1 /* 2 * Copyright (C) 2010 Red Hat, Inc. 3 * 4 * written by Gerd Hoffmann <kraxel@redhat.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 or 9 * (at your option) version 3 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "hw/hw.h" 21 #include "hw/pci/pci.h" 22 #include "hw/pci/msi.h" 23 #include "qemu/timer.h" 24 #include "hw/audio/audio.h" 25 #include "intel-hda.h" 26 #include "intel-hda-defs.h" 27 #include "sysemu/dma.h" 28 29 /* --------------------------------------------------------------------- */ 30 /* hda bus */ 31 32 static Property hda_props[] = { 33 DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1), 34 DEFINE_PROP_END_OF_LIST() 35 }; 36 37 static const TypeInfo hda_codec_bus_info = { 38 .name = TYPE_HDA_BUS, 39 .parent = TYPE_BUS, 40 .instance_size = sizeof(HDACodecBus), 41 }; 42 43 void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus, size_t bus_size, 44 hda_codec_response_func response, 45 hda_codec_xfer_func xfer) 46 { 47 qbus_create_inplace(bus, bus_size, TYPE_HDA_BUS, dev, NULL); 48 bus->response = response; 49 bus->xfer = xfer; 50 } 51 52 static int hda_codec_dev_init(DeviceState *qdev) 53 { 54 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus); 55 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev); 56 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev); 57 58 if (dev->cad == -1) { 59 dev->cad = bus->next_cad; 60 } 61 if (dev->cad >= 15) { 62 return -1; 63 } 64 bus->next_cad = dev->cad + 1; 65 return cdc->init(dev); 66 } 67 68 static int hda_codec_dev_exit(DeviceState *qdev) 69 { 70 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev); 71 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev); 72 73 if (cdc->exit) { 74 cdc->exit(dev); 75 } 76 return 0; 77 } 78 79 HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad) 80 { 81 BusChild *kid; 82 HDACodecDevice *cdev; 83 84 QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) { 85 DeviceState *qdev = kid->child; 86 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev); 87 if (cdev->cad == cad) { 88 return cdev; 89 } 90 } 91 return NULL; 92 } 93 94 void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response) 95 { 96 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); 97 bus->response(dev, solicited, response); 98 } 99 100 bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output, 101 uint8_t *buf, uint32_t len) 102 { 103 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); 104 return bus->xfer(dev, stnr, output, buf, len); 105 } 106 107 /* --------------------------------------------------------------------- */ 108 /* intel hda emulation */ 109 110 typedef struct IntelHDAStream IntelHDAStream; 111 typedef struct IntelHDAState IntelHDAState; 112 typedef struct IntelHDAReg IntelHDAReg; 113 114 typedef struct bpl { 115 uint64_t addr; 116 uint32_t len; 117 uint32_t flags; 118 } bpl; 119 120 struct IntelHDAStream { 121 /* registers */ 122 uint32_t ctl; 123 uint32_t lpib; 124 uint32_t cbl; 125 uint32_t lvi; 126 uint32_t fmt; 127 uint32_t bdlp_lbase; 128 uint32_t bdlp_ubase; 129 130 /* state */ 131 bpl *bpl; 132 uint32_t bentries; 133 uint32_t bsize, be, bp; 134 }; 135 136 struct IntelHDAState { 137 PCIDevice pci; 138 const char *name; 139 HDACodecBus codecs; 140 141 /* registers */ 142 uint32_t g_ctl; 143 uint32_t wake_en; 144 uint32_t state_sts; 145 uint32_t int_ctl; 146 uint32_t int_sts; 147 uint32_t wall_clk; 148 149 uint32_t corb_lbase; 150 uint32_t corb_ubase; 151 uint32_t corb_rp; 152 uint32_t corb_wp; 153 uint32_t corb_ctl; 154 uint32_t corb_sts; 155 uint32_t corb_size; 156 157 uint32_t rirb_lbase; 158 uint32_t rirb_ubase; 159 uint32_t rirb_wp; 160 uint32_t rirb_cnt; 161 uint32_t rirb_ctl; 162 uint32_t rirb_sts; 163 uint32_t rirb_size; 164 165 uint32_t dp_lbase; 166 uint32_t dp_ubase; 167 168 uint32_t icw; 169 uint32_t irr; 170 uint32_t ics; 171 172 /* streams */ 173 IntelHDAStream st[8]; 174 175 /* state */ 176 MemoryRegion mmio; 177 uint32_t rirb_count; 178 int64_t wall_base_ns; 179 180 /* debug logging */ 181 const IntelHDAReg *last_reg; 182 uint32_t last_val; 183 uint32_t last_write; 184 uint32_t last_sec; 185 uint32_t repeat_count; 186 187 /* properties */ 188 uint32_t debug; 189 uint32_t msi; 190 }; 191 192 #define TYPE_INTEL_HDA_GENERIC "intel-hda-generic" 193 194 #define INTEL_HDA(obj) \ 195 OBJECT_CHECK(IntelHDAState, (obj), TYPE_INTEL_HDA_GENERIC) 196 197 struct IntelHDAReg { 198 const char *name; /* register name */ 199 uint32_t size; /* size in bytes */ 200 uint32_t reset; /* reset value */ 201 uint32_t wmask; /* write mask */ 202 uint32_t wclear; /* write 1 to clear bits */ 203 uint32_t offset; /* location in IntelHDAState */ 204 uint32_t shift; /* byte access entries for dwords */ 205 uint32_t stream; 206 void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old); 207 void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg); 208 }; 209 210 static void intel_hda_reset(DeviceState *dev); 211 212 /* --------------------------------------------------------------------- */ 213 214 static hwaddr intel_hda_addr(uint32_t lbase, uint32_t ubase) 215 { 216 hwaddr addr; 217 218 addr = ((uint64_t)ubase << 32) | lbase; 219 return addr; 220 } 221 222 static void intel_hda_update_int_sts(IntelHDAState *d) 223 { 224 uint32_t sts = 0; 225 uint32_t i; 226 227 /* update controller status */ 228 if (d->rirb_sts & ICH6_RBSTS_IRQ) { 229 sts |= (1 << 30); 230 } 231 if (d->rirb_sts & ICH6_RBSTS_OVERRUN) { 232 sts |= (1 << 30); 233 } 234 if (d->state_sts & d->wake_en) { 235 sts |= (1 << 30); 236 } 237 238 /* update stream status */ 239 for (i = 0; i < 8; i++) { 240 /* buffer completion interrupt */ 241 if (d->st[i].ctl & (1 << 26)) { 242 sts |= (1 << i); 243 } 244 } 245 246 /* update global status */ 247 if (sts & d->int_ctl) { 248 sts |= (1 << 31); 249 } 250 251 d->int_sts = sts; 252 } 253 254 static void intel_hda_update_irq(IntelHDAState *d) 255 { 256 int msi = d->msi && msi_enabled(&d->pci); 257 int level; 258 259 intel_hda_update_int_sts(d); 260 if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) { 261 level = 1; 262 } else { 263 level = 0; 264 } 265 dprint(d, 2, "%s: level %d [%s]\n", __FUNCTION__, 266 level, msi ? "msi" : "intx"); 267 if (msi) { 268 if (level) { 269 msi_notify(&d->pci, 0); 270 } 271 } else { 272 pci_set_irq(&d->pci, level); 273 } 274 } 275 276 static int intel_hda_send_command(IntelHDAState *d, uint32_t verb) 277 { 278 uint32_t cad, nid, data; 279 HDACodecDevice *codec; 280 HDACodecDeviceClass *cdc; 281 282 cad = (verb >> 28) & 0x0f; 283 if (verb & (1 << 27)) { 284 /* indirect node addressing, not specified in HDA 1.0 */ 285 dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__); 286 return -1; 287 } 288 nid = (verb >> 20) & 0x7f; 289 data = verb & 0xfffff; 290 291 codec = hda_codec_find(&d->codecs, cad); 292 if (codec == NULL) { 293 dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__); 294 return -1; 295 } 296 cdc = HDA_CODEC_DEVICE_GET_CLASS(codec); 297 cdc->command(codec, nid, data); 298 return 0; 299 } 300 301 static void intel_hda_corb_run(IntelHDAState *d) 302 { 303 hwaddr addr; 304 uint32_t rp, verb; 305 306 if (d->ics & ICH6_IRS_BUSY) { 307 dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw); 308 intel_hda_send_command(d, d->icw); 309 return; 310 } 311 312 for (;;) { 313 if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) { 314 dprint(d, 2, "%s: !run\n", __FUNCTION__); 315 return; 316 } 317 if ((d->corb_rp & 0xff) == d->corb_wp) { 318 dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__); 319 return; 320 } 321 if (d->rirb_count == d->rirb_cnt) { 322 dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__); 323 return; 324 } 325 326 rp = (d->corb_rp + 1) & 0xff; 327 addr = intel_hda_addr(d->corb_lbase, d->corb_ubase); 328 verb = ldl_le_pci_dma(&d->pci, addr + 4*rp); 329 d->corb_rp = rp; 330 331 dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb); 332 intel_hda_send_command(d, verb); 333 } 334 } 335 336 static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response) 337 { 338 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); 339 IntelHDAState *d = container_of(bus, IntelHDAState, codecs); 340 hwaddr addr; 341 uint32_t wp, ex; 342 343 if (d->ics & ICH6_IRS_BUSY) { 344 dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n", 345 __FUNCTION__, response, dev->cad); 346 d->irr = response; 347 d->ics &= ~(ICH6_IRS_BUSY | 0xf0); 348 d->ics |= (ICH6_IRS_VALID | (dev->cad << 4)); 349 return; 350 } 351 352 if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) { 353 dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__); 354 return; 355 } 356 357 ex = (solicited ? 0 : (1 << 4)) | dev->cad; 358 wp = (d->rirb_wp + 1) & 0xff; 359 addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase); 360 stl_le_pci_dma(&d->pci, addr + 8*wp, response); 361 stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex); 362 d->rirb_wp = wp; 363 364 dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n", 365 __FUNCTION__, wp, response, ex); 366 367 d->rirb_count++; 368 if (d->rirb_count == d->rirb_cnt) { 369 dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count); 370 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) { 371 d->rirb_sts |= ICH6_RBSTS_IRQ; 372 intel_hda_update_irq(d); 373 } 374 } else if ((d->corb_rp & 0xff) == d->corb_wp) { 375 dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__, 376 d->rirb_count, d->rirb_cnt); 377 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) { 378 d->rirb_sts |= ICH6_RBSTS_IRQ; 379 intel_hda_update_irq(d); 380 } 381 } 382 } 383 384 static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output, 385 uint8_t *buf, uint32_t len) 386 { 387 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); 388 IntelHDAState *d = container_of(bus, IntelHDAState, codecs); 389 hwaddr addr; 390 uint32_t s, copy, left; 391 IntelHDAStream *st; 392 bool irq = false; 393 394 st = output ? d->st + 4 : d->st; 395 for (s = 0; s < 4; s++) { 396 if (stnr == ((st[s].ctl >> 20) & 0x0f)) { 397 st = st + s; 398 break; 399 } 400 } 401 if (s == 4) { 402 return false; 403 } 404 if (st->bpl == NULL) { 405 return false; 406 } 407 if (st->ctl & (1 << 26)) { 408 /* 409 * Wait with the next DMA xfer until the guest 410 * has acked the buffer completion interrupt 411 */ 412 return false; 413 } 414 415 left = len; 416 while (left > 0) { 417 copy = left; 418 if (copy > st->bsize - st->lpib) 419 copy = st->bsize - st->lpib; 420 if (copy > st->bpl[st->be].len - st->bp) 421 copy = st->bpl[st->be].len - st->bp; 422 423 dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n", 424 st->be, st->bp, st->bpl[st->be].len, copy); 425 426 pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output); 427 st->lpib += copy; 428 st->bp += copy; 429 buf += copy; 430 left -= copy; 431 432 if (st->bpl[st->be].len == st->bp) { 433 /* bpl entry filled */ 434 if (st->bpl[st->be].flags & 0x01) { 435 irq = true; 436 } 437 st->bp = 0; 438 st->be++; 439 if (st->be == st->bentries) { 440 /* bpl wrap around */ 441 st->be = 0; 442 st->lpib = 0; 443 } 444 } 445 } 446 if (d->dp_lbase & 0x01) { 447 addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase); 448 stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib); 449 } 450 dprint(d, 3, "dma: --\n"); 451 452 if (irq) { 453 st->ctl |= (1 << 26); /* buffer completion interrupt */ 454 intel_hda_update_irq(d); 455 } 456 return true; 457 } 458 459 static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st) 460 { 461 hwaddr addr; 462 uint8_t buf[16]; 463 uint32_t i; 464 465 addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase); 466 st->bentries = st->lvi +1; 467 g_free(st->bpl); 468 st->bpl = g_malloc(sizeof(bpl) * st->bentries); 469 for (i = 0; i < st->bentries; i++, addr += 16) { 470 pci_dma_read(&d->pci, addr, buf, 16); 471 st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf); 472 st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8)); 473 st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12)); 474 dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n", 475 i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags); 476 } 477 478 st->bsize = st->cbl; 479 st->lpib = 0; 480 st->be = 0; 481 st->bp = 0; 482 } 483 484 static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output) 485 { 486 BusChild *kid; 487 HDACodecDevice *cdev; 488 489 QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) { 490 DeviceState *qdev = kid->child; 491 HDACodecDeviceClass *cdc; 492 493 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev); 494 cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev); 495 if (cdc->stream) { 496 cdc->stream(cdev, stream, running, output); 497 } 498 } 499 } 500 501 /* --------------------------------------------------------------------- */ 502 503 static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 504 { 505 if ((d->g_ctl & ICH6_GCTL_RESET) == 0) { 506 intel_hda_reset(DEVICE(d)); 507 } 508 } 509 510 static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 511 { 512 intel_hda_update_irq(d); 513 } 514 515 static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 516 { 517 intel_hda_update_irq(d); 518 } 519 520 static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 521 { 522 intel_hda_update_irq(d); 523 } 524 525 static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg) 526 { 527 int64_t ns; 528 529 ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - d->wall_base_ns; 530 d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */ 531 } 532 533 static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 534 { 535 intel_hda_corb_run(d); 536 } 537 538 static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 539 { 540 intel_hda_corb_run(d); 541 } 542 543 static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 544 { 545 if (d->rirb_wp & ICH6_RIRBWP_RST) { 546 d->rirb_wp = 0; 547 } 548 } 549 550 static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 551 { 552 intel_hda_update_irq(d); 553 554 if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) { 555 /* cleared ICH6_RBSTS_IRQ */ 556 d->rirb_count = 0; 557 intel_hda_corb_run(d); 558 } 559 } 560 561 static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 562 { 563 if (d->ics & ICH6_IRS_BUSY) { 564 intel_hda_corb_run(d); 565 } 566 } 567 568 static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) 569 { 570 bool output = reg->stream >= 4; 571 IntelHDAStream *st = d->st + reg->stream; 572 573 if (st->ctl & 0x01) { 574 /* reset */ 575 dprint(d, 1, "st #%d: reset\n", reg->stream); 576 st->ctl = 0; 577 } 578 if ((st->ctl & 0x02) != (old & 0x02)) { 579 uint32_t stnr = (st->ctl >> 20) & 0x0f; 580 /* run bit flipped */ 581 if (st->ctl & 0x02) { 582 /* start */ 583 dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n", 584 reg->stream, stnr, st->cbl); 585 intel_hda_parse_bdl(d, st); 586 intel_hda_notify_codecs(d, stnr, true, output); 587 } else { 588 /* stop */ 589 dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr); 590 intel_hda_notify_codecs(d, stnr, false, output); 591 } 592 } 593 intel_hda_update_irq(d); 594 } 595 596 /* --------------------------------------------------------------------- */ 597 598 #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o)) 599 600 static const struct IntelHDAReg regtab[] = { 601 /* global */ 602 [ ICH6_REG_GCAP ] = { 603 .name = "GCAP", 604 .size = 2, 605 .reset = 0x4401, 606 }, 607 [ ICH6_REG_VMIN ] = { 608 .name = "VMIN", 609 .size = 1, 610 }, 611 [ ICH6_REG_VMAJ ] = { 612 .name = "VMAJ", 613 .size = 1, 614 .reset = 1, 615 }, 616 [ ICH6_REG_OUTPAY ] = { 617 .name = "OUTPAY", 618 .size = 2, 619 .reset = 0x3c, 620 }, 621 [ ICH6_REG_INPAY ] = { 622 .name = "INPAY", 623 .size = 2, 624 .reset = 0x1d, 625 }, 626 [ ICH6_REG_GCTL ] = { 627 .name = "GCTL", 628 .size = 4, 629 .wmask = 0x0103, 630 .offset = offsetof(IntelHDAState, g_ctl), 631 .whandler = intel_hda_set_g_ctl, 632 }, 633 [ ICH6_REG_WAKEEN ] = { 634 .name = "WAKEEN", 635 .size = 2, 636 .wmask = 0x7fff, 637 .offset = offsetof(IntelHDAState, wake_en), 638 .whandler = intel_hda_set_wake_en, 639 }, 640 [ ICH6_REG_STATESTS ] = { 641 .name = "STATESTS", 642 .size = 2, 643 .wmask = 0x7fff, 644 .wclear = 0x7fff, 645 .offset = offsetof(IntelHDAState, state_sts), 646 .whandler = intel_hda_set_state_sts, 647 }, 648 649 /* interrupts */ 650 [ ICH6_REG_INTCTL ] = { 651 .name = "INTCTL", 652 .size = 4, 653 .wmask = 0xc00000ff, 654 .offset = offsetof(IntelHDAState, int_ctl), 655 .whandler = intel_hda_set_int_ctl, 656 }, 657 [ ICH6_REG_INTSTS ] = { 658 .name = "INTSTS", 659 .size = 4, 660 .wmask = 0xc00000ff, 661 .wclear = 0xc00000ff, 662 .offset = offsetof(IntelHDAState, int_sts), 663 }, 664 665 /* misc */ 666 [ ICH6_REG_WALLCLK ] = { 667 .name = "WALLCLK", 668 .size = 4, 669 .offset = offsetof(IntelHDAState, wall_clk), 670 .rhandler = intel_hda_get_wall_clk, 671 }, 672 [ ICH6_REG_WALLCLK + 0x2000 ] = { 673 .name = "WALLCLK(alias)", 674 .size = 4, 675 .offset = offsetof(IntelHDAState, wall_clk), 676 .rhandler = intel_hda_get_wall_clk, 677 }, 678 679 /* dma engine */ 680 [ ICH6_REG_CORBLBASE ] = { 681 .name = "CORBLBASE", 682 .size = 4, 683 .wmask = 0xffffff80, 684 .offset = offsetof(IntelHDAState, corb_lbase), 685 }, 686 [ ICH6_REG_CORBUBASE ] = { 687 .name = "CORBUBASE", 688 .size = 4, 689 .wmask = 0xffffffff, 690 .offset = offsetof(IntelHDAState, corb_ubase), 691 }, 692 [ ICH6_REG_CORBWP ] = { 693 .name = "CORBWP", 694 .size = 2, 695 .wmask = 0xff, 696 .offset = offsetof(IntelHDAState, corb_wp), 697 .whandler = intel_hda_set_corb_wp, 698 }, 699 [ ICH6_REG_CORBRP ] = { 700 .name = "CORBRP", 701 .size = 2, 702 .wmask = 0x80ff, 703 .offset = offsetof(IntelHDAState, corb_rp), 704 }, 705 [ ICH6_REG_CORBCTL ] = { 706 .name = "CORBCTL", 707 .size = 1, 708 .wmask = 0x03, 709 .offset = offsetof(IntelHDAState, corb_ctl), 710 .whandler = intel_hda_set_corb_ctl, 711 }, 712 [ ICH6_REG_CORBSTS ] = { 713 .name = "CORBSTS", 714 .size = 1, 715 .wmask = 0x01, 716 .wclear = 0x01, 717 .offset = offsetof(IntelHDAState, corb_sts), 718 }, 719 [ ICH6_REG_CORBSIZE ] = { 720 .name = "CORBSIZE", 721 .size = 1, 722 .reset = 0x42, 723 .offset = offsetof(IntelHDAState, corb_size), 724 }, 725 [ ICH6_REG_RIRBLBASE ] = { 726 .name = "RIRBLBASE", 727 .size = 4, 728 .wmask = 0xffffff80, 729 .offset = offsetof(IntelHDAState, rirb_lbase), 730 }, 731 [ ICH6_REG_RIRBUBASE ] = { 732 .name = "RIRBUBASE", 733 .size = 4, 734 .wmask = 0xffffffff, 735 .offset = offsetof(IntelHDAState, rirb_ubase), 736 }, 737 [ ICH6_REG_RIRBWP ] = { 738 .name = "RIRBWP", 739 .size = 2, 740 .wmask = 0x8000, 741 .offset = offsetof(IntelHDAState, rirb_wp), 742 .whandler = intel_hda_set_rirb_wp, 743 }, 744 [ ICH6_REG_RINTCNT ] = { 745 .name = "RINTCNT", 746 .size = 2, 747 .wmask = 0xff, 748 .offset = offsetof(IntelHDAState, rirb_cnt), 749 }, 750 [ ICH6_REG_RIRBCTL ] = { 751 .name = "RIRBCTL", 752 .size = 1, 753 .wmask = 0x07, 754 .offset = offsetof(IntelHDAState, rirb_ctl), 755 }, 756 [ ICH6_REG_RIRBSTS ] = { 757 .name = "RIRBSTS", 758 .size = 1, 759 .wmask = 0x05, 760 .wclear = 0x05, 761 .offset = offsetof(IntelHDAState, rirb_sts), 762 .whandler = intel_hda_set_rirb_sts, 763 }, 764 [ ICH6_REG_RIRBSIZE ] = { 765 .name = "RIRBSIZE", 766 .size = 1, 767 .reset = 0x42, 768 .offset = offsetof(IntelHDAState, rirb_size), 769 }, 770 771 [ ICH6_REG_DPLBASE ] = { 772 .name = "DPLBASE", 773 .size = 4, 774 .wmask = 0xffffff81, 775 .offset = offsetof(IntelHDAState, dp_lbase), 776 }, 777 [ ICH6_REG_DPUBASE ] = { 778 .name = "DPUBASE", 779 .size = 4, 780 .wmask = 0xffffffff, 781 .offset = offsetof(IntelHDAState, dp_ubase), 782 }, 783 784 [ ICH6_REG_IC ] = { 785 .name = "ICW", 786 .size = 4, 787 .wmask = 0xffffffff, 788 .offset = offsetof(IntelHDAState, icw), 789 }, 790 [ ICH6_REG_IR ] = { 791 .name = "IRR", 792 .size = 4, 793 .offset = offsetof(IntelHDAState, irr), 794 }, 795 [ ICH6_REG_IRS ] = { 796 .name = "ICS", 797 .size = 2, 798 .wmask = 0x0003, 799 .wclear = 0x0002, 800 .offset = offsetof(IntelHDAState, ics), 801 .whandler = intel_hda_set_ics, 802 }, 803 804 #define HDA_STREAM(_t, _i) \ 805 [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \ 806 .stream = _i, \ 807 .name = _t stringify(_i) " CTL", \ 808 .size = 4, \ 809 .wmask = 0x1cff001f, \ 810 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 811 .whandler = intel_hda_set_st_ctl, \ 812 }, \ 813 [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \ 814 .stream = _i, \ 815 .name = _t stringify(_i) " CTL(stnr)", \ 816 .size = 1, \ 817 .shift = 16, \ 818 .wmask = 0x00ff0000, \ 819 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 820 .whandler = intel_hda_set_st_ctl, \ 821 }, \ 822 [ ST_REG(_i, ICH6_REG_SD_STS)] = { \ 823 .stream = _i, \ 824 .name = _t stringify(_i) " CTL(sts)", \ 825 .size = 1, \ 826 .shift = 24, \ 827 .wmask = 0x1c000000, \ 828 .wclear = 0x1c000000, \ 829 .offset = offsetof(IntelHDAState, st[_i].ctl), \ 830 .whandler = intel_hda_set_st_ctl, \ 831 }, \ 832 [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \ 833 .stream = _i, \ 834 .name = _t stringify(_i) " LPIB", \ 835 .size = 4, \ 836 .offset = offsetof(IntelHDAState, st[_i].lpib), \ 837 }, \ 838 [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \ 839 .stream = _i, \ 840 .name = _t stringify(_i) " LPIB(alias)", \ 841 .size = 4, \ 842 .offset = offsetof(IntelHDAState, st[_i].lpib), \ 843 }, \ 844 [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \ 845 .stream = _i, \ 846 .name = _t stringify(_i) " CBL", \ 847 .size = 4, \ 848 .wmask = 0xffffffff, \ 849 .offset = offsetof(IntelHDAState, st[_i].cbl), \ 850 }, \ 851 [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \ 852 .stream = _i, \ 853 .name = _t stringify(_i) " LVI", \ 854 .size = 2, \ 855 .wmask = 0x00ff, \ 856 .offset = offsetof(IntelHDAState, st[_i].lvi), \ 857 }, \ 858 [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \ 859 .stream = _i, \ 860 .name = _t stringify(_i) " FIFOS", \ 861 .size = 2, \ 862 .reset = HDA_BUFFER_SIZE, \ 863 }, \ 864 [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \ 865 .stream = _i, \ 866 .name = _t stringify(_i) " FMT", \ 867 .size = 2, \ 868 .wmask = 0x7f7f, \ 869 .offset = offsetof(IntelHDAState, st[_i].fmt), \ 870 }, \ 871 [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \ 872 .stream = _i, \ 873 .name = _t stringify(_i) " BDLPL", \ 874 .size = 4, \ 875 .wmask = 0xffffff80, \ 876 .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \ 877 }, \ 878 [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \ 879 .stream = _i, \ 880 .name = _t stringify(_i) " BDLPU", \ 881 .size = 4, \ 882 .wmask = 0xffffffff, \ 883 .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \ 884 }, \ 885 886 HDA_STREAM("IN", 0) 887 HDA_STREAM("IN", 1) 888 HDA_STREAM("IN", 2) 889 HDA_STREAM("IN", 3) 890 891 HDA_STREAM("OUT", 4) 892 HDA_STREAM("OUT", 5) 893 HDA_STREAM("OUT", 6) 894 HDA_STREAM("OUT", 7) 895 896 }; 897 898 static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, hwaddr addr) 899 { 900 const IntelHDAReg *reg; 901 902 if (addr >= sizeof(regtab)/sizeof(regtab[0])) { 903 goto noreg; 904 } 905 reg = regtab+addr; 906 if (reg->name == NULL) { 907 goto noreg; 908 } 909 return reg; 910 911 noreg: 912 dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr); 913 return NULL; 914 } 915 916 static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg) 917 { 918 uint8_t *addr = (void*)d; 919 920 addr += reg->offset; 921 return (uint32_t*)addr; 922 } 923 924 static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val, 925 uint32_t wmask) 926 { 927 uint32_t *addr; 928 uint32_t old; 929 930 if (!reg) { 931 return; 932 } 933 934 if (d->debug) { 935 time_t now = time(NULL); 936 if (d->last_write && d->last_reg == reg && d->last_val == val) { 937 d->repeat_count++; 938 if (d->last_sec != now) { 939 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 940 d->last_sec = now; 941 d->repeat_count = 0; 942 } 943 } else { 944 if (d->repeat_count) { 945 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 946 } 947 dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask); 948 d->last_write = 1; 949 d->last_reg = reg; 950 d->last_val = val; 951 d->last_sec = now; 952 d->repeat_count = 0; 953 } 954 } 955 assert(reg->offset != 0); 956 957 addr = intel_hda_reg_addr(d, reg); 958 old = *addr; 959 960 if (reg->shift) { 961 val <<= reg->shift; 962 wmask <<= reg->shift; 963 } 964 wmask &= reg->wmask; 965 *addr &= ~wmask; 966 *addr |= wmask & val; 967 *addr &= ~(val & reg->wclear); 968 969 if (reg->whandler) { 970 reg->whandler(d, reg, old); 971 } 972 } 973 974 static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg, 975 uint32_t rmask) 976 { 977 uint32_t *addr, ret; 978 979 if (!reg) { 980 return 0; 981 } 982 983 if (reg->rhandler) { 984 reg->rhandler(d, reg); 985 } 986 987 if (reg->offset == 0) { 988 /* constant read-only register */ 989 ret = reg->reset; 990 } else { 991 addr = intel_hda_reg_addr(d, reg); 992 ret = *addr; 993 if (reg->shift) { 994 ret >>= reg->shift; 995 } 996 ret &= rmask; 997 } 998 if (d->debug) { 999 time_t now = time(NULL); 1000 if (!d->last_write && d->last_reg == reg && d->last_val == ret) { 1001 d->repeat_count++; 1002 if (d->last_sec != now) { 1003 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 1004 d->last_sec = now; 1005 d->repeat_count = 0; 1006 } 1007 } else { 1008 if (d->repeat_count) { 1009 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); 1010 } 1011 dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask); 1012 d->last_write = 0; 1013 d->last_reg = reg; 1014 d->last_val = ret; 1015 d->last_sec = now; 1016 d->repeat_count = 0; 1017 } 1018 } 1019 return ret; 1020 } 1021 1022 static void intel_hda_regs_reset(IntelHDAState *d) 1023 { 1024 uint32_t *addr; 1025 int i; 1026 1027 for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) { 1028 if (regtab[i].name == NULL) { 1029 continue; 1030 } 1031 if (regtab[i].offset == 0) { 1032 continue; 1033 } 1034 addr = intel_hda_reg_addr(d, regtab + i); 1035 *addr = regtab[i].reset; 1036 } 1037 } 1038 1039 /* --------------------------------------------------------------------- */ 1040 1041 static void intel_hda_mmio_writeb(void *opaque, hwaddr addr, uint32_t val) 1042 { 1043 IntelHDAState *d = opaque; 1044 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1045 1046 intel_hda_reg_write(d, reg, val, 0xff); 1047 } 1048 1049 static void intel_hda_mmio_writew(void *opaque, hwaddr addr, uint32_t val) 1050 { 1051 IntelHDAState *d = opaque; 1052 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1053 1054 intel_hda_reg_write(d, reg, val, 0xffff); 1055 } 1056 1057 static void intel_hda_mmio_writel(void *opaque, hwaddr addr, uint32_t val) 1058 { 1059 IntelHDAState *d = opaque; 1060 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1061 1062 intel_hda_reg_write(d, reg, val, 0xffffffff); 1063 } 1064 1065 static uint32_t intel_hda_mmio_readb(void *opaque, hwaddr addr) 1066 { 1067 IntelHDAState *d = opaque; 1068 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1069 1070 return intel_hda_reg_read(d, reg, 0xff); 1071 } 1072 1073 static uint32_t intel_hda_mmio_readw(void *opaque, hwaddr addr) 1074 { 1075 IntelHDAState *d = opaque; 1076 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1077 1078 return intel_hda_reg_read(d, reg, 0xffff); 1079 } 1080 1081 static uint32_t intel_hda_mmio_readl(void *opaque, hwaddr addr) 1082 { 1083 IntelHDAState *d = opaque; 1084 const IntelHDAReg *reg = intel_hda_reg_find(d, addr); 1085 1086 return intel_hda_reg_read(d, reg, 0xffffffff); 1087 } 1088 1089 static const MemoryRegionOps intel_hda_mmio_ops = { 1090 .old_mmio = { 1091 .read = { 1092 intel_hda_mmio_readb, 1093 intel_hda_mmio_readw, 1094 intel_hda_mmio_readl, 1095 }, 1096 .write = { 1097 intel_hda_mmio_writeb, 1098 intel_hda_mmio_writew, 1099 intel_hda_mmio_writel, 1100 }, 1101 }, 1102 .endianness = DEVICE_NATIVE_ENDIAN, 1103 }; 1104 1105 /* --------------------------------------------------------------------- */ 1106 1107 static void intel_hda_reset(DeviceState *dev) 1108 { 1109 BusChild *kid; 1110 IntelHDAState *d = INTEL_HDA(dev); 1111 HDACodecDevice *cdev; 1112 1113 intel_hda_regs_reset(d); 1114 d->wall_base_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 1115 1116 /* reset codecs */ 1117 QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) { 1118 DeviceState *qdev = kid->child; 1119 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev); 1120 device_reset(DEVICE(cdev)); 1121 d->state_sts |= (1 << cdev->cad); 1122 } 1123 intel_hda_update_irq(d); 1124 } 1125 1126 static int intel_hda_init(PCIDevice *pci) 1127 { 1128 IntelHDAState *d = INTEL_HDA(pci); 1129 uint8_t *conf = d->pci.config; 1130 1131 d->name = object_get_typename(OBJECT(d)); 1132 1133 pci_config_set_interrupt_pin(conf, 1); 1134 1135 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */ 1136 conf[0x40] = 0x01; 1137 1138 memory_region_init_io(&d->mmio, OBJECT(d), &intel_hda_mmio_ops, d, 1139 "intel-hda", 0x4000); 1140 pci_register_bar(&d->pci, 0, 0, &d->mmio); 1141 if (d->msi) { 1142 msi_init(&d->pci, 0x50, 1, true, false); 1143 } 1144 1145 hda_codec_bus_init(DEVICE(pci), &d->codecs, sizeof(d->codecs), 1146 intel_hda_response, intel_hda_xfer); 1147 1148 return 0; 1149 } 1150 1151 static void intel_hda_exit(PCIDevice *pci) 1152 { 1153 IntelHDAState *d = INTEL_HDA(pci); 1154 1155 msi_uninit(&d->pci); 1156 memory_region_destroy(&d->mmio); 1157 } 1158 1159 static int intel_hda_post_load(void *opaque, int version) 1160 { 1161 IntelHDAState* d = opaque; 1162 int i; 1163 1164 dprint(d, 1, "%s\n", __FUNCTION__); 1165 for (i = 0; i < ARRAY_SIZE(d->st); i++) { 1166 if (d->st[i].ctl & 0x02) { 1167 intel_hda_parse_bdl(d, &d->st[i]); 1168 } 1169 } 1170 intel_hda_update_irq(d); 1171 return 0; 1172 } 1173 1174 static const VMStateDescription vmstate_intel_hda_stream = { 1175 .name = "intel-hda-stream", 1176 .version_id = 1, 1177 .fields = (VMStateField []) { 1178 VMSTATE_UINT32(ctl, IntelHDAStream), 1179 VMSTATE_UINT32(lpib, IntelHDAStream), 1180 VMSTATE_UINT32(cbl, IntelHDAStream), 1181 VMSTATE_UINT32(lvi, IntelHDAStream), 1182 VMSTATE_UINT32(fmt, IntelHDAStream), 1183 VMSTATE_UINT32(bdlp_lbase, IntelHDAStream), 1184 VMSTATE_UINT32(bdlp_ubase, IntelHDAStream), 1185 VMSTATE_END_OF_LIST() 1186 } 1187 }; 1188 1189 static const VMStateDescription vmstate_intel_hda = { 1190 .name = "intel-hda", 1191 .version_id = 1, 1192 .post_load = intel_hda_post_load, 1193 .fields = (VMStateField []) { 1194 VMSTATE_PCI_DEVICE(pci, IntelHDAState), 1195 1196 /* registers */ 1197 VMSTATE_UINT32(g_ctl, IntelHDAState), 1198 VMSTATE_UINT32(wake_en, IntelHDAState), 1199 VMSTATE_UINT32(state_sts, IntelHDAState), 1200 VMSTATE_UINT32(int_ctl, IntelHDAState), 1201 VMSTATE_UINT32(int_sts, IntelHDAState), 1202 VMSTATE_UINT32(wall_clk, IntelHDAState), 1203 VMSTATE_UINT32(corb_lbase, IntelHDAState), 1204 VMSTATE_UINT32(corb_ubase, IntelHDAState), 1205 VMSTATE_UINT32(corb_rp, IntelHDAState), 1206 VMSTATE_UINT32(corb_wp, IntelHDAState), 1207 VMSTATE_UINT32(corb_ctl, IntelHDAState), 1208 VMSTATE_UINT32(corb_sts, IntelHDAState), 1209 VMSTATE_UINT32(corb_size, IntelHDAState), 1210 VMSTATE_UINT32(rirb_lbase, IntelHDAState), 1211 VMSTATE_UINT32(rirb_ubase, IntelHDAState), 1212 VMSTATE_UINT32(rirb_wp, IntelHDAState), 1213 VMSTATE_UINT32(rirb_cnt, IntelHDAState), 1214 VMSTATE_UINT32(rirb_ctl, IntelHDAState), 1215 VMSTATE_UINT32(rirb_sts, IntelHDAState), 1216 VMSTATE_UINT32(rirb_size, IntelHDAState), 1217 VMSTATE_UINT32(dp_lbase, IntelHDAState), 1218 VMSTATE_UINT32(dp_ubase, IntelHDAState), 1219 VMSTATE_UINT32(icw, IntelHDAState), 1220 VMSTATE_UINT32(irr, IntelHDAState), 1221 VMSTATE_UINT32(ics, IntelHDAState), 1222 VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0, 1223 vmstate_intel_hda_stream, 1224 IntelHDAStream), 1225 1226 /* additional state info */ 1227 VMSTATE_UINT32(rirb_count, IntelHDAState), 1228 VMSTATE_INT64(wall_base_ns, IntelHDAState), 1229 1230 VMSTATE_END_OF_LIST() 1231 } 1232 }; 1233 1234 static Property intel_hda_properties[] = { 1235 DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0), 1236 DEFINE_PROP_UINT32("msi", IntelHDAState, msi, 1), 1237 DEFINE_PROP_END_OF_LIST(), 1238 }; 1239 1240 static void intel_hda_class_init(ObjectClass *klass, void *data) 1241 { 1242 DeviceClass *dc = DEVICE_CLASS(klass); 1243 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1244 1245 k->init = intel_hda_init; 1246 k->exit = intel_hda_exit; 1247 k->vendor_id = PCI_VENDOR_ID_INTEL; 1248 k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO; 1249 dc->reset = intel_hda_reset; 1250 dc->vmsd = &vmstate_intel_hda; 1251 dc->props = intel_hda_properties; 1252 } 1253 1254 static void intel_hda_class_init_ich6(ObjectClass *klass, void *data) 1255 { 1256 DeviceClass *dc = DEVICE_CLASS(klass); 1257 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1258 1259 k->device_id = 0x2668; 1260 k->revision = 1; 1261 set_bit(DEVICE_CATEGORY_SOUND, dc->categories); 1262 dc->desc = "Intel HD Audio Controller (ich6)"; 1263 } 1264 1265 static void intel_hda_class_init_ich9(ObjectClass *klass, void *data) 1266 { 1267 DeviceClass *dc = DEVICE_CLASS(klass); 1268 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1269 1270 k->device_id = 0x293e; 1271 k->revision = 3; 1272 set_bit(DEVICE_CATEGORY_SOUND, dc->categories); 1273 dc->desc = "Intel HD Audio Controller (ich9)"; 1274 } 1275 1276 static const TypeInfo intel_hda_info = { 1277 .name = TYPE_INTEL_HDA_GENERIC, 1278 .parent = TYPE_PCI_DEVICE, 1279 .instance_size = sizeof(IntelHDAState), 1280 .class_init = intel_hda_class_init, 1281 .abstract = true, 1282 }; 1283 1284 static const TypeInfo intel_hda_info_ich6 = { 1285 .name = "intel-hda", 1286 .parent = TYPE_INTEL_HDA_GENERIC, 1287 .class_init = intel_hda_class_init_ich6, 1288 }; 1289 1290 static const TypeInfo intel_hda_info_ich9 = { 1291 .name = "ich9-intel-hda", 1292 .parent = TYPE_INTEL_HDA_GENERIC, 1293 .class_init = intel_hda_class_init_ich9, 1294 }; 1295 1296 static void hda_codec_device_class_init(ObjectClass *klass, void *data) 1297 { 1298 DeviceClass *k = DEVICE_CLASS(klass); 1299 k->init = hda_codec_dev_init; 1300 k->exit = hda_codec_dev_exit; 1301 set_bit(DEVICE_CATEGORY_SOUND, k->categories); 1302 k->bus_type = TYPE_HDA_BUS; 1303 k->props = hda_props; 1304 } 1305 1306 static const TypeInfo hda_codec_device_type_info = { 1307 .name = TYPE_HDA_CODEC_DEVICE, 1308 .parent = TYPE_DEVICE, 1309 .instance_size = sizeof(HDACodecDevice), 1310 .abstract = true, 1311 .class_size = sizeof(HDACodecDeviceClass), 1312 .class_init = hda_codec_device_class_init, 1313 }; 1314 1315 /* 1316 * create intel hda controller with codec attached to it, 1317 * so '-soundhw hda' works. 1318 */ 1319 static int intel_hda_and_codec_init(PCIBus *bus) 1320 { 1321 DeviceState *controller; 1322 BusState *hdabus; 1323 DeviceState *codec; 1324 1325 controller = DEVICE(pci_create_simple(bus, -1, "intel-hda")); 1326 hdabus = QLIST_FIRST(&controller->child_bus); 1327 codec = qdev_create(hdabus, "hda-duplex"); 1328 qdev_init_nofail(codec); 1329 return 0; 1330 } 1331 1332 static void intel_hda_register_types(void) 1333 { 1334 type_register_static(&hda_codec_bus_info); 1335 type_register_static(&intel_hda_info); 1336 type_register_static(&intel_hda_info_ich6); 1337 type_register_static(&intel_hda_info_ich9); 1338 type_register_static(&hda_codec_device_type_info); 1339 pci_register_soundhw("hda", "Intel HD Audio", intel_hda_and_codec_init); 1340 } 1341 1342 type_init(intel_hda_register_types) 1343