1 /* 2 * Copyright (C) 2010 Red Hat, Inc. 3 * 4 * written by Gerd Hoffmann <kraxel@redhat.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 or 9 * (at your option) version 3 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "hw/hw.h" 22 #include "hw/pci/pci.h" 23 #include "hw/pci/msi.h" 24 #include "qemu/timer.h" 25 #include "qemu/bitops.h" 26 #include "hw/audio/soundhw.h" 27 #include "intel-hda.h" 28 #include "intel-hda-defs.h" 29 #include "sysemu/dma.h" 30 #include "qapi/error.h" 31 32 /* --------------------------------------------------------------------- */ 33 /* hda bus */ 34 35 static Property hda_props[] = { 36 DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1), 37 DEFINE_PROP_END_OF_LIST() 38 }; 39 40 static const TypeInfo hda_codec_bus_info = { 41 .name = TYPE_HDA_BUS, 42 .parent = TYPE_BUS, 43 .instance_size = sizeof(HDACodecBus), 44 }; 45 46 void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus, size_t bus_size, 47 hda_codec_response_func response, 48 hda_codec_xfer_func xfer) 49 { 50 qbus_create_inplace(bus, bus_size, TYPE_HDA_BUS, dev, NULL); 51 bus->response = response; 52 bus->xfer = xfer; 53 } 54 55 static void hda_codec_dev_realize(DeviceState *qdev, Error **errp) 56 { 57 HDACodecBus *bus = HDA_BUS(qdev->parent_bus); 58 HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev); 59 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev); 60 61 if (dev->cad == -1) { 62 dev->cad = bus->next_cad; 63 } 64 if (dev->cad >= 15) { 65 error_setg(errp, "HDA audio codec address is full"); 66 return; 67 } 68 bus->next_cad = dev->cad + 1; 69 if (cdc->init(dev) != 0) { 70 error_setg(errp, "HDA audio init failed"); 71 } 72 } 73 74 static void hda_codec_dev_unrealize(DeviceState *qdev, Error **errp) 75 { 76 HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev); 77 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev); 78 79 if (cdc->exit) { 80 cdc->exit(dev); 81 } 82 } 83 84 HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad) 85 { 86 BusChild *kid; 87 HDACodecDevice *cdev; 88 89 QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) { 90 DeviceState *qdev = kid->child; 91 cdev = HDA_CODEC_DEVICE(qdev); 92 if (cdev->cad == cad) { 93 return cdev; 94 } 95 } 96 return NULL; 97 } 98 99 void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response) 100 { 101 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus); 102 bus->response(dev, solicited, response); 103 } 104 105 bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output, 106 uint8_t *buf, uint32_t len) 107 { 108 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus); 109 return bus->xfer(dev, stnr, output, buf, len); 110 } 111 112 /* --------------------------------------------------------------------- */ 113 /* intel hda emulation */ 114 115 typedef struct IntelHDAStream IntelHDAStream; 116 typedef struct IntelHDAState IntelHDAState; 117 typedef struct IntelHDAReg IntelHDAReg; 118 119 typedef struct bpl { 120 uint64_t addr; 121 uint32_t len; 122 uint32_t flags; 123 } bpl; 124 125 struct IntelHDAStream { 126 /* registers */ 127 uint32_t ctl; 128 uint32_t lpib; 129 uint32_t cbl; 130 uint32_t lvi; 131 uint32_t fmt; 132 uint32_t bdlp_lbase; 133 uint32_t bdlp_ubase; 134 135 /* state */ 136 bpl *bpl; 137 uint32_t bentries; 138 uint32_t bsize, be, bp; 139 }; 140 141 struct IntelHDAState { 142 PCIDevice pci; 143 const char *name; 144 HDACodecBus codecs; 145 146 /* registers */ 147 uint32_t g_ctl; 148 uint32_t wake_en; 149 uint32_t state_sts; 150 uint32_t int_ctl; 151 uint32_t int_sts; 152 uint32_t wall_clk; 153 154 uint32_t corb_lbase; 155 uint32_t corb_ubase; 156 uint32_t corb_rp; 157 uint32_t corb_wp; 158 uint32_t corb_ctl; 159 uint32_t corb_sts; 160 uint32_t corb_size; 161 162 uint32_t rirb_lbase; 163 uint32_t rirb_ubase; 164 uint32_t rirb_wp; 165 uint32_t rirb_cnt; 166 uint32_t rirb_ctl; 167 uint32_t rirb_sts; 168 uint32_t rirb_size; 169 170 uint32_t dp_lbase; 171 uint32_t dp_ubase; 172 173 uint32_t icw; 174 uint32_t irr; 175 uint32_t ics; 176 177 /* streams */ 178 IntelHDAStream st[8]; 179 180 /* state */ 181 MemoryRegion mmio; 182 uint32_t rirb_count; 183 int64_t wall_base_ns; 184 185 /* debug logging */ 186 const IntelHDAReg *last_reg; 187 uint32_t last_val; 188 uint32_t last_write; 189 uint32_t last_sec; 190 uint32_t repeat_count; 191 192 /* properties */ 193 uint32_t debug; 194 OnOffAuto msi; 195 bool old_msi_addr; 196 }; 197 198 #define TYPE_INTEL_HDA_GENERIC "intel-hda-generic" 199 200 #define INTEL_HDA(obj) \ 201 OBJECT_CHECK(IntelHDAState, (obj), TYPE_INTEL_HDA_GENERIC) 202 203 struct IntelHDAReg { 204 const char *name; /* register name */ 205 uint32_t size; /* size in bytes */ 206 uint32_t reset; /* reset value */ 207 uint32_t wmask; /* write mask */ 208 uint32_t wclear; /* write 1 to clear bits */ 209 uint32_t offset; /* location in IntelHDAState */ 210 uint32_t shift; /* byte access entries for dwords */ 211 uint32_t stream; 212 void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old); 213 void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg); 214 }; 215 216 static void intel_hda_reset(DeviceState *dev); 217 218 /* --------------------------------------------------------------------- */ 219 220 static hwaddr intel_hda_addr(uint32_t lbase, uint32_t ubase) 221 { 222 return ((uint64_t)ubase << 32) | lbase; 223 } 224 225 static void intel_hda_update_int_sts(IntelHDAState *d) 226 { 227 uint32_t sts = 0; 228 uint32_t i; 229 230 /* update controller status */ 231 if (d->rirb_sts & ICH6_RBSTS_IRQ) { 232 sts |= (1 << 30); 233 } 234 if (d->rirb_sts & ICH6_RBSTS_OVERRUN) { 235 sts |= (1 << 30); 236 } 237 if (d->state_sts & d->wake_en) { 238 sts |= (1 << 30); 239 } 240 241 /* update stream status */ 242 for (i = 0; i < 8; i++) { 243 /* buffer completion interrupt */ 244 if (d->st[i].ctl & (1 << 26)) { 245 sts |= (1 << i); 246 } 247 } 248 249 /* update global status */ 250 if (sts & d->int_ctl) { 251 sts |= (1U << 31); 252 } 253 254 d->int_sts = sts; 255 } 256 257 static void intel_hda_update_irq(IntelHDAState *d) 258 { 259 bool msi = msi_enabled(&d->pci); 260 int level; 261 262 intel_hda_update_int_sts(d); 263 if (d->int_sts & (1U << 31) && d->int_ctl & (1U << 31)) { 264 level = 1; 265 } else { 266 level = 0; 267 } 268 dprint(d, 2, "%s: level %d [%s]\n", __FUNCTION__, 269 level, msi ? "msi" : "intx"); 270 if (msi) { 271 if (level) { 272 msi_notify(&d->pci, 0); 273 } 274 } else { 275 pci_set_irq(&d->pci, level); 276 } 277 } 278 279 static int intel_hda_send_command(IntelHDAState *d, uint32_t verb) 280 { 281 uint32_t cad, nid, data; 282 HDACodecDevice *codec; 283 HDACodecDeviceClass *cdc; 284 285 cad = (verb >> 28) & 0x0f; 286 if (verb & (1 << 27)) { 287 /* indirect node addressing, not specified in HDA 1.0 */ 288 dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__); 289 return -1; 290 } 291 nid = (verb >> 20) & 0x7f; 292 data = verb & 0xfffff; 293 294 codec = hda_codec_find(&d->codecs, cad); 295 if (codec == NULL) { 296 dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__); 297 return -1; 298 } 299 cdc = HDA_CODEC_DEVICE_GET_CLASS(codec); 300 cdc->command(codec, nid, data); 301 return 0; 302 } 303 304 static void intel_hda_corb_run(IntelHDAState *d) 305 { 306 hwaddr addr; 307 uint32_t rp, verb; 308 309 if (d->ics & ICH6_IRS_BUSY) { 310 dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw); 311 intel_hda_send_command(d, d->icw); 312 return; 313 } 314 315 for (;;) { 316 if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) { 317 dprint(d, 2, "%s: !run\n", __FUNCTION__); 318 return; 319 } 320 if ((d->corb_rp & 0xff) == d->corb_wp) { 321 dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__); 322 return; 323 } 324 if (d->rirb_count == d->rirb_cnt) { 325 dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__); 326 return; 327 } 328 329 rp = (d->corb_rp + 1) & 0xff; 330 addr = intel_hda_addr(d->corb_lbase, d->corb_ubase); 331 verb = ldl_le_pci_dma(&d->pci, addr + 4*rp); 332 d->corb_rp = rp; 333 334 dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb); 335 intel_hda_send_command(d, verb); 336 } 337 } 338 339 static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response) 340 { 341 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus); 342 IntelHDAState *d = container_of(bus, IntelHDAState, codecs); 343 hwaddr addr; 344 uint32_t wp, ex; 345 346 if (d->ics & ICH6_IRS_BUSY) { 347 dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n", 348 __FUNCTION__, response, dev->cad); 349 d->irr = response; 350 d->ics &= ~(ICH6_IRS_BUSY | 0xf0); 351 d->ics |= (ICH6_IRS_VALID | (dev->cad << 4)); 352 return; 353 } 354 355 if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) { 356 dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__); 357 return; 358 } 359 360 ex = (solicited ? 0 : (1 << 4)) | dev->cad; 361 wp = (d->rirb_wp + 1) & 0xff; 362 addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase); 363 stl_le_pci_dma(&d->pci, addr + 8*wp, response); 364 stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex); 365 d->rirb_wp = wp; 366 367 dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n", 368 __FUNCTION__, wp, response, ex); 369 370 d->rirb_count++; 371 if (d->rirb_count == d->rirb_cnt) { 372 dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count); 373 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) { 374 d->rirb_sts |= ICH6_RBSTS_IRQ; 375 intel_hda_update_irq(d); 376 } 377 } else if ((d->corb_rp & 0xff) == d->corb_wp) { 378 dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__, 379 d->rirb_count, d->rirb_cnt); 380 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) { 381 d->rirb_sts |= ICH6_RBSTS_IRQ; 382 intel_hda_update_irq(d); 383 } 384 } 385 } 386 387 static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output, 388 uint8_t *buf, uint32_t len) 389 { 390 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus); 391 IntelHDAState *d = container_of(bus, IntelHDAState, codecs); 392 hwaddr addr; 393 uint32_t s, copy, left; 394 IntelHDAStream *st; 395 bool irq = false; 396 397 st = output ? d->st + 4 : d->st; 398 for (s = 0; s < 4; s++) { 399 if (stnr == ((st[s].ctl >> 20) & 0x0f)) { 400 st = st + s; 401 break; 402 } 403 } 404 if (s == 4) { 405 return false; 406 } 407 if (st->bpl == NULL) { 408 return false; 409 } 410 if (st->ctl & (1 << 26)) { 411 /* 412 * Wait with the next DMA xfer until the guest 413 * has acked the buffer completion interrupt 414 */ 415 return false; 416 } 417 418 left = len; 419 s = st->bentries; 420 while (left > 0 && s-- > 0) { 421 copy = left; 422 if (copy > st->bsize - st->lpib) 423 copy = st->bsize - st->lpib; 424 if (copy > st->bpl[st->be].len - st->bp) 425 copy = st->bpl[st->be].len - st->bp; 426 427 dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n", 428 st->be, st->bp, st->bpl[st->be].len, copy); 429 430 pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output); 431 st->lpib += copy; 432 st->bp += copy; 433 buf += copy; 434 left -= copy; 435 436 if (st->bpl[st->be].len == st->bp) { 437 /* bpl entry filled */ 438 if (st->bpl[st->be].flags & 0x01) { 439 irq = true; 440 } 441 st->bp = 0; 442 st->be++; 443 if (st->be == st->bentries) { 444 /* bpl wrap around */ 445 st->be = 0; 446 st->lpib = 0; 447 } 448 } 449 } 450 if (d->dp_lbase & 0x01) { 451 s = st - d->st; 452 addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase); 453 stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib); 454 } 455 dprint(d, 3, "dma: --\n"); 456 457 if (irq) { 458 st->ctl |= (1 << 26); /* buffer completion interrupt */ 459 intel_hda_update_irq(d); 460 } 461 return true; 462 } 463 464 static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st) 465 { 466 hwaddr addr; 467 uint8_t buf[16]; 468 uint32_t i; 469 470 addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase); 471 st->bentries = st->lvi +1; 472 g_free(st->bpl); 473 st->bpl = g_malloc(sizeof(bpl) * st->bentries); 474 for (i = 0; i < st->bentries; i++, addr += 16) { 475 pci_dma_read(&d->pci, addr, buf, 16); 476 st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf); 477 st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8)); 478 st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12)); 479 dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n", 480 i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags); 481 } 482 483 st->bsize = st->cbl; 484 st->lpib = 0; 485 st->be = 0; 486 st->bp = 0; 487 } 488 489 static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output) 490 { 491 BusChild *kid; 492 HDACodecDevice *cdev; 493 494 QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) { 495 DeviceState *qdev = kid->child; 496 HDACodecDeviceClass *cdc; 497 498 cdev = HDA_CODEC_DEVICE(qdev); 499 cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev); 500 if (cdc->stream) { 501 cdc->stream(cdev, stream, running, output); 502 } 503 } 504 } 505 506 /* --------------------------------------------------------------------- */ 507 508 static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 509 { 510 if ((d->g_ctl & ICH6_GCTL_RESET) == 0) { 511 intel_hda_reset(DEVICE(d)); 512 } 513 } 514 515 static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 516 { 517 intel_hda_update_irq(d); 518 } 519 520 static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 521 { 522 intel_hda_update_irq(d); 523 } 524 525 static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 526 { 527 intel_hda_update_irq(d); 528 } 529 530 static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg) 531 { 532 int64_t ns; 533 534 ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - d->wall_base_ns; 535 d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */ 536 } 537 538 static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 539 { 540 intel_hda_corb_run(d); 541 } 542 543 static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 544 { 545 intel_hda_corb_run(d); 546 } 547 548 static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 549 { 550 if (d->rirb_wp & ICH6_RIRBWP_RST) { 551 d->rirb_wp = 0; 552 } 553 } 554 555 static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 556 { 557 intel_hda_update_irq(d); 558 559 if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) { 560 /* cleared ICH6_RBSTS_IRQ */ 561 d->rirb_count = 0; 562 intel_hda_corb_run(d); 563 } 564 } 565 566 static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 567 { 568 if (d->ics & ICH6_IRS_BUSY) { 569 intel_hda_corb_run(d); 570 } 571 } 572 573 static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 574 { 575 bool output = reg->stream >= 4; 576 IntelHDAStream *st = d->st + reg->stream; 577 578 if (st->ctl & 0x01) { 579 /* reset */ 580 dprint(d, 1, "st #%d: reset\n", reg->stream); 581 st->ctl = SD_STS_FIFO_READY << 24; 582 } 583 if ((st->ctl & 0x02) != (old & 0x02)) { 584 uint32_t stnr = (st->ctl >> 20) & 0x0f; 585 /* run bit flipped */ 586 if (st->ctl & 0x02) { 587 /* start */ 588 dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n", 589 reg->stream, stnr, st->cbl); 590 intel_hda_parse_bdl(d, st); 591 intel_hda_notify_codecs(d, stnr, true, output); 592 } else { 593 /* stop */ 594 dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr); 595 intel_hda_notify_codecs(d, stnr, false, output); 596 } 597 } 598 intel_hda_update_irq(d); 599 } 600 601 /* --------------------------------------------------------------------- */ 602 603 #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o)) 604 605 static const struct IntelHDAReg regtab[] = { 606 /* global */ 607 [ ICH6_REG_GCAP ] = { 608 .name = "GCAP", 609 .size = 2, 610 .reset = 0x4401, 611 }, 612 [ ICH6_REG_VMIN ] = { 613 .name = "VMIN", 614 .size = 1, 615 }, 616 [ ICH6_REG_VMAJ ] = { 617 .name = "VMAJ", 618 .size = 1, 619 .reset = 1, 620 }, 621 [ ICH6_REG_OUTPAY ] = { 622 .name = "OUTPAY", 623 .size = 2, 624 .reset = 0x3c, 625 }, 626 [ ICH6_REG_INPAY ] = { 627 .name = "INPAY", 628 .size = 2, 629 .reset = 0x1d, 630 }, 631 [ ICH6_REG_GCTL ] = { 632 .name = "GCTL", 633 .size = 4, 634 .wmask = 0x0103, 635 .offset = offsetof(IntelHDAState, g_ctl), 636 .whandler = intel_hda_set_g_ctl, 637 }, 638 [ ICH6_REG_WAKEEN ] = { 639 .name = "WAKEEN", 640 .size = 2, 641 .wmask = 0x7fff, 642 .offset = offsetof(IntelHDAState, wake_en), 643 .whandler = intel_hda_set_wake_en, 644 }, 645 [ ICH6_REG_STATESTS ] = { 646 .name = "STATESTS", 647 .size = 2, 648 .wmask = 0x7fff, 649 .wclear = 0x7fff, 650 .offset = offsetof(IntelHDAState, state_sts), 651 .whandler = intel_hda_set_state_sts, 652 }, 653 654 /* interrupts */ 655 [ ICH6_REG_INTCTL ] = { 656 .name = "INTCTL", 657 .size = 4, 658 .wmask = 0xc00000ff, 659 .offset = offsetof(IntelHDAState, int_ctl), 660 .whandler = intel_hda_set_int_ctl, 661 }, 662 [ ICH6_REG_INTSTS ] = { 663 .name = "INTSTS", 664 .size = 4, 665 .wmask = 0xc00000ff, 666 .wclear = 0xc00000ff, 667 .offset = offsetof(IntelHDAState, int_sts), 668 }, 669 670 /* misc */ 671 [ ICH6_REG_WALLCLK ] = { 672 .name = "WALLCLK", 673 .size = 4, 674 .offset = offsetof(IntelHDAState, wall_clk), 675 .rhandler = intel_hda_get_wall_clk, 676 }, 677 [ ICH6_REG_WALLCLK + 0x2000 ] = { 678 .name = "WALLCLK(alias)", 679 .size = 4, 680 .offset = offsetof(IntelHDAState, wall_clk), 681 .rhandler = intel_hda_get_wall_clk, 682 }, 683 684 /* dma engine */ 685 [ ICH6_REG_CORBLBASE ] = { 686 .name = "CORBLBASE", 687 .size = 4, 688 .wmask = 0xffffff80, 689 .offset = offsetof(IntelHDAState, corb_lbase), 690 }, 691 [ ICH6_REG_CORBUBASE ] = { 692 .name = "CORBUBASE", 693 .size = 4, 694 .wmask = 0xffffffff, 695 .offset = offsetof(IntelHDAState, corb_ubase), 696 }, 697 [ ICH6_REG_CORBWP ] = { 698 .name = "CORBWP", 699 .size = 2, 700 .wmask = 0xff, 701 .offset = offsetof(IntelHDAState, corb_wp), 702 .whandler = intel_hda_set_corb_wp, 703 }, 704 [ ICH6_REG_CORBRP ] = { 705 .name = "CORBRP", 706 .size = 2, 707 .wmask = 0x80ff, 708 .offset = offsetof(IntelHDAState, corb_rp), 709 }, 710 [ ICH6_REG_CORBCTL ] = { 711 .name = "CORBCTL", 712 .size = 1, 713 .wmask = 0x03, 714 .offset = offsetof(IntelHDAState, corb_ctl), 715 .whandler = intel_hda_set_corb_ctl, 716 }, 717 [ ICH6_REG_CORBSTS ] = { 718 .name = "CORBSTS", 719 .size = 1, 720 .wmask = 0x01, 721 .wclear = 0x01, 722 .offset = offsetof(IntelHDAState, corb_sts), 723 }, 724 [ ICH6_REG_CORBSIZE ] = { 725 .name = "CORBSIZE", 726 .size = 1, 727 .reset = 0x42, 728 .offset = offsetof(IntelHDAState, corb_size), 729 }, 730 [ ICH6_REG_RIRBLBASE ] = { 731 .name = "RIRBLBASE", 732 .size = 4, 733 .wmask = 0xffffff80, 734 .offset = offsetof(IntelHDAState, rirb_lbase), 735 }, 736 [ ICH6_REG_RIRBUBASE ] = { 737 .name = "RIRBUBASE", 738 .size = 4, 739 .wmask = 0xffffffff, 740 .offset = offsetof(IntelHDAState, rirb_ubase), 741 }, 742 [ ICH6_REG_RIRBWP ] = { 743 .name = "RIRBWP", 744 .size = 2, 745 .wmask = 0x8000, 746 .offset = offsetof(IntelHDAState, rirb_wp), 747 .whandler = intel_hda_set_rirb_wp, 748 }, 749 [ ICH6_REG_RINTCNT ] = { 750 .name = "RINTCNT", 751 .size = 2, 752 .wmask = 0xff, 753 .offset = offsetof(IntelHDAState, rirb_cnt), 754 }, 755 [ ICH6_REG_RIRBCTL ] = { 756 .name = "RIRBCTL", 757 .size = 1, 758 .wmask = 0x07, 759 .offset = offsetof(IntelHDAState, rirb_ctl), 760 }, 761 [ ICH6_REG_RIRBSTS ] = { 762 .name = "RIRBSTS", 763 .size = 1, 764 .wmask = 0x05, 765 .wclear = 0x05, 766 .offset = offsetof(IntelHDAState, rirb_sts), 767 .whandler = intel_hda_set_rirb_sts, 768 }, 769 [ ICH6_REG_RIRBSIZE ] = { 770 .name = "RIRBSIZE", 771 .size = 1, 772 .reset = 0x42, 773 .offset = offsetof(IntelHDAState, rirb_size), 774 }, 775 776 [ ICH6_REG_DPLBASE ] = { 777 .name = "DPLBASE", 778 .size = 4, 779 .wmask = 0xffffff81, 780 .offset = offsetof(IntelHDAState, dp_lbase), 781 }, 782 [ ICH6_REG_DPUBASE ] = { 783 .name = "DPUBASE", 784 .size = 4, 785 .wmask = 0xffffffff, 786 .offset = offsetof(IntelHDAState, dp_ubase), 787 }, 788 789 [ ICH6_REG_IC ] = { 790 .name = "ICW", 791 .size = 4, 792 .wmask = 0xffffffff, 793 .offset = offsetof(IntelHDAState, icw), 794 }, 795 [ ICH6_REG_IR ] = { 796 .name = "IRR", 797 .size = 4, 798 .offset = offsetof(IntelHDAState, irr), 799 }, 800 [ ICH6_REG_IRS ] = { 801 .name = "ICS", 802 .size = 2, 803 .wmask = 0x0003, 804 .wclear = 0x0002, 805 .offset = offsetof(IntelHDAState, ics), 806 .whandler = intel_hda_set_ics, 807 }, 808 809 #define HDA_STREAM(_t, _i) \ 810 [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \ 811 .stream = _i, \ 812 .name = _t stringify(_i) " CTL", \ 813 .size = 4, \ 814 .wmask = 0x1cff001f, \ 815 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 816 .whandler = intel_hda_set_st_ctl, \ 817 }, \ 818 [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \ 819 .stream = _i, \ 820 .name = _t stringify(_i) " CTL(stnr)", \ 821 .size = 1, \ 822 .shift = 16, \ 823 .wmask = 0x00ff0000, \ 824 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 825 .whandler = intel_hda_set_st_ctl, \ 826 }, \ 827 [ ST_REG(_i, ICH6_REG_SD_STS)] = { \ 828 .stream = _i, \ 829 .name = _t stringify(_i) " CTL(sts)", \ 830 .size = 1, \ 831 .shift = 24, \ 832 .wmask = 0x1c000000, \ 833 .wclear = 0x1c000000, \ 834 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 835 .whandler = intel_hda_set_st_ctl, \ 836 .reset = SD_STS_FIFO_READY << 24 \ 837 }, \ 838 [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \ 839 .stream = _i, \ 840 .name = _t stringify(_i) " LPIB", \ 841 .size = 4, \ 842 .offset = offsetof(IntelHDAState, st[_i].lpib), \ 843 }, \ 844 [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \ 845 .stream = _i, \ 846 .name = _t stringify(_i) " LPIB(alias)", \ 847 .size = 4, \ 848 .offset = offsetof(IntelHDAState, st[_i].lpib), \ 849 }, \ 850 [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \ 851 .stream = _i, \ 852 .name = _t stringify(_i) " CBL", \ 853 .size = 4, \ 854 .wmask = 0xffffffff, \ 855 .offset = offsetof(IntelHDAState, st[_i].cbl), \ 856 }, \ 857 [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \ 858 .stream = _i, \ 859 .name = _t stringify(_i) " LVI", \ 860 .size = 2, \ 861 .wmask = 0x00ff, \ 862 .offset = offsetof(IntelHDAState, st[_i].lvi), \ 863 }, \ 864 [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \ 865 .stream = _i, \ 866 .name = _t stringify(_i) " FIFOS", \ 867 .size = 2, \ 868 .reset = HDA_BUFFER_SIZE, \ 869 }, \ 870 [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \ 871 .stream = _i, \ 872 .name = _t stringify(_i) " FMT", \ 873 .size = 2, \ 874 .wmask = 0x7f7f, \ 875 .offset = offsetof(IntelHDAState, st[_i].fmt), \ 876 }, \ 877 [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \ 878 .stream = _i, \ 879 .name = _t stringify(_i) " BDLPL", \ 880 .size = 4, \ 881 .wmask = 0xffffff80, \ 882 .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \ 883 }, \ 884 [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \ 885 .stream = _i, \ 886 .name = _t stringify(_i) " BDLPU", \ 887 .size = 4, \ 888 .wmask = 0xffffffff, \ 889 .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \ 890 }, \ 891 892 HDA_STREAM("IN", 0) 893 HDA_STREAM("IN", 1) 894 HDA_STREAM("IN", 2) 895 HDA_STREAM("IN", 3) 896 897 HDA_STREAM("OUT", 4) 898 HDA_STREAM("OUT", 5) 899 HDA_STREAM("OUT", 6) 900 HDA_STREAM("OUT", 7) 901 902 }; 903 904 static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, hwaddr addr) 905 { 906 const IntelHDAReg *reg; 907 908 if (addr >= ARRAY_SIZE(regtab)) { 909 goto noreg; 910 } 911 reg = regtab+addr; 912 if (reg->name == NULL) { 913 goto noreg; 914 } 915 return reg; 916 917 noreg: 918 dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr); 919 return NULL; 920 } 921 922 static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg) 923 { 924 uint8_t *addr = (void*)d; 925 926 addr += reg->offset; 927 return (uint32_t*)addr; 928 } 929 930 static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val, 931 uint32_t wmask) 932 { 933 uint32_t *addr; 934 uint32_t old; 935 936 if (!reg) { 937 return; 938 } 939 940 if (d->debug) { 941 time_t now = time(NULL); 942 if (d->last_write && d->last_reg == reg && d->last_val == val) { 943 d->repeat_count++; 944 if (d->last_sec != now) { 945 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 946 d->last_sec = now; 947 d->repeat_count = 0; 948 } 949 } else { 950 if (d->repeat_count) { 951 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 952 } 953 dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask); 954 d->last_write = 1; 955 d->last_reg = reg; 956 d->last_val = val; 957 d->last_sec = now; 958 d->repeat_count = 0; 959 } 960 } 961 assert(reg->offset != 0); 962 963 addr = intel_hda_reg_addr(d, reg); 964 old = *addr; 965 966 if (reg->shift) { 967 val <<= reg->shift; 968 wmask <<= reg->shift; 969 } 970 wmask &= reg->wmask; 971 *addr &= ~wmask; 972 *addr |= wmask & val; 973 *addr &= ~(val & reg->wclear); 974 975 if (reg->whandler) { 976 reg->whandler(d, reg, old); 977 } 978 } 979 980 static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg, 981 uint32_t rmask) 982 { 983 uint32_t *addr, ret; 984 985 if (!reg) { 986 return 0; 987 } 988 989 if (reg->rhandler) { 990 reg->rhandler(d, reg); 991 } 992 993 if (reg->offset == 0) { 994 /* constant read-only register */ 995 ret = reg->reset; 996 } else { 997 addr = intel_hda_reg_addr(d, reg); 998 ret = *addr; 999 if (reg->shift) { 1000 ret >>= reg->shift; 1001 } 1002 ret &= rmask; 1003 } 1004 if (d->debug) { 1005 time_t now = time(NULL); 1006 if (!d->last_write && d->last_reg == reg && d->last_val == ret) { 1007 d->repeat_count++; 1008 if (d->last_sec != now) { 1009 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 1010 d->last_sec = now; 1011 d->repeat_count = 0; 1012 } 1013 } else { 1014 if (d->repeat_count) { 1015 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 1016 } 1017 dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask); 1018 d->last_write = 0; 1019 d->last_reg = reg; 1020 d->last_val = ret; 1021 d->last_sec = now; 1022 d->repeat_count = 0; 1023 } 1024 } 1025 return ret; 1026 } 1027 1028 static void intel_hda_regs_reset(IntelHDAState *d) 1029 { 1030 uint32_t *addr; 1031 int i; 1032 1033 for (i = 0; i < ARRAY_SIZE(regtab); i++) { 1034 if (regtab[i].name == NULL) { 1035 continue; 1036 } 1037 if (regtab[i].offset == 0) { 1038 continue; 1039 } 1040 addr = intel_hda_reg_addr(d, regtab + i); 1041 *addr = regtab[i].reset; 1042 } 1043 } 1044 1045 /* --------------------------------------------------------------------- */ 1046 1047 static void intel_hda_mmio_write(void *opaque, hwaddr addr, uint64_t val, 1048 unsigned size) 1049 { 1050 IntelHDAState *d = opaque; 1051 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1052 1053 intel_hda_reg_write(d, reg, val, MAKE_64BIT_MASK(0, size * 8)); 1054 } 1055 1056 static uint64_t intel_hda_mmio_read(void *opaque, hwaddr addr, unsigned size) 1057 { 1058 IntelHDAState *d = opaque; 1059 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1060 1061 return intel_hda_reg_read(d, reg, MAKE_64BIT_MASK(0, size * 8)); 1062 } 1063 1064 static const MemoryRegionOps intel_hda_mmio_ops = { 1065 .read = intel_hda_mmio_read, 1066 .write = intel_hda_mmio_write, 1067 .impl = { 1068 .min_access_size = 1, 1069 .max_access_size = 4, 1070 }, 1071 .endianness = DEVICE_NATIVE_ENDIAN, 1072 }; 1073 1074 /* --------------------------------------------------------------------- */ 1075 1076 static void intel_hda_reset(DeviceState *dev) 1077 { 1078 BusChild *kid; 1079 IntelHDAState *d = INTEL_HDA(dev); 1080 HDACodecDevice *cdev; 1081 1082 intel_hda_regs_reset(d); 1083 d->wall_base_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1084 1085 /* reset codecs */ 1086 QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) { 1087 DeviceState *qdev = kid->child; 1088 cdev = HDA_CODEC_DEVICE(qdev); 1089 device_reset(DEVICE(cdev)); 1090 d->state_sts |= (1 << cdev->cad); 1091 } 1092 intel_hda_update_irq(d); 1093 } 1094 1095 static void intel_hda_realize(PCIDevice *pci, Error **errp) 1096 { 1097 IntelHDAState *d = INTEL_HDA(pci); 1098 uint8_t *conf = d->pci.config; 1099 Error *err = NULL; 1100 int ret; 1101 1102 d->name = object_get_typename(OBJECT(d)); 1103 1104 pci_config_set_interrupt_pin(conf, 1); 1105 1106 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */ 1107 conf[0x40] = 0x01; 1108 1109 if (d->msi != ON_OFF_AUTO_OFF) { 1110 ret = msi_init(&d->pci, d->old_msi_addr ? 0x50 : 0x60, 1111 1, true, false, &err); 1112 /* Any error other than -ENOTSUP(board's MSI support is broken) 1113 * is a programming error */ 1114 assert(!ret || ret == -ENOTSUP); 1115 if (ret && d->msi == ON_OFF_AUTO_ON) { 1116 /* Can't satisfy user's explicit msi=on request, fail */ 1117 error_append_hint(&err, "You have to use msi=auto (default) or " 1118 "msi=off with this machine type.\n"); 1119 error_propagate(errp, err); 1120 return; 1121 } 1122 assert(!err || d->msi == ON_OFF_AUTO_AUTO); 1123 /* With msi=auto, we fall back to MSI off silently */ 1124 error_free(err); 1125 } 1126 1127 memory_region_init_io(&d->mmio, OBJECT(d), &intel_hda_mmio_ops, d, 1128 "intel-hda", 0x4000); 1129 pci_register_bar(&d->pci, 0, 0, &d->mmio); 1130 1131 hda_codec_bus_init(DEVICE(pci), &d->codecs, sizeof(d->codecs), 1132 intel_hda_response, intel_hda_xfer); 1133 } 1134 1135 static void intel_hda_exit(PCIDevice *pci) 1136 { 1137 IntelHDAState *d = INTEL_HDA(pci); 1138 1139 msi_uninit(&d->pci); 1140 } 1141 1142 static int intel_hda_post_load(void *opaque, int version) 1143 { 1144 IntelHDAState* d = opaque; 1145 int i; 1146 1147 dprint(d, 1, "%s\n", __FUNCTION__); 1148 for (i = 0; i < ARRAY_SIZE(d->st); i++) { 1149 if (d->st[i].ctl & 0x02) { 1150 intel_hda_parse_bdl(d, &d->st[i]); 1151 } 1152 } 1153 intel_hda_update_irq(d); 1154 return 0; 1155 } 1156 1157 static const VMStateDescription vmstate_intel_hda_stream = { 1158 .name = "intel-hda-stream", 1159 .version_id = 1, 1160 .fields = (VMStateField[]) { 1161 VMSTATE_UINT32(ctl, IntelHDAStream), 1162 VMSTATE_UINT32(lpib, IntelHDAStream), 1163 VMSTATE_UINT32(cbl, IntelHDAStream), 1164 VMSTATE_UINT32(lvi, IntelHDAStream), 1165 VMSTATE_UINT32(fmt, IntelHDAStream), 1166 VMSTATE_UINT32(bdlp_lbase, IntelHDAStream), 1167 VMSTATE_UINT32(bdlp_ubase, IntelHDAStream), 1168 VMSTATE_END_OF_LIST() 1169 } 1170 }; 1171 1172 static const VMStateDescription vmstate_intel_hda = { 1173 .name = "intel-hda", 1174 .version_id = 1, 1175 .post_load = intel_hda_post_load, 1176 .fields = (VMStateField[]) { 1177 VMSTATE_PCI_DEVICE(pci, IntelHDAState), 1178 1179 /* registers */ 1180 VMSTATE_UINT32(g_ctl, IntelHDAState), 1181 VMSTATE_UINT32(wake_en, IntelHDAState), 1182 VMSTATE_UINT32(state_sts, IntelHDAState), 1183 VMSTATE_UINT32(int_ctl, IntelHDAState), 1184 VMSTATE_UINT32(int_sts, IntelHDAState), 1185 VMSTATE_UINT32(wall_clk, IntelHDAState), 1186 VMSTATE_UINT32(corb_lbase, IntelHDAState), 1187 VMSTATE_UINT32(corb_ubase, IntelHDAState), 1188 VMSTATE_UINT32(corb_rp, IntelHDAState), 1189 VMSTATE_UINT32(corb_wp, IntelHDAState), 1190 VMSTATE_UINT32(corb_ctl, IntelHDAState), 1191 VMSTATE_UINT32(corb_sts, IntelHDAState), 1192 VMSTATE_UINT32(corb_size, IntelHDAState), 1193 VMSTATE_UINT32(rirb_lbase, IntelHDAState), 1194 VMSTATE_UINT32(rirb_ubase, IntelHDAState), 1195 VMSTATE_UINT32(rirb_wp, IntelHDAState), 1196 VMSTATE_UINT32(rirb_cnt, IntelHDAState), 1197 VMSTATE_UINT32(rirb_ctl, IntelHDAState), 1198 VMSTATE_UINT32(rirb_sts, IntelHDAState), 1199 VMSTATE_UINT32(rirb_size, IntelHDAState), 1200 VMSTATE_UINT32(dp_lbase, IntelHDAState), 1201 VMSTATE_UINT32(dp_ubase, IntelHDAState), 1202 VMSTATE_UINT32(icw, IntelHDAState), 1203 VMSTATE_UINT32(irr, IntelHDAState), 1204 VMSTATE_UINT32(ics, IntelHDAState), 1205 VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0, 1206 vmstate_intel_hda_stream, 1207 IntelHDAStream), 1208 1209 /* additional state info */ 1210 VMSTATE_UINT32(rirb_count, IntelHDAState), 1211 VMSTATE_INT64(wall_base_ns, IntelHDAState), 1212 1213 VMSTATE_END_OF_LIST() 1214 } 1215 }; 1216 1217 static Property intel_hda_properties[] = { 1218 DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0), 1219 DEFINE_PROP_ON_OFF_AUTO("msi", IntelHDAState, msi, ON_OFF_AUTO_AUTO), 1220 DEFINE_PROP_BOOL("old_msi_addr", IntelHDAState, old_msi_addr, false), 1221 DEFINE_PROP_END_OF_LIST(), 1222 }; 1223 1224 static void intel_hda_class_init(ObjectClass *klass, void *data) 1225 { 1226 DeviceClass *dc = DEVICE_CLASS(klass); 1227 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1228 1229 k->realize = intel_hda_realize; 1230 k->exit = intel_hda_exit; 1231 k->vendor_id = PCI_VENDOR_ID_INTEL; 1232 k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO; 1233 dc->reset = intel_hda_reset; 1234 dc->vmsd = &vmstate_intel_hda; 1235 dc->props = intel_hda_properties; 1236 } 1237 1238 static void intel_hda_class_init_ich6(ObjectClass *klass, void *data) 1239 { 1240 DeviceClass *dc = DEVICE_CLASS(klass); 1241 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1242 1243 k->device_id = 0x2668; 1244 k->revision = 1; 1245 set_bit(DEVICE_CATEGORY_SOUND, dc->categories); 1246 dc->desc = "Intel HD Audio Controller (ich6)"; 1247 } 1248 1249 static void intel_hda_class_init_ich9(ObjectClass *klass, void *data) 1250 { 1251 DeviceClass *dc = DEVICE_CLASS(klass); 1252 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1253 1254 k->device_id = 0x293e; 1255 k->revision = 3; 1256 set_bit(DEVICE_CATEGORY_SOUND, dc->categories); 1257 dc->desc = "Intel HD Audio Controller (ich9)"; 1258 } 1259 1260 static const TypeInfo intel_hda_info = { 1261 .name = TYPE_INTEL_HDA_GENERIC, 1262 .parent = TYPE_PCI_DEVICE, 1263 .instance_size = sizeof(IntelHDAState), 1264 .class_init = intel_hda_class_init, 1265 .abstract = true, 1266 .interfaces = (InterfaceInfo[]) { 1267 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 1268 { }, 1269 }, 1270 }; 1271 1272 static const TypeInfo intel_hda_info_ich6 = { 1273 .name = "intel-hda", 1274 .parent = TYPE_INTEL_HDA_GENERIC, 1275 .class_init = intel_hda_class_init_ich6, 1276 }; 1277 1278 static const TypeInfo intel_hda_info_ich9 = { 1279 .name = "ich9-intel-hda", 1280 .parent = TYPE_INTEL_HDA_GENERIC, 1281 .class_init = intel_hda_class_init_ich9, 1282 }; 1283 1284 static void hda_codec_device_class_init(ObjectClass *klass, void *data) 1285 { 1286 DeviceClass *k = DEVICE_CLASS(klass); 1287 k->realize = hda_codec_dev_realize; 1288 k->unrealize = hda_codec_dev_unrealize; 1289 set_bit(DEVICE_CATEGORY_SOUND, k->categories); 1290 k->bus_type = TYPE_HDA_BUS; 1291 k->props = hda_props; 1292 } 1293 1294 static const TypeInfo hda_codec_device_type_info = { 1295 .name = TYPE_HDA_CODEC_DEVICE, 1296 .parent = TYPE_DEVICE, 1297 .instance_size = sizeof(HDACodecDevice), 1298 .abstract = true, 1299 .class_size = sizeof(HDACodecDeviceClass), 1300 .class_init = hda_codec_device_class_init, 1301 }; 1302 1303 /* 1304 * create intel hda controller with codec attached to it, 1305 * so '-soundhw hda' works. 1306 */ 1307 static int intel_hda_and_codec_init(PCIBus *bus) 1308 { 1309 DeviceState *controller; 1310 BusState *hdabus; 1311 DeviceState *codec; 1312 1313 controller = DEVICE(pci_create_simple(bus, -1, "intel-hda")); 1314 hdabus = QLIST_FIRST(&controller->child_bus); 1315 codec = qdev_create(hdabus, "hda-duplex"); 1316 qdev_init_nofail(codec); 1317 return 0; 1318 } 1319 1320 static void intel_hda_register_types(void) 1321 { 1322 type_register_static(&hda_codec_bus_info); 1323 type_register_static(&intel_hda_info); 1324 type_register_static(&intel_hda_info_ich6); 1325 type_register_static(&intel_hda_info_ich9); 1326 type_register_static(&hda_codec_device_type_info); 1327 pci_register_soundhw("hda", "Intel HD Audio", intel_hda_and_codec_init); 1328 } 1329 1330 type_init(intel_hda_register_types) 1331