1 /* 2 * Copyright (C) 2010 Red Hat, Inc. 3 * 4 * written by Gerd Hoffmann <kraxel@redhat.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 or 9 * (at your option) version 3 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "hw/hw.h" 22 #include "hw/pci/pci.h" 23 #include "hw/pci/msi.h" 24 #include "qemu/timer.h" 25 #include "hw/audio/audio.h" 26 #include "intel-hda.h" 27 #include "intel-hda-defs.h" 28 #include "sysemu/dma.h" 29 #include "qapi/error.h" 30 31 /* --------------------------------------------------------------------- */ 32 /* hda bus */ 33 34 static Property hda_props[] = { 35 DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1), 36 DEFINE_PROP_END_OF_LIST() 37 }; 38 39 static const TypeInfo hda_codec_bus_info = { 40 .name = TYPE_HDA_BUS, 41 .parent = TYPE_BUS, 42 .instance_size = sizeof(HDACodecBus), 43 }; 44 45 void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus, size_t bus_size, 46 hda_codec_response_func response, 47 hda_codec_xfer_func xfer) 48 { 49 qbus_create_inplace(bus, bus_size, TYPE_HDA_BUS, dev, NULL); 50 bus->response = response; 51 bus->xfer = xfer; 52 } 53 54 static void hda_codec_dev_realize(DeviceState *qdev, Error **errp) 55 { 56 HDACodecBus *bus = HDA_BUS(qdev->parent_bus); 57 HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev); 58 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev); 59 60 if (dev->cad == -1) { 61 dev->cad = bus->next_cad; 62 } 63 if (dev->cad >= 15) { 64 error_setg(errp, "HDA audio codec address is full"); 65 return; 66 } 67 bus->next_cad = dev->cad + 1; 68 if (cdc->init(dev) != 0) { 69 error_setg(errp, "HDA audio init failed"); 70 } 71 } 72 73 static int hda_codec_dev_exit(DeviceState *qdev) 74 { 75 HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev); 76 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev); 77 78 if (cdc->exit) { 79 cdc->exit(dev); 80 } 81 return 0; 82 } 83 84 HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad) 85 { 86 BusChild *kid; 87 HDACodecDevice *cdev; 88 89 QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) { 90 DeviceState *qdev = kid->child; 91 cdev = HDA_CODEC_DEVICE(qdev); 92 if (cdev->cad == cad) { 93 return cdev; 94 } 95 } 96 return NULL; 97 } 98 99 void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response) 100 { 101 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus); 102 bus->response(dev, solicited, response); 103 } 104 105 bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output, 106 uint8_t *buf, uint32_t len) 107 { 108 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus); 109 return bus->xfer(dev, stnr, output, buf, len); 110 } 111 112 /* --------------------------------------------------------------------- */ 113 /* intel hda emulation */ 114 115 typedef struct IntelHDAStream IntelHDAStream; 116 typedef struct IntelHDAState IntelHDAState; 117 typedef struct IntelHDAReg IntelHDAReg; 118 119 typedef struct bpl { 120 uint64_t addr; 121 uint32_t len; 122 uint32_t flags; 123 } bpl; 124 125 struct IntelHDAStream { 126 /* registers */ 127 uint32_t ctl; 128 uint32_t lpib; 129 uint32_t cbl; 130 uint32_t lvi; 131 uint32_t fmt; 132 uint32_t bdlp_lbase; 133 uint32_t bdlp_ubase; 134 135 /* state */ 136 bpl *bpl; 137 uint32_t bentries; 138 uint32_t bsize, be, bp; 139 }; 140 141 struct IntelHDAState { 142 PCIDevice pci; 143 const char *name; 144 HDACodecBus codecs; 145 146 /* registers */ 147 uint32_t g_ctl; 148 uint32_t wake_en; 149 uint32_t state_sts; 150 uint32_t int_ctl; 151 uint32_t int_sts; 152 uint32_t wall_clk; 153 154 uint32_t corb_lbase; 155 uint32_t corb_ubase; 156 uint32_t corb_rp; 157 uint32_t corb_wp; 158 uint32_t corb_ctl; 159 uint32_t corb_sts; 160 uint32_t corb_size; 161 162 uint32_t rirb_lbase; 163 uint32_t rirb_ubase; 164 uint32_t rirb_wp; 165 uint32_t rirb_cnt; 166 uint32_t rirb_ctl; 167 uint32_t rirb_sts; 168 uint32_t rirb_size; 169 170 uint32_t dp_lbase; 171 uint32_t dp_ubase; 172 173 uint32_t icw; 174 uint32_t irr; 175 uint32_t ics; 176 177 /* streams */ 178 IntelHDAStream st[8]; 179 180 /* state */ 181 MemoryRegion mmio; 182 uint32_t rirb_count; 183 int64_t wall_base_ns; 184 185 /* debug logging */ 186 const IntelHDAReg *last_reg; 187 uint32_t last_val; 188 uint32_t last_write; 189 uint32_t last_sec; 190 uint32_t repeat_count; 191 192 /* properties */ 193 uint32_t debug; 194 uint32_t msi; 195 bool old_msi_addr; 196 }; 197 198 #define TYPE_INTEL_HDA_GENERIC "intel-hda-generic" 199 200 #define INTEL_HDA(obj) \ 201 OBJECT_CHECK(IntelHDAState, (obj), TYPE_INTEL_HDA_GENERIC) 202 203 struct IntelHDAReg { 204 const char *name; /* register name */ 205 uint32_t size; /* size in bytes */ 206 uint32_t reset; /* reset value */ 207 uint32_t wmask; /* write mask */ 208 uint32_t wclear; /* write 1 to clear bits */ 209 uint32_t offset; /* location in IntelHDAState */ 210 uint32_t shift; /* byte access entries for dwords */ 211 uint32_t stream; 212 void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old); 213 void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg); 214 }; 215 216 static void intel_hda_reset(DeviceState *dev); 217 218 /* --------------------------------------------------------------------- */ 219 220 static hwaddr intel_hda_addr(uint32_t lbase, uint32_t ubase) 221 { 222 return ((uint64_t)ubase << 32) | lbase; 223 } 224 225 static void intel_hda_update_int_sts(IntelHDAState *d) 226 { 227 uint32_t sts = 0; 228 uint32_t i; 229 230 /* update controller status */ 231 if (d->rirb_sts & ICH6_RBSTS_IRQ) { 232 sts |= (1 << 30); 233 } 234 if (d->rirb_sts & ICH6_RBSTS_OVERRUN) { 235 sts |= (1 << 30); 236 } 237 if (d->state_sts & d->wake_en) { 238 sts |= (1 << 30); 239 } 240 241 /* update stream status */ 242 for (i = 0; i < 8; i++) { 243 /* buffer completion interrupt */ 244 if (d->st[i].ctl & (1 << 26)) { 245 sts |= (1 << i); 246 } 247 } 248 249 /* update global status */ 250 if (sts & d->int_ctl) { 251 sts |= (1U << 31); 252 } 253 254 d->int_sts = sts; 255 } 256 257 static void intel_hda_update_irq(IntelHDAState *d) 258 { 259 int msi = d->msi && msi_enabled(&d->pci); 260 int level; 261 262 intel_hda_update_int_sts(d); 263 if (d->int_sts & (1U << 31) && d->int_ctl & (1U << 31)) { 264 level = 1; 265 } else { 266 level = 0; 267 } 268 dprint(d, 2, "%s: level %d [%s]\n", __FUNCTION__, 269 level, msi ? "msi" : "intx"); 270 if (msi) { 271 if (level) { 272 msi_notify(&d->pci, 0); 273 } 274 } else { 275 pci_set_irq(&d->pci, level); 276 } 277 } 278 279 static int intel_hda_send_command(IntelHDAState *d, uint32_t verb) 280 { 281 uint32_t cad, nid, data; 282 HDACodecDevice *codec; 283 HDACodecDeviceClass *cdc; 284 285 cad = (verb >> 28) & 0x0f; 286 if (verb & (1 << 27)) { 287 /* indirect node addressing, not specified in HDA 1.0 */ 288 dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__); 289 return -1; 290 } 291 nid = (verb >> 20) & 0x7f; 292 data = verb & 0xfffff; 293 294 codec = hda_codec_find(&d->codecs, cad); 295 if (codec == NULL) { 296 dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__); 297 return -1; 298 } 299 cdc = HDA_CODEC_DEVICE_GET_CLASS(codec); 300 cdc->command(codec, nid, data); 301 return 0; 302 } 303 304 static void intel_hda_corb_run(IntelHDAState *d) 305 { 306 hwaddr addr; 307 uint32_t rp, verb; 308 309 if (d->ics & ICH6_IRS_BUSY) { 310 dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw); 311 intel_hda_send_command(d, d->icw); 312 return; 313 } 314 315 for (;;) { 316 if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) { 317 dprint(d, 2, "%s: !run\n", __FUNCTION__); 318 return; 319 } 320 if ((d->corb_rp & 0xff) == d->corb_wp) { 321 dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__); 322 return; 323 } 324 if (d->rirb_count == d->rirb_cnt) { 325 dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__); 326 return; 327 } 328 329 rp = (d->corb_rp + 1) & 0xff; 330 addr = intel_hda_addr(d->corb_lbase, d->corb_ubase); 331 verb = ldl_le_pci_dma(&d->pci, addr + 4*rp); 332 d->corb_rp = rp; 333 334 dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb); 335 intel_hda_send_command(d, verb); 336 } 337 } 338 339 static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response) 340 { 341 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus); 342 IntelHDAState *d = container_of(bus, IntelHDAState, codecs); 343 hwaddr addr; 344 uint32_t wp, ex; 345 346 if (d->ics & ICH6_IRS_BUSY) { 347 dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n", 348 __FUNCTION__, response, dev->cad); 349 d->irr = response; 350 d->ics &= ~(ICH6_IRS_BUSY | 0xf0); 351 d->ics |= (ICH6_IRS_VALID | (dev->cad << 4)); 352 return; 353 } 354 355 if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) { 356 dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__); 357 return; 358 } 359 360 ex = (solicited ? 0 : (1 << 4)) | dev->cad; 361 wp = (d->rirb_wp + 1) & 0xff; 362 addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase); 363 stl_le_pci_dma(&d->pci, addr + 8*wp, response); 364 stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex); 365 d->rirb_wp = wp; 366 367 dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n", 368 __FUNCTION__, wp, response, ex); 369 370 d->rirb_count++; 371 if (d->rirb_count == d->rirb_cnt) { 372 dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count); 373 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) { 374 d->rirb_sts |= ICH6_RBSTS_IRQ; 375 intel_hda_update_irq(d); 376 } 377 } else if ((d->corb_rp & 0xff) == d->corb_wp) { 378 dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__, 379 d->rirb_count, d->rirb_cnt); 380 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) { 381 d->rirb_sts |= ICH6_RBSTS_IRQ; 382 intel_hda_update_irq(d); 383 } 384 } 385 } 386 387 static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output, 388 uint8_t *buf, uint32_t len) 389 { 390 HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus); 391 IntelHDAState *d = container_of(bus, IntelHDAState, codecs); 392 hwaddr addr; 393 uint32_t s, copy, left; 394 IntelHDAStream *st; 395 bool irq = false; 396 397 st = output ? d->st + 4 : d->st; 398 for (s = 0; s < 4; s++) { 399 if (stnr == ((st[s].ctl >> 20) & 0x0f)) { 400 st = st + s; 401 break; 402 } 403 } 404 if (s == 4) { 405 return false; 406 } 407 if (st->bpl == NULL) { 408 return false; 409 } 410 if (st->ctl & (1 << 26)) { 411 /* 412 * Wait with the next DMA xfer until the guest 413 * has acked the buffer completion interrupt 414 */ 415 return false; 416 } 417 418 left = len; 419 while (left > 0) { 420 copy = left; 421 if (copy > st->bsize - st->lpib) 422 copy = st->bsize - st->lpib; 423 if (copy > st->bpl[st->be].len - st->bp) 424 copy = st->bpl[st->be].len - st->bp; 425 426 dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n", 427 st->be, st->bp, st->bpl[st->be].len, copy); 428 429 pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output); 430 st->lpib += copy; 431 st->bp += copy; 432 buf += copy; 433 left -= copy; 434 435 if (st->bpl[st->be].len == st->bp) { 436 /* bpl entry filled */ 437 if (st->bpl[st->be].flags & 0x01) { 438 irq = true; 439 } 440 st->bp = 0; 441 st->be++; 442 if (st->be == st->bentries) { 443 /* bpl wrap around */ 444 st->be = 0; 445 st->lpib = 0; 446 } 447 } 448 } 449 if (d->dp_lbase & 0x01) { 450 s = st - d->st; 451 addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase); 452 stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib); 453 } 454 dprint(d, 3, "dma: --\n"); 455 456 if (irq) { 457 st->ctl |= (1 << 26); /* buffer completion interrupt */ 458 intel_hda_update_irq(d); 459 } 460 return true; 461 } 462 463 static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st) 464 { 465 hwaddr addr; 466 uint8_t buf[16]; 467 uint32_t i; 468 469 addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase); 470 st->bentries = st->lvi +1; 471 g_free(st->bpl); 472 st->bpl = g_malloc(sizeof(bpl) * st->bentries); 473 for (i = 0; i < st->bentries; i++, addr += 16) { 474 pci_dma_read(&d->pci, addr, buf, 16); 475 st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf); 476 st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8)); 477 st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12)); 478 dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n", 479 i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags); 480 } 481 482 st->bsize = st->cbl; 483 st->lpib = 0; 484 st->be = 0; 485 st->bp = 0; 486 } 487 488 static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output) 489 { 490 BusChild *kid; 491 HDACodecDevice *cdev; 492 493 QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) { 494 DeviceState *qdev = kid->child; 495 HDACodecDeviceClass *cdc; 496 497 cdev = HDA_CODEC_DEVICE(qdev); 498 cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev); 499 if (cdc->stream) { 500 cdc->stream(cdev, stream, running, output); 501 } 502 } 503 } 504 505 /* --------------------------------------------------------------------- */ 506 507 static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 508 { 509 if ((d->g_ctl & ICH6_GCTL_RESET) == 0) { 510 intel_hda_reset(DEVICE(d)); 511 } 512 } 513 514 static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 515 { 516 intel_hda_update_irq(d); 517 } 518 519 static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 520 { 521 intel_hda_update_irq(d); 522 } 523 524 static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 525 { 526 intel_hda_update_irq(d); 527 } 528 529 static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg) 530 { 531 int64_t ns; 532 533 ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - d->wall_base_ns; 534 d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */ 535 } 536 537 static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 538 { 539 intel_hda_corb_run(d); 540 } 541 542 static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 543 { 544 intel_hda_corb_run(d); 545 } 546 547 static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 548 { 549 if (d->rirb_wp & ICH6_RIRBWP_RST) { 550 d->rirb_wp = 0; 551 } 552 } 553 554 static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 555 { 556 intel_hda_update_irq(d); 557 558 if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) { 559 /* cleared ICH6_RBSTS_IRQ */ 560 d->rirb_count = 0; 561 intel_hda_corb_run(d); 562 } 563 } 564 565 static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 566 { 567 if (d->ics & ICH6_IRS_BUSY) { 568 intel_hda_corb_run(d); 569 } 570 } 571 572 static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 573 { 574 bool output = reg->stream >= 4; 575 IntelHDAStream *st = d->st + reg->stream; 576 577 if (st->ctl & 0x01) { 578 /* reset */ 579 dprint(d, 1, "st #%d: reset\n", reg->stream); 580 st->ctl = SD_STS_FIFO_READY << 24; 581 } 582 if ((st->ctl & 0x02) != (old & 0x02)) { 583 uint32_t stnr = (st->ctl >> 20) & 0x0f; 584 /* run bit flipped */ 585 if (st->ctl & 0x02) { 586 /* start */ 587 dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n", 588 reg->stream, stnr, st->cbl); 589 intel_hda_parse_bdl(d, st); 590 intel_hda_notify_codecs(d, stnr, true, output); 591 } else { 592 /* stop */ 593 dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr); 594 intel_hda_notify_codecs(d, stnr, false, output); 595 } 596 } 597 intel_hda_update_irq(d); 598 } 599 600 /* --------------------------------------------------------------------- */ 601 602 #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o)) 603 604 static const struct IntelHDAReg regtab[] = { 605 /* global */ 606 [ ICH6_REG_GCAP ] = { 607 .name = "GCAP", 608 .size = 2, 609 .reset = 0x4401, 610 }, 611 [ ICH6_REG_VMIN ] = { 612 .name = "VMIN", 613 .size = 1, 614 }, 615 [ ICH6_REG_VMAJ ] = { 616 .name = "VMAJ", 617 .size = 1, 618 .reset = 1, 619 }, 620 [ ICH6_REG_OUTPAY ] = { 621 .name = "OUTPAY", 622 .size = 2, 623 .reset = 0x3c, 624 }, 625 [ ICH6_REG_INPAY ] = { 626 .name = "INPAY", 627 .size = 2, 628 .reset = 0x1d, 629 }, 630 [ ICH6_REG_GCTL ] = { 631 .name = "GCTL", 632 .size = 4, 633 .wmask = 0x0103, 634 .offset = offsetof(IntelHDAState, g_ctl), 635 .whandler = intel_hda_set_g_ctl, 636 }, 637 [ ICH6_REG_WAKEEN ] = { 638 .name = "WAKEEN", 639 .size = 2, 640 .wmask = 0x7fff, 641 .offset = offsetof(IntelHDAState, wake_en), 642 .whandler = intel_hda_set_wake_en, 643 }, 644 [ ICH6_REG_STATESTS ] = { 645 .name = "STATESTS", 646 .size = 2, 647 .wmask = 0x7fff, 648 .wclear = 0x7fff, 649 .offset = offsetof(IntelHDAState, state_sts), 650 .whandler = intel_hda_set_state_sts, 651 }, 652 653 /* interrupts */ 654 [ ICH6_REG_INTCTL ] = { 655 .name = "INTCTL", 656 .size = 4, 657 .wmask = 0xc00000ff, 658 .offset = offsetof(IntelHDAState, int_ctl), 659 .whandler = intel_hda_set_int_ctl, 660 }, 661 [ ICH6_REG_INTSTS ] = { 662 .name = "INTSTS", 663 .size = 4, 664 .wmask = 0xc00000ff, 665 .wclear = 0xc00000ff, 666 .offset = offsetof(IntelHDAState, int_sts), 667 }, 668 669 /* misc */ 670 [ ICH6_REG_WALLCLK ] = { 671 .name = "WALLCLK", 672 .size = 4, 673 .offset = offsetof(IntelHDAState, wall_clk), 674 .rhandler = intel_hda_get_wall_clk, 675 }, 676 [ ICH6_REG_WALLCLK + 0x2000 ] = { 677 .name = "WALLCLK(alias)", 678 .size = 4, 679 .offset = offsetof(IntelHDAState, wall_clk), 680 .rhandler = intel_hda_get_wall_clk, 681 }, 682 683 /* dma engine */ 684 [ ICH6_REG_CORBLBASE ] = { 685 .name = "CORBLBASE", 686 .size = 4, 687 .wmask = 0xffffff80, 688 .offset = offsetof(IntelHDAState, corb_lbase), 689 }, 690 [ ICH6_REG_CORBUBASE ] = { 691 .name = "CORBUBASE", 692 .size = 4, 693 .wmask = 0xffffffff, 694 .offset = offsetof(IntelHDAState, corb_ubase), 695 }, 696 [ ICH6_REG_CORBWP ] = { 697 .name = "CORBWP", 698 .size = 2, 699 .wmask = 0xff, 700 .offset = offsetof(IntelHDAState, corb_wp), 701 .whandler = intel_hda_set_corb_wp, 702 }, 703 [ ICH6_REG_CORBRP ] = { 704 .name = "CORBRP", 705 .size = 2, 706 .wmask = 0x80ff, 707 .offset = offsetof(IntelHDAState, corb_rp), 708 }, 709 [ ICH6_REG_CORBCTL ] = { 710 .name = "CORBCTL", 711 .size = 1, 712 .wmask = 0x03, 713 .offset = offsetof(IntelHDAState, corb_ctl), 714 .whandler = intel_hda_set_corb_ctl, 715 }, 716 [ ICH6_REG_CORBSTS ] = { 717 .name = "CORBSTS", 718 .size = 1, 719 .wmask = 0x01, 720 .wclear = 0x01, 721 .offset = offsetof(IntelHDAState, corb_sts), 722 }, 723 [ ICH6_REG_CORBSIZE ] = { 724 .name = "CORBSIZE", 725 .size = 1, 726 .reset = 0x42, 727 .offset = offsetof(IntelHDAState, corb_size), 728 }, 729 [ ICH6_REG_RIRBLBASE ] = { 730 .name = "RIRBLBASE", 731 .size = 4, 732 .wmask = 0xffffff80, 733 .offset = offsetof(IntelHDAState, rirb_lbase), 734 }, 735 [ ICH6_REG_RIRBUBASE ] = { 736 .name = "RIRBUBASE", 737 .size = 4, 738 .wmask = 0xffffffff, 739 .offset = offsetof(IntelHDAState, rirb_ubase), 740 }, 741 [ ICH6_REG_RIRBWP ] = { 742 .name = "RIRBWP", 743 .size = 2, 744 .wmask = 0x8000, 745 .offset = offsetof(IntelHDAState, rirb_wp), 746 .whandler = intel_hda_set_rirb_wp, 747 }, 748 [ ICH6_REG_RINTCNT ] = { 749 .name = "RINTCNT", 750 .size = 2, 751 .wmask = 0xff, 752 .offset = offsetof(IntelHDAState, rirb_cnt), 753 }, 754 [ ICH6_REG_RIRBCTL ] = { 755 .name = "RIRBCTL", 756 .size = 1, 757 .wmask = 0x07, 758 .offset = offsetof(IntelHDAState, rirb_ctl), 759 }, 760 [ ICH6_REG_RIRBSTS ] = { 761 .name = "RIRBSTS", 762 .size = 1, 763 .wmask = 0x05, 764 .wclear = 0x05, 765 .offset = offsetof(IntelHDAState, rirb_sts), 766 .whandler = intel_hda_set_rirb_sts, 767 }, 768 [ ICH6_REG_RIRBSIZE ] = { 769 .name = "RIRBSIZE", 770 .size = 1, 771 .reset = 0x42, 772 .offset = offsetof(IntelHDAState, rirb_size), 773 }, 774 775 [ ICH6_REG_DPLBASE ] = { 776 .name = "DPLBASE", 777 .size = 4, 778 .wmask = 0xffffff81, 779 .offset = offsetof(IntelHDAState, dp_lbase), 780 }, 781 [ ICH6_REG_DPUBASE ] = { 782 .name = "DPUBASE", 783 .size = 4, 784 .wmask = 0xffffffff, 785 .offset = offsetof(IntelHDAState, dp_ubase), 786 }, 787 788 [ ICH6_REG_IC ] = { 789 .name = "ICW", 790 .size = 4, 791 .wmask = 0xffffffff, 792 .offset = offsetof(IntelHDAState, icw), 793 }, 794 [ ICH6_REG_IR ] = { 795 .name = "IRR", 796 .size = 4, 797 .offset = offsetof(IntelHDAState, irr), 798 }, 799 [ ICH6_REG_IRS ] = { 800 .name = "ICS", 801 .size = 2, 802 .wmask = 0x0003, 803 .wclear = 0x0002, 804 .offset = offsetof(IntelHDAState, ics), 805 .whandler = intel_hda_set_ics, 806 }, 807 808 #define HDA_STREAM(_t, _i) \ 809 [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \ 810 .stream = _i, \ 811 .name = _t stringify(_i) " CTL", \ 812 .size = 4, \ 813 .wmask = 0x1cff001f, \ 814 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 815 .whandler = intel_hda_set_st_ctl, \ 816 }, \ 817 [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \ 818 .stream = _i, \ 819 .name = _t stringify(_i) " CTL(stnr)", \ 820 .size = 1, \ 821 .shift = 16, \ 822 .wmask = 0x00ff0000, \ 823 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 824 .whandler = intel_hda_set_st_ctl, \ 825 }, \ 826 [ ST_REG(_i, ICH6_REG_SD_STS)] = { \ 827 .stream = _i, \ 828 .name = _t stringify(_i) " CTL(sts)", \ 829 .size = 1, \ 830 .shift = 24, \ 831 .wmask = 0x1c000000, \ 832 .wclear = 0x1c000000, \ 833 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 834 .whandler = intel_hda_set_st_ctl, \ 835 .reset = SD_STS_FIFO_READY << 24 \ 836 }, \ 837 [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \ 838 .stream = _i, \ 839 .name = _t stringify(_i) " LPIB", \ 840 .size = 4, \ 841 .offset = offsetof(IntelHDAState, st[_i].lpib), \ 842 }, \ 843 [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \ 844 .stream = _i, \ 845 .name = _t stringify(_i) " LPIB(alias)", \ 846 .size = 4, \ 847 .offset = offsetof(IntelHDAState, st[_i].lpib), \ 848 }, \ 849 [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \ 850 .stream = _i, \ 851 .name = _t stringify(_i) " CBL", \ 852 .size = 4, \ 853 .wmask = 0xffffffff, \ 854 .offset = offsetof(IntelHDAState, st[_i].cbl), \ 855 }, \ 856 [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \ 857 .stream = _i, \ 858 .name = _t stringify(_i) " LVI", \ 859 .size = 2, \ 860 .wmask = 0x00ff, \ 861 .offset = offsetof(IntelHDAState, st[_i].lvi), \ 862 }, \ 863 [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \ 864 .stream = _i, \ 865 .name = _t stringify(_i) " FIFOS", \ 866 .size = 2, \ 867 .reset = HDA_BUFFER_SIZE, \ 868 }, \ 869 [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \ 870 .stream = _i, \ 871 .name = _t stringify(_i) " FMT", \ 872 .size = 2, \ 873 .wmask = 0x7f7f, \ 874 .offset = offsetof(IntelHDAState, st[_i].fmt), \ 875 }, \ 876 [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \ 877 .stream = _i, \ 878 .name = _t stringify(_i) " BDLPL", \ 879 .size = 4, \ 880 .wmask = 0xffffff80, \ 881 .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \ 882 }, \ 883 [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \ 884 .stream = _i, \ 885 .name = _t stringify(_i) " BDLPU", \ 886 .size = 4, \ 887 .wmask = 0xffffffff, \ 888 .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \ 889 }, \ 890 891 HDA_STREAM("IN", 0) 892 HDA_STREAM("IN", 1) 893 HDA_STREAM("IN", 2) 894 HDA_STREAM("IN", 3) 895 896 HDA_STREAM("OUT", 4) 897 HDA_STREAM("OUT", 5) 898 HDA_STREAM("OUT", 6) 899 HDA_STREAM("OUT", 7) 900 901 }; 902 903 static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, hwaddr addr) 904 { 905 const IntelHDAReg *reg; 906 907 if (addr >= ARRAY_SIZE(regtab)) { 908 goto noreg; 909 } 910 reg = regtab+addr; 911 if (reg->name == NULL) { 912 goto noreg; 913 } 914 return reg; 915 916 noreg: 917 dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr); 918 return NULL; 919 } 920 921 static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg) 922 { 923 uint8_t *addr = (void*)d; 924 925 addr += reg->offset; 926 return (uint32_t*)addr; 927 } 928 929 static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val, 930 uint32_t wmask) 931 { 932 uint32_t *addr; 933 uint32_t old; 934 935 if (!reg) { 936 return; 937 } 938 939 if (d->debug) { 940 time_t now = time(NULL); 941 if (d->last_write && d->last_reg == reg && d->last_val == val) { 942 d->repeat_count++; 943 if (d->last_sec != now) { 944 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 945 d->last_sec = now; 946 d->repeat_count = 0; 947 } 948 } else { 949 if (d->repeat_count) { 950 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 951 } 952 dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask); 953 d->last_write = 1; 954 d->last_reg = reg; 955 d->last_val = val; 956 d->last_sec = now; 957 d->repeat_count = 0; 958 } 959 } 960 assert(reg->offset != 0); 961 962 addr = intel_hda_reg_addr(d, reg); 963 old = *addr; 964 965 if (reg->shift) { 966 val <<= reg->shift; 967 wmask <<= reg->shift; 968 } 969 wmask &= reg->wmask; 970 *addr &= ~wmask; 971 *addr |= wmask & val; 972 *addr &= ~(val & reg->wclear); 973 974 if (reg->whandler) { 975 reg->whandler(d, reg, old); 976 } 977 } 978 979 static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg, 980 uint32_t rmask) 981 { 982 uint32_t *addr, ret; 983 984 if (!reg) { 985 return 0; 986 } 987 988 if (reg->rhandler) { 989 reg->rhandler(d, reg); 990 } 991 992 if (reg->offset == 0) { 993 /* constant read-only register */ 994 ret = reg->reset; 995 } else { 996 addr = intel_hda_reg_addr(d, reg); 997 ret = *addr; 998 if (reg->shift) { 999 ret >>= reg->shift; 1000 } 1001 ret &= rmask; 1002 } 1003 if (d->debug) { 1004 time_t now = time(NULL); 1005 if (!d->last_write && d->last_reg == reg && d->last_val == ret) { 1006 d->repeat_count++; 1007 if (d->last_sec != now) { 1008 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 1009 d->last_sec = now; 1010 d->repeat_count = 0; 1011 } 1012 } else { 1013 if (d->repeat_count) { 1014 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 1015 } 1016 dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask); 1017 d->last_write = 0; 1018 d->last_reg = reg; 1019 d->last_val = ret; 1020 d->last_sec = now; 1021 d->repeat_count = 0; 1022 } 1023 } 1024 return ret; 1025 } 1026 1027 static void intel_hda_regs_reset(IntelHDAState *d) 1028 { 1029 uint32_t *addr; 1030 int i; 1031 1032 for (i = 0; i < ARRAY_SIZE(regtab); i++) { 1033 if (regtab[i].name == NULL) { 1034 continue; 1035 } 1036 if (regtab[i].offset == 0) { 1037 continue; 1038 } 1039 addr = intel_hda_reg_addr(d, regtab + i); 1040 *addr = regtab[i].reset; 1041 } 1042 } 1043 1044 /* --------------------------------------------------------------------- */ 1045 1046 static void intel_hda_mmio_writeb(void *opaque, hwaddr addr, uint32_t val) 1047 { 1048 IntelHDAState *d = opaque; 1049 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1050 1051 intel_hda_reg_write(d, reg, val, 0xff); 1052 } 1053 1054 static void intel_hda_mmio_writew(void *opaque, hwaddr addr, uint32_t val) 1055 { 1056 IntelHDAState *d = opaque; 1057 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1058 1059 intel_hda_reg_write(d, reg, val, 0xffff); 1060 } 1061 1062 static void intel_hda_mmio_writel(void *opaque, hwaddr addr, uint32_t val) 1063 { 1064 IntelHDAState *d = opaque; 1065 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1066 1067 intel_hda_reg_write(d, reg, val, 0xffffffff); 1068 } 1069 1070 static uint32_t intel_hda_mmio_readb(void *opaque, hwaddr addr) 1071 { 1072 IntelHDAState *d = opaque; 1073 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1074 1075 return intel_hda_reg_read(d, reg, 0xff); 1076 } 1077 1078 static uint32_t intel_hda_mmio_readw(void *opaque, hwaddr addr) 1079 { 1080 IntelHDAState *d = opaque; 1081 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1082 1083 return intel_hda_reg_read(d, reg, 0xffff); 1084 } 1085 1086 static uint32_t intel_hda_mmio_readl(void *opaque, hwaddr addr) 1087 { 1088 IntelHDAState *d = opaque; 1089 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1090 1091 return intel_hda_reg_read(d, reg, 0xffffffff); 1092 } 1093 1094 static const MemoryRegionOps intel_hda_mmio_ops = { 1095 .old_mmio = { 1096 .read = { 1097 intel_hda_mmio_readb, 1098 intel_hda_mmio_readw, 1099 intel_hda_mmio_readl, 1100 }, 1101 .write = { 1102 intel_hda_mmio_writeb, 1103 intel_hda_mmio_writew, 1104 intel_hda_mmio_writel, 1105 }, 1106 }, 1107 .endianness = DEVICE_NATIVE_ENDIAN, 1108 }; 1109 1110 /* --------------------------------------------------------------------- */ 1111 1112 static void intel_hda_reset(DeviceState *dev) 1113 { 1114 BusChild *kid; 1115 IntelHDAState *d = INTEL_HDA(dev); 1116 HDACodecDevice *cdev; 1117 1118 intel_hda_regs_reset(d); 1119 d->wall_base_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1120 1121 /* reset codecs */ 1122 QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) { 1123 DeviceState *qdev = kid->child; 1124 cdev = HDA_CODEC_DEVICE(qdev); 1125 device_reset(DEVICE(cdev)); 1126 d->state_sts |= (1 << cdev->cad); 1127 } 1128 intel_hda_update_irq(d); 1129 } 1130 1131 static void intel_hda_realize(PCIDevice *pci, Error **errp) 1132 { 1133 IntelHDAState *d = INTEL_HDA(pci); 1134 uint8_t *conf = d->pci.config; 1135 1136 d->name = object_get_typename(OBJECT(d)); 1137 1138 pci_config_set_interrupt_pin(conf, 1); 1139 1140 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */ 1141 conf[0x40] = 0x01; 1142 1143 memory_region_init_io(&d->mmio, OBJECT(d), &intel_hda_mmio_ops, d, 1144 "intel-hda", 0x4000); 1145 pci_register_bar(&d->pci, 0, 0, &d->mmio); 1146 if (d->msi) { 1147 msi_init(&d->pci, d->old_msi_addr ? 0x50 : 0x60, 1, true, false); 1148 } 1149 1150 hda_codec_bus_init(DEVICE(pci), &d->codecs, sizeof(d->codecs), 1151 intel_hda_response, intel_hda_xfer); 1152 } 1153 1154 static void intel_hda_exit(PCIDevice *pci) 1155 { 1156 IntelHDAState *d = INTEL_HDA(pci); 1157 1158 msi_uninit(&d->pci); 1159 } 1160 1161 static int intel_hda_post_load(void *opaque, int version) 1162 { 1163 IntelHDAState* d = opaque; 1164 int i; 1165 1166 dprint(d, 1, "%s\n", __FUNCTION__); 1167 for (i = 0; i < ARRAY_SIZE(d->st); i++) { 1168 if (d->st[i].ctl & 0x02) { 1169 intel_hda_parse_bdl(d, &d->st[i]); 1170 } 1171 } 1172 intel_hda_update_irq(d); 1173 return 0; 1174 } 1175 1176 static const VMStateDescription vmstate_intel_hda_stream = { 1177 .name = "intel-hda-stream", 1178 .version_id = 1, 1179 .fields = (VMStateField[]) { 1180 VMSTATE_UINT32(ctl, IntelHDAStream), 1181 VMSTATE_UINT32(lpib, IntelHDAStream), 1182 VMSTATE_UINT32(cbl, IntelHDAStream), 1183 VMSTATE_UINT32(lvi, IntelHDAStream), 1184 VMSTATE_UINT32(fmt, IntelHDAStream), 1185 VMSTATE_UINT32(bdlp_lbase, IntelHDAStream), 1186 VMSTATE_UINT32(bdlp_ubase, IntelHDAStream), 1187 VMSTATE_END_OF_LIST() 1188 } 1189 }; 1190 1191 static const VMStateDescription vmstate_intel_hda = { 1192 .name = "intel-hda", 1193 .version_id = 1, 1194 .post_load = intel_hda_post_load, 1195 .fields = (VMStateField[]) { 1196 VMSTATE_PCI_DEVICE(pci, IntelHDAState), 1197 1198 /* registers */ 1199 VMSTATE_UINT32(g_ctl, IntelHDAState), 1200 VMSTATE_UINT32(wake_en, IntelHDAState), 1201 VMSTATE_UINT32(state_sts, IntelHDAState), 1202 VMSTATE_UINT32(int_ctl, IntelHDAState), 1203 VMSTATE_UINT32(int_sts, IntelHDAState), 1204 VMSTATE_UINT32(wall_clk, IntelHDAState), 1205 VMSTATE_UINT32(corb_lbase, IntelHDAState), 1206 VMSTATE_UINT32(corb_ubase, IntelHDAState), 1207 VMSTATE_UINT32(corb_rp, IntelHDAState), 1208 VMSTATE_UINT32(corb_wp, IntelHDAState), 1209 VMSTATE_UINT32(corb_ctl, IntelHDAState), 1210 VMSTATE_UINT32(corb_sts, IntelHDAState), 1211 VMSTATE_UINT32(corb_size, IntelHDAState), 1212 VMSTATE_UINT32(rirb_lbase, IntelHDAState), 1213 VMSTATE_UINT32(rirb_ubase, IntelHDAState), 1214 VMSTATE_UINT32(rirb_wp, IntelHDAState), 1215 VMSTATE_UINT32(rirb_cnt, IntelHDAState), 1216 VMSTATE_UINT32(rirb_ctl, IntelHDAState), 1217 VMSTATE_UINT32(rirb_sts, IntelHDAState), 1218 VMSTATE_UINT32(rirb_size, IntelHDAState), 1219 VMSTATE_UINT32(dp_lbase, IntelHDAState), 1220 VMSTATE_UINT32(dp_ubase, IntelHDAState), 1221 VMSTATE_UINT32(icw, IntelHDAState), 1222 VMSTATE_UINT32(irr, IntelHDAState), 1223 VMSTATE_UINT32(ics, IntelHDAState), 1224 VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0, 1225 vmstate_intel_hda_stream, 1226 IntelHDAStream), 1227 1228 /* additional state info */ 1229 VMSTATE_UINT32(rirb_count, IntelHDAState), 1230 VMSTATE_INT64(wall_base_ns, IntelHDAState), 1231 1232 VMSTATE_END_OF_LIST() 1233 } 1234 }; 1235 1236 static Property intel_hda_properties[] = { 1237 DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0), 1238 DEFINE_PROP_UINT32("msi", IntelHDAState, msi, 1), 1239 DEFINE_PROP_BOOL("old_msi_addr", IntelHDAState, old_msi_addr, false), 1240 DEFINE_PROP_END_OF_LIST(), 1241 }; 1242 1243 static void intel_hda_class_init(ObjectClass *klass, void *data) 1244 { 1245 DeviceClass *dc = DEVICE_CLASS(klass); 1246 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1247 1248 k->realize = intel_hda_realize; 1249 k->exit = intel_hda_exit; 1250 k->vendor_id = PCI_VENDOR_ID_INTEL; 1251 k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO; 1252 dc->reset = intel_hda_reset; 1253 dc->vmsd = &vmstate_intel_hda; 1254 dc->props = intel_hda_properties; 1255 } 1256 1257 static void intel_hda_class_init_ich6(ObjectClass *klass, void *data) 1258 { 1259 DeviceClass *dc = DEVICE_CLASS(klass); 1260 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1261 1262 k->device_id = 0x2668; 1263 k->revision = 1; 1264 set_bit(DEVICE_CATEGORY_SOUND, dc->categories); 1265 dc->desc = "Intel HD Audio Controller (ich6)"; 1266 } 1267 1268 static void intel_hda_class_init_ich9(ObjectClass *klass, void *data) 1269 { 1270 DeviceClass *dc = DEVICE_CLASS(klass); 1271 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1272 1273 k->device_id = 0x293e; 1274 k->revision = 3; 1275 set_bit(DEVICE_CATEGORY_SOUND, dc->categories); 1276 dc->desc = "Intel HD Audio Controller (ich9)"; 1277 } 1278 1279 static const TypeInfo intel_hda_info = { 1280 .name = TYPE_INTEL_HDA_GENERIC, 1281 .parent = TYPE_PCI_DEVICE, 1282 .instance_size = sizeof(IntelHDAState), 1283 .class_init = intel_hda_class_init, 1284 .abstract = true, 1285 }; 1286 1287 static const TypeInfo intel_hda_info_ich6 = { 1288 .name = "intel-hda", 1289 .parent = TYPE_INTEL_HDA_GENERIC, 1290 .class_init = intel_hda_class_init_ich6, 1291 }; 1292 1293 static const TypeInfo intel_hda_info_ich9 = { 1294 .name = "ich9-intel-hda", 1295 .parent = TYPE_INTEL_HDA_GENERIC, 1296 .class_init = intel_hda_class_init_ich9, 1297 }; 1298 1299 static void hda_codec_device_class_init(ObjectClass *klass, void *data) 1300 { 1301 DeviceClass *k = DEVICE_CLASS(klass); 1302 k->realize = hda_codec_dev_realize; 1303 k->exit = hda_codec_dev_exit; 1304 set_bit(DEVICE_CATEGORY_SOUND, k->categories); 1305 k->bus_type = TYPE_HDA_BUS; 1306 k->props = hda_props; 1307 } 1308 1309 static const TypeInfo hda_codec_device_type_info = { 1310 .name = TYPE_HDA_CODEC_DEVICE, 1311 .parent = TYPE_DEVICE, 1312 .instance_size = sizeof(HDACodecDevice), 1313 .abstract = true, 1314 .class_size = sizeof(HDACodecDeviceClass), 1315 .class_init = hda_codec_device_class_init, 1316 }; 1317 1318 /* 1319 * create intel hda controller with codec attached to it, 1320 * so '-soundhw hda' works. 1321 */ 1322 static int intel_hda_and_codec_init(PCIBus *bus) 1323 { 1324 DeviceState *controller; 1325 BusState *hdabus; 1326 DeviceState *codec; 1327 1328 controller = DEVICE(pci_create_simple(bus, -1, "intel-hda")); 1329 hdabus = QLIST_FIRST(&controller->child_bus); 1330 codec = qdev_create(hdabus, "hda-duplex"); 1331 qdev_init_nofail(codec); 1332 return 0; 1333 } 1334 1335 static void intel_hda_register_types(void) 1336 { 1337 type_register_static(&hda_codec_bus_info); 1338 type_register_static(&intel_hda_info); 1339 type_register_static(&intel_hda_info_ich6); 1340 type_register_static(&intel_hda_info_ich9); 1341 type_register_static(&hda_codec_device_type_info); 1342 pci_register_soundhw("hda", "Intel HD Audio", intel_hda_and_codec_init); 1343 } 1344 1345 type_init(intel_hda_register_types) 1346