xref: /openbmc/qemu/hw/block/fdc.c (revision 041c2a31)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/acpi/aml-build.h"
36 #include "hw/irq.h"
37 #include "hw/isa/isa.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/qdev-properties-system.h"
40 #include "hw/sysbus.h"
41 #include "migration/vmstate.h"
42 #include "hw/block/block.h"
43 #include "sysemu/block-backend.h"
44 #include "sysemu/blockdev.h"
45 #include "sysemu/sysemu.h"
46 #include "qemu/log.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/module.h"
49 #include "trace.h"
50 #include "qom/object.h"
51 
52 /********************************************************/
53 /* debug Floppy devices */
54 
55 #define DEBUG_FLOPPY 0
56 
57 #define FLOPPY_DPRINTF(fmt, ...)                                \
58     do {                                                        \
59         if (DEBUG_FLOPPY) {                                     \
60             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
61         }                                                       \
62     } while (0)
63 
64 
65 /********************************************************/
66 /* qdev floppy bus                                      */
67 
68 #define TYPE_FLOPPY_BUS "floppy-bus"
69 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS)
70 
71 typedef struct FDCtrl FDCtrl;
72 typedef struct FDrive FDrive;
73 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
74 
75 struct FloppyBus {
76     BusState bus;
77     FDCtrl *fdc;
78 };
79 
80 static const TypeInfo floppy_bus_info = {
81     .name = TYPE_FLOPPY_BUS,
82     .parent = TYPE_BUS,
83     .instance_size = sizeof(FloppyBus),
84 };
85 
86 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
87 {
88     qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
89     bus->fdc = fdc;
90 }
91 
92 
93 /********************************************************/
94 /* Floppy drive emulation                               */
95 
96 typedef enum FDriveRate {
97     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
98     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
99     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
100     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
101 } FDriveRate;
102 
103 typedef enum FDriveSize {
104     FDRIVE_SIZE_UNKNOWN,
105     FDRIVE_SIZE_350,
106     FDRIVE_SIZE_525,
107 } FDriveSize;
108 
109 typedef struct FDFormat {
110     FloppyDriveType drive;
111     uint8_t last_sect;
112     uint8_t max_track;
113     uint8_t max_head;
114     FDriveRate rate;
115 } FDFormat;
116 
117 /* In many cases, the total sector size of a format is enough to uniquely
118  * identify it. However, there are some total sector collisions between
119  * formats of different physical size, and these are noted below by
120  * highlighting the total sector size for entries with collisions. */
121 static const FDFormat fd_formats[] = {
122     /* First entry is default format */
123     /* 1.44 MB 3"1/2 floppy disks */
124     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
125     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
126     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
127     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
128     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
129     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
130     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
131     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
132     /* 2.88 MB 3"1/2 floppy disks */
133     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
134     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
135     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
136     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
137     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
138     /* 720 kB 3"1/2 floppy disks */
139     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
140     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
141     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
142     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
143     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
144     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
145     /* 1.2 MB 5"1/4 floppy disks */
146     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
147     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
148     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
149     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
150     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
151     /* 720 kB 5"1/4 floppy disks */
152     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
153     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
154     /* 360 kB 5"1/4 floppy disks */
155     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
156     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
157     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
158     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
159     /* 320 kB 5"1/4 floppy disks */
160     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
161     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
162     /* 360 kB must match 5"1/4 better than 3"1/2... */
163     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
164     /* end */
165     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
166 };
167 
168 static FDriveSize drive_size(FloppyDriveType drive)
169 {
170     switch (drive) {
171     case FLOPPY_DRIVE_TYPE_120:
172         return FDRIVE_SIZE_525;
173     case FLOPPY_DRIVE_TYPE_144:
174     case FLOPPY_DRIVE_TYPE_288:
175         return FDRIVE_SIZE_350;
176     default:
177         return FDRIVE_SIZE_UNKNOWN;
178     }
179 }
180 
181 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
182 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
183 
184 /* Will always be a fixed parameter for us */
185 #define FD_SECTOR_LEN          512
186 #define FD_SECTOR_SC           2   /* Sector size code */
187 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
188 
189 /* Floppy disk drive emulation */
190 typedef enum FDiskFlags {
191     FDISK_DBL_SIDES  = 0x01,
192 } FDiskFlags;
193 
194 struct FDrive {
195     FDCtrl *fdctrl;
196     BlockBackend *blk;
197     BlockConf *conf;
198     /* Drive status */
199     FloppyDriveType drive;    /* CMOS drive type        */
200     uint8_t perpendicular;    /* 2.88 MB access mode    */
201     /* Position */
202     uint8_t head;
203     uint8_t track;
204     uint8_t sect;
205     /* Media */
206     FloppyDriveType disk;     /* Current disk type      */
207     FDiskFlags flags;
208     uint8_t last_sect;        /* Nb sector per track    */
209     uint8_t max_track;        /* Nb of tracks           */
210     uint16_t bps;             /* Bytes per sector       */
211     uint8_t ro;               /* Is read-only           */
212     uint8_t media_changed;    /* Is media changed       */
213     uint8_t media_rate;       /* Data rate of medium    */
214 
215     bool media_validated;     /* Have we validated the media? */
216 };
217 
218 
219 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
220 
221 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
222  * currently goes through some pains to keep seeks within the bounds
223  * established by last_sect and max_track. Correcting this is difficult,
224  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
225  *
226  * For now: allow empty drives to have large bounds so we can seek around,
227  * with the understanding that when a diskette is inserted, the bounds will
228  * properly tighten to match the geometry of that inserted medium.
229  */
230 static void fd_empty_seek_hack(FDrive *drv)
231 {
232     drv->last_sect = 0xFF;
233     drv->max_track = 0xFF;
234 }
235 
236 static void fd_init(FDrive *drv)
237 {
238     /* Drive */
239     drv->perpendicular = 0;
240     /* Disk */
241     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
242     drv->last_sect = 0;
243     drv->max_track = 0;
244     drv->ro = true;
245     drv->media_changed = 1;
246 }
247 
248 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
249 
250 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
251                           uint8_t last_sect, uint8_t num_sides)
252 {
253     return (((track * num_sides) + head) * last_sect) + sect - 1;
254 }
255 
256 /* Returns current position, in sectors, for given drive */
257 static int fd_sector(FDrive *drv)
258 {
259     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
260                           NUM_SIDES(drv));
261 }
262 
263 /* Returns current position, in bytes, for given drive */
264 static int fd_offset(FDrive *drv)
265 {
266     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
267     return fd_sector(drv) << BDRV_SECTOR_BITS;
268 }
269 
270 /* Seek to a new position:
271  * returns 0 if already on right track
272  * returns 1 if track changed
273  * returns 2 if track is invalid
274  * returns 3 if sector is invalid
275  * returns 4 if seek is disabled
276  */
277 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
278                    int enable_seek)
279 {
280     uint32_t sector;
281     int ret;
282 
283     if (track > drv->max_track ||
284         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
285         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
286                        head, track, sect, 1,
287                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
288                        drv->max_track, drv->last_sect);
289         return 2;
290     }
291     if (sect > drv->last_sect) {
292         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
293                        head, track, sect, 1,
294                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
295                        drv->max_track, drv->last_sect);
296         return 3;
297     }
298     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
299     ret = 0;
300     if (sector != fd_sector(drv)) {
301 #if 0
302         if (!enable_seek) {
303             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
304                            " (max=%d %02x %02x)\n",
305                            head, track, sect, 1, drv->max_track,
306                            drv->last_sect);
307             return 4;
308         }
309 #endif
310         drv->head = head;
311         if (drv->track != track) {
312             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
313                 drv->media_changed = 0;
314             }
315             ret = 1;
316         }
317         drv->track = track;
318         drv->sect = sect;
319     }
320 
321     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
322         ret = 2;
323     }
324 
325     return ret;
326 }
327 
328 /* Set drive back to track 0 */
329 static void fd_recalibrate(FDrive *drv)
330 {
331     FLOPPY_DPRINTF("recalibrate\n");
332     fd_seek(drv, 0, 0, 1, 1);
333 }
334 
335 /**
336  * Determine geometry based on inserted diskette.
337  * Will not operate on an empty drive.
338  *
339  * @return: 0 on success, -1 if the drive is empty.
340  */
341 static int pick_geometry(FDrive *drv)
342 {
343     BlockBackend *blk = drv->blk;
344     const FDFormat *parse;
345     uint64_t nb_sectors, size;
346     int i;
347     int match, size_match, type_match;
348     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
349 
350     /* We can only pick a geometry if we have a diskette. */
351     if (!drv->blk || !blk_is_inserted(drv->blk) ||
352         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
353     {
354         return -1;
355     }
356 
357     /* We need to determine the likely geometry of the inserted medium.
358      * In order of preference, we look for:
359      * (1) The same drive type and number of sectors,
360      * (2) The same diskette size and number of sectors,
361      * (3) The same drive type.
362      *
363      * In all cases, matches that occur higher in the drive table will take
364      * precedence over matches that occur later in the table.
365      */
366     blk_get_geometry(blk, &nb_sectors);
367     match = size_match = type_match = -1;
368     for (i = 0; ; i++) {
369         parse = &fd_formats[i];
370         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
371             break;
372         }
373         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
374         if (nb_sectors == size) {
375             if (magic || parse->drive == drv->drive) {
376                 /* (1) perfect match -- nb_sectors and drive type */
377                 goto out;
378             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
379                 /* (2) size match -- nb_sectors and physical medium size */
380                 match = (match == -1) ? i : match;
381             } else {
382                 /* This is suspicious -- Did the user misconfigure? */
383                 size_match = (size_match == -1) ? i : size_match;
384             }
385         } else if (type_match == -1) {
386             if ((parse->drive == drv->drive) ||
387                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
388                 /* (3) type match -- nb_sectors mismatch, but matches the type
389                  *     specified explicitly by the user, or matches the fallback
390                  *     default type when using the drive autodetect mechanism */
391                 type_match = i;
392             }
393         }
394     }
395 
396     /* No exact match found */
397     if (match == -1) {
398         if (size_match != -1) {
399             parse = &fd_formats[size_match];
400             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
401                            "but inserted medium appears to be a "
402                            "%"PRId64" sector '%s' type\n",
403                            FloppyDriveType_str(drv->drive),
404                            nb_sectors,
405                            FloppyDriveType_str(parse->drive));
406         }
407         assert(type_match != -1 && "misconfigured fd_format");
408         match = type_match;
409     }
410     parse = &(fd_formats[match]);
411 
412  out:
413     if (parse->max_head == 0) {
414         drv->flags &= ~FDISK_DBL_SIDES;
415     } else {
416         drv->flags |= FDISK_DBL_SIDES;
417     }
418     drv->max_track = parse->max_track;
419     drv->last_sect = parse->last_sect;
420     drv->disk = parse->drive;
421     drv->media_rate = parse->rate;
422     return 0;
423 }
424 
425 static void pick_drive_type(FDrive *drv)
426 {
427     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
428         return;
429     }
430 
431     if (pick_geometry(drv) == 0) {
432         drv->drive = drv->disk;
433     } else {
434         drv->drive = get_fallback_drive_type(drv);
435     }
436 
437     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
438 }
439 
440 /* Revalidate a disk drive after a disk change */
441 static void fd_revalidate(FDrive *drv)
442 {
443     int rc;
444 
445     FLOPPY_DPRINTF("revalidate\n");
446     if (drv->blk != NULL) {
447         drv->ro = !blk_is_writable(drv->blk);
448         if (!blk_is_inserted(drv->blk)) {
449             FLOPPY_DPRINTF("No disk in drive\n");
450             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
451             fd_empty_seek_hack(drv);
452         } else if (!drv->media_validated) {
453             rc = pick_geometry(drv);
454             if (rc) {
455                 FLOPPY_DPRINTF("Could not validate floppy drive media");
456             } else {
457                 drv->media_validated = true;
458                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
459                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
460                                drv->max_track, drv->last_sect,
461                                drv->ro ? "ro" : "rw");
462             }
463         }
464     } else {
465         FLOPPY_DPRINTF("No drive connected\n");
466         drv->last_sect = 0;
467         drv->max_track = 0;
468         drv->flags &= ~FDISK_DBL_SIDES;
469         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
470         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
471     }
472 }
473 
474 static void fd_change_cb(void *opaque, bool load, Error **errp)
475 {
476     FDrive *drive = opaque;
477 
478     if (!load) {
479         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
480     } else {
481         if (!blkconf_apply_backend_options(drive->conf,
482                                            !blk_supports_write_perm(drive->blk),
483                                            false, errp)) {
484             return;
485         }
486     }
487 
488     drive->media_changed = 1;
489     drive->media_validated = false;
490     fd_revalidate(drive);
491 }
492 
493 static const BlockDevOps fd_block_ops = {
494     .change_media_cb = fd_change_cb,
495 };
496 
497 
498 #define TYPE_FLOPPY_DRIVE "floppy"
499 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE)
500 
501 struct FloppyDrive {
502     DeviceState     qdev;
503     uint32_t        unit;
504     BlockConf       conf;
505     FloppyDriveType type;
506 };
507 
508 static Property floppy_drive_properties[] = {
509     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
510     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
511     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
512                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
513                         FloppyDriveType),
514     DEFINE_PROP_END_OF_LIST(),
515 };
516 
517 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
518 {
519     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
520     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
521     FDrive *drive;
522     bool read_only;
523     int ret;
524 
525     if (dev->unit == -1) {
526         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
527             drive = get_drv(bus->fdc, dev->unit);
528             if (!drive->blk) {
529                 break;
530             }
531         }
532     }
533 
534     if (dev->unit >= MAX_FD) {
535         error_setg(errp, "Can't create floppy unit %d, bus supports "
536                    "only %d units", dev->unit, MAX_FD);
537         return;
538     }
539 
540     drive = get_drv(bus->fdc, dev->unit);
541     if (drive->blk) {
542         error_setg(errp, "Floppy unit %d is in use", dev->unit);
543         return;
544     }
545 
546     if (!dev->conf.blk) {
547         /* Anonymous BlockBackend for an empty drive */
548         dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
549         ret = blk_attach_dev(dev->conf.blk, qdev);
550         assert(ret == 0);
551 
552         /* Don't take write permissions on an empty drive to allow attaching a
553          * read-only node later */
554         read_only = true;
555     } else {
556         read_only = !blk_bs(dev->conf.blk) ||
557                     !blk_supports_write_perm(dev->conf.blk);
558     }
559 
560     if (!blkconf_blocksizes(&dev->conf, errp)) {
561         return;
562     }
563 
564     if (dev->conf.logical_block_size != 512 ||
565         dev->conf.physical_block_size != 512)
566     {
567         error_setg(errp, "Physical and logical block size must "
568                    "be 512 for floppy");
569         return;
570     }
571 
572     /* rerror/werror aren't supported by fdc and therefore not even registered
573      * with qdev. So set the defaults manually before they are used in
574      * blkconf_apply_backend_options(). */
575     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
576     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
577 
578     if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
579         return;
580     }
581 
582     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
583      * for empty drives. */
584     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
585         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
586         error_setg(errp, "fdc doesn't support drive option werror");
587         return;
588     }
589     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
590         error_setg(errp, "fdc doesn't support drive option rerror");
591         return;
592     }
593 
594     drive->conf = &dev->conf;
595     drive->blk = dev->conf.blk;
596     drive->fdctrl = bus->fdc;
597 
598     fd_init(drive);
599     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
600 
601     /* Keep 'type' qdev property and FDrive->drive in sync */
602     drive->drive = dev->type;
603     pick_drive_type(drive);
604     dev->type = drive->drive;
605 
606     fd_revalidate(drive);
607 }
608 
609 static void floppy_drive_class_init(ObjectClass *klass, void *data)
610 {
611     DeviceClass *k = DEVICE_CLASS(klass);
612     k->realize = floppy_drive_realize;
613     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
614     k->bus_type = TYPE_FLOPPY_BUS;
615     device_class_set_props(k, floppy_drive_properties);
616     k->desc = "virtual floppy drive";
617 }
618 
619 static const TypeInfo floppy_drive_info = {
620     .name = TYPE_FLOPPY_DRIVE,
621     .parent = TYPE_DEVICE,
622     .instance_size = sizeof(FloppyDrive),
623     .class_init = floppy_drive_class_init,
624 };
625 
626 /********************************************************/
627 /* Intel 82078 floppy disk controller emulation          */
628 
629 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
630 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
631 static int fdctrl_transfer_handler (void *opaque, int nchan,
632                                     int dma_pos, int dma_len);
633 static void fdctrl_raise_irq(FDCtrl *fdctrl);
634 static FDrive *get_cur_drv(FDCtrl *fdctrl);
635 
636 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
637 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
638 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
639 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
640 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
641 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
642 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
643 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
644 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
645 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
646 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
647 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
648 
649 enum {
650     FD_DIR_WRITE   = 0,
651     FD_DIR_READ    = 1,
652     FD_DIR_SCANE   = 2,
653     FD_DIR_SCANL   = 3,
654     FD_DIR_SCANH   = 4,
655     FD_DIR_VERIFY  = 5,
656 };
657 
658 enum {
659     FD_STATE_MULTI  = 0x01,	/* multi track flag */
660     FD_STATE_FORMAT = 0x02,	/* format flag */
661 };
662 
663 enum {
664     FD_REG_SRA = 0x00,
665     FD_REG_SRB = 0x01,
666     FD_REG_DOR = 0x02,
667     FD_REG_TDR = 0x03,
668     FD_REG_MSR = 0x04,
669     FD_REG_DSR = 0x04,
670     FD_REG_FIFO = 0x05,
671     FD_REG_DIR = 0x07,
672     FD_REG_CCR = 0x07,
673 };
674 
675 enum {
676     FD_CMD_READ_TRACK = 0x02,
677     FD_CMD_SPECIFY = 0x03,
678     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
679     FD_CMD_WRITE = 0x05,
680     FD_CMD_READ = 0x06,
681     FD_CMD_RECALIBRATE = 0x07,
682     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
683     FD_CMD_WRITE_DELETED = 0x09,
684     FD_CMD_READ_ID = 0x0a,
685     FD_CMD_READ_DELETED = 0x0c,
686     FD_CMD_FORMAT_TRACK = 0x0d,
687     FD_CMD_DUMPREG = 0x0e,
688     FD_CMD_SEEK = 0x0f,
689     FD_CMD_VERSION = 0x10,
690     FD_CMD_SCAN_EQUAL = 0x11,
691     FD_CMD_PERPENDICULAR_MODE = 0x12,
692     FD_CMD_CONFIGURE = 0x13,
693     FD_CMD_LOCK = 0x14,
694     FD_CMD_VERIFY = 0x16,
695     FD_CMD_POWERDOWN_MODE = 0x17,
696     FD_CMD_PART_ID = 0x18,
697     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
698     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
699     FD_CMD_SAVE = 0x2e,
700     FD_CMD_OPTION = 0x33,
701     FD_CMD_RESTORE = 0x4e,
702     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
703     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
704     FD_CMD_FORMAT_AND_WRITE = 0xcd,
705     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
706 };
707 
708 enum {
709     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
710     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
711     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
712     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
713     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
714 };
715 
716 enum {
717     FD_SR0_DS0      = 0x01,
718     FD_SR0_DS1      = 0x02,
719     FD_SR0_HEAD     = 0x04,
720     FD_SR0_EQPMT    = 0x10,
721     FD_SR0_SEEK     = 0x20,
722     FD_SR0_ABNTERM  = 0x40,
723     FD_SR0_INVCMD   = 0x80,
724     FD_SR0_RDYCHG   = 0xc0,
725 };
726 
727 enum {
728     FD_SR1_MA       = 0x01, /* Missing address mark */
729     FD_SR1_NW       = 0x02, /* Not writable */
730     FD_SR1_EC       = 0x80, /* End of cylinder */
731 };
732 
733 enum {
734     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
735     FD_SR2_SEH      = 0x08, /* Scan equal hit */
736 };
737 
738 enum {
739     FD_SRA_DIR      = 0x01,
740     FD_SRA_nWP      = 0x02,
741     FD_SRA_nINDX    = 0x04,
742     FD_SRA_HDSEL    = 0x08,
743     FD_SRA_nTRK0    = 0x10,
744     FD_SRA_STEP     = 0x20,
745     FD_SRA_nDRV2    = 0x40,
746     FD_SRA_INTPEND  = 0x80,
747 };
748 
749 enum {
750     FD_SRB_MTR0     = 0x01,
751     FD_SRB_MTR1     = 0x02,
752     FD_SRB_WGATE    = 0x04,
753     FD_SRB_RDATA    = 0x08,
754     FD_SRB_WDATA    = 0x10,
755     FD_SRB_DR0      = 0x20,
756 };
757 
758 enum {
759 #if MAX_FD == 4
760     FD_DOR_SELMASK  = 0x03,
761 #else
762     FD_DOR_SELMASK  = 0x01,
763 #endif
764     FD_DOR_nRESET   = 0x04,
765     FD_DOR_DMAEN    = 0x08,
766     FD_DOR_MOTEN0   = 0x10,
767     FD_DOR_MOTEN1   = 0x20,
768     FD_DOR_MOTEN2   = 0x40,
769     FD_DOR_MOTEN3   = 0x80,
770 };
771 
772 enum {
773 #if MAX_FD == 4
774     FD_TDR_BOOTSEL  = 0x0c,
775 #else
776     FD_TDR_BOOTSEL  = 0x04,
777 #endif
778 };
779 
780 enum {
781     FD_DSR_DRATEMASK= 0x03,
782     FD_DSR_PWRDOWN  = 0x40,
783     FD_DSR_SWRESET  = 0x80,
784 };
785 
786 enum {
787     FD_MSR_DRV0BUSY = 0x01,
788     FD_MSR_DRV1BUSY = 0x02,
789     FD_MSR_DRV2BUSY = 0x04,
790     FD_MSR_DRV3BUSY = 0x08,
791     FD_MSR_CMDBUSY  = 0x10,
792     FD_MSR_NONDMA   = 0x20,
793     FD_MSR_DIO      = 0x40,
794     FD_MSR_RQM      = 0x80,
795 };
796 
797 enum {
798     FD_DIR_DSKCHG   = 0x80,
799 };
800 
801 /*
802  * See chapter 5.0 "Controller phases" of the spec:
803  *
804  * Command phase:
805  * The host writes a command and its parameters into the FIFO. The command
806  * phase is completed when all parameters for the command have been supplied,
807  * and execution phase is entered.
808  *
809  * Execution phase:
810  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
811  * contains the payload now, otherwise it's unused. When all bytes of the
812  * required data have been transferred, the state is switched to either result
813  * phase (if the command produces status bytes) or directly back into the
814  * command phase for the next command.
815  *
816  * Result phase:
817  * The host reads out the FIFO, which contains one or more result bytes now.
818  */
819 enum {
820     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
821     FD_PHASE_RECONSTRUCT    = 0,
822 
823     FD_PHASE_COMMAND        = 1,
824     FD_PHASE_EXECUTION      = 2,
825     FD_PHASE_RESULT         = 3,
826 };
827 
828 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
829 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
830 
831 struct FDCtrl {
832     MemoryRegion iomem;
833     qemu_irq irq;
834     /* Controller state */
835     QEMUTimer *result_timer;
836     int dma_chann;
837     uint8_t phase;
838     IsaDma *dma;
839     /* Controller's identification */
840     uint8_t version;
841     /* HW */
842     uint8_t sra;
843     uint8_t srb;
844     uint8_t dor;
845     uint8_t dor_vmstate; /* only used as temp during vmstate */
846     uint8_t tdr;
847     uint8_t dsr;
848     uint8_t msr;
849     uint8_t cur_drv;
850     uint8_t status0;
851     uint8_t status1;
852     uint8_t status2;
853     /* Command FIFO */
854     uint8_t *fifo;
855     int32_t fifo_size;
856     uint32_t data_pos;
857     uint32_t data_len;
858     uint8_t data_state;
859     uint8_t data_dir;
860     uint8_t eot; /* last wanted sector */
861     /* States kept only to be returned back */
862     /* precompensation */
863     uint8_t precomp_trk;
864     uint8_t config;
865     uint8_t lock;
866     /* Power down config (also with status regB access mode */
867     uint8_t pwrd;
868     /* Floppy drives */
869     FloppyBus bus;
870     uint8_t num_floppies;
871     FDrive drives[MAX_FD];
872     struct {
873         BlockBackend *blk;
874         FloppyDriveType type;
875     } qdev_for_drives[MAX_FD];
876     int reset_sensei;
877     uint32_t check_media_rate;
878     FloppyDriveType fallback; /* type=auto failure fallback */
879     /* Timers state */
880     uint8_t timer0;
881     uint8_t timer1;
882     PortioList portio_list;
883 };
884 
885 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
886 {
887     return drv->fdctrl->fallback;
888 }
889 
890 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
891 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlSysBus, SYSBUS_FDC)
892 
893 struct FDCtrlSysBus {
894     /*< private >*/
895     SysBusDevice parent_obj;
896     /*< public >*/
897 
898     struct FDCtrl state;
899 };
900 
901 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlISABus, ISA_FDC)
902 
903 struct FDCtrlISABus {
904     ISADevice parent_obj;
905 
906     uint32_t iobase;
907     uint32_t irq;
908     uint32_t dma;
909     struct FDCtrl state;
910     int32_t bootindexA;
911     int32_t bootindexB;
912 };
913 
914 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
915 {
916     FDCtrl *fdctrl = opaque;
917     uint32_t retval;
918 
919     reg &= 7;
920     switch (reg) {
921     case FD_REG_SRA:
922         retval = fdctrl_read_statusA(fdctrl);
923         break;
924     case FD_REG_SRB:
925         retval = fdctrl_read_statusB(fdctrl);
926         break;
927     case FD_REG_DOR:
928         retval = fdctrl_read_dor(fdctrl);
929         break;
930     case FD_REG_TDR:
931         retval = fdctrl_read_tape(fdctrl);
932         break;
933     case FD_REG_MSR:
934         retval = fdctrl_read_main_status(fdctrl);
935         break;
936     case FD_REG_FIFO:
937         retval = fdctrl_read_data(fdctrl);
938         break;
939     case FD_REG_DIR:
940         retval = fdctrl_read_dir(fdctrl);
941         break;
942     default:
943         retval = (uint32_t)(-1);
944         break;
945     }
946     trace_fdc_ioport_read(reg, retval);
947 
948     return retval;
949 }
950 
951 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
952 {
953     FDCtrl *fdctrl = opaque;
954 
955     reg &= 7;
956     trace_fdc_ioport_write(reg, value);
957     switch (reg) {
958     case FD_REG_DOR:
959         fdctrl_write_dor(fdctrl, value);
960         break;
961     case FD_REG_TDR:
962         fdctrl_write_tape(fdctrl, value);
963         break;
964     case FD_REG_DSR:
965         fdctrl_write_rate(fdctrl, value);
966         break;
967     case FD_REG_FIFO:
968         fdctrl_write_data(fdctrl, value);
969         break;
970     case FD_REG_CCR:
971         fdctrl_write_ccr(fdctrl, value);
972         break;
973     default:
974         break;
975     }
976 }
977 
978 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
979                                  unsigned ize)
980 {
981     return fdctrl_read(opaque, (uint32_t)reg);
982 }
983 
984 static void fdctrl_write_mem (void *opaque, hwaddr reg,
985                               uint64_t value, unsigned size)
986 {
987     fdctrl_write(opaque, (uint32_t)reg, value);
988 }
989 
990 static const MemoryRegionOps fdctrl_mem_ops = {
991     .read = fdctrl_read_mem,
992     .write = fdctrl_write_mem,
993     .endianness = DEVICE_NATIVE_ENDIAN,
994 };
995 
996 static const MemoryRegionOps fdctrl_mem_strict_ops = {
997     .read = fdctrl_read_mem,
998     .write = fdctrl_write_mem,
999     .endianness = DEVICE_NATIVE_ENDIAN,
1000     .valid = {
1001         .min_access_size = 1,
1002         .max_access_size = 1,
1003     },
1004 };
1005 
1006 static bool fdrive_media_changed_needed(void *opaque)
1007 {
1008     FDrive *drive = opaque;
1009 
1010     return (drive->blk != NULL && drive->media_changed != 1);
1011 }
1012 
1013 static const VMStateDescription vmstate_fdrive_media_changed = {
1014     .name = "fdrive/media_changed",
1015     .version_id = 1,
1016     .minimum_version_id = 1,
1017     .needed = fdrive_media_changed_needed,
1018     .fields = (VMStateField[]) {
1019         VMSTATE_UINT8(media_changed, FDrive),
1020         VMSTATE_END_OF_LIST()
1021     }
1022 };
1023 
1024 static bool fdrive_media_rate_needed(void *opaque)
1025 {
1026     FDrive *drive = opaque;
1027 
1028     return drive->fdctrl->check_media_rate;
1029 }
1030 
1031 static const VMStateDescription vmstate_fdrive_media_rate = {
1032     .name = "fdrive/media_rate",
1033     .version_id = 1,
1034     .minimum_version_id = 1,
1035     .needed = fdrive_media_rate_needed,
1036     .fields = (VMStateField[]) {
1037         VMSTATE_UINT8(media_rate, FDrive),
1038         VMSTATE_END_OF_LIST()
1039     }
1040 };
1041 
1042 static bool fdrive_perpendicular_needed(void *opaque)
1043 {
1044     FDrive *drive = opaque;
1045 
1046     return drive->perpendicular != 0;
1047 }
1048 
1049 static const VMStateDescription vmstate_fdrive_perpendicular = {
1050     .name = "fdrive/perpendicular",
1051     .version_id = 1,
1052     .minimum_version_id = 1,
1053     .needed = fdrive_perpendicular_needed,
1054     .fields = (VMStateField[]) {
1055         VMSTATE_UINT8(perpendicular, FDrive),
1056         VMSTATE_END_OF_LIST()
1057     }
1058 };
1059 
1060 static int fdrive_post_load(void *opaque, int version_id)
1061 {
1062     fd_revalidate(opaque);
1063     return 0;
1064 }
1065 
1066 static const VMStateDescription vmstate_fdrive = {
1067     .name = "fdrive",
1068     .version_id = 1,
1069     .minimum_version_id = 1,
1070     .post_load = fdrive_post_load,
1071     .fields = (VMStateField[]) {
1072         VMSTATE_UINT8(head, FDrive),
1073         VMSTATE_UINT8(track, FDrive),
1074         VMSTATE_UINT8(sect, FDrive),
1075         VMSTATE_END_OF_LIST()
1076     },
1077     .subsections = (const VMStateDescription*[]) {
1078         &vmstate_fdrive_media_changed,
1079         &vmstate_fdrive_media_rate,
1080         &vmstate_fdrive_perpendicular,
1081         NULL
1082     }
1083 };
1084 
1085 /*
1086  * Reconstructs the phase from register values according to the logic that was
1087  * implemented in qemu 2.3. This is the default value that is used if the phase
1088  * subsection is not present on migration.
1089  *
1090  * Don't change this function to reflect newer qemu versions, it is part of
1091  * the migration ABI.
1092  */
1093 static int reconstruct_phase(FDCtrl *fdctrl)
1094 {
1095     if (fdctrl->msr & FD_MSR_NONDMA) {
1096         return FD_PHASE_EXECUTION;
1097     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1098         /* qemu 2.3 disabled RQM only during DMA transfers */
1099         return FD_PHASE_EXECUTION;
1100     } else if (fdctrl->msr & FD_MSR_DIO) {
1101         return FD_PHASE_RESULT;
1102     } else {
1103         return FD_PHASE_COMMAND;
1104     }
1105 }
1106 
1107 static int fdc_pre_save(void *opaque)
1108 {
1109     FDCtrl *s = opaque;
1110 
1111     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1112 
1113     return 0;
1114 }
1115 
1116 static int fdc_pre_load(void *opaque)
1117 {
1118     FDCtrl *s = opaque;
1119     s->phase = FD_PHASE_RECONSTRUCT;
1120     return 0;
1121 }
1122 
1123 static int fdc_post_load(void *opaque, int version_id)
1124 {
1125     FDCtrl *s = opaque;
1126 
1127     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1128     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1129 
1130     if (s->phase == FD_PHASE_RECONSTRUCT) {
1131         s->phase = reconstruct_phase(s);
1132     }
1133 
1134     return 0;
1135 }
1136 
1137 static bool fdc_reset_sensei_needed(void *opaque)
1138 {
1139     FDCtrl *s = opaque;
1140 
1141     return s->reset_sensei != 0;
1142 }
1143 
1144 static const VMStateDescription vmstate_fdc_reset_sensei = {
1145     .name = "fdc/reset_sensei",
1146     .version_id = 1,
1147     .minimum_version_id = 1,
1148     .needed = fdc_reset_sensei_needed,
1149     .fields = (VMStateField[]) {
1150         VMSTATE_INT32(reset_sensei, FDCtrl),
1151         VMSTATE_END_OF_LIST()
1152     }
1153 };
1154 
1155 static bool fdc_result_timer_needed(void *opaque)
1156 {
1157     FDCtrl *s = opaque;
1158 
1159     return timer_pending(s->result_timer);
1160 }
1161 
1162 static const VMStateDescription vmstate_fdc_result_timer = {
1163     .name = "fdc/result_timer",
1164     .version_id = 1,
1165     .minimum_version_id = 1,
1166     .needed = fdc_result_timer_needed,
1167     .fields = (VMStateField[]) {
1168         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1169         VMSTATE_END_OF_LIST()
1170     }
1171 };
1172 
1173 static bool fdc_phase_needed(void *opaque)
1174 {
1175     FDCtrl *fdctrl = opaque;
1176 
1177     return reconstruct_phase(fdctrl) != fdctrl->phase;
1178 }
1179 
1180 static const VMStateDescription vmstate_fdc_phase = {
1181     .name = "fdc/phase",
1182     .version_id = 1,
1183     .minimum_version_id = 1,
1184     .needed = fdc_phase_needed,
1185     .fields = (VMStateField[]) {
1186         VMSTATE_UINT8(phase, FDCtrl),
1187         VMSTATE_END_OF_LIST()
1188     }
1189 };
1190 
1191 static const VMStateDescription vmstate_fdc = {
1192     .name = "fdc",
1193     .version_id = 2,
1194     .minimum_version_id = 2,
1195     .pre_save = fdc_pre_save,
1196     .pre_load = fdc_pre_load,
1197     .post_load = fdc_post_load,
1198     .fields = (VMStateField[]) {
1199         /* Controller State */
1200         VMSTATE_UINT8(sra, FDCtrl),
1201         VMSTATE_UINT8(srb, FDCtrl),
1202         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1203         VMSTATE_UINT8(tdr, FDCtrl),
1204         VMSTATE_UINT8(dsr, FDCtrl),
1205         VMSTATE_UINT8(msr, FDCtrl),
1206         VMSTATE_UINT8(status0, FDCtrl),
1207         VMSTATE_UINT8(status1, FDCtrl),
1208         VMSTATE_UINT8(status2, FDCtrl),
1209         /* Command FIFO */
1210         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1211                              uint8_t),
1212         VMSTATE_UINT32(data_pos, FDCtrl),
1213         VMSTATE_UINT32(data_len, FDCtrl),
1214         VMSTATE_UINT8(data_state, FDCtrl),
1215         VMSTATE_UINT8(data_dir, FDCtrl),
1216         VMSTATE_UINT8(eot, FDCtrl),
1217         /* States kept only to be returned back */
1218         VMSTATE_UINT8(timer0, FDCtrl),
1219         VMSTATE_UINT8(timer1, FDCtrl),
1220         VMSTATE_UINT8(precomp_trk, FDCtrl),
1221         VMSTATE_UINT8(config, FDCtrl),
1222         VMSTATE_UINT8(lock, FDCtrl),
1223         VMSTATE_UINT8(pwrd, FDCtrl),
1224         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1225         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1226                              vmstate_fdrive, FDrive),
1227         VMSTATE_END_OF_LIST()
1228     },
1229     .subsections = (const VMStateDescription*[]) {
1230         &vmstate_fdc_reset_sensei,
1231         &vmstate_fdc_result_timer,
1232         &vmstate_fdc_phase,
1233         NULL
1234     }
1235 };
1236 
1237 static void fdctrl_external_reset_sysbus(DeviceState *d)
1238 {
1239     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1240     FDCtrl *s = &sys->state;
1241 
1242     fdctrl_reset(s, 0);
1243 }
1244 
1245 static void fdctrl_external_reset_isa(DeviceState *d)
1246 {
1247     FDCtrlISABus *isa = ISA_FDC(d);
1248     FDCtrl *s = &isa->state;
1249 
1250     fdctrl_reset(s, 0);
1251 }
1252 
1253 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1254 {
1255     //FDCtrl *s = opaque;
1256 
1257     if (level) {
1258         // XXX
1259         FLOPPY_DPRINTF("TC pulsed\n");
1260     }
1261 }
1262 
1263 /* Change IRQ state */
1264 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1265 {
1266     fdctrl->status0 = 0;
1267     if (!(fdctrl->sra & FD_SRA_INTPEND))
1268         return;
1269     FLOPPY_DPRINTF("Reset interrupt\n");
1270     qemu_set_irq(fdctrl->irq, 0);
1271     fdctrl->sra &= ~FD_SRA_INTPEND;
1272 }
1273 
1274 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1275 {
1276     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1277         qemu_set_irq(fdctrl->irq, 1);
1278         fdctrl->sra |= FD_SRA_INTPEND;
1279     }
1280 
1281     fdctrl->reset_sensei = 0;
1282     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1283 }
1284 
1285 /* Reset controller */
1286 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1287 {
1288     int i;
1289 
1290     FLOPPY_DPRINTF("reset controller\n");
1291     fdctrl_reset_irq(fdctrl);
1292     /* Initialise controller */
1293     fdctrl->sra = 0;
1294     fdctrl->srb = 0xc0;
1295     if (!fdctrl->drives[1].blk) {
1296         fdctrl->sra |= FD_SRA_nDRV2;
1297     }
1298     fdctrl->cur_drv = 0;
1299     fdctrl->dor = FD_DOR_nRESET;
1300     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1301     fdctrl->msr = FD_MSR_RQM;
1302     fdctrl->reset_sensei = 0;
1303     timer_del(fdctrl->result_timer);
1304     /* FIFO state */
1305     fdctrl->data_pos = 0;
1306     fdctrl->data_len = 0;
1307     fdctrl->data_state = 0;
1308     fdctrl->data_dir = FD_DIR_WRITE;
1309     for (i = 0; i < MAX_FD; i++)
1310         fd_recalibrate(&fdctrl->drives[i]);
1311     fdctrl_to_command_phase(fdctrl);
1312     if (do_irq) {
1313         fdctrl->status0 |= FD_SR0_RDYCHG;
1314         fdctrl_raise_irq(fdctrl);
1315         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1316     }
1317 }
1318 
1319 static inline FDrive *drv0(FDCtrl *fdctrl)
1320 {
1321     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1322 }
1323 
1324 static inline FDrive *drv1(FDCtrl *fdctrl)
1325 {
1326     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1327         return &fdctrl->drives[1];
1328     else
1329         return &fdctrl->drives[0];
1330 }
1331 
1332 #if MAX_FD == 4
1333 static inline FDrive *drv2(FDCtrl *fdctrl)
1334 {
1335     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1336         return &fdctrl->drives[2];
1337     else
1338         return &fdctrl->drives[1];
1339 }
1340 
1341 static inline FDrive *drv3(FDCtrl *fdctrl)
1342 {
1343     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1344         return &fdctrl->drives[3];
1345     else
1346         return &fdctrl->drives[2];
1347 }
1348 #endif
1349 
1350 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1351 {
1352     switch (unit) {
1353         case 0: return drv0(fdctrl);
1354         case 1: return drv1(fdctrl);
1355 #if MAX_FD == 4
1356         case 2: return drv2(fdctrl);
1357         case 3: return drv3(fdctrl);
1358 #endif
1359         default: return NULL;
1360     }
1361 }
1362 
1363 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1364 {
1365     return get_drv(fdctrl, fdctrl->cur_drv);
1366 }
1367 
1368 /* Status A register : 0x00 (read-only) */
1369 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1370 {
1371     uint32_t retval = fdctrl->sra;
1372 
1373     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1374 
1375     return retval;
1376 }
1377 
1378 /* Status B register : 0x01 (read-only) */
1379 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1380 {
1381     uint32_t retval = fdctrl->srb;
1382 
1383     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1384 
1385     return retval;
1386 }
1387 
1388 /* Digital output register : 0x02 */
1389 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1390 {
1391     uint32_t retval = fdctrl->dor;
1392 
1393     /* Selected drive */
1394     retval |= fdctrl->cur_drv;
1395     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1396 
1397     return retval;
1398 }
1399 
1400 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1401 {
1402     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1403 
1404     /* Motors */
1405     if (value & FD_DOR_MOTEN0)
1406         fdctrl->srb |= FD_SRB_MTR0;
1407     else
1408         fdctrl->srb &= ~FD_SRB_MTR0;
1409     if (value & FD_DOR_MOTEN1)
1410         fdctrl->srb |= FD_SRB_MTR1;
1411     else
1412         fdctrl->srb &= ~FD_SRB_MTR1;
1413 
1414     /* Drive */
1415     if (value & 1)
1416         fdctrl->srb |= FD_SRB_DR0;
1417     else
1418         fdctrl->srb &= ~FD_SRB_DR0;
1419 
1420     /* Reset */
1421     if (!(value & FD_DOR_nRESET)) {
1422         if (fdctrl->dor & FD_DOR_nRESET) {
1423             FLOPPY_DPRINTF("controller enter RESET state\n");
1424         }
1425     } else {
1426         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1427             FLOPPY_DPRINTF("controller out of RESET state\n");
1428             fdctrl_reset(fdctrl, 1);
1429             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1430         }
1431     }
1432     /* Selected drive */
1433     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1434 
1435     fdctrl->dor = value;
1436 }
1437 
1438 /* Tape drive register : 0x03 */
1439 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1440 {
1441     uint32_t retval = fdctrl->tdr;
1442 
1443     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1444 
1445     return retval;
1446 }
1447 
1448 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1449 {
1450     /* Reset mode */
1451     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1452         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1453         return;
1454     }
1455     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1456     /* Disk boot selection indicator */
1457     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1458     /* Tape indicators: never allow */
1459 }
1460 
1461 /* Main status register : 0x04 (read) */
1462 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1463 {
1464     uint32_t retval = fdctrl->msr;
1465 
1466     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1467     fdctrl->dor |= FD_DOR_nRESET;
1468 
1469     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1470 
1471     return retval;
1472 }
1473 
1474 /* Data select rate register : 0x04 (write) */
1475 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1476 {
1477     /* Reset mode */
1478     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1479         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1480         return;
1481     }
1482     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1483     /* Reset: autoclear */
1484     if (value & FD_DSR_SWRESET) {
1485         fdctrl->dor &= ~FD_DOR_nRESET;
1486         fdctrl_reset(fdctrl, 1);
1487         fdctrl->dor |= FD_DOR_nRESET;
1488     }
1489     if (value & FD_DSR_PWRDOWN) {
1490         fdctrl_reset(fdctrl, 1);
1491     }
1492     fdctrl->dsr = value;
1493 }
1494 
1495 /* Configuration control register: 0x07 (write) */
1496 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1497 {
1498     /* Reset mode */
1499     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1500         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1501         return;
1502     }
1503     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1504 
1505     /* Only the rate selection bits used in AT mode, and we
1506      * store those in the DSR.
1507      */
1508     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1509                   (value & FD_DSR_DRATEMASK);
1510 }
1511 
1512 static int fdctrl_media_changed(FDrive *drv)
1513 {
1514     return drv->media_changed;
1515 }
1516 
1517 /* Digital input register : 0x07 (read-only) */
1518 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1519 {
1520     uint32_t retval = 0;
1521 
1522     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1523         retval |= FD_DIR_DSKCHG;
1524     }
1525     if (retval != 0) {
1526         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1527     }
1528 
1529     return retval;
1530 }
1531 
1532 /* Clear the FIFO and update the state for receiving the next command */
1533 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1534 {
1535     fdctrl->phase = FD_PHASE_COMMAND;
1536     fdctrl->data_dir = FD_DIR_WRITE;
1537     fdctrl->data_pos = 0;
1538     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1539     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1540     fdctrl->msr |= FD_MSR_RQM;
1541 }
1542 
1543 /* Update the state to allow the guest to read out the command status.
1544  * @fifo_len is the number of result bytes to be read out. */
1545 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1546 {
1547     fdctrl->phase = FD_PHASE_RESULT;
1548     fdctrl->data_dir = FD_DIR_READ;
1549     fdctrl->data_len = fifo_len;
1550     fdctrl->data_pos = 0;
1551     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1552 }
1553 
1554 /* Set an error: unimplemented/unknown command */
1555 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1556 {
1557     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1558                   fdctrl->fifo[0]);
1559     fdctrl->fifo[0] = FD_SR0_INVCMD;
1560     fdctrl_to_result_phase(fdctrl, 1);
1561 }
1562 
1563 /* Seek to next sector
1564  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1565  * otherwise returns 1
1566  */
1567 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1568 {
1569     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1570                    cur_drv->head, cur_drv->track, cur_drv->sect,
1571                    fd_sector(cur_drv));
1572     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1573        error in fact */
1574     uint8_t new_head = cur_drv->head;
1575     uint8_t new_track = cur_drv->track;
1576     uint8_t new_sect = cur_drv->sect;
1577 
1578     int ret = 1;
1579 
1580     if (new_sect >= cur_drv->last_sect ||
1581         new_sect == fdctrl->eot) {
1582         new_sect = 1;
1583         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1584             if (new_head == 0 &&
1585                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1586                 new_head = 1;
1587             } else {
1588                 new_head = 0;
1589                 new_track++;
1590                 fdctrl->status0 |= FD_SR0_SEEK;
1591                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1592                     ret = 0;
1593                 }
1594             }
1595         } else {
1596             fdctrl->status0 |= FD_SR0_SEEK;
1597             new_track++;
1598             ret = 0;
1599         }
1600         if (ret == 1) {
1601             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1602                     new_head, new_track, new_sect, fd_sector(cur_drv));
1603         }
1604     } else {
1605         new_sect++;
1606     }
1607     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1608     return ret;
1609 }
1610 
1611 /* Callback for transfer end (stop or abort) */
1612 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1613                                  uint8_t status1, uint8_t status2)
1614 {
1615     FDrive *cur_drv;
1616     cur_drv = get_cur_drv(fdctrl);
1617 
1618     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1619     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1620     if (cur_drv->head) {
1621         fdctrl->status0 |= FD_SR0_HEAD;
1622     }
1623     fdctrl->status0 |= status0;
1624 
1625     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1626                    status0, status1, status2, fdctrl->status0);
1627     fdctrl->fifo[0] = fdctrl->status0;
1628     fdctrl->fifo[1] = status1;
1629     fdctrl->fifo[2] = status2;
1630     fdctrl->fifo[3] = cur_drv->track;
1631     fdctrl->fifo[4] = cur_drv->head;
1632     fdctrl->fifo[5] = cur_drv->sect;
1633     fdctrl->fifo[6] = FD_SECTOR_SC;
1634     fdctrl->data_dir = FD_DIR_READ;
1635     if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1636         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1637         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1638     }
1639     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1640     fdctrl->msr &= ~FD_MSR_NONDMA;
1641 
1642     fdctrl_to_result_phase(fdctrl, 7);
1643     fdctrl_raise_irq(fdctrl);
1644 }
1645 
1646 /* Prepare a data transfer (either DMA or FIFO) */
1647 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1648 {
1649     FDrive *cur_drv;
1650     uint8_t kh, kt, ks;
1651 
1652     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1653     cur_drv = get_cur_drv(fdctrl);
1654     kt = fdctrl->fifo[2];
1655     kh = fdctrl->fifo[3];
1656     ks = fdctrl->fifo[4];
1657     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1658                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1659                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1660                                   NUM_SIDES(cur_drv)));
1661     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1662     case 2:
1663         /* sect too big */
1664         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1665         fdctrl->fifo[3] = kt;
1666         fdctrl->fifo[4] = kh;
1667         fdctrl->fifo[5] = ks;
1668         return;
1669     case 3:
1670         /* track too big */
1671         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1672         fdctrl->fifo[3] = kt;
1673         fdctrl->fifo[4] = kh;
1674         fdctrl->fifo[5] = ks;
1675         return;
1676     case 4:
1677         /* No seek enabled */
1678         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1679         fdctrl->fifo[3] = kt;
1680         fdctrl->fifo[4] = kh;
1681         fdctrl->fifo[5] = ks;
1682         return;
1683     case 1:
1684         fdctrl->status0 |= FD_SR0_SEEK;
1685         break;
1686     default:
1687         break;
1688     }
1689 
1690     /* Check the data rate. If the programmed data rate does not match
1691      * the currently inserted medium, the operation has to fail. */
1692     if (fdctrl->check_media_rate &&
1693         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1694         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1695                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1696         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1697         fdctrl->fifo[3] = kt;
1698         fdctrl->fifo[4] = kh;
1699         fdctrl->fifo[5] = ks;
1700         return;
1701     }
1702 
1703     /* Set the FIFO state */
1704     fdctrl->data_dir = direction;
1705     fdctrl->data_pos = 0;
1706     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1707     if (fdctrl->fifo[0] & 0x80)
1708         fdctrl->data_state |= FD_STATE_MULTI;
1709     else
1710         fdctrl->data_state &= ~FD_STATE_MULTI;
1711     if (fdctrl->fifo[5] == 0) {
1712         fdctrl->data_len = fdctrl->fifo[8];
1713     } else {
1714         int tmp;
1715         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1716         tmp = (fdctrl->fifo[6] - ks + 1);
1717         if (fdctrl->fifo[0] & 0x80)
1718             tmp += fdctrl->fifo[6];
1719         fdctrl->data_len *= tmp;
1720     }
1721     fdctrl->eot = fdctrl->fifo[6];
1722     if (fdctrl->dor & FD_DOR_DMAEN) {
1723         /* DMA transfer is enabled. */
1724         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1725 
1726         FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1727                        direction, (128 << fdctrl->fifo[5]) *
1728                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1729 
1730         /* No access is allowed until DMA transfer has completed */
1731         fdctrl->msr &= ~FD_MSR_RQM;
1732         if (direction != FD_DIR_VERIFY) {
1733             /*
1734              * Now, we just have to wait for the DMA controller to
1735              * recall us...
1736              */
1737             k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1738             k->schedule(fdctrl->dma);
1739         } else {
1740             /* Start transfer */
1741             fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1742                     fdctrl->data_len);
1743         }
1744         return;
1745     }
1746     FLOPPY_DPRINTF("start non-DMA transfer\n");
1747     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1748     if (direction != FD_DIR_WRITE)
1749         fdctrl->msr |= FD_MSR_DIO;
1750     /* IO based transfer: calculate len */
1751     fdctrl_raise_irq(fdctrl);
1752 }
1753 
1754 /* Prepare a transfer of deleted data */
1755 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1756 {
1757     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1758 
1759     /* We don't handle deleted data,
1760      * so we don't return *ANYTHING*
1761      */
1762     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1763 }
1764 
1765 /* handlers for DMA transfers */
1766 static int fdctrl_transfer_handler (void *opaque, int nchan,
1767                                     int dma_pos, int dma_len)
1768 {
1769     FDCtrl *fdctrl;
1770     FDrive *cur_drv;
1771     int len, start_pos, rel_pos;
1772     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1773     IsaDmaClass *k;
1774 
1775     fdctrl = opaque;
1776     if (fdctrl->msr & FD_MSR_RQM) {
1777         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1778         return 0;
1779     }
1780     k = ISADMA_GET_CLASS(fdctrl->dma);
1781     cur_drv = get_cur_drv(fdctrl);
1782     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1783         fdctrl->data_dir == FD_DIR_SCANH)
1784         status2 = FD_SR2_SNS;
1785     if (dma_len > fdctrl->data_len)
1786         dma_len = fdctrl->data_len;
1787     if (cur_drv->blk == NULL) {
1788         if (fdctrl->data_dir == FD_DIR_WRITE)
1789             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1790         else
1791             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1792         len = 0;
1793         goto transfer_error;
1794     }
1795     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1796     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1797         len = dma_len - fdctrl->data_pos;
1798         if (len + rel_pos > FD_SECTOR_LEN)
1799             len = FD_SECTOR_LEN - rel_pos;
1800         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1801                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1802                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1803                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1804                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1805         if (fdctrl->data_dir != FD_DIR_WRITE ||
1806             len < FD_SECTOR_LEN || rel_pos != 0) {
1807             /* READ & SCAN commands and realign to a sector for WRITE */
1808             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1809                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1810                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1811                                fd_sector(cur_drv));
1812                 /* Sure, image size is too small... */
1813                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1814             }
1815         }
1816         switch (fdctrl->data_dir) {
1817         case FD_DIR_READ:
1818             /* READ commands */
1819             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1820                             fdctrl->data_pos, len);
1821             break;
1822         case FD_DIR_WRITE:
1823             /* WRITE commands */
1824             if (cur_drv->ro) {
1825                 /* Handle readonly medium early, no need to do DMA, touch the
1826                  * LED or attempt any writes. A real floppy doesn't attempt
1827                  * to write to readonly media either. */
1828                 fdctrl_stop_transfer(fdctrl,
1829                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1830                                      0x00);
1831                 goto transfer_error;
1832             }
1833 
1834             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1835                            fdctrl->data_pos, len);
1836             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1837                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1838                 FLOPPY_DPRINTF("error writing sector %d\n",
1839                                fd_sector(cur_drv));
1840                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1841                 goto transfer_error;
1842             }
1843             break;
1844         case FD_DIR_VERIFY:
1845             /* VERIFY commands */
1846             break;
1847         default:
1848             /* SCAN commands */
1849             {
1850                 uint8_t tmpbuf[FD_SECTOR_LEN];
1851                 int ret;
1852                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1853                                len);
1854                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1855                 if (ret == 0) {
1856                     status2 = FD_SR2_SEH;
1857                     goto end_transfer;
1858                 }
1859                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1860                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1861                     status2 = 0x00;
1862                     goto end_transfer;
1863                 }
1864             }
1865             break;
1866         }
1867         fdctrl->data_pos += len;
1868         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1869         if (rel_pos == 0) {
1870             /* Seek to next sector */
1871             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1872                 break;
1873         }
1874     }
1875  end_transfer:
1876     len = fdctrl->data_pos - start_pos;
1877     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1878                    fdctrl->data_pos, len, fdctrl->data_len);
1879     if (fdctrl->data_dir == FD_DIR_SCANE ||
1880         fdctrl->data_dir == FD_DIR_SCANL ||
1881         fdctrl->data_dir == FD_DIR_SCANH)
1882         status2 = FD_SR2_SEH;
1883     fdctrl->data_len -= len;
1884     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1885  transfer_error:
1886 
1887     return len;
1888 }
1889 
1890 /* Data register : 0x05 */
1891 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1892 {
1893     FDrive *cur_drv;
1894     uint32_t retval = 0;
1895     uint32_t pos;
1896 
1897     cur_drv = get_cur_drv(fdctrl);
1898     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1899     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1900         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1901         return 0;
1902     }
1903 
1904     /* If data_len spans multiple sectors, the current position in the FIFO
1905      * wraps around while fdctrl->data_pos is the real position in the whole
1906      * request. */
1907     pos = fdctrl->data_pos;
1908     pos %= FD_SECTOR_LEN;
1909 
1910     switch (fdctrl->phase) {
1911     case FD_PHASE_EXECUTION:
1912         assert(fdctrl->msr & FD_MSR_NONDMA);
1913         if (pos == 0) {
1914             if (fdctrl->data_pos != 0)
1915                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1916                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1917                                    fd_sector(cur_drv));
1918                     return 0;
1919                 }
1920             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1921                           BDRV_SECTOR_SIZE)
1922                 < 0) {
1923                 FLOPPY_DPRINTF("error getting sector %d\n",
1924                                fd_sector(cur_drv));
1925                 /* Sure, image size is too small... */
1926                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1927             }
1928         }
1929 
1930         if (++fdctrl->data_pos == fdctrl->data_len) {
1931             fdctrl->msr &= ~FD_MSR_RQM;
1932             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1933         }
1934         break;
1935 
1936     case FD_PHASE_RESULT:
1937         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1938         if (++fdctrl->data_pos == fdctrl->data_len) {
1939             fdctrl->msr &= ~FD_MSR_RQM;
1940             fdctrl_to_command_phase(fdctrl);
1941             fdctrl_reset_irq(fdctrl);
1942         }
1943         break;
1944 
1945     case FD_PHASE_COMMAND:
1946     default:
1947         abort();
1948     }
1949 
1950     retval = fdctrl->fifo[pos];
1951     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1952 
1953     return retval;
1954 }
1955 
1956 static void fdctrl_format_sector(FDCtrl *fdctrl)
1957 {
1958     FDrive *cur_drv;
1959     uint8_t kh, kt, ks;
1960 
1961     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1962     cur_drv = get_cur_drv(fdctrl);
1963     kt = fdctrl->fifo[6];
1964     kh = fdctrl->fifo[7];
1965     ks = fdctrl->fifo[8];
1966     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1967                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1968                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1969                                   NUM_SIDES(cur_drv)));
1970     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1971     case 2:
1972         /* sect too big */
1973         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1974         fdctrl->fifo[3] = kt;
1975         fdctrl->fifo[4] = kh;
1976         fdctrl->fifo[5] = ks;
1977         return;
1978     case 3:
1979         /* track too big */
1980         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1981         fdctrl->fifo[3] = kt;
1982         fdctrl->fifo[4] = kh;
1983         fdctrl->fifo[5] = ks;
1984         return;
1985     case 4:
1986         /* No seek enabled */
1987         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1988         fdctrl->fifo[3] = kt;
1989         fdctrl->fifo[4] = kh;
1990         fdctrl->fifo[5] = ks;
1991         return;
1992     case 1:
1993         fdctrl->status0 |= FD_SR0_SEEK;
1994         break;
1995     default:
1996         break;
1997     }
1998     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1999     if (cur_drv->blk == NULL ||
2000         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2001                    BDRV_SECTOR_SIZE, 0) < 0) {
2002         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2003         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2004     } else {
2005         if (cur_drv->sect == cur_drv->last_sect) {
2006             fdctrl->data_state &= ~FD_STATE_FORMAT;
2007             /* Last sector done */
2008             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2009         } else {
2010             /* More to do */
2011             fdctrl->data_pos = 0;
2012             fdctrl->data_len = 4;
2013         }
2014     }
2015 }
2016 
2017 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2018 {
2019     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2020     fdctrl->fifo[0] = fdctrl->lock << 4;
2021     fdctrl_to_result_phase(fdctrl, 1);
2022 }
2023 
2024 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2025 {
2026     FDrive *cur_drv = get_cur_drv(fdctrl);
2027 
2028     /* Drives position */
2029     fdctrl->fifo[0] = drv0(fdctrl)->track;
2030     fdctrl->fifo[1] = drv1(fdctrl)->track;
2031 #if MAX_FD == 4
2032     fdctrl->fifo[2] = drv2(fdctrl)->track;
2033     fdctrl->fifo[3] = drv3(fdctrl)->track;
2034 #else
2035     fdctrl->fifo[2] = 0;
2036     fdctrl->fifo[3] = 0;
2037 #endif
2038     /* timers */
2039     fdctrl->fifo[4] = fdctrl->timer0;
2040     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2041     fdctrl->fifo[6] = cur_drv->last_sect;
2042     fdctrl->fifo[7] = (fdctrl->lock << 7) |
2043         (cur_drv->perpendicular << 2);
2044     fdctrl->fifo[8] = fdctrl->config;
2045     fdctrl->fifo[9] = fdctrl->precomp_trk;
2046     fdctrl_to_result_phase(fdctrl, 10);
2047 }
2048 
2049 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2050 {
2051     /* Controller's version */
2052     fdctrl->fifo[0] = fdctrl->version;
2053     fdctrl_to_result_phase(fdctrl, 1);
2054 }
2055 
2056 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2057 {
2058     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2059     fdctrl_to_result_phase(fdctrl, 1);
2060 }
2061 
2062 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2063 {
2064     FDrive *cur_drv = get_cur_drv(fdctrl);
2065 
2066     /* Drives position */
2067     drv0(fdctrl)->track = fdctrl->fifo[3];
2068     drv1(fdctrl)->track = fdctrl->fifo[4];
2069 #if MAX_FD == 4
2070     drv2(fdctrl)->track = fdctrl->fifo[5];
2071     drv3(fdctrl)->track = fdctrl->fifo[6];
2072 #endif
2073     /* timers */
2074     fdctrl->timer0 = fdctrl->fifo[7];
2075     fdctrl->timer1 = fdctrl->fifo[8];
2076     cur_drv->last_sect = fdctrl->fifo[9];
2077     fdctrl->lock = fdctrl->fifo[10] >> 7;
2078     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2079     fdctrl->config = fdctrl->fifo[11];
2080     fdctrl->precomp_trk = fdctrl->fifo[12];
2081     fdctrl->pwrd = fdctrl->fifo[13];
2082     fdctrl_to_command_phase(fdctrl);
2083 }
2084 
2085 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2086 {
2087     FDrive *cur_drv = get_cur_drv(fdctrl);
2088 
2089     fdctrl->fifo[0] = 0;
2090     fdctrl->fifo[1] = 0;
2091     /* Drives position */
2092     fdctrl->fifo[2] = drv0(fdctrl)->track;
2093     fdctrl->fifo[3] = drv1(fdctrl)->track;
2094 #if MAX_FD == 4
2095     fdctrl->fifo[4] = drv2(fdctrl)->track;
2096     fdctrl->fifo[5] = drv3(fdctrl)->track;
2097 #else
2098     fdctrl->fifo[4] = 0;
2099     fdctrl->fifo[5] = 0;
2100 #endif
2101     /* timers */
2102     fdctrl->fifo[6] = fdctrl->timer0;
2103     fdctrl->fifo[7] = fdctrl->timer1;
2104     fdctrl->fifo[8] = cur_drv->last_sect;
2105     fdctrl->fifo[9] = (fdctrl->lock << 7) |
2106         (cur_drv->perpendicular << 2);
2107     fdctrl->fifo[10] = fdctrl->config;
2108     fdctrl->fifo[11] = fdctrl->precomp_trk;
2109     fdctrl->fifo[12] = fdctrl->pwrd;
2110     fdctrl->fifo[13] = 0;
2111     fdctrl->fifo[14] = 0;
2112     fdctrl_to_result_phase(fdctrl, 15);
2113 }
2114 
2115 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2116 {
2117     FDrive *cur_drv = get_cur_drv(fdctrl);
2118 
2119     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2120     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2121              (NANOSECONDS_PER_SECOND / 50));
2122 }
2123 
2124 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2125 {
2126     FDrive *cur_drv;
2127 
2128     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2129     cur_drv = get_cur_drv(fdctrl);
2130     fdctrl->data_state |= FD_STATE_FORMAT;
2131     if (fdctrl->fifo[0] & 0x80)
2132         fdctrl->data_state |= FD_STATE_MULTI;
2133     else
2134         fdctrl->data_state &= ~FD_STATE_MULTI;
2135     cur_drv->bps =
2136         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2137 #if 0
2138     cur_drv->last_sect =
2139         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2140         fdctrl->fifo[3] / 2;
2141 #else
2142     cur_drv->last_sect = fdctrl->fifo[3];
2143 #endif
2144     /* TODO: implement format using DMA expected by the Bochs BIOS
2145      * and Linux fdformat (read 3 bytes per sector via DMA and fill
2146      * the sector with the specified fill byte
2147      */
2148     fdctrl->data_state &= ~FD_STATE_FORMAT;
2149     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2150 }
2151 
2152 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2153 {
2154     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2155     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2156     if (fdctrl->fifo[2] & 1)
2157         fdctrl->dor &= ~FD_DOR_DMAEN;
2158     else
2159         fdctrl->dor |= FD_DOR_DMAEN;
2160     /* No result back */
2161     fdctrl_to_command_phase(fdctrl);
2162 }
2163 
2164 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2165 {
2166     FDrive *cur_drv;
2167 
2168     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2169     cur_drv = get_cur_drv(fdctrl);
2170     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2171     /* 1 Byte status back */
2172     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2173         (cur_drv->track == 0 ? 0x10 : 0x00) |
2174         (cur_drv->head << 2) |
2175         GET_CUR_DRV(fdctrl) |
2176         0x28;
2177     fdctrl_to_result_phase(fdctrl, 1);
2178 }
2179 
2180 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2181 {
2182     FDrive *cur_drv;
2183 
2184     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2185     cur_drv = get_cur_drv(fdctrl);
2186     fd_recalibrate(cur_drv);
2187     fdctrl_to_command_phase(fdctrl);
2188     /* Raise Interrupt */
2189     fdctrl->status0 |= FD_SR0_SEEK;
2190     fdctrl_raise_irq(fdctrl);
2191 }
2192 
2193 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2194 {
2195     FDrive *cur_drv = get_cur_drv(fdctrl);
2196 
2197     if (fdctrl->reset_sensei > 0) {
2198         fdctrl->fifo[0] =
2199             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2200         fdctrl->reset_sensei--;
2201     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2202         fdctrl->fifo[0] = FD_SR0_INVCMD;
2203         fdctrl_to_result_phase(fdctrl, 1);
2204         return;
2205     } else {
2206         fdctrl->fifo[0] =
2207                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2208                 | GET_CUR_DRV(fdctrl);
2209     }
2210 
2211     fdctrl->fifo[1] = cur_drv->track;
2212     fdctrl_to_result_phase(fdctrl, 2);
2213     fdctrl_reset_irq(fdctrl);
2214     fdctrl->status0 = FD_SR0_RDYCHG;
2215 }
2216 
2217 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2218 {
2219     FDrive *cur_drv;
2220 
2221     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2222     cur_drv = get_cur_drv(fdctrl);
2223     fdctrl_to_command_phase(fdctrl);
2224     /* The seek command just sends step pulses to the drive and doesn't care if
2225      * there is a medium inserted of if it's banging the head against the drive.
2226      */
2227     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2228     /* Raise Interrupt */
2229     fdctrl->status0 |= FD_SR0_SEEK;
2230     fdctrl_raise_irq(fdctrl);
2231 }
2232 
2233 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2234 {
2235     FDrive *cur_drv = get_cur_drv(fdctrl);
2236 
2237     if (fdctrl->fifo[1] & 0x80)
2238         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2239     /* No result back */
2240     fdctrl_to_command_phase(fdctrl);
2241 }
2242 
2243 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2244 {
2245     fdctrl->config = fdctrl->fifo[2];
2246     fdctrl->precomp_trk =  fdctrl->fifo[3];
2247     /* No result back */
2248     fdctrl_to_command_phase(fdctrl);
2249 }
2250 
2251 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2252 {
2253     fdctrl->pwrd = fdctrl->fifo[1];
2254     fdctrl->fifo[0] = fdctrl->fifo[1];
2255     fdctrl_to_result_phase(fdctrl, 1);
2256 }
2257 
2258 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2259 {
2260     /* No result back */
2261     fdctrl_to_command_phase(fdctrl);
2262 }
2263 
2264 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2265 {
2266     FDrive *cur_drv = get_cur_drv(fdctrl);
2267     uint32_t pos;
2268 
2269     pos = fdctrl->data_pos - 1;
2270     pos %= FD_SECTOR_LEN;
2271     if (fdctrl->fifo[pos] & 0x80) {
2272         /* Command parameters done */
2273         if (fdctrl->fifo[pos] & 0x40) {
2274             fdctrl->fifo[0] = fdctrl->fifo[1];
2275             fdctrl->fifo[2] = 0;
2276             fdctrl->fifo[3] = 0;
2277             fdctrl_to_result_phase(fdctrl, 4);
2278         } else {
2279             fdctrl_to_command_phase(fdctrl);
2280         }
2281     } else if (fdctrl->data_len > 7) {
2282         /* ERROR */
2283         fdctrl->fifo[0] = 0x80 |
2284             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2285         fdctrl_to_result_phase(fdctrl, 1);
2286     }
2287 }
2288 
2289 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2290 {
2291     FDrive *cur_drv;
2292 
2293     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2294     cur_drv = get_cur_drv(fdctrl);
2295     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2296         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2297                 cur_drv->sect, 1);
2298     } else {
2299         fd_seek(cur_drv, cur_drv->head,
2300                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2301     }
2302     fdctrl_to_command_phase(fdctrl);
2303     /* Raise Interrupt */
2304     fdctrl->status0 |= FD_SR0_SEEK;
2305     fdctrl_raise_irq(fdctrl);
2306 }
2307 
2308 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2309 {
2310     FDrive *cur_drv;
2311 
2312     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2313     cur_drv = get_cur_drv(fdctrl);
2314     if (fdctrl->fifo[2] > cur_drv->track) {
2315         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2316     } else {
2317         fd_seek(cur_drv, cur_drv->head,
2318                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2319     }
2320     fdctrl_to_command_phase(fdctrl);
2321     /* Raise Interrupt */
2322     fdctrl->status0 |= FD_SR0_SEEK;
2323     fdctrl_raise_irq(fdctrl);
2324 }
2325 
2326 /*
2327  * Handlers for the execution phase of each command
2328  */
2329 typedef struct FDCtrlCommand {
2330     uint8_t value;
2331     uint8_t mask;
2332     const char* name;
2333     int parameters;
2334     void (*handler)(FDCtrl *fdctrl, int direction);
2335     int direction;
2336 } FDCtrlCommand;
2337 
2338 static const FDCtrlCommand handlers[] = {
2339     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2340     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2341     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2342     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2343     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2344     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2345     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2346     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2347     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2348     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2349     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2350     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2351     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2352     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2353     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2354     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2355     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2356     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2357     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2358     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2359     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2360     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2361     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2362     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2363     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2364     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2365     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2366     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2367     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2368     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2369     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2370     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2371 };
2372 /* Associate command to an index in the 'handlers' array */
2373 static uint8_t command_to_handler[256];
2374 
2375 static const FDCtrlCommand *get_command(uint8_t cmd)
2376 {
2377     int idx;
2378 
2379     idx = command_to_handler[cmd];
2380     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2381     return &handlers[idx];
2382 }
2383 
2384 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2385 {
2386     FDrive *cur_drv;
2387     const FDCtrlCommand *cmd;
2388     uint32_t pos;
2389 
2390     /* Reset mode */
2391     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2392         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2393         return;
2394     }
2395     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2396         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2397         return;
2398     }
2399     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2400 
2401     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2402 
2403     /* If data_len spans multiple sectors, the current position in the FIFO
2404      * wraps around while fdctrl->data_pos is the real position in the whole
2405      * request. */
2406     pos = fdctrl->data_pos++;
2407     pos %= FD_SECTOR_LEN;
2408     fdctrl->fifo[pos] = value;
2409 
2410     if (fdctrl->data_pos == fdctrl->data_len) {
2411         fdctrl->msr &= ~FD_MSR_RQM;
2412     }
2413 
2414     switch (fdctrl->phase) {
2415     case FD_PHASE_EXECUTION:
2416         /* For DMA requests, RQM should be cleared during execution phase, so
2417          * we would have errored out above. */
2418         assert(fdctrl->msr & FD_MSR_NONDMA);
2419 
2420         /* FIFO data write */
2421         if (pos == FD_SECTOR_LEN - 1 ||
2422             fdctrl->data_pos == fdctrl->data_len) {
2423             cur_drv = get_cur_drv(fdctrl);
2424             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2425                            BDRV_SECTOR_SIZE, 0) < 0) {
2426                 FLOPPY_DPRINTF("error writing sector %d\n",
2427                                fd_sector(cur_drv));
2428                 break;
2429             }
2430             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2431                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2432                                fd_sector(cur_drv));
2433                 break;
2434             }
2435         }
2436 
2437         /* Switch to result phase when done with the transfer */
2438         if (fdctrl->data_pos == fdctrl->data_len) {
2439             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2440         }
2441         break;
2442 
2443     case FD_PHASE_COMMAND:
2444         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2445         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2446 
2447         if (pos == 0) {
2448             /* The first byte specifies the command. Now we start reading
2449              * as many parameters as this command requires. */
2450             cmd = get_command(value);
2451             fdctrl->data_len = cmd->parameters + 1;
2452             if (cmd->parameters) {
2453                 fdctrl->msr |= FD_MSR_RQM;
2454             }
2455             fdctrl->msr |= FD_MSR_CMDBUSY;
2456         }
2457 
2458         if (fdctrl->data_pos == fdctrl->data_len) {
2459             /* We have all parameters now, execute the command */
2460             fdctrl->phase = FD_PHASE_EXECUTION;
2461 
2462             if (fdctrl->data_state & FD_STATE_FORMAT) {
2463                 fdctrl_format_sector(fdctrl);
2464                 break;
2465             }
2466 
2467             cmd = get_command(fdctrl->fifo[0]);
2468             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2469             cmd->handler(fdctrl, cmd->direction);
2470         }
2471         break;
2472 
2473     case FD_PHASE_RESULT:
2474     default:
2475         abort();
2476     }
2477 }
2478 
2479 static void fdctrl_result_timer(void *opaque)
2480 {
2481     FDCtrl *fdctrl = opaque;
2482     FDrive *cur_drv = get_cur_drv(fdctrl);
2483 
2484     /* Pretend we are spinning.
2485      * This is needed for Coherent, which uses READ ID to check for
2486      * sector interleaving.
2487      */
2488     if (cur_drv->last_sect != 0) {
2489         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2490     }
2491     /* READ_ID can't automatically succeed! */
2492     if (fdctrl->check_media_rate &&
2493         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2494         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2495                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2496         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2497     } else {
2498         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2499     }
2500 }
2501 
2502 /* Init functions */
2503 
2504 static void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
2505 {
2506     DeviceState *dev;
2507     int i;
2508 
2509     for (i = 0; i < MAX_FD; i++) {
2510         if (fds[i]) {
2511             dev = qdev_new("floppy");
2512             qdev_prop_set_uint32(dev, "unit", i);
2513             qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
2514             qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
2515                                     &error_fatal);
2516             qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
2517         }
2518     }
2519 }
2520 
2521 void isa_fdc_init_drives(ISADevice *fdc, DriveInfo **fds)
2522 {
2523     fdctrl_init_drives(&ISA_FDC(fdc)->state.bus, fds);
2524 }
2525 
2526 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2527                                   Error **errp)
2528 {
2529     unsigned int i;
2530     FDrive *drive;
2531     DeviceState *dev;
2532     BlockBackend *blk;
2533     bool ok;
2534     const char *fdc_name, *drive_suffix;
2535 
2536     for (i = 0; i < MAX_FD; i++) {
2537         drive = &fdctrl->drives[i];
2538         drive->fdctrl = fdctrl;
2539 
2540         /* If the drive is not present, we skip creating the qdev device, but
2541          * still have to initialise the controller. */
2542         blk = fdctrl->qdev_for_drives[i].blk;
2543         if (!blk) {
2544             fd_init(drive);
2545             fd_revalidate(drive);
2546             continue;
2547         }
2548 
2549         fdc_name = object_get_typename(OBJECT(fdc_dev));
2550         drive_suffix = !strcmp(fdc_name, "SUNW,fdtwo") ? "" : i ? "B" : "A";
2551         warn_report("warning: property %s.drive%s is deprecated",
2552                     fdc_name, drive_suffix);
2553         error_printf("Use -device floppy,unit=%d,drive=... instead.\n", i);
2554 
2555         dev = qdev_new("floppy");
2556         qdev_prop_set_uint32(dev, "unit", i);
2557         qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2558 
2559         /*
2560          * Hack alert: we move the backend from the floppy controller
2561          * device to the floppy device.  We first need to detach the
2562          * controller, or else floppy_create()'s qdev_prop_set_drive()
2563          * will die when it attaches floppy device.  We also need to
2564          * take another reference so that blk_detach_dev() doesn't
2565          * free blk while we still need it.
2566          *
2567          * The hack is probably a bad idea.
2568          */
2569         blk_ref(blk);
2570         blk_detach_dev(blk, fdc_dev);
2571         fdctrl->qdev_for_drives[i].blk = NULL;
2572         ok = qdev_prop_set_drive_err(dev, "drive", blk, errp);
2573         blk_unref(blk);
2574         if (!ok) {
2575             return;
2576         }
2577 
2578         if (!qdev_realize_and_unref(dev, &fdctrl->bus.bus, errp)) {
2579             return;
2580         }
2581     }
2582 }
2583 
2584 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2585                         hwaddr mmio_base, DriveInfo **fds)
2586 {
2587     FDCtrl *fdctrl;
2588     DeviceState *dev;
2589     SysBusDevice *sbd;
2590     FDCtrlSysBus *sys;
2591 
2592     dev = qdev_new("sysbus-fdc");
2593     sys = SYSBUS_FDC(dev);
2594     fdctrl = &sys->state;
2595     fdctrl->dma_chann = dma_chann; /* FIXME */
2596     sbd = SYS_BUS_DEVICE(dev);
2597     sysbus_realize_and_unref(sbd, &error_fatal);
2598     sysbus_connect_irq(sbd, 0, irq);
2599     sysbus_mmio_map(sbd, 0, mmio_base);
2600 
2601     fdctrl_init_drives(&sys->state.bus, fds);
2602 }
2603 
2604 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2605                        DriveInfo **fds, qemu_irq *fdc_tc)
2606 {
2607     DeviceState *dev;
2608     FDCtrlSysBus *sys;
2609 
2610     dev = qdev_new("SUNW,fdtwo");
2611     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2612     sys = SYSBUS_FDC(dev);
2613     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2614     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2615     *fdc_tc = qdev_get_gpio_in(dev, 0);
2616 
2617     fdctrl_init_drives(&sys->state.bus, fds);
2618 }
2619 
2620 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2621                                   Error **errp)
2622 {
2623     int i, j;
2624     static int command_tables_inited = 0;
2625 
2626     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2627         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2628         return;
2629     }
2630 
2631     /* Fill 'command_to_handler' lookup table */
2632     if (!command_tables_inited) {
2633         command_tables_inited = 1;
2634         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2635             for (j = 0; j < sizeof(command_to_handler); j++) {
2636                 if ((j & handlers[i].mask) == handlers[i].value) {
2637                     command_to_handler[j] = i;
2638                 }
2639             }
2640         }
2641     }
2642 
2643     FLOPPY_DPRINTF("init controller\n");
2644     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2645     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2646     fdctrl->fifo_size = 512;
2647     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2648                                              fdctrl_result_timer, fdctrl);
2649 
2650     fdctrl->version = 0x90; /* Intel 82078 controller */
2651     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2652     fdctrl->num_floppies = MAX_FD;
2653 
2654     if (fdctrl->dma_chann != -1) {
2655         IsaDmaClass *k;
2656         assert(fdctrl->dma);
2657         k = ISADMA_GET_CLASS(fdctrl->dma);
2658         k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2659                             &fdctrl_transfer_handler, fdctrl);
2660     }
2661 
2662     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2663     fdctrl_connect_drives(fdctrl, dev, errp);
2664 }
2665 
2666 static const MemoryRegionPortio fdc_portio_list[] = {
2667     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2668     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2669     PORTIO_END_OF_LIST(),
2670 };
2671 
2672 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2673 {
2674     ISADevice *isadev = ISA_DEVICE(dev);
2675     FDCtrlISABus *isa = ISA_FDC(dev);
2676     FDCtrl *fdctrl = &isa->state;
2677     Error *err = NULL;
2678 
2679     isa_register_portio_list(isadev, &fdctrl->portio_list,
2680                              isa->iobase, fdc_portio_list, fdctrl,
2681                              "fdc");
2682 
2683     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2684     fdctrl->dma_chann = isa->dma;
2685     if (fdctrl->dma_chann != -1) {
2686         fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2687         if (!fdctrl->dma) {
2688             error_setg(errp, "ISA controller does not support DMA");
2689             return;
2690         }
2691     }
2692 
2693     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2694     fdctrl_realize_common(dev, fdctrl, &err);
2695     if (err != NULL) {
2696         error_propagate(errp, err);
2697         return;
2698     }
2699 }
2700 
2701 static void sysbus_fdc_initfn(Object *obj)
2702 {
2703     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2704     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2705     FDCtrl *fdctrl = &sys->state;
2706 
2707     fdctrl->dma_chann = -1;
2708 
2709     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2710                           "fdc", 0x08);
2711     sysbus_init_mmio(sbd, &fdctrl->iomem);
2712 }
2713 
2714 static void sun4m_fdc_initfn(Object *obj)
2715 {
2716     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2717     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2718     FDCtrl *fdctrl = &sys->state;
2719 
2720     fdctrl->dma_chann = -1;
2721 
2722     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2723                           fdctrl, "fdctrl", 0x08);
2724     sysbus_init_mmio(sbd, &fdctrl->iomem);
2725 }
2726 
2727 static void sysbus_fdc_common_initfn(Object *obj)
2728 {
2729     DeviceState *dev = DEVICE(obj);
2730     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2731     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2732     FDCtrl *fdctrl = &sys->state;
2733 
2734     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2735 
2736     sysbus_init_irq(sbd, &fdctrl->irq);
2737     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2738 }
2739 
2740 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2741 {
2742     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2743     FDCtrl *fdctrl = &sys->state;
2744 
2745     fdctrl_realize_common(dev, fdctrl, errp);
2746 }
2747 
2748 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2749 {
2750     FDCtrlISABus *isa = ISA_FDC(fdc);
2751 
2752     return isa->state.drives[i].drive;
2753 }
2754 
2755 static void isa_fdc_get_drive_max_chs(FloppyDriveType type, uint8_t *maxc,
2756                                       uint8_t *maxh, uint8_t *maxs)
2757 {
2758     const FDFormat *fdf;
2759 
2760     *maxc = *maxh = *maxs = 0;
2761     for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2762         if (fdf->drive != type) {
2763             continue;
2764         }
2765         if (*maxc < fdf->max_track) {
2766             *maxc = fdf->max_track;
2767         }
2768         if (*maxh < fdf->max_head) {
2769             *maxh = fdf->max_head;
2770         }
2771         if (*maxs < fdf->last_sect) {
2772             *maxs = fdf->last_sect;
2773         }
2774     }
2775     (*maxc)--;
2776 }
2777 
2778 static Aml *build_fdinfo_aml(int idx, FloppyDriveType type)
2779 {
2780     Aml *dev, *fdi;
2781     uint8_t maxc, maxh, maxs;
2782 
2783     isa_fdc_get_drive_max_chs(type, &maxc, &maxh, &maxs);
2784 
2785     dev = aml_device("FLP%c", 'A' + idx);
2786 
2787     aml_append(dev, aml_name_decl("_ADR", aml_int(idx)));
2788 
2789     fdi = aml_package(16);
2790     aml_append(fdi, aml_int(idx));  /* Drive Number */
2791     aml_append(fdi,
2792         aml_int(cmos_get_fd_drive_type(type)));  /* Device Type */
2793     /*
2794      * the values below are the limits of the drive, and are thus independent
2795      * of the inserted media
2796      */
2797     aml_append(fdi, aml_int(maxc));  /* Maximum Cylinder Number */
2798     aml_append(fdi, aml_int(maxs));  /* Maximum Sector Number */
2799     aml_append(fdi, aml_int(maxh));  /* Maximum Head Number */
2800     /*
2801      * SeaBIOS returns the below values for int 0x13 func 0x08 regardless of
2802      * the drive type, so shall we
2803      */
2804     aml_append(fdi, aml_int(0xAF));  /* disk_specify_1 */
2805     aml_append(fdi, aml_int(0x02));  /* disk_specify_2 */
2806     aml_append(fdi, aml_int(0x25));  /* disk_motor_wait */
2807     aml_append(fdi, aml_int(0x02));  /* disk_sector_siz */
2808     aml_append(fdi, aml_int(0x12));  /* disk_eot */
2809     aml_append(fdi, aml_int(0x1B));  /* disk_rw_gap */
2810     aml_append(fdi, aml_int(0xFF));  /* disk_dtl */
2811     aml_append(fdi, aml_int(0x6C));  /* disk_formt_gap */
2812     aml_append(fdi, aml_int(0xF6));  /* disk_fill */
2813     aml_append(fdi, aml_int(0x0F));  /* disk_head_sttl */
2814     aml_append(fdi, aml_int(0x08));  /* disk_motor_strt */
2815 
2816     aml_append(dev, aml_name_decl("_FDI", fdi));
2817     return dev;
2818 }
2819 
2820 int cmos_get_fd_drive_type(FloppyDriveType fd0)
2821 {
2822     int val;
2823 
2824     switch (fd0) {
2825     case FLOPPY_DRIVE_TYPE_144:
2826         /* 1.44 Mb 3"5 drive */
2827         val = 4;
2828         break;
2829     case FLOPPY_DRIVE_TYPE_288:
2830         /* 2.88 Mb 3"5 drive */
2831         val = 5;
2832         break;
2833     case FLOPPY_DRIVE_TYPE_120:
2834         /* 1.2 Mb 5"5 drive */
2835         val = 2;
2836         break;
2837     case FLOPPY_DRIVE_TYPE_NONE:
2838     default:
2839         val = 0;
2840         break;
2841     }
2842     return val;
2843 }
2844 
2845 static void fdc_isa_build_aml(ISADevice *isadev, Aml *scope)
2846 {
2847     Aml *dev;
2848     Aml *crs;
2849     int i;
2850 
2851 #define ACPI_FDE_MAX_FD 4
2852     uint32_t fde_buf[5] = {
2853         0, 0, 0, 0,     /* presence of floppy drives #0 - #3 */
2854         cpu_to_le32(2)  /* tape presence (2 == never present) */
2855     };
2856 
2857     crs = aml_resource_template();
2858     aml_append(crs, aml_io(AML_DECODE16, 0x03F2, 0x03F2, 0x00, 0x04));
2859     aml_append(crs, aml_io(AML_DECODE16, 0x03F7, 0x03F7, 0x00, 0x01));
2860     aml_append(crs, aml_irq_no_flags(6));
2861     aml_append(crs,
2862         aml_dma(AML_COMPATIBILITY, AML_NOTBUSMASTER, AML_TRANSFER8, 2));
2863 
2864     dev = aml_device("FDC0");
2865     aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0700")));
2866     aml_append(dev, aml_name_decl("_CRS", crs));
2867 
2868     for (i = 0; i < MIN(MAX_FD, ACPI_FDE_MAX_FD); i++) {
2869         FloppyDriveType type = isa_fdc_get_drive_type(isadev, i);
2870 
2871         if (type < FLOPPY_DRIVE_TYPE_NONE) {
2872             fde_buf[i] = cpu_to_le32(1);  /* drive present */
2873             aml_append(dev, build_fdinfo_aml(i, type));
2874         }
2875     }
2876     aml_append(dev, aml_name_decl("_FDE",
2877                aml_buffer(sizeof(fde_buf), (uint8_t *)fde_buf)));
2878 
2879     aml_append(scope, dev);
2880 }
2881 
2882 static const VMStateDescription vmstate_isa_fdc ={
2883     .name = "fdc",
2884     .version_id = 2,
2885     .minimum_version_id = 2,
2886     .fields = (VMStateField[]) {
2887         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2888         VMSTATE_END_OF_LIST()
2889     }
2890 };
2891 
2892 static Property isa_fdc_properties[] = {
2893     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2894     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2895     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2896     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2897     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2898     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2899                     0, true),
2900     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2901                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2902                         FloppyDriveType),
2903     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2904                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2905                         FloppyDriveType),
2906     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2907                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2908                         FloppyDriveType),
2909     DEFINE_PROP_END_OF_LIST(),
2910 };
2911 
2912 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2913 {
2914     DeviceClass *dc = DEVICE_CLASS(klass);
2915     ISADeviceClass *isa = ISA_DEVICE_CLASS(klass);
2916 
2917     dc->realize = isabus_fdc_realize;
2918     dc->fw_name = "fdc";
2919     dc->reset = fdctrl_external_reset_isa;
2920     dc->vmsd = &vmstate_isa_fdc;
2921     isa->build_aml = fdc_isa_build_aml;
2922     device_class_set_props(dc, isa_fdc_properties);
2923     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2924 }
2925 
2926 static void isabus_fdc_instance_init(Object *obj)
2927 {
2928     FDCtrlISABus *isa = ISA_FDC(obj);
2929 
2930     device_add_bootindex_property(obj, &isa->bootindexA,
2931                                   "bootindexA", "/floppy@0",
2932                                   DEVICE(obj));
2933     device_add_bootindex_property(obj, &isa->bootindexB,
2934                                   "bootindexB", "/floppy@1",
2935                                   DEVICE(obj));
2936 }
2937 
2938 static const TypeInfo isa_fdc_info = {
2939     .name          = TYPE_ISA_FDC,
2940     .parent        = TYPE_ISA_DEVICE,
2941     .instance_size = sizeof(FDCtrlISABus),
2942     .class_init    = isabus_fdc_class_init,
2943     .instance_init = isabus_fdc_instance_init,
2944 };
2945 
2946 static const VMStateDescription vmstate_sysbus_fdc ={
2947     .name = "fdc",
2948     .version_id = 2,
2949     .minimum_version_id = 2,
2950     .fields = (VMStateField[]) {
2951         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2952         VMSTATE_END_OF_LIST()
2953     }
2954 };
2955 
2956 static Property sysbus_fdc_properties[] = {
2957     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2958     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2959     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2960                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2961                         FloppyDriveType),
2962     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2963                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2964                         FloppyDriveType),
2965     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2966                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2967                         FloppyDriveType),
2968     DEFINE_PROP_END_OF_LIST(),
2969 };
2970 
2971 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2972 {
2973     DeviceClass *dc = DEVICE_CLASS(klass);
2974 
2975     device_class_set_props(dc, sysbus_fdc_properties);
2976     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2977 }
2978 
2979 static const TypeInfo sysbus_fdc_info = {
2980     .name          = "sysbus-fdc",
2981     .parent        = TYPE_SYSBUS_FDC,
2982     .instance_init = sysbus_fdc_initfn,
2983     .class_init    = sysbus_fdc_class_init,
2984 };
2985 
2986 static Property sun4m_fdc_properties[] = {
2987     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2988     DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2989                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2990                         FloppyDriveType),
2991     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2992                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2993                         FloppyDriveType),
2994     DEFINE_PROP_END_OF_LIST(),
2995 };
2996 
2997 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2998 {
2999     DeviceClass *dc = DEVICE_CLASS(klass);
3000 
3001     device_class_set_props(dc, sun4m_fdc_properties);
3002     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
3003 }
3004 
3005 static const TypeInfo sun4m_fdc_info = {
3006     .name          = "SUNW,fdtwo",
3007     .parent        = TYPE_SYSBUS_FDC,
3008     .instance_init = sun4m_fdc_initfn,
3009     .class_init    = sun4m_fdc_class_init,
3010 };
3011 
3012 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
3013 {
3014     DeviceClass *dc = DEVICE_CLASS(klass);
3015 
3016     dc->realize = sysbus_fdc_common_realize;
3017     dc->reset = fdctrl_external_reset_sysbus;
3018     dc->vmsd = &vmstate_sysbus_fdc;
3019 }
3020 
3021 static const TypeInfo sysbus_fdc_type_info = {
3022     .name          = TYPE_SYSBUS_FDC,
3023     .parent        = TYPE_SYS_BUS_DEVICE,
3024     .instance_size = sizeof(FDCtrlSysBus),
3025     .instance_init = sysbus_fdc_common_initfn,
3026     .abstract      = true,
3027     .class_init    = sysbus_fdc_common_class_init,
3028 };
3029 
3030 static void fdc_register_types(void)
3031 {
3032     type_register_static(&isa_fdc_info);
3033     type_register_static(&sysbus_fdc_type_info);
3034     type_register_static(&sysbus_fdc_info);
3035     type_register_static(&sun4m_fdc_info);
3036     type_register_static(&floppy_bus_info);
3037     type_register_static(&floppy_drive_info);
3038 }
3039 
3040 type_init(fdc_register_types)
3041