1 /* 2 * Copyright (C) 2010 Red Hat, Inc. 3 * 4 * written by Gerd Hoffmann <kraxel@redhat.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 or 9 * (at your option) version 3 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "hw/hw.h" 21 #include "hw/pci/pci.h" 22 #include "hw/pci/msi.h" 23 #include "qemu/timer.h" 24 #include "hw/audio/audio.h" 25 #include "intel-hda.h" 26 #include "intel-hda-defs.h" 27 #include "sysemu/dma.h" 28 29 /* --------------------------------------------------------------------- */ 30 /* hda bus */ 31 32 static Property hda_props[] = { 33 DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1), 34 DEFINE_PROP_END_OF_LIST() 35 }; 36 37 static const TypeInfo hda_codec_bus_info = { 38 .name = TYPE_HDA_BUS, 39 .parent = TYPE_BUS, 40 .instance_size = sizeof(HDACodecBus), 41 }; 42 43 void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus, size_t bus_size, 44 hda_codec_response_func response, 45 hda_codec_xfer_func xfer) 46 { 47 qbus_create_inplace(bus, bus_size, TYPE_HDA_BUS, dev, NULL); 48 bus->response = response; 49 bus->xfer = xfer; 50 } 51 52 static int hda_codec_dev_init(DeviceState *qdev) 53 { 54 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus); 55 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev); 56 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev); 57 58 if (dev->cad == -1) { 59 dev->cad = bus->next_cad; 60 } 61 if (dev->cad >= 15) { 62 return -1; 63 } 64 bus->next_cad = dev->cad + 1; 65 return cdc->init(dev); 66 } 67 68 static int hda_codec_dev_exit(DeviceState *qdev) 69 { 70 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev); 71 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev); 72 73 if (cdc->exit) { 74 cdc->exit(dev); 75 } 76 return 0; 77 } 78 79 HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad) 80 { 81 BusChild *kid; 82 HDACodecDevice *cdev; 83 84 QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) { 85 DeviceState *qdev = kid->child; 86 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev); 87 if (cdev->cad == cad) { 88 return cdev; 89 } 90 } 91 return NULL; 92 } 93 94 void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response) 95 { 96 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); 97 bus->response(dev, solicited, response); 98 } 99 100 bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output, 101 uint8_t *buf, uint32_t len) 102 { 103 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); 104 return bus->xfer(dev, stnr, output, buf, len); 105 } 106 107 /* --------------------------------------------------------------------- */ 108 /* intel hda emulation */ 109 110 typedef struct IntelHDAStream IntelHDAStream; 111 typedef struct IntelHDAState IntelHDAState; 112 typedef struct IntelHDAReg IntelHDAReg; 113 114 typedef struct bpl { 115 uint64_t addr; 116 uint32_t len; 117 uint32_t flags; 118 } bpl; 119 120 struct IntelHDAStream { 121 /* registers */ 122 uint32_t ctl; 123 uint32_t lpib; 124 uint32_t cbl; 125 uint32_t lvi; 126 uint32_t fmt; 127 uint32_t bdlp_lbase; 128 uint32_t bdlp_ubase; 129 130 /* state */ 131 bpl *bpl; 132 uint32_t bentries; 133 uint32_t bsize, be, bp; 134 }; 135 136 struct IntelHDAState { 137 PCIDevice pci; 138 const char *name; 139 HDACodecBus codecs; 140 141 /* registers */ 142 uint32_t g_ctl; 143 uint32_t wake_en; 144 uint32_t state_sts; 145 uint32_t int_ctl; 146 uint32_t int_sts; 147 uint32_t wall_clk; 148 149 uint32_t corb_lbase; 150 uint32_t corb_ubase; 151 uint32_t corb_rp; 152 uint32_t corb_wp; 153 uint32_t corb_ctl; 154 uint32_t corb_sts; 155 uint32_t corb_size; 156 157 uint32_t rirb_lbase; 158 uint32_t rirb_ubase; 159 uint32_t rirb_wp; 160 uint32_t rirb_cnt; 161 uint32_t rirb_ctl; 162 uint32_t rirb_sts; 163 uint32_t rirb_size; 164 165 uint32_t dp_lbase; 166 uint32_t dp_ubase; 167 168 uint32_t icw; 169 uint32_t irr; 170 uint32_t ics; 171 172 /* streams */ 173 IntelHDAStream st[8]; 174 175 /* state */ 176 MemoryRegion mmio; 177 uint32_t rirb_count; 178 int64_t wall_base_ns; 179 180 /* debug logging */ 181 const IntelHDAReg *last_reg; 182 uint32_t last_val; 183 uint32_t last_write; 184 uint32_t last_sec; 185 uint32_t repeat_count; 186 187 /* properties */ 188 uint32_t debug; 189 uint32_t msi; 190 }; 191 192 #define TYPE_INTEL_HDA_GENERIC "intel-hda-generic" 193 194 #define INTEL_HDA(obj) \ 195 OBJECT_CHECK(IntelHDAState, (obj), TYPE_INTEL_HDA_GENERIC) 196 197 struct IntelHDAReg { 198 const char *name; /* register name */ 199 uint32_t size; /* size in bytes */ 200 uint32_t reset; /* reset value */ 201 uint32_t wmask; /* write mask */ 202 uint32_t wclear; /* write 1 to clear bits */ 203 uint32_t offset; /* location in IntelHDAState */ 204 uint32_t shift; /* byte access entries for dwords */ 205 uint32_t stream; 206 void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old); 207 void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg); 208 }; 209 210 static void intel_hda_reset(DeviceState *dev); 211 212 /* --------------------------------------------------------------------- */ 213 214 static hwaddr intel_hda_addr(uint32_t lbase, uint32_t ubase) 215 { 216 hwaddr addr; 217 218 addr = ((uint64_t)ubase << 32) | lbase; 219 return addr; 220 } 221 222 static void intel_hda_update_int_sts(IntelHDAState *d) 223 { 224 uint32_t sts = 0; 225 uint32_t i; 226 227 /* update controller status */ 228 if (d->rirb_sts & ICH6_RBSTS_IRQ) { 229 sts |= (1 << 30); 230 } 231 if (d->rirb_sts & ICH6_RBSTS_OVERRUN) { 232 sts |= (1 << 30); 233 } 234 if (d->state_sts & d->wake_en) { 235 sts |= (1 << 30); 236 } 237 238 /* update stream status */ 239 for (i = 0; i < 8; i++) { 240 /* buffer completion interrupt */ 241 if (d->st[i].ctl & (1 << 26)) { 242 sts |= (1 << i); 243 } 244 } 245 246 /* update global status */ 247 if (sts & d->int_ctl) { 248 sts |= (1 << 31); 249 } 250 251 d->int_sts = sts; 252 } 253 254 static void intel_hda_update_irq(IntelHDAState *d) 255 { 256 int msi = d->msi && msi_enabled(&d->pci); 257 int level; 258 259 intel_hda_update_int_sts(d); 260 if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) { 261 level = 1; 262 } else { 263 level = 0; 264 } 265 dprint(d, 2, "%s: level %d [%s]\n", __FUNCTION__, 266 level, msi ? "msi" : "intx"); 267 if (msi) { 268 if (level) { 269 msi_notify(&d->pci, 0); 270 } 271 } else { 272 pci_set_irq(&d->pci, level); 273 } 274 } 275 276 static int intel_hda_send_command(IntelHDAState *d, uint32_t verb) 277 { 278 uint32_t cad, nid, data; 279 HDACodecDevice *codec; 280 HDACodecDeviceClass *cdc; 281 282 cad = (verb >> 28) & 0x0f; 283 if (verb & (1 << 27)) { 284 /* indirect node addressing, not specified in HDA 1.0 */ 285 dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__); 286 return -1; 287 } 288 nid = (verb >> 20) & 0x7f; 289 data = verb & 0xfffff; 290 291 codec = hda_codec_find(&d->codecs, cad); 292 if (codec == NULL) { 293 dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__); 294 return -1; 295 } 296 cdc = HDA_CODEC_DEVICE_GET_CLASS(codec); 297 cdc->command(codec, nid, data); 298 return 0; 299 } 300 301 static void intel_hda_corb_run(IntelHDAState *d) 302 { 303 hwaddr addr; 304 uint32_t rp, verb; 305 306 if (d->ics & ICH6_IRS_BUSY) { 307 dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw); 308 intel_hda_send_command(d, d->icw); 309 return; 310 } 311 312 for (;;) { 313 if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) { 314 dprint(d, 2, "%s: !run\n", __FUNCTION__); 315 return; 316 } 317 if ((d->corb_rp & 0xff) == d->corb_wp) { 318 dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__); 319 return; 320 } 321 if (d->rirb_count == d->rirb_cnt) { 322 dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__); 323 return; 324 } 325 326 rp = (d->corb_rp + 1) & 0xff; 327 addr = intel_hda_addr(d->corb_lbase, d->corb_ubase); 328 verb = ldl_le_pci_dma(&d->pci, addr + 4*rp); 329 d->corb_rp = rp; 330 331 dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb); 332 intel_hda_send_command(d, verb); 333 } 334 } 335 336 static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response) 337 { 338 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); 339 IntelHDAState *d = container_of(bus, IntelHDAState, codecs); 340 hwaddr addr; 341 uint32_t wp, ex; 342 343 if (d->ics & ICH6_IRS_BUSY) { 344 dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n", 345 __FUNCTION__, response, dev->cad); 346 d->irr = response; 347 d->ics &= ~(ICH6_IRS_BUSY | 0xf0); 348 d->ics |= (ICH6_IRS_VALID | (dev->cad << 4)); 349 return; 350 } 351 352 if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) { 353 dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__); 354 return; 355 } 356 357 ex = (solicited ? 0 : (1 << 4)) | dev->cad; 358 wp = (d->rirb_wp + 1) & 0xff; 359 addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase); 360 stl_le_pci_dma(&d->pci, addr + 8*wp, response); 361 stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex); 362 d->rirb_wp = wp; 363 364 dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n", 365 __FUNCTION__, wp, response, ex); 366 367 d->rirb_count++; 368 if (d->rirb_count == d->rirb_cnt) { 369 dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count); 370 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) { 371 d->rirb_sts |= ICH6_RBSTS_IRQ; 372 intel_hda_update_irq(d); 373 } 374 } else if ((d->corb_rp & 0xff) == d->corb_wp) { 375 dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__, 376 d->rirb_count, d->rirb_cnt); 377 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) { 378 d->rirb_sts |= ICH6_RBSTS_IRQ; 379 intel_hda_update_irq(d); 380 } 381 } 382 } 383 384 static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output, 385 uint8_t *buf, uint32_t len) 386 { 387 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); 388 IntelHDAState *d = container_of(bus, IntelHDAState, codecs); 389 hwaddr addr; 390 uint32_t s, copy, left; 391 IntelHDAStream *st; 392 bool irq = false; 393 394 st = output ? d->st + 4 : d->st; 395 for (s = 0; s < 4; s++) { 396 if (stnr == ((st[s].ctl >> 20) & 0x0f)) { 397 st = st + s; 398 break; 399 } 400 } 401 if (s == 4) { 402 return false; 403 } 404 if (st->bpl == NULL) { 405 return false; 406 } 407 if (st->ctl & (1 << 26)) { 408 /* 409 * Wait with the next DMA xfer until the guest 410 * has acked the buffer completion interrupt 411 */ 412 return false; 413 } 414 415 left = len; 416 while (left > 0) { 417 copy = left; 418 if (copy > st->bsize - st->lpib) 419 copy = st->bsize - st->lpib; 420 if (copy > st->bpl[st->be].len - st->bp) 421 copy = st->bpl[st->be].len - st->bp; 422 423 dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n", 424 st->be, st->bp, st->bpl[st->be].len, copy); 425 426 pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output); 427 st->lpib += copy; 428 st->bp += copy; 429 buf += copy; 430 left -= copy; 431 432 if (st->bpl[st->be].len == st->bp) { 433 /* bpl entry filled */ 434 if (st->bpl[st->be].flags & 0x01) { 435 irq = true; 436 } 437 st->bp = 0; 438 st->be++; 439 if (st->be == st->bentries) { 440 /* bpl wrap around */ 441 st->be = 0; 442 st->lpib = 0; 443 } 444 } 445 } 446 if (d->dp_lbase & 0x01) { 447 s = st - d->st; 448 addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase); 449 stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib); 450 } 451 dprint(d, 3, "dma: --\n"); 452 453 if (irq) { 454 st->ctl |= (1 << 26); /* buffer completion interrupt */ 455 intel_hda_update_irq(d); 456 } 457 return true; 458 } 459 460 static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st) 461 { 462 hwaddr addr; 463 uint8_t buf[16]; 464 uint32_t i; 465 466 addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase); 467 st->bentries = st->lvi +1; 468 g_free(st->bpl); 469 st->bpl = g_malloc(sizeof(bpl) * st->bentries); 470 for (i = 0; i < st->bentries; i++, addr += 16) { 471 pci_dma_read(&d->pci, addr, buf, 16); 472 st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf); 473 st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8)); 474 st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12)); 475 dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n", 476 i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags); 477 } 478 479 st->bsize = st->cbl; 480 st->lpib = 0; 481 st->be = 0; 482 st->bp = 0; 483 } 484 485 static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output) 486 { 487 BusChild *kid; 488 HDACodecDevice *cdev; 489 490 QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) { 491 DeviceState *qdev = kid->child; 492 HDACodecDeviceClass *cdc; 493 494 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev); 495 cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev); 496 if (cdc->stream) { 497 cdc->stream(cdev, stream, running, output); 498 } 499 } 500 } 501 502 /* --------------------------------------------------------------------- */ 503 504 static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 505 { 506 if ((d->g_ctl & ICH6_GCTL_RESET) == 0) { 507 intel_hda_reset(DEVICE(d)); 508 } 509 } 510 511 static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 512 { 513 intel_hda_update_irq(d); 514 } 515 516 static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 517 { 518 intel_hda_update_irq(d); 519 } 520 521 static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 522 { 523 intel_hda_update_irq(d); 524 } 525 526 static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg) 527 { 528 int64_t ns; 529 530 ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - d->wall_base_ns; 531 d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */ 532 } 533 534 static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 535 { 536 intel_hda_corb_run(d); 537 } 538 539 static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 540 { 541 intel_hda_corb_run(d); 542 } 543 544 static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 545 { 546 if (d->rirb_wp & ICH6_RIRBWP_RST) { 547 d->rirb_wp = 0; 548 } 549 } 550 551 static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 552 { 553 intel_hda_update_irq(d); 554 555 if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) { 556 /* cleared ICH6_RBSTS_IRQ */ 557 d->rirb_count = 0; 558 intel_hda_corb_run(d); 559 } 560 } 561 562 static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 563 { 564 if (d->ics & ICH6_IRS_BUSY) { 565 intel_hda_corb_run(d); 566 } 567 } 568 569 static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 570 { 571 bool output = reg->stream >= 4; 572 IntelHDAStream *st = d->st + reg->stream; 573 574 if (st->ctl & 0x01) { 575 /* reset */ 576 dprint(d, 1, "st #%d: reset\n", reg->stream); 577 st->ctl = 0; 578 } 579 if ((st->ctl & 0x02) != (old & 0x02)) { 580 uint32_t stnr = (st->ctl >> 20) & 0x0f; 581 /* run bit flipped */ 582 if (st->ctl & 0x02) { 583 /* start */ 584 dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n", 585 reg->stream, stnr, st->cbl); 586 intel_hda_parse_bdl(d, st); 587 intel_hda_notify_codecs(d, stnr, true, output); 588 } else { 589 /* stop */ 590 dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr); 591 intel_hda_notify_codecs(d, stnr, false, output); 592 } 593 } 594 intel_hda_update_irq(d); 595 } 596 597 /* --------------------------------------------------------------------- */ 598 599 #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o)) 600 601 static const struct IntelHDAReg regtab[] = { 602 /* global */ 603 [ ICH6_REG_GCAP ] = { 604 .name = "GCAP", 605 .size = 2, 606 .reset = 0x4401, 607 }, 608 [ ICH6_REG_VMIN ] = { 609 .name = "VMIN", 610 .size = 1, 611 }, 612 [ ICH6_REG_VMAJ ] = { 613 .name = "VMAJ", 614 .size = 1, 615 .reset = 1, 616 }, 617 [ ICH6_REG_OUTPAY ] = { 618 .name = "OUTPAY", 619 .size = 2, 620 .reset = 0x3c, 621 }, 622 [ ICH6_REG_INPAY ] = { 623 .name = "INPAY", 624 .size = 2, 625 .reset = 0x1d, 626 }, 627 [ ICH6_REG_GCTL ] = { 628 .name = "GCTL", 629 .size = 4, 630 .wmask = 0x0103, 631 .offset = offsetof(IntelHDAState, g_ctl), 632 .whandler = intel_hda_set_g_ctl, 633 }, 634 [ ICH6_REG_WAKEEN ] = { 635 .name = "WAKEEN", 636 .size = 2, 637 .wmask = 0x7fff, 638 .offset = offsetof(IntelHDAState, wake_en), 639 .whandler = intel_hda_set_wake_en, 640 }, 641 [ ICH6_REG_STATESTS ] = { 642 .name = "STATESTS", 643 .size = 2, 644 .wmask = 0x7fff, 645 .wclear = 0x7fff, 646 .offset = offsetof(IntelHDAState, state_sts), 647 .whandler = intel_hda_set_state_sts, 648 }, 649 650 /* interrupts */ 651 [ ICH6_REG_INTCTL ] = { 652 .name = "INTCTL", 653 .size = 4, 654 .wmask = 0xc00000ff, 655 .offset = offsetof(IntelHDAState, int_ctl), 656 .whandler = intel_hda_set_int_ctl, 657 }, 658 [ ICH6_REG_INTSTS ] = { 659 .name = "INTSTS", 660 .size = 4, 661 .wmask = 0xc00000ff, 662 .wclear = 0xc00000ff, 663 .offset = offsetof(IntelHDAState, int_sts), 664 }, 665 666 /* misc */ 667 [ ICH6_REG_WALLCLK ] = { 668 .name = "WALLCLK", 669 .size = 4, 670 .offset = offsetof(IntelHDAState, wall_clk), 671 .rhandler = intel_hda_get_wall_clk, 672 }, 673 [ ICH6_REG_WALLCLK + 0x2000 ] = { 674 .name = "WALLCLK(alias)", 675 .size = 4, 676 .offset = offsetof(IntelHDAState, wall_clk), 677 .rhandler = intel_hda_get_wall_clk, 678 }, 679 680 /* dma engine */ 681 [ ICH6_REG_CORBLBASE ] = { 682 .name = "CORBLBASE", 683 .size = 4, 684 .wmask = 0xffffff80, 685 .offset = offsetof(IntelHDAState, corb_lbase), 686 }, 687 [ ICH6_REG_CORBUBASE ] = { 688 .name = "CORBUBASE", 689 .size = 4, 690 .wmask = 0xffffffff, 691 .offset = offsetof(IntelHDAState, corb_ubase), 692 }, 693 [ ICH6_REG_CORBWP ] = { 694 .name = "CORBWP", 695 .size = 2, 696 .wmask = 0xff, 697 .offset = offsetof(IntelHDAState, corb_wp), 698 .whandler = intel_hda_set_corb_wp, 699 }, 700 [ ICH6_REG_CORBRP ] = { 701 .name = "CORBRP", 702 .size = 2, 703 .wmask = 0x80ff, 704 .offset = offsetof(IntelHDAState, corb_rp), 705 }, 706 [ ICH6_REG_CORBCTL ] = { 707 .name = "CORBCTL", 708 .size = 1, 709 .wmask = 0x03, 710 .offset = offsetof(IntelHDAState, corb_ctl), 711 .whandler = intel_hda_set_corb_ctl, 712 }, 713 [ ICH6_REG_CORBSTS ] = { 714 .name = "CORBSTS", 715 .size = 1, 716 .wmask = 0x01, 717 .wclear = 0x01, 718 .offset = offsetof(IntelHDAState, corb_sts), 719 }, 720 [ ICH6_REG_CORBSIZE ] = { 721 .name = "CORBSIZE", 722 .size = 1, 723 .reset = 0x42, 724 .offset = offsetof(IntelHDAState, corb_size), 725 }, 726 [ ICH6_REG_RIRBLBASE ] = { 727 .name = "RIRBLBASE", 728 .size = 4, 729 .wmask = 0xffffff80, 730 .offset = offsetof(IntelHDAState, rirb_lbase), 731 }, 732 [ ICH6_REG_RIRBUBASE ] = { 733 .name = "RIRBUBASE", 734 .size = 4, 735 .wmask = 0xffffffff, 736 .offset = offsetof(IntelHDAState, rirb_ubase), 737 }, 738 [ ICH6_REG_RIRBWP ] = { 739 .name = "RIRBWP", 740 .size = 2, 741 .wmask = 0x8000, 742 .offset = offsetof(IntelHDAState, rirb_wp), 743 .whandler = intel_hda_set_rirb_wp, 744 }, 745 [ ICH6_REG_RINTCNT ] = { 746 .name = "RINTCNT", 747 .size = 2, 748 .wmask = 0xff, 749 .offset = offsetof(IntelHDAState, rirb_cnt), 750 }, 751 [ ICH6_REG_RIRBCTL ] = { 752 .name = "RIRBCTL", 753 .size = 1, 754 .wmask = 0x07, 755 .offset = offsetof(IntelHDAState, rirb_ctl), 756 }, 757 [ ICH6_REG_RIRBSTS ] = { 758 .name = "RIRBSTS", 759 .size = 1, 760 .wmask = 0x05, 761 .wclear = 0x05, 762 .offset = offsetof(IntelHDAState, rirb_sts), 763 .whandler = intel_hda_set_rirb_sts, 764 }, 765 [ ICH6_REG_RIRBSIZE ] = { 766 .name = "RIRBSIZE", 767 .size = 1, 768 .reset = 0x42, 769 .offset = offsetof(IntelHDAState, rirb_size), 770 }, 771 772 [ ICH6_REG_DPLBASE ] = { 773 .name = "DPLBASE", 774 .size = 4, 775 .wmask = 0xffffff81, 776 .offset = offsetof(IntelHDAState, dp_lbase), 777 }, 778 [ ICH6_REG_DPUBASE ] = { 779 .name = "DPUBASE", 780 .size = 4, 781 .wmask = 0xffffffff, 782 .offset = offsetof(IntelHDAState, dp_ubase), 783 }, 784 785 [ ICH6_REG_IC ] = { 786 .name = "ICW", 787 .size = 4, 788 .wmask = 0xffffffff, 789 .offset = offsetof(IntelHDAState, icw), 790 }, 791 [ ICH6_REG_IR ] = { 792 .name = "IRR", 793 .size = 4, 794 .offset = offsetof(IntelHDAState, irr), 795 }, 796 [ ICH6_REG_IRS ] = { 797 .name = "ICS", 798 .size = 2, 799 .wmask = 0x0003, 800 .wclear = 0x0002, 801 .offset = offsetof(IntelHDAState, ics), 802 .whandler = intel_hda_set_ics, 803 }, 804 805 #define HDA_STREAM(_t, _i) \ 806 [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \ 807 .stream = _i, \ 808 .name = _t stringify(_i) " CTL", \ 809 .size = 4, \ 810 .wmask = 0x1cff001f, \ 811 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 812 .whandler = intel_hda_set_st_ctl, \ 813 }, \ 814 [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \ 815 .stream = _i, \ 816 .name = _t stringify(_i) " CTL(stnr)", \ 817 .size = 1, \ 818 .shift = 16, \ 819 .wmask = 0x00ff0000, \ 820 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 821 .whandler = intel_hda_set_st_ctl, \ 822 }, \ 823 [ ST_REG(_i, ICH6_REG_SD_STS)] = { \ 824 .stream = _i, \ 825 .name = _t stringify(_i) " CTL(sts)", \ 826 .size = 1, \ 827 .shift = 24, \ 828 .wmask = 0x1c000000, \ 829 .wclear = 0x1c000000, \ 830 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 831 .whandler = intel_hda_set_st_ctl, \ 832 }, \ 833 [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \ 834 .stream = _i, \ 835 .name = _t stringify(_i) " LPIB", \ 836 .size = 4, \ 837 .offset = offsetof(IntelHDAState, st[_i].lpib), \ 838 }, \ 839 [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \ 840 .stream = _i, \ 841 .name = _t stringify(_i) " LPIB(alias)", \ 842 .size = 4, \ 843 .offset = offsetof(IntelHDAState, st[_i].lpib), \ 844 }, \ 845 [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \ 846 .stream = _i, \ 847 .name = _t stringify(_i) " CBL", \ 848 .size = 4, \ 849 .wmask = 0xffffffff, \ 850 .offset = offsetof(IntelHDAState, st[_i].cbl), \ 851 }, \ 852 [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \ 853 .stream = _i, \ 854 .name = _t stringify(_i) " LVI", \ 855 .size = 2, \ 856 .wmask = 0x00ff, \ 857 .offset = offsetof(IntelHDAState, st[_i].lvi), \ 858 }, \ 859 [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \ 860 .stream = _i, \ 861 .name = _t stringify(_i) " FIFOS", \ 862 .size = 2, \ 863 .reset = HDA_BUFFER_SIZE, \ 864 }, \ 865 [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \ 866 .stream = _i, \ 867 .name = _t stringify(_i) " FMT", \ 868 .size = 2, \ 869 .wmask = 0x7f7f, \ 870 .offset = offsetof(IntelHDAState, st[_i].fmt), \ 871 }, \ 872 [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \ 873 .stream = _i, \ 874 .name = _t stringify(_i) " BDLPL", \ 875 .size = 4, \ 876 .wmask = 0xffffff80, \ 877 .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \ 878 }, \ 879 [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \ 880 .stream = _i, \ 881 .name = _t stringify(_i) " BDLPU", \ 882 .size = 4, \ 883 .wmask = 0xffffffff, \ 884 .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \ 885 }, \ 886 887 HDA_STREAM("IN", 0) 888 HDA_STREAM("IN", 1) 889 HDA_STREAM("IN", 2) 890 HDA_STREAM("IN", 3) 891 892 HDA_STREAM("OUT", 4) 893 HDA_STREAM("OUT", 5) 894 HDA_STREAM("OUT", 6) 895 HDA_STREAM("OUT", 7) 896 897 }; 898 899 static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, hwaddr addr) 900 { 901 const IntelHDAReg *reg; 902 903 if (addr >= ARRAY_SIZE(regtab)) { 904 goto noreg; 905 } 906 reg = regtab+addr; 907 if (reg->name == NULL) { 908 goto noreg; 909 } 910 return reg; 911 912 noreg: 913 dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr); 914 return NULL; 915 } 916 917 static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg) 918 { 919 uint8_t *addr = (void*)d; 920 921 addr += reg->offset; 922 return (uint32_t*)addr; 923 } 924 925 static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val, 926 uint32_t wmask) 927 { 928 uint32_t *addr; 929 uint32_t old; 930 931 if (!reg) { 932 return; 933 } 934 935 if (d->debug) { 936 time_t now = time(NULL); 937 if (d->last_write && d->last_reg == reg && d->last_val == val) { 938 d->repeat_count++; 939 if (d->last_sec != now) { 940 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 941 d->last_sec = now; 942 d->repeat_count = 0; 943 } 944 } else { 945 if (d->repeat_count) { 946 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 947 } 948 dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask); 949 d->last_write = 1; 950 d->last_reg = reg; 951 d->last_val = val; 952 d->last_sec = now; 953 d->repeat_count = 0; 954 } 955 } 956 assert(reg->offset != 0); 957 958 addr = intel_hda_reg_addr(d, reg); 959 old = *addr; 960 961 if (reg->shift) { 962 val <<= reg->shift; 963 wmask <<= reg->shift; 964 } 965 wmask &= reg->wmask; 966 *addr &= ~wmask; 967 *addr |= wmask & val; 968 *addr &= ~(val & reg->wclear); 969 970 if (reg->whandler) { 971 reg->whandler(d, reg, old); 972 } 973 } 974 975 static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg, 976 uint32_t rmask) 977 { 978 uint32_t *addr, ret; 979 980 if (!reg) { 981 return 0; 982 } 983 984 if (reg->rhandler) { 985 reg->rhandler(d, reg); 986 } 987 988 if (reg->offset == 0) { 989 /* constant read-only register */ 990 ret = reg->reset; 991 } else { 992 addr = intel_hda_reg_addr(d, reg); 993 ret = *addr; 994 if (reg->shift) { 995 ret >>= reg->shift; 996 } 997 ret &= rmask; 998 } 999 if (d->debug) { 1000 time_t now = time(NULL); 1001 if (!d->last_write && d->last_reg == reg && d->last_val == ret) { 1002 d->repeat_count++; 1003 if (d->last_sec != now) { 1004 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 1005 d->last_sec = now; 1006 d->repeat_count = 0; 1007 } 1008 } else { 1009 if (d->repeat_count) { 1010 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 1011 } 1012 dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask); 1013 d->last_write = 0; 1014 d->last_reg = reg; 1015 d->last_val = ret; 1016 d->last_sec = now; 1017 d->repeat_count = 0; 1018 } 1019 } 1020 return ret; 1021 } 1022 1023 static void intel_hda_regs_reset(IntelHDAState *d) 1024 { 1025 uint32_t *addr; 1026 int i; 1027 1028 for (i = 0; i < ARRAY_SIZE(regtab); i++) { 1029 if (regtab[i].name == NULL) { 1030 continue; 1031 } 1032 if (regtab[i].offset == 0) { 1033 continue; 1034 } 1035 addr = intel_hda_reg_addr(d, regtab + i); 1036 *addr = regtab[i].reset; 1037 } 1038 } 1039 1040 /* --------------------------------------------------------------------- */ 1041 1042 static void intel_hda_mmio_writeb(void *opaque, hwaddr addr, uint32_t val) 1043 { 1044 IntelHDAState *d = opaque; 1045 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1046 1047 intel_hda_reg_write(d, reg, val, 0xff); 1048 } 1049 1050 static void intel_hda_mmio_writew(void *opaque, hwaddr addr, uint32_t val) 1051 { 1052 IntelHDAState *d = opaque; 1053 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1054 1055 intel_hda_reg_write(d, reg, val, 0xffff); 1056 } 1057 1058 static void intel_hda_mmio_writel(void *opaque, hwaddr addr, uint32_t val) 1059 { 1060 IntelHDAState *d = opaque; 1061 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1062 1063 intel_hda_reg_write(d, reg, val, 0xffffffff); 1064 } 1065 1066 static uint32_t intel_hda_mmio_readb(void *opaque, hwaddr addr) 1067 { 1068 IntelHDAState *d = opaque; 1069 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1070 1071 return intel_hda_reg_read(d, reg, 0xff); 1072 } 1073 1074 static uint32_t intel_hda_mmio_readw(void *opaque, hwaddr addr) 1075 { 1076 IntelHDAState *d = opaque; 1077 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1078 1079 return intel_hda_reg_read(d, reg, 0xffff); 1080 } 1081 1082 static uint32_t intel_hda_mmio_readl(void *opaque, hwaddr addr) 1083 { 1084 IntelHDAState *d = opaque; 1085 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1086 1087 return intel_hda_reg_read(d, reg, 0xffffffff); 1088 } 1089 1090 static const MemoryRegionOps intel_hda_mmio_ops = { 1091 .old_mmio = { 1092 .read = { 1093 intel_hda_mmio_readb, 1094 intel_hda_mmio_readw, 1095 intel_hda_mmio_readl, 1096 }, 1097 .write = { 1098 intel_hda_mmio_writeb, 1099 intel_hda_mmio_writew, 1100 intel_hda_mmio_writel, 1101 }, 1102 }, 1103 .endianness = DEVICE_NATIVE_ENDIAN, 1104 }; 1105 1106 /* --------------------------------------------------------------------- */ 1107 1108 static void intel_hda_reset(DeviceState *dev) 1109 { 1110 BusChild *kid; 1111 IntelHDAState *d = INTEL_HDA(dev); 1112 HDACodecDevice *cdev; 1113 1114 intel_hda_regs_reset(d); 1115 d->wall_base_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1116 1117 /* reset codecs */ 1118 QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) { 1119 DeviceState *qdev = kid->child; 1120 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev); 1121 device_reset(DEVICE(cdev)); 1122 d->state_sts |= (1 << cdev->cad); 1123 } 1124 intel_hda_update_irq(d); 1125 } 1126 1127 static int intel_hda_init(PCIDevice *pci) 1128 { 1129 IntelHDAState *d = INTEL_HDA(pci); 1130 uint8_t *conf = d->pci.config; 1131 1132 d->name = object_get_typename(OBJECT(d)); 1133 1134 pci_config_set_interrupt_pin(conf, 1); 1135 1136 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */ 1137 conf[0x40] = 0x01; 1138 1139 memory_region_init_io(&d->mmio, OBJECT(d), &intel_hda_mmio_ops, d, 1140 "intel-hda", 0x4000); 1141 pci_register_bar(&d->pci, 0, 0, &d->mmio); 1142 if (d->msi) { 1143 msi_init(&d->pci, 0x50, 1, true, false); 1144 } 1145 1146 hda_codec_bus_init(DEVICE(pci), &d->codecs, sizeof(d->codecs), 1147 intel_hda_response, intel_hda_xfer); 1148 1149 return 0; 1150 } 1151 1152 static void intel_hda_exit(PCIDevice *pci) 1153 { 1154 IntelHDAState *d = INTEL_HDA(pci); 1155 1156 msi_uninit(&d->pci); 1157 memory_region_destroy(&d->mmio); 1158 } 1159 1160 static int intel_hda_post_load(void *opaque, int version) 1161 { 1162 IntelHDAState* d = opaque; 1163 int i; 1164 1165 dprint(d, 1, "%s\n", __FUNCTION__); 1166 for (i = 0; i < ARRAY_SIZE(d->st); i++) { 1167 if (d->st[i].ctl & 0x02) { 1168 intel_hda_parse_bdl(d, &d->st[i]); 1169 } 1170 } 1171 intel_hda_update_irq(d); 1172 return 0; 1173 } 1174 1175 static const VMStateDescription vmstate_intel_hda_stream = { 1176 .name = "intel-hda-stream", 1177 .version_id = 1, 1178 .fields = (VMStateField []) { 1179 VMSTATE_UINT32(ctl, IntelHDAStream), 1180 VMSTATE_UINT32(lpib, IntelHDAStream), 1181 VMSTATE_UINT32(cbl, IntelHDAStream), 1182 VMSTATE_UINT32(lvi, IntelHDAStream), 1183 VMSTATE_UINT32(fmt, IntelHDAStream), 1184 VMSTATE_UINT32(bdlp_lbase, IntelHDAStream), 1185 VMSTATE_UINT32(bdlp_ubase, IntelHDAStream), 1186 VMSTATE_END_OF_LIST() 1187 } 1188 }; 1189 1190 static const VMStateDescription vmstate_intel_hda = { 1191 .name = "intel-hda", 1192 .version_id = 1, 1193 .post_load = intel_hda_post_load, 1194 .fields = (VMStateField []) { 1195 VMSTATE_PCI_DEVICE(pci, IntelHDAState), 1196 1197 /* registers */ 1198 VMSTATE_UINT32(g_ctl, IntelHDAState), 1199 VMSTATE_UINT32(wake_en, IntelHDAState), 1200 VMSTATE_UINT32(state_sts, IntelHDAState), 1201 VMSTATE_UINT32(int_ctl, IntelHDAState), 1202 VMSTATE_UINT32(int_sts, IntelHDAState), 1203 VMSTATE_UINT32(wall_clk, IntelHDAState), 1204 VMSTATE_UINT32(corb_lbase, IntelHDAState), 1205 VMSTATE_UINT32(corb_ubase, IntelHDAState), 1206 VMSTATE_UINT32(corb_rp, IntelHDAState), 1207 VMSTATE_UINT32(corb_wp, IntelHDAState), 1208 VMSTATE_UINT32(corb_ctl, IntelHDAState), 1209 VMSTATE_UINT32(corb_sts, IntelHDAState), 1210 VMSTATE_UINT32(corb_size, IntelHDAState), 1211 VMSTATE_UINT32(rirb_lbase, IntelHDAState), 1212 VMSTATE_UINT32(rirb_ubase, IntelHDAState), 1213 VMSTATE_UINT32(rirb_wp, IntelHDAState), 1214 VMSTATE_UINT32(rirb_cnt, IntelHDAState), 1215 VMSTATE_UINT32(rirb_ctl, IntelHDAState), 1216 VMSTATE_UINT32(rirb_sts, IntelHDAState), 1217 VMSTATE_UINT32(rirb_size, IntelHDAState), 1218 VMSTATE_UINT32(dp_lbase, IntelHDAState), 1219 VMSTATE_UINT32(dp_ubase, IntelHDAState), 1220 VMSTATE_UINT32(icw, IntelHDAState), 1221 VMSTATE_UINT32(irr, IntelHDAState), 1222 VMSTATE_UINT32(ics, IntelHDAState), 1223 VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0, 1224 vmstate_intel_hda_stream, 1225 IntelHDAStream), 1226 1227 /* additional state info */ 1228 VMSTATE_UINT32(rirb_count, IntelHDAState), 1229 VMSTATE_INT64(wall_base_ns, IntelHDAState), 1230 1231 VMSTATE_END_OF_LIST() 1232 } 1233 }; 1234 1235 static Property intel_hda_properties[] = { 1236 DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0), 1237 DEFINE_PROP_UINT32("msi", IntelHDAState, msi, 1), 1238 DEFINE_PROP_END_OF_LIST(), 1239 }; 1240 1241 static void intel_hda_class_init(ObjectClass *klass, void *data) 1242 { 1243 DeviceClass *dc = DEVICE_CLASS(klass); 1244 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1245 1246 k->init = intel_hda_init; 1247 k->exit = intel_hda_exit; 1248 k->vendor_id = PCI_VENDOR_ID_INTEL; 1249 k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO; 1250 dc->reset = intel_hda_reset; 1251 dc->vmsd = &vmstate_intel_hda; 1252 dc->props = intel_hda_properties; 1253 } 1254 1255 static void intel_hda_class_init_ich6(ObjectClass *klass, void *data) 1256 { 1257 DeviceClass *dc = DEVICE_CLASS(klass); 1258 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1259 1260 k->device_id = 0x2668; 1261 k->revision = 1; 1262 set_bit(DEVICE_CATEGORY_SOUND, dc->categories); 1263 dc->desc = "Intel HD Audio Controller (ich6)"; 1264 } 1265 1266 static void intel_hda_class_init_ich9(ObjectClass *klass, void *data) 1267 { 1268 DeviceClass *dc = DEVICE_CLASS(klass); 1269 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1270 1271 k->device_id = 0x293e; 1272 k->revision = 3; 1273 set_bit(DEVICE_CATEGORY_SOUND, dc->categories); 1274 dc->desc = "Intel HD Audio Controller (ich9)"; 1275 } 1276 1277 static const TypeInfo intel_hda_info = { 1278 .name = TYPE_INTEL_HDA_GENERIC, 1279 .parent = TYPE_PCI_DEVICE, 1280 .instance_size = sizeof(IntelHDAState), 1281 .class_init = intel_hda_class_init, 1282 .abstract = true, 1283 }; 1284 1285 static const TypeInfo intel_hda_info_ich6 = { 1286 .name = "intel-hda", 1287 .parent = TYPE_INTEL_HDA_GENERIC, 1288 .class_init = intel_hda_class_init_ich6, 1289 }; 1290 1291 static const TypeInfo intel_hda_info_ich9 = { 1292 .name = "ich9-intel-hda", 1293 .parent = TYPE_INTEL_HDA_GENERIC, 1294 .class_init = intel_hda_class_init_ich9, 1295 }; 1296 1297 static void hda_codec_device_class_init(ObjectClass *klass, void *data) 1298 { 1299 DeviceClass *k = DEVICE_CLASS(klass); 1300 k->init = hda_codec_dev_init; 1301 k->exit = hda_codec_dev_exit; 1302 set_bit(DEVICE_CATEGORY_SOUND, k->categories); 1303 k->bus_type = TYPE_HDA_BUS; 1304 k->props = hda_props; 1305 } 1306 1307 static const TypeInfo hda_codec_device_type_info = { 1308 .name = TYPE_HDA_CODEC_DEVICE, 1309 .parent = TYPE_DEVICE, 1310 .instance_size = sizeof(HDACodecDevice), 1311 .abstract = true, 1312 .class_size = sizeof(HDACodecDeviceClass), 1313 .class_init = hda_codec_device_class_init, 1314 }; 1315 1316 /* 1317 * create intel hda controller with codec attached to it, 1318 * so '-soundhw hda' works. 1319 */ 1320 static int intel_hda_and_codec_init(PCIBus *bus) 1321 { 1322 DeviceState *controller; 1323 BusState *hdabus; 1324 DeviceState *codec; 1325 1326 controller = DEVICE(pci_create_simple(bus, -1, "intel-hda")); 1327 hdabus = QLIST_FIRST(&controller->child_bus); 1328 codec = qdev_create(hdabus, "hda-duplex"); 1329 qdev_init_nofail(codec); 1330 return 0; 1331 } 1332 1333 static void intel_hda_register_types(void) 1334 { 1335 type_register_static(&hda_codec_bus_info); 1336 type_register_static(&intel_hda_info); 1337 type_register_static(&intel_hda_info_ich6); 1338 type_register_static(&intel_hda_info_ich9); 1339 type_register_static(&hda_codec_device_type_info); 1340 pci_register_soundhw("hda", "Intel HD Audio", intel_hda_and_codec_init); 1341 } 1342 1343 type_init(intel_hda_register_types) 1344