)->track = fdctrl->fifo[3];
2057     drv1(fdctrl)->track = fdctrl->fifo[4];
2058 #if MAX_FD == 4
2059     drv2(fdctrl)->track = fdctrl->fifo[5];
2060     drv3(fdctrl)->track = fdctrl->fifo[6];
2061 #endif
2062     /* timers */
2063     fdctrl->timer0 = fdctrl->fifo[7];
2064     fdctrl->timer1 = fdctrl->fifo[8];
2065     cur_drv->last_sect = fdctrl->fifo[9];
2066     fdctrl->lock = fdctrl->fifo[10] >> 7;
2067     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2068     fdctrl->config = fdctrl->fifo[11];
2069     fdctrl->precomp_trk = fdctrl->fifo[12];
2070     fdctrl->pwrd = fdctrl->fifo[13];
2071     fdctrl_to_command_phase(fdctrl);
2072 }
2073 
2074 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2075 {
2076     FDrive *cur_drv = get_cur_drv(fdctrl);
2077 
2078     fdctrl->fifo[0] = 0;
2079     fdctrl->fifo[1] = 0;
2080     /* Drives position */
2081     fdctrl->fifo[2] = drv0(fdctrl)->track;
2082     fdctrl->fifo[3] = drv1(fdctrl)->track;
2083 #if MAX_FD == 4
2084     fdctrl->fifo[4] = drv2(fdctrl)->track;
2085     fdctrl->fifo[5] = drv3(fdctrl)->track;
2086 #else
2087     fdctrl->fifo[4] = 0;
2088     fdctrl->fifo[5] = 0;
2089 #endif
2090     /* timers */
2091     fdctrl->fifo[6] = fdctrl->timer0;
2092     fdctrl->fifo[7] = fdctrl->timer1;
2093     fdctrl->fifo[8] = cur_drv->last_sect;
2094     fdctrl->fifo[9] = (fdctrl->lock << 7) |
2095         (cur_drv->perpendicular << 2);
2096     fdctrl->fifo[10] = fdctrl->config;
2097     fdctrl->fifo[11] = fdctrl->precomp_trk;
2098     fdctrl->fifo[12] = fdctrl->pwrd;
2099     fdctrl->fifo[13] = 0;
2100     fdctrl->fifo[14] = 0;
2101     fdctrl_to_result_phase(fdctrl, 15);
2102 }
2103 
2104 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2105 {
2106     FDrive *cur_drv = get_cur_drv(fdctrl);
2107 
2108     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2109     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2110              (NANOSECONDS_PER_SECOND / 50));
2111 }
2112 
2113 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2114 {
2115     FDrive *cur_drv;
2116 
2117     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2118     cur_drv = get_cur_drv(fdctrl);
2119     fdctrl->data_state |= FD_STATE_FORMAT;
2120     if (fdctrl->fifo[0] & 0x80)
2121         fdctrl->data_state |= FD_STATE_MULTI;
2122     else
2123         fdctrl->data_state &= ~FD_STATE_MULTI;
2124     cur_drv->bps =
2125         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2126 #if 0
2127     cur_drv->last_sect =
2128         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2129         fdctrl->fifo[3] / 2;
2130 #else
2131     cur_drv->last_sect = fdctrl->fifo[3];
2132 #endif
2133     /* TODO: implement format using DMA expected by the Bochs BIOS
2134      * and Linux fdformat (read 3 bytes per sector via DMA and fill
2135      * the sector with the specified fill byte
2136      */
2137     fdctrl->data_state &= ~FD_STATE_FORMAT;
2138     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2139 }
2140 
2141 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2142 {
2143     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2144     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2145     if (fdctrl->fifo[2] & 1)
2146         fdctrl->dor &= ~FD_DOR_DMAEN;
2147     else
2148         fdctrl->dor |= FD_DOR_DMAEN;
2149     /* No result back */
2150     fdctrl_to_command_phase(fdctrl);
2151 }
2152 
2153 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2154 {
2155     FDrive *cur_drv;
2156 
2157     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2158     cur_drv = get_cur_drv(fdctrl);
2159     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2160     /* 1 Byte status back */
2161     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2162         (cur_drv->track == 0 ? 0x10 : 0x00) |
2163         (cur_drv->head << 2) |
2164         GET_CUR_DRV(fdctrl) |
2165         0x28;
2166     fdctrl_to_result_phase(fdctrl, 1);
2167 }
2168 
2169 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2170 {
2171     FDrive *cur_drv;
2172 
2173     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2174     cur_drv = get_cur_drv(fdctrl);
2175     fd_recalibrate(cur_drv);
2176     fdctrl_to_command_phase(fdctrl);
2177     /* Raise Interrupt */
2178     fdctrl->status0 |= FD_SR0_SEEK;
2179     fdctrl_raise_irq(fdctrl);
2180 }
2181 
2182 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2183 {
2184     FDrive *cur_drv = get_cur_drv(fdctrl);
2185 
2186     if (fdctrl->reset_sensei > 0) {
2187         fdctrl->fifo[0] =
2188             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2189         fdctrl->reset_sensei--;
2190     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2191         fdctrl->fifo[0] = FD_SR0_INVCMD;
2192         fdctrl_to_result_phase(fdctrl, 1);
2193         return;
2194     } else {
2195         fdctrl->fifo[0] =
2196                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2197                 | GET_CUR_DRV(fdctrl);
2198     }
2199 
2200     fdctrl->fifo[1] = cur_drv->track;
2201     fdctrl_to_result_phase(fdctrl, 2);
2202     fdctrl_reset_irq(fdctrl);
2203     fdctrl->status0 = FD_SR0_RDYCHG;
2204 }
2205 
2206 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2207 {
2208     FDrive *cur_drv;
2209 
2210     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2211     cur_drv = get_cur_drv(fdctrl);
2212     fdctrl_to_command_phase(fdctrl);
2213     /* The seek command just sends step pulses to the drive and doesn't care if
2214      * there is a medium inserted of if it's banging the head against the drive.
2215      */
2216     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2217     /* Raise Interrupt */
2218     fdctrl->status0 |= FD_SR0_SEEK;
2219     fdctrl_raise_irq(fdctrl);
2220 }
2221 
2222 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2223 {
2224     FDrive *cur_drv = get_cur_drv(fdctrl);
2225 
2226     if (fdctrl->fifo[1] & 0x80)
2227         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2228     /* No result back */
2229     fdctrl_to_command_phase(fdctrl);
2230 }
2231 
2232 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2233 {
2234     fdctrl->config = fdctrl->fifo[2];
2235     fdctrl->precomp_trk =  fdctrl->fifo[3];
2236     /* No result back */
2237     fdctrl_to_command_phase(fdctrl);
2238 }
2239 
2240 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2241 {
2242     fdctrl->pwrd = fdctrl->fifo[1];
2243     fdctrl->fifo[0] = fdctrl->fifo[1];
2244     fdctrl_to_result_phase(fdctrl, 1);
2245 }
2246 
2247 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2248 {
2249     /* No result back */
2250     fdctrl_to_command_phase(fdctrl);
2251 }
2252 
2253 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2254 {
2255     FDrive *cur_drv = get_cur_drv(fdctrl);
2256     uint32_t pos;
2257 
2258     pos = fdctrl->data_pos - 1;
2259     pos %= FD_SECTOR_LEN;
2260     if (fdctrl->fifo[pos] & 0x80) {
2261         /* Command parameters done */
2262         if (fdctrl->fifo[pos] & 0x40) {
2263             fdctrl->fifo[0] = fdctrl->fifo[1];
2264             fdctrl->fifo[2] = 0;
2265             fdctrl->fifo[3] = 0;
2266             fdctrl_to_result_phase(fdctrl, 4);
2267         } else {
2268             fdctrl_to_command_phase(fdctrl);
2269         }
2270     } else if (fdctrl->data_len > 7) {
2271         /* ERROR */
2272         fdctrl->fifo[0] = 0x80 |
2273             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2274         fdctrl_to_result_phase(fdctrl, 1);
2275     }
2276 }
2277 
2278 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2279 {
2280     FDrive *cur_drv;
2281 
2282     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2283     cur_drv = get_cur_drv(fdctrl);
2284     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2285         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2286                 cur_drv->sect, 1);
2287     } else {
2288         fd_seek(cur_drv, cur_drv->head,
2289                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2290     }
2291     fdctrl_to_command_phase(fdctrl);
2292     /* Raise Interrupt */
2293     fdctrl->status0 |= FD_SR0_SEEK;
2294     fdctrl_raise_irq(fdctrl);
2295 }
2296 
2297 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2298 {
2299     FDrive *cur_drv;
2300 
2301     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2302     cur_drv = get_cur_drv(fdctrl);
2303     if (fdctrl->fifo[2] > cur_drv->track) {
2304         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2305     } else {
2306         fd_seek(cur_drv, cur_drv->head,
2307                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2308     }
2309     fdctrl_to_command_phase(fdctrl);
2310     /* Raise Interrupt */
2311     fdctrl->status0 |= FD_SR0_SEEK;
2312     fdctrl_raise_irq(fdctrl);
2313 }
2314 
2315 /*
2316  * Handlers for the execution phase of each command
2317  */
2318 typedef struct FDCtrlCommand {
2319     uint8_t value;
2320     uint8_t mask;
2321     const char* name;
2322     int parameters;
2323     void (*handler)(FDCtrl *fdctrl, int direction);
2324     int direction;
2325 } FDCtrlCommand;
2326 
2327 static const FDCtrlCommand handlers[] = {
2328     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2329     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2330     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2331     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2332     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2333     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2334     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2335     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2336     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2337     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2338     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2339     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2340     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2341     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2342     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2343     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2344     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2345     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2346     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2347     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2348     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2349     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2350     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2351     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2352     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2353     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2354     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2355     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2356     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2357     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2358     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2359     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2360 };
2361 /* Associate command to an index in the 'handlers' array */
2362 static uint8_t command_to_handler[256];
2363 
2364 static const FDCtrlCommand *get_command(uint8_t cmd)
2365 {
2366     int idx;
2367 
2368     idx = command_to_handler[cmd];
2369     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2370     return &handlers[idx];
2371 }
2372 
2373 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2374 {
2375     FDrive *cur_drv;
2376     const FDCtrlCommand *cmd;
2377     uint32_t pos;
2378 
2379     /* Reset mode */
2380     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2381         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2382         return;
2383     }
2384     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2385         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2386         return;
2387     }
2388     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2389 
2390     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2391 
2392     /* If data_len spans multiple sectors, the current position in the FIFO
2393      * wraps around while fdctrl->data_pos is the real position in the whole
2394      * request. */
2395     pos = fdctrl->data_pos++;
2396     pos %= FD_SECTOR_LEN;
2397     fdctrl->fifo[pos] = value;
2398 
2399     if (fdctrl->data_pos == fdctrl->data_len) {
2400         fdctrl->msr &= ~FD_MSR_RQM;
2401     }
2402 
2403     switch (fdctrl->phase) {
2404     case FD_PHASE_EXECUTION:
2405         /* For DMA requests, RQM should be cleared during execution phase, so
2406          * we would have errored out above. */
2407         assert(fdctrl->msr & FD_MSR_NONDMA);
2408 
2409         /* FIFO data write */
2410         if (pos == FD_SECTOR_LEN - 1 ||
2411             fdctrl->data_pos == fdctrl->data_len) {
2412             cur_drv = get_cur_drv(fdctrl);
2413             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2414                            BDRV_SECTOR_SIZE, 0) < 0) {
2415                 FLOPPY_DPRINTF("error writing sector %d\n",
2416                                fd_sector(cur_drv));
2417                 break;
2418             }
2419             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2420                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2421                                fd_sector(cur_drv));
2422                 break;
2423             }
2424         }
2425 
2426         /* Switch to result phase when done with the transfer */
2427         if (fdctrl->data_pos == fdctrl->data_len) {
2428             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2429         }
2430         break;
2431 
2432     case FD_PHASE_COMMAND:
2433         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2434         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2435 
2436         if (pos == 0) {
2437             /* The first byte specifies the command. Now we start reading
2438              * as many parameters as this command requires. */
2439             cmd = get_command(value);
2440             fdctrl->data_len = cmd->parameters + 1;
2441             if (cmd->parameters) {
2442                 fdctrl->msr |= FD_MSR_RQM;
2443             }
2444             fdctrl->msr |= FD_MSR_CMDBUSY;
2445         }
2446 
2447         if (fdctrl->data_pos == fdctrl->data_len) {
2448             /* We have all parameters now, execute the command */
2449             fdctrl->phase = FD_PHASE_EXECUTION;
2450 
2451             if (fdctrl->data_state & FD_STATE_FORMAT) {
2452                 fdctrl_format_sector(fdctrl);
2453                 break;
2454             }
2455 
2456             cmd = get_command(fdctrl->fifo[0]);
2457             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2458             cmd->handler(fdctrl, cmd->direction);
2459         }
2460         break;
2461 
2462     case FD_PHASE_RESULT:
2463     default:
2464         abort();
2465     }
2466 }
2467 
2468 static void fdctrl_result_timer(void *opaque)
2469 {
2470     FDCtrl *fdctrl = opaque;
2471     FDrive *cur_drv = get_cur_drv(fdctrl);
2472 
2473     /* Pretend we are spinning.
2474      * This is needed for Coherent, which uses READ ID to check for
2475      * sector interleaving.
2476      */
2477     if (cur_drv->last_sect != 0) {
2478         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2479     }
2480     /* READ_ID can't automatically succeed! */
2481     if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2482         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2483                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2484         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2485     } else {
2486         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2487     }
2488 }
2489 
2490 /* Init functions */
2491 
2492 static void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
2493 {
2494     DeviceState *dev;
2495     int i;
2496 
2497     for (i = 0; i < MAX_FD; i++) {
2498         if (fds[i]) {
2499             dev = qdev_new("floppy");
2500             qdev_prop_set_uint32(dev, "unit", i);
2501             qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
2502             qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
2503                                     &error_fatal);
2504             qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
2505         }
2506     }
2507 }
2508 
2509 void isa_fdc_init_drives(ISADevice *fdc, DriveInfo **fds)
2510 {
2511     fdctrl_init_drives(&ISA_FDC(fdc)->state.bus, fds);
2512 }
2513 
2514 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2515                         hwaddr mmio_base, DriveInfo **fds)
2516 {
2517     FDCtrl *fdctrl;
2518     DeviceState *dev;
2519     SysBusDevice *sbd;
2520     FDCtrlSysBus *sys;
2521 
2522     dev = qdev_new("sysbus-fdc");
2523     sys = SYSBUS_FDC(dev);
2524     fdctrl = &sys->state;
2525     fdctrl->dma_chann = dma_chann; /* FIXME */
2526     sbd = SYS_BUS_DEVICE(dev);
2527     sysbus_realize_and_unref(sbd, &error_fatal);
2528     sysbus_connect_irq(sbd, 0, irq);
2529     sysbus_mmio_map(sbd, 0, mmio_base);
2530 
2531     fdctrl_init_drives(&sys->state.bus, fds);
2532 }
2533 
2534 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2535                        DriveInfo **fds, qemu_irq *fdc_tc)
2536 {
2537     DeviceState *dev;
2538     FDCtrlSysBus *sys;
2539 
2540     dev = qdev_new("sun-fdtwo");
2541     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2542     sys = SYSBUS_FDC(dev);
2543     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2544     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2545     *fdc_tc = qdev_get_gpio_in(dev, 0);
2546 
2547     fdctrl_init_drives(&sys->state.bus, fds);
2548 }
2549 
2550 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2551                                   Error **errp)
2552 {
2553     int i, j;
2554     FDrive *drive;
2555     static int command_tables_inited = 0;
2556 
2557     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2558         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2559         return;
2560     }
2561 
2562     /* Fill 'command_to_handler' lookup table */
2563     if (!command_tables_inited) {
2564         command_tables_inited = 1;
2565         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2566             for (j = 0; j < sizeof(command_to_handler); j++) {
2567                 if ((j & handlers[i].mask) == handlers[i].value) {
2568                     command_to_handler[j] = i;
2569                 }
2570             }
2571         }
2572     }
2573 
2574     FLOPPY_DPRINTF("init controller\n");
2575     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2576     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2577     fdctrl->fifo_size = 512;
2578     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2579                                              fdctrl_result_timer, fdctrl);
2580 
2581     fdctrl->version = 0x90; /* Intel 82078 controller */
2582     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2583     fdctrl->num_floppies = MAX_FD;
2584 
2585     if (fdctrl->dma_chann != -1) {
2586         IsaDmaClass *k;
2587         assert(fdctrl->dma);
2588         k = ISADMA_GET_CLASS(fdctrl->dma);
2589         k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2590                             &fdctrl_transfer_handler, fdctrl);
2591     }
2592 
2593     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2594 
2595     for (i = 0; i < MAX_FD; i++) {
2596         drive = &fdctrl->drives[i];
2597         drive->fdctrl = fdctrl;
2598         fd_init(drive);
2599         fd_revalidate(drive);
2600     }
2601 }
2602 
2603 static const MemoryRegionPortio fdc_portio_list[] = {
2604     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2605     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2606     PORTIO_END_OF_LIST(),
2607 };
2608 
2609 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2610 {
2611     ISADevice *isadev = ISA_DEVICE(dev);
2612     FDCtrlISABus *isa = ISA_FDC(dev);
2613     FDCtrl *fdctrl = &isa->state;
2614     Error *err = NULL;
2615 
2616     isa_register_portio_list(isadev, &fdctrl->portio_list,
2617                              isa->iobase, fdc_portio_list, fdctrl,
2618                              "fdc");
2619 
2620     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2621     fdctrl->dma_chann = isa->dma;
2622     if (fdctrl->dma_chann != -1) {
2623         fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2624         if (!fdctrl->dma) {
2625             error_setg(errp, "ISA controller does not support DMA");
2626             return;
2627         }
2628     }
2629 
2630     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2631     fdctrl_realize_common(dev, fdctrl, &err);
2632     if (err != NULL) {
2633         error_propagate(errp, err);
2634         return;
2635     }
2636 }
2637 
2638 static void sysbus_fdc_initfn(Object *obj)
2639 {
2640     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2641     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2642     FDCtrl *fdctrl = &sys->state;
2643 
2644     fdctrl->dma_chann = -1;
2645 
2646     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2647                           "fdc", 0x08);
2648     sysbus_init_mmio(sbd, &fdctrl->iomem);
2649 }
2650 
2651 static void sun4m_fdc_initfn(Object *obj)
2652 {
2653     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2654     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2655     FDCtrl *fdctrl = &sys->state;
2656 
2657     fdctrl->dma_chann = -1;
2658 
2659     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2660                           fdctrl, "fdctrl", 0x08);
2661     sysbus_init_mmio(sbd, &fdctrl->iomem);
2662 }
2663 
2664 static void sysbus_fdc_common_initfn(Object *obj)
2665 {
2666     DeviceState *dev = DEVICE(obj);
2667     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2668     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2669     FDCtrl *fdctrl = &sys->state;
2670 
2671     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2672 
2673     sysbus_init_irq(sbd, &fdctrl->irq);
2674     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2675 }
2676 
2677 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2678 {
2679     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2680     FDCtrl *fdctrl = &sys->state;
2681 
2682     fdctrl_realize_common(dev, fdctrl, errp);
2683 }
2684 
2685 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2686 {
2687     FDCtrlISABus *isa = ISA_FDC(fdc);
2688 
2689     return isa->state.drives[i].drive;
2690 }
2691 
2692 static void isa_fdc_get_drive_max_chs(FloppyDriveType type, uint8_t *maxc,
2693                                       uint8_t *maxh, uint8_t *maxs)
2694 {
2695     const FDFormat *fdf;
2696 
2697     *maxc = *maxh = *maxs = 0;
2698     for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2699         if (fdf->drive != type) {
2700             continue;
2701         }
2702         if (*maxc < fdf->max_track) {
2703             *maxc = fdf->max_track;
2704         }
2705         if (*maxh < fdf->max_head) {
2706             *maxh = fdf->max_head;
2707         }
2708         if (*maxs < fdf->last_sect) {
2709             *maxs = fdf->last_sect;
2710         }
2711     }
2712     (*maxc)--;
2713 }
2714 
2715 static Aml *build_fdinfo_aml(int idx, FloppyDriveType type)
2716 {
2717     Aml *dev, *fdi;
2718     uint8_t maxc, maxh, maxs;
2719 
2720     isa_fdc_get_drive_max_chs(type, &maxc, &maxh, &maxs);
2721 
2722     dev = aml_device("FLP%c", 'A' + idx);
2723 
2724     aml_append(dev, aml_name_decl("_ADR", aml_int(idx)));
2725 
2726     fdi = aml_package(16);
2727     aml_append(fdi, aml_int(idx));  /* Drive Number */
2728     aml_append(fdi,
2729         aml_int(cmos_get_fd_drive_type(type)));  /* Device Type */
2730     /*
2731      * the values below are the limits of the drive, and are thus independent
2732      * of the inserted media
2733      */
2734     aml_append(fdi, aml_int(maxc));  /* Maximum Cylinder Number */
2735     aml_append(fdi, aml_int(maxs));  /* Maximum Sector Number */
2736     aml_append(fdi, aml_int(maxh));  /* Maximum Head Number */
2737     /*
2738      * SeaBIOS returns the below values for int 0x13 func 0x08 regardless of
2739      * the drive type, so shall we
2740      */
2741     aml_append(fdi, aml_int(0xAF));  /* disk_specify_1 */
2742     aml_append(fdi, aml_int(0x02));  /* disk_specify_2 */
2743     aml_append(fdi, aml_int(0x25));  /* disk_motor_wait */
2744     aml_append(fdi, aml_int(0x02));  /* disk_sector_siz */
2745     aml_append(fdi, aml_int(0x12));  /* disk_eot */
2746     aml_append(fdi, aml_int(0x1B));  /* disk_rw_gap */
2747     aml_append(fdi, aml_int(0xFF));  /* disk_dtl */
2748     aml_append(fdi, aml_int(0x6C));  /* disk_formt_gap */
2749     aml_append(fdi, aml_int(0xF6));  /* disk_fill */
2750     aml_append(fdi, aml_int(0x0F));  /* disk_head_sttl */
2751     aml_append(fdi, aml_int(0x08));  /* disk_motor_strt */
2752 
2753     aml_append(dev, aml_name_decl("_FDI", fdi));
2754     return dev;
2755 }
2756 
2757 int cmos_get_fd_drive_type(FloppyDriveType fd0)
2758 {
2759     int val;
2760 
2761     switch (fd0) {
2762     case FLOPPY_DRIVE_TYPE_144:
2763         /* 1.44 Mb 3"5 drive */
2764         val = 4;
2765         break;
2766     case FLOPPY_DRIVE_TYPE_288:
2767         /* 2.88 Mb 3"5 drive */
2768         val = 5;
2769         break;
2770     case FLOPPY_DRIVE_TYPE_120:
2771         /* 1.2 Mb 5"5 drive */
2772         val = 2;
2773         break;
2774     case FLOPPY_DRIVE_TYPE_NONE:
2775     default:
2776         val = 0;
2777         break;
2778     }
2779     return val;
2780 }
2781 
2782 static void fdc_isa_build_aml(ISADevice *isadev, Aml *scope)
2783 {
2784     Aml *dev;
2785     Aml *crs;
2786     int i;
2787 
2788 #define ACPI_FDE_MAX_FD 4
2789     uint32_t fde_buf[5] = {
2790         0, 0, 0, 0,     /* presence of floppy drives #0 - #3 */
2791         cpu_to_le32(2)  /* tape presence (2 == never present) */
2792     };
2793 
2794     crs = aml_resource_template();
2795     aml_append(crs, aml_io(AML_DECODE16, 0x03F2, 0x03F2, 0x00, 0x04));
2796     aml_append(crs, aml_io(AML_DECODE16, 0x03F7, 0x03F7, 0x00, 0x01));
2797     aml_append(crs, aml_irq_no_flags(6));
2798     aml_append(crs,
2799         aml_dma(AML_COMPATIBILITY, AML_NOTBUSMASTER, AML_TRANSFER8, 2));
2800 
2801     dev = aml_device("FDC0");
2802     aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0700")));
2803     aml_append(dev, aml_name_decl("_CRS", crs));
2804 
2805     for (i = 0; i < MIN(MAX_FD, ACPI_FDE_MAX_FD); i++) {
2806         FloppyDriveType type = isa_fdc_get_drive_type(isadev, i);
2807 
2808         if (type < FLOPPY_DRIVE_TYPE_NONE) {
2809             fde_buf[i] = cpu_to_le32(1);  /* drive present */
2810             aml_append(dev, build_fdinfo_aml(i, type));
2811         }
2812     }
2813     aml_append(dev, aml_name_decl("_FDE",
2814                aml_buffer(sizeof(fde_buf), (uint8_t *)fde_buf)));
2815 
2816     aml_append(scope, dev);
2817 }
2818 
2819 static const VMStateDescription vmstate_isa_fdc ={
2820     .name = "fdc",
2821     .version_id = 2,
2822     .minimum_version_id = 2,
2823     .fields = (VMStateField[]) {
2824         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2825         VMSTATE_END_OF_LIST()
2826     }
2827 };
2828 
2829 static Property isa_fdc_properties[] = {
2830     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2831     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2832     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2833     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2834                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2835                         FloppyDriveType),
2836     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2837                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2838                         FloppyDriveType),
2839     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2840                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2841                         FloppyDriveType),
2842     DEFINE_PROP_END_OF_LIST(),
2843 };
2844 
2845 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2846 {
2847     DeviceClass *dc = DEVICE_CLASS(klass);
2848     ISADeviceClass *isa = ISA_DEVICE_CLASS(klass);
2849 
2850     dc->realize = isabus_fdc_realize;
2851     dc->fw_name = "fdc";
2852     dc->reset = fdctrl_external_reset_isa;
2853     dc->vmsd = &vmstate_isa_fdc;
2854     isa->build_aml = fdc_isa_build_aml;
2855     device_class_set_props(dc, isa_fdc_properties);
2856     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2857 }
2858 
2859 static void isabus_fdc_instance_init(Object *obj)
2860 {
2861     FDCtrlISABus *isa = ISA_FDC(obj);
2862 
2863     device_add_bootindex_property(obj, &isa->bootindexA,
2864                                   "bootindexA", "/floppy@0",
2865                                   DEVICE(obj));
2866     device_add_bootindex_property(obj, &isa->bootindexB,
2867                                   "bootindexB", "/floppy@1",
2868                                   DEVICE(obj));
2869 }
2870 
2871 static const TypeInfo isa_fdc_info = {
2872     .name          = TYPE_ISA_FDC,
2873     .parent        = TYPE_ISA_DEVICE,
2874     .instance_size = sizeof(FDCtrlISABus),
2875     .class_init    = isabus_fdc_class_init,
2876     .instance_init = isabus_fdc_instance_init,
2877 };
2878 
2879 static const VMStateDescription vmstate_sysbus_fdc ={
2880     .name = "fdc",
2881     .version_id = 2,
2882     .minimum_version_id = 2,
2883     .fields = (VMStateField[]) {
2884         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2885         VMSTATE_END_OF_LIST()
2886     }
2887 };
2888 
2889 static Property sysbus_fdc_properties[] = {
2890     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2891                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2892                         FloppyDriveType),
2893     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2894                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2895                         FloppyDriveType),
2896     DEFINE_PROP_SIGNED("fallback", FDCtrlSysBus, state.fallback,
2897                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2898                         FloppyDriveType),
2899     DEFINE_PROP_END_OF_LIST(),
2900 };
2901 
2902 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2903 {
2904     DeviceClass *dc = DEVICE_CLASS(klass);
2905 
2906     device_class_set_props(dc, sysbus_fdc_properties);
2907     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2908 }
2909 
2910 static const TypeInfo sysbus_fdc_info = {
2911     .name          = "sysbus-fdc",
2912     .parent        = TYPE_SYSBUS_FDC,
2913     .instance_init = sysbus_fdc_initfn,
2914     .class_init    = sysbus_fdc_class_init,
2915 };
2916 
2917 static Property sun4m_fdc_properties[] = {
2918     DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2919                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2920                         FloppyDriveType),
2921     DEFINE_PROP_SIGNED("fallback", FDCtrlSysBus, state.fallback,
2922                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2923                         FloppyDriveType),
2924     DEFINE_PROP_END_OF_LIST(),
2925 };
2926 
2927 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2928 {
2929     DeviceClass *dc = DEVICE_CLASS(klass);
2930 
2931     device_class_set_props(dc, sun4m_fdc_properties);
2932     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2933 }
2934 
2935 static const TypeInfo sun4m_fdc_info = {
2936     .name          = "sun-fdtwo",
2937     .parent        = TYPE_SYSBUS_FDC,
2938     .instance_init = sun4m_fdc_initfn,
2939     .class_init    = sun4m_fdc_class_init,
2940 };
2941 
2942 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2943 {
2944     DeviceClass *dc = DEVICE_CLASS(klass);
2945 
2946     dc->realize = sysbus_fdc_common_realize;
2947     dc->reset = fdctrl_external_reset_sysbus;
2948     dc->vmsd = &vmstate_sysbus_fdc;
2949 }
2950 
2951 static const TypeInfo sysbus_fdc_type_info = {
2952     .name          = TYPE_SYSBUS_FDC,
2953     .parent        = TYPE_SYS_BUS_DEVICE,
2954     .instance_size = sizeof(FDCtrlSysBus),
2955     .instance_init = sysbus_fdc_common_initfn,
2956     .abstract      = true,
2957     .class_init    = sysbus_fdc_common_class_init,
2958 };
2959 
2960 static void fdc_register_types(void)
2961 {
2962     type_register_static(&isa_fdc_info);
2963     type_register_static(&sysbus_fdc_type_info);
2964     type_register_static(&sysbus_fdc_info);
2965     type_register_static(&sun4m_fdc_info);
2966     type_register_static(&floppy_bus_info);
2967     type_register_static(&floppy_drive_info);
2968 }
2969 
2970 type_init(fdc_register_types)
2971