1 /* 2 ** 3 ** File: fmopl.c -- software implementation of FM sound generator 4 ** 5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development 6 ** 7 ** Version 0.37a 8 ** 9 */ 10 11 /* 12 preliminary : 13 Problem : 14 note: 15 */ 16 17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL. 18 * 19 * This library is free software; you can redistribute it and/or 20 * modify it under the terms of the GNU Lesser General Public 21 * License as published by the Free Software Foundation; either 22 * version 2.1 of the License, or (at your option) any later version. 23 * 24 * This library is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 27 * Lesser General Public License for more details. 28 * 29 * You should have received a copy of the GNU Lesser General Public 30 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 31 */ 32 33 #define HAS_YM3812 1 34 35 #include "qemu/osdep.h" 36 #include <math.h> 37 //#include "driver.h" /* use M.A.M.E. */ 38 #include "fmopl.h" 39 40 #ifndef PI 41 #define PI 3.14159265358979323846 42 #endif 43 44 #ifndef ARRAY_SIZE 45 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 46 #endif 47 48 /* -------------------- for debug --------------------- */ 49 /* #define OPL_OUTPUT_LOG */ 50 #ifdef OPL_OUTPUT_LOG 51 static FILE *opl_dbg_fp = NULL; 52 static FM_OPL *opl_dbg_opl[16]; 53 static int opl_dbg_maxchip,opl_dbg_chip; 54 #endif 55 56 /* -------------------- preliminary define section --------------------- */ 57 /* attack/decay rate time rate */ 58 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ 59 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ 60 61 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ 62 63 #define FREQ_BITS 24 /* frequency turn */ 64 65 /* counter bits = 20 , octerve 7 */ 66 #define FREQ_RATE (1<<(FREQ_BITS-20)) 67 #define TL_BITS (FREQ_BITS+2) 68 69 /* final output shift , limit minimum and maximum */ 70 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ 71 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) 72 #define OPL_MINOUT (-0x8000<<OPL_OUTSB) 73 74 /* -------------------- quality selection --------------------- */ 75 76 /* sinwave entries */ 77 /* used static memory = SIN_ENT * 4 (byte) */ 78 #define SIN_ENT 2048 79 80 /* output level entries (envelope,sinwave) */ 81 /* envelope counter lower bits */ 82 #define ENV_BITS 16 83 /* envelope output entries */ 84 #define EG_ENT 4096 85 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ 86 /* used static memory = EG_ENT*4 (byte) */ 87 88 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ 89 #define EG_DED EG_OFF 90 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ 91 #define EG_AED EG_DST 92 #define EG_AST 0 /* ATTACK START */ 93 94 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ 95 96 /* LFO table entries */ 97 #define VIB_ENT 512 98 #define VIB_SHIFT (32-9) 99 #define AMS_ENT 512 100 #define AMS_SHIFT (32-9) 101 102 #define VIB_RATE 256 103 104 /* -------------------- local defines , macros --------------------- */ 105 106 /* register number to channel number , slot offset */ 107 #define SLOT1 0 108 #define SLOT2 1 109 110 /* envelope phase */ 111 #define ENV_MOD_RR 0x00 112 #define ENV_MOD_DR 0x01 113 #define ENV_MOD_AR 0x02 114 115 /* -------------------- tables --------------------- */ 116 static const int slot_array[32]= 117 { 118 0, 2, 4, 1, 3, 5,-1,-1, 119 6, 8,10, 7, 9,11,-1,-1, 120 12,14,16,13,15,17,-1,-1, 121 -1,-1,-1,-1,-1,-1,-1,-1 122 }; 123 124 /* key scale level */ 125 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */ 126 #define DV (EG_STEP/2) 127 static const UINT32 KSL_TABLE[8*16]= 128 { 129 /* OCT 0 */ 130 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 131 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 132 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 133 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 134 /* OCT 1 */ 135 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 136 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 137 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, 138 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, 139 /* OCT 2 */ 140 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 141 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, 142 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, 143 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, 144 /* OCT 3 */ 145 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, 146 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, 147 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, 148 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, 149 /* OCT 4 */ 150 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, 151 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, 152 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, 153 10.875/DV,11.250/DV,11.625/DV,12.000/DV, 154 /* OCT 5 */ 155 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, 156 9.000/DV,10.125/DV,10.875/DV,11.625/DV, 157 12.000/DV,12.750/DV,13.125/DV,13.500/DV, 158 13.875/DV,14.250/DV,14.625/DV,15.000/DV, 159 /* OCT 6 */ 160 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, 161 12.000/DV,13.125/DV,13.875/DV,14.625/DV, 162 15.000/DV,15.750/DV,16.125/DV,16.500/DV, 163 16.875/DV,17.250/DV,17.625/DV,18.000/DV, 164 /* OCT 7 */ 165 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, 166 15.000/DV,16.125/DV,16.875/DV,17.625/DV, 167 18.000/DV,18.750/DV,19.125/DV,19.500/DV, 168 19.875/DV,20.250/DV,20.625/DV,21.000/DV 169 }; 170 #undef DV 171 172 /* sustain lebel table (3db per step) */ 173 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ 174 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST 175 static const INT32 SL_TABLE[16]={ 176 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), 177 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) 178 }; 179 #undef SC 180 181 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ 182 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ 183 /* TL_TABLE[ 0 to TL_MAX ] : plus section */ 184 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ 185 static INT32 *TL_TABLE; 186 187 /* pointers to TL_TABLE with sinwave output offset */ 188 static INT32 **SIN_TABLE; 189 190 /* LFO table */ 191 static INT32 *AMS_TABLE; 192 static INT32 *VIB_TABLE; 193 194 /* envelope output curve table */ 195 /* attack + decay + OFF */ 196 static INT32 ENV_CURVE[2*EG_ENT+1]; 197 198 /* multiple table */ 199 #define ML 2 200 static const UINT32 MUL_TABLE[16]= { 201 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ 202 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, 203 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML 204 }; 205 #undef ML 206 207 /* dummy attack / decay rate ( when rate == 0 ) */ 208 static INT32 RATE_0[16]= 209 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 210 211 /* -------------------- static state --------------------- */ 212 213 /* lock level of common table */ 214 static int num_lock = 0; 215 216 /* work table */ 217 static void *cur_chip = NULL; /* current chip point */ 218 /* currenct chip state */ 219 /* static OPLSAMPLE *bufL,*bufR; */ 220 static OPL_CH *S_CH; 221 static OPL_CH *E_CH; 222 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; 223 224 static INT32 outd[1]; 225 static INT32 ams; 226 static INT32 vib; 227 static INT32 *ams_table; 228 static INT32 *vib_table; 229 static INT32 amsIncr; 230 static INT32 vibIncr; 231 static INT32 feedback2; /* connect for SLOT 2 */ 232 233 /* log output level */ 234 #define LOG_ERR 3 /* ERROR */ 235 #define LOG_WAR 2 /* WARNING */ 236 #define LOG_INF 1 /* INFORMATION */ 237 238 //#define LOG_LEVEL LOG_INF 239 #define LOG_LEVEL LOG_ERR 240 241 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x 242 #define LOG(n,x) 243 244 /* --------------------- subroutines --------------------- */ 245 246 static inline int Limit( int val, int max, int min ) { 247 if ( val > max ) 248 val = max; 249 else if ( val < min ) 250 val = min; 251 252 return val; 253 } 254 255 /* status set and IRQ handling */ 256 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag) 257 { 258 /* set status flag */ 259 OPL->status |= flag; 260 if(!(OPL->status & 0x80)) 261 { 262 if(OPL->status & OPL->statusmask) 263 { /* IRQ on */ 264 OPL->status |= 0x80; 265 /* callback user interrupt handler (IRQ is OFF to ON) */ 266 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1); 267 } 268 } 269 } 270 271 /* status reset and IRQ handling */ 272 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag) 273 { 274 /* reset status flag */ 275 OPL->status &=~flag; 276 if((OPL->status & 0x80)) 277 { 278 if (!(OPL->status & OPL->statusmask) ) 279 { 280 OPL->status &= 0x7f; 281 /* callback user interrupt handler (IRQ is ON to OFF) */ 282 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0); 283 } 284 } 285 } 286 287 /* IRQ mask set */ 288 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) 289 { 290 OPL->statusmask = flag; 291 /* IRQ handling check */ 292 OPL_STATUS_SET(OPL,0); 293 OPL_STATUS_RESET(OPL,0); 294 } 295 296 /* ----- key on ----- */ 297 static inline void OPL_KEYON(OPL_SLOT *SLOT) 298 { 299 /* sin wave restart */ 300 SLOT->Cnt = 0; 301 /* set attack */ 302 SLOT->evm = ENV_MOD_AR; 303 SLOT->evs = SLOT->evsa; 304 SLOT->evc = EG_AST; 305 SLOT->eve = EG_AED; 306 } 307 /* ----- key off ----- */ 308 static inline void OPL_KEYOFF(OPL_SLOT *SLOT) 309 { 310 if( SLOT->evm > ENV_MOD_RR) 311 { 312 /* set envelope counter from envleope output */ 313 SLOT->evm = ENV_MOD_RR; 314 if( !(SLOT->evc&EG_DST) ) 315 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; 316 SLOT->evc = EG_DST; 317 SLOT->eve = EG_DED; 318 SLOT->evs = SLOT->evsr; 319 } 320 } 321 322 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ 323 /* return : envelope output */ 324 static inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT ) 325 { 326 /* calcrate envelope generator */ 327 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve ) 328 { 329 switch( SLOT->evm ){ 330 case ENV_MOD_AR: /* ATTACK -> DECAY1 */ 331 /* next DR */ 332 SLOT->evm = ENV_MOD_DR; 333 SLOT->evc = EG_DST; 334 SLOT->eve = SLOT->SL; 335 SLOT->evs = SLOT->evsd; 336 break; 337 case ENV_MOD_DR: /* DECAY -> SL or RR */ 338 SLOT->evc = SLOT->SL; 339 SLOT->eve = EG_DED; 340 if(SLOT->eg_typ) 341 { 342 SLOT->evs = 0; 343 } 344 else 345 { 346 SLOT->evm = ENV_MOD_RR; 347 SLOT->evs = SLOT->evsr; 348 } 349 break; 350 case ENV_MOD_RR: /* RR -> OFF */ 351 SLOT->evc = EG_OFF; 352 SLOT->eve = EG_OFF+1; 353 SLOT->evs = 0; 354 break; 355 } 356 } 357 /* calcrate envelope */ 358 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0); 359 } 360 361 /* set algorithm connection */ 362 static void set_algorithm( OPL_CH *CH) 363 { 364 INT32 *carrier = &outd[0]; 365 CH->connect1 = CH->CON ? carrier : &feedback2; 366 CH->connect2 = carrier; 367 } 368 369 /* ---------- frequency counter for operater update ---------- */ 370 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) 371 { 372 int ksr; 373 374 /* frequency step counter */ 375 SLOT->Incr = CH->fc * SLOT->mul; 376 ksr = CH->kcode >> SLOT->KSR; 377 378 if( SLOT->ksr != ksr ) 379 { 380 SLOT->ksr = ksr; 381 /* attack , decay rate recalcration */ 382 SLOT->evsa = SLOT->AR[ksr]; 383 SLOT->evsd = SLOT->DR[ksr]; 384 SLOT->evsr = SLOT->RR[ksr]; 385 } 386 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); 387 } 388 389 /* set multi,am,vib,EG-TYP,KSR,mul */ 390 static inline void set_mul(FM_OPL *OPL,int slot,int v) 391 { 392 OPL_CH *CH = &OPL->P_CH[slot/2]; 393 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 394 395 SLOT->mul = MUL_TABLE[v&0x0f]; 396 SLOT->KSR = (v&0x10) ? 0 : 2; 397 SLOT->eg_typ = (v&0x20)>>5; 398 SLOT->vib = (v&0x40); 399 SLOT->ams = (v&0x80); 400 CALC_FCSLOT(CH,SLOT); 401 } 402 403 /* set ksl & tl */ 404 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v) 405 { 406 OPL_CH *CH = &OPL->P_CH[slot/2]; 407 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 408 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */ 409 410 SLOT->ksl = ksl ? 3-ksl : 31; 411 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */ 412 413 if( !(OPL->mode&0x80) ) 414 { /* not CSM latch total level */ 415 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); 416 } 417 } 418 419 /* set attack rate & decay rate */ 420 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v) 421 { 422 OPL_CH *CH = &OPL->P_CH[slot/2]; 423 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 424 int ar = v>>4; 425 int dr = v&0x0f; 426 427 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0; 428 SLOT->evsa = SLOT->AR[SLOT->ksr]; 429 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa; 430 431 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; 432 SLOT->evsd = SLOT->DR[SLOT->ksr]; 433 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd; 434 } 435 436 /* set sustain level & release rate */ 437 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v) 438 { 439 OPL_CH *CH = &OPL->P_CH[slot/2]; 440 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 441 int sl = v>>4; 442 int rr = v & 0x0f; 443 444 SLOT->SL = SL_TABLE[sl]; 445 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL; 446 SLOT->RR = &OPL->DR_TABLE[rr<<2]; 447 SLOT->evsr = SLOT->RR[SLOT->ksr]; 448 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr; 449 } 450 451 /* operator output calcrator */ 452 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] 453 /* ---------- calcrate one of channel ---------- */ 454 static inline void OPL_CALC_CH( OPL_CH *CH ) 455 { 456 UINT32 env_out; 457 OPL_SLOT *SLOT; 458 459 feedback2 = 0; 460 /* SLOT 1 */ 461 SLOT = &CH->SLOT[SLOT1]; 462 env_out=OPL_CALC_SLOT(SLOT); 463 if( env_out < EG_ENT-1 ) 464 { 465 /* PG */ 466 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 467 else SLOT->Cnt += SLOT->Incr; 468 /* connectoion */ 469 if(CH->FB) 470 { 471 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB; 472 CH->op1_out[1] = CH->op1_out[0]; 473 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1); 474 } 475 else 476 { 477 *CH->connect1 += OP_OUT(SLOT,env_out,0); 478 } 479 }else 480 { 481 CH->op1_out[1] = CH->op1_out[0]; 482 CH->op1_out[0] = 0; 483 } 484 /* SLOT 2 */ 485 SLOT = &CH->SLOT[SLOT2]; 486 env_out=OPL_CALC_SLOT(SLOT); 487 if( env_out < EG_ENT-1 ) 488 { 489 /* PG */ 490 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 491 else SLOT->Cnt += SLOT->Incr; 492 /* connectoion */ 493 outd[0] += OP_OUT(SLOT,env_out, feedback2); 494 } 495 } 496 497 /* ---------- calcrate rhythm block ---------- */ 498 #define WHITE_NOISE_db 6.0 499 static inline void OPL_CALC_RH( OPL_CH *CH ) 500 { 501 UINT32 env_tam,env_sd,env_top,env_hh; 502 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP); 503 INT32 tone8; 504 505 OPL_SLOT *SLOT; 506 int env_out; 507 508 /* BD : same as FM serial mode and output level is large */ 509 feedback2 = 0; 510 /* SLOT 1 */ 511 SLOT = &CH[6].SLOT[SLOT1]; 512 env_out=OPL_CALC_SLOT(SLOT); 513 if( env_out < EG_ENT-1 ) 514 { 515 /* PG */ 516 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 517 else SLOT->Cnt += SLOT->Incr; 518 /* connectoion */ 519 if(CH[6].FB) 520 { 521 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB; 522 CH[6].op1_out[1] = CH[6].op1_out[0]; 523 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1); 524 } 525 else 526 { 527 feedback2 = OP_OUT(SLOT,env_out,0); 528 } 529 }else 530 { 531 feedback2 = 0; 532 CH[6].op1_out[1] = CH[6].op1_out[0]; 533 CH[6].op1_out[0] = 0; 534 } 535 /* SLOT 2 */ 536 SLOT = &CH[6].SLOT[SLOT2]; 537 env_out=OPL_CALC_SLOT(SLOT); 538 if( env_out < EG_ENT-1 ) 539 { 540 /* PG */ 541 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 542 else SLOT->Cnt += SLOT->Incr; 543 /* connectoion */ 544 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2; 545 } 546 547 // SD (17) = mul14[fnum7] + white noise 548 // TAM (15) = mul15[fnum8] 549 // TOP (18) = fnum6(mul18[fnum8]+whitenoise) 550 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise 551 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise; 552 env_tam=OPL_CALC_SLOT(SLOT8_1); 553 env_top=OPL_CALC_SLOT(SLOT8_2); 554 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise; 555 556 /* PG */ 557 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE); 558 else SLOT7_1->Cnt += 2*SLOT7_1->Incr; 559 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE); 560 else SLOT7_2->Cnt += (CH[7].fc*8); 561 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE); 562 else SLOT8_1->Cnt += SLOT8_1->Incr; 563 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE); 564 else SLOT8_2->Cnt += (CH[8].fc*48); 565 566 tone8 = OP_OUT(SLOT8_2,whitenoise,0 ); 567 568 /* SD */ 569 if( env_sd < EG_ENT-1 ) 570 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8; 571 /* TAM */ 572 if( env_tam < EG_ENT-1 ) 573 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2; 574 /* TOP-CY */ 575 if( env_top < EG_ENT-1 ) 576 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2; 577 /* HH */ 578 if( env_hh < EG_ENT-1 ) 579 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2; 580 } 581 582 /* ----------- initialize time tabls ----------- */ 583 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE ) 584 { 585 int i; 586 double rate; 587 588 /* make attack rate & decay rate tables */ 589 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; 590 for (i = 4;i <= 60;i++){ 591 rate = OPL->freqbase; /* frequency rate */ 592 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ 593 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */ 594 rate *= (double)(EG_ENT<<ENV_BITS); 595 OPL->AR_TABLE[i] = rate / ARRATE; 596 OPL->DR_TABLE[i] = rate / DRRATE; 597 } 598 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++) 599 { 600 OPL->AR_TABLE[i] = EG_AED-1; 601 OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; 602 } 603 #if 0 604 for (i = 0;i < 64 ;i++){ /* make for overflow area */ 605 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i, 606 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), 607 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) )); 608 } 609 #endif 610 } 611 612 /* ---------- generic table initialize ---------- */ 613 static int OPLOpenTable( void ) 614 { 615 int s,t; 616 double rate; 617 int i,j; 618 double pom; 619 620 /* allocate dynamic tables */ 621 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL) 622 return 0; 623 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL) 624 { 625 free(TL_TABLE); 626 return 0; 627 } 628 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL) 629 { 630 free(TL_TABLE); 631 free(SIN_TABLE); 632 return 0; 633 } 634 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL) 635 { 636 free(TL_TABLE); 637 free(SIN_TABLE); 638 free(AMS_TABLE); 639 return 0; 640 } 641 /* make total level table */ 642 for (t = 0;t < EG_ENT-1 ;t++){ 643 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */ 644 TL_TABLE[ t] = (int)rate; 645 TL_TABLE[TL_MAX+t] = -TL_TABLE[t]; 646 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ 647 } 648 /* fill volume off area */ 649 for ( t = EG_ENT-1; t < TL_MAX ;t++){ 650 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0; 651 } 652 653 /* make sinwave table (total level offet) */ 654 /* degree 0 = degree 180 = off */ 655 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1]; 656 for (s = 1;s <= SIN_ENT/4;s++){ 657 pom = sin(2*PI*s/SIN_ENT); /* sin */ 658 pom = 20*log10(1/pom); /* decibel */ 659 j = pom / EG_STEP; /* TL_TABLE steps */ 660 661 /* degree 0 - 90 , degree 180 - 90 : plus section */ 662 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j]; 663 /* degree 180 - 270 , degree 360 - 270 : minus section */ 664 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j]; 665 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ 666 } 667 for (s = 0;s < SIN_ENT;s++) 668 { 669 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; 670 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)]; 671 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s]; 672 } 673 674 /* envelope counter -> envelope output table */ 675 for (i=0; i<EG_ENT; i++) 676 { 677 /* ATTACK curve */ 678 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT; 679 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ 680 ENV_CURVE[i] = (int)pom; 681 /* DECAY ,RELEASE curve */ 682 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i; 683 } 684 /* off */ 685 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1; 686 /* make LFO ams table */ 687 for (i=0; i<AMS_ENT; i++) 688 { 689 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */ 690 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */ 691 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */ 692 } 693 /* make LFO vibrate table */ 694 for (i=0; i<VIB_ENT; i++) 695 { 696 /* 100cent = 1seminote = 6% ?? */ 697 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */ 698 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */ 699 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */ 700 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ 701 } 702 return 1; 703 } 704 705 706 static void OPLCloseTable( void ) 707 { 708 free(TL_TABLE); 709 free(SIN_TABLE); 710 free(AMS_TABLE); 711 free(VIB_TABLE); 712 } 713 714 /* CSM Key Control */ 715 static inline void CSMKeyControll(OPL_CH *CH) 716 { 717 OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; 718 OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; 719 /* all key off */ 720 OPL_KEYOFF(slot1); 721 OPL_KEYOFF(slot2); 722 /* total level latch */ 723 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); 724 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); 725 /* key on */ 726 CH->op1_out[0] = CH->op1_out[1] = 0; 727 OPL_KEYON(slot1); 728 OPL_KEYON(slot2); 729 } 730 731 /* ---------- opl initialize ---------- */ 732 static void OPL_initialize(FM_OPL *OPL) 733 { 734 int fn; 735 736 /* frequency base */ 737 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0; 738 /* Timer base time */ 739 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); 740 /* make time tables */ 741 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE ); 742 /* make fnumber -> increment counter table */ 743 for( fn=0 ; fn < 1024 ; fn++ ) 744 { 745 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2; 746 } 747 /* LFO freq.table */ 748 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0; 749 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0; 750 } 751 752 /* ---------- write a OPL registers ---------- */ 753 static void OPLWriteReg(FM_OPL *OPL, int r, int v) 754 { 755 OPL_CH *CH; 756 int slot; 757 int block_fnum; 758 759 switch(r&0xe0) 760 { 761 case 0x00: /* 00-1f:control */ 762 switch(r&0x1f) 763 { 764 case 0x01: 765 /* wave selector enable */ 766 if(OPL->type&OPL_TYPE_WAVESEL) 767 { 768 OPL->wavesel = v&0x20; 769 if(!OPL->wavesel) 770 { 771 /* preset compatible mode */ 772 int c; 773 for(c=0;c<OPL->max_ch;c++) 774 { 775 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; 776 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; 777 } 778 } 779 } 780 return; 781 case 0x02: /* Timer 1 */ 782 OPL->T[0] = (256-v)*4; 783 break; 784 case 0x03: /* Timer 2 */ 785 OPL->T[1] = (256-v)*16; 786 return; 787 case 0x04: /* IRQ clear / mask and Timer enable */ 788 if(v&0x80) 789 { /* IRQ flag clear */ 790 OPL_STATUS_RESET(OPL,0x7f); 791 } 792 else 793 { /* set IRQ mask ,timer enable*/ 794 UINT8 st1 = v&1; 795 UINT8 st2 = (v>>1)&1; 796 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ 797 OPL_STATUS_RESET(OPL,v&0x78); 798 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); 799 /* timer 2 */ 800 if(OPL->st[1] != st2) 801 { 802 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; 803 OPL->st[1] = st2; 804 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval); 805 } 806 /* timer 1 */ 807 if(OPL->st[0] != st1) 808 { 809 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; 810 OPL->st[0] = st1; 811 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval); 812 } 813 } 814 return; 815 #if BUILD_Y8950 816 case 0x06: /* Key Board OUT */ 817 if(OPL->type&OPL_TYPE_KEYBOARD) 818 { 819 if(OPL->keyboardhandler_w) 820 OPL->keyboardhandler_w(OPL->keyboard_param,v); 821 else 822 LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n")); 823 } 824 return; 825 case 0x07: /* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ 826 if(OPL->type&OPL_TYPE_ADPCM) 827 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); 828 return; 829 case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ 830 OPL->mode = v; 831 v&=0x1f; /* for DELTA-T unit */ 832 case 0x09: /* START ADD */ 833 case 0x0a: 834 case 0x0b: /* STOP ADD */ 835 case 0x0c: 836 case 0x0d: /* PRESCALE */ 837 case 0x0e: 838 case 0x0f: /* ADPCM data */ 839 case 0x10: /* DELTA-N */ 840 case 0x11: /* DELTA-N */ 841 case 0x12: /* EG-CTRL */ 842 if(OPL->type&OPL_TYPE_ADPCM) 843 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); 844 return; 845 #if 0 846 case 0x15: /* DAC data */ 847 case 0x16: 848 case 0x17: /* SHIFT */ 849 return; 850 case 0x18: /* I/O CTRL (Direction) */ 851 if(OPL->type&OPL_TYPE_IO) 852 OPL->portDirection = v&0x0f; 853 return; 854 case 0x19: /* I/O DATA */ 855 if(OPL->type&OPL_TYPE_IO) 856 { 857 OPL->portLatch = v; 858 if(OPL->porthandler_w) 859 OPL->porthandler_w(OPL->port_param,v&OPL->portDirection); 860 } 861 return; 862 case 0x1a: /* PCM data */ 863 return; 864 #endif 865 #endif 866 } 867 break; 868 case 0x20: /* am,vib,ksr,eg type,mul */ 869 slot = slot_array[r&0x1f]; 870 if(slot == -1) return; 871 set_mul(OPL,slot,v); 872 return; 873 case 0x40: 874 slot = slot_array[r&0x1f]; 875 if(slot == -1) return; 876 set_ksl_tl(OPL,slot,v); 877 return; 878 case 0x60: 879 slot = slot_array[r&0x1f]; 880 if(slot == -1) return; 881 set_ar_dr(OPL,slot,v); 882 return; 883 case 0x80: 884 slot = slot_array[r&0x1f]; 885 if(slot == -1) return; 886 set_sl_rr(OPL,slot,v); 887 return; 888 case 0xa0: 889 switch(r) 890 { 891 case 0xbd: 892 /* amsep,vibdep,r,bd,sd,tom,tc,hh */ 893 { 894 UINT8 rkey = OPL->rhythm^v; 895 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0]; 896 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0]; 897 OPL->rhythm = v&0x3f; 898 if(OPL->rhythm&0x20) 899 { 900 #if 0 901 usrintf_showmessage("OPL Rhythm mode select"); 902 #endif 903 /* BD key on/off */ 904 if(rkey&0x10) 905 { 906 if(v&0x10) 907 { 908 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; 909 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]); 910 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]); 911 } 912 else 913 { 914 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]); 915 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]); 916 } 917 } 918 /* SD key on/off */ 919 if(rkey&0x08) 920 { 921 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]); 922 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]); 923 }/* TAM key on/off */ 924 if(rkey&0x04) 925 { 926 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]); 927 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]); 928 } 929 /* TOP-CY key on/off */ 930 if(rkey&0x02) 931 { 932 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]); 933 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]); 934 } 935 /* HH key on/off */ 936 if(rkey&0x01) 937 { 938 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]); 939 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]); 940 } 941 } 942 } 943 return; 944 } 945 /* keyon,block,fnum */ 946 if( (r&0x0f) > 8) return; 947 CH = &OPL->P_CH[r&0x0f]; 948 if(!(r&0x10)) 949 { /* a0-a8 */ 950 block_fnum = (CH->block_fnum&0x1f00) | v; 951 } 952 else 953 { /* b0-b8 */ 954 int keyon = (v>>5)&1; 955 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); 956 if(CH->keyon != keyon) 957 { 958 if( (CH->keyon=keyon) ) 959 { 960 CH->op1_out[0] = CH->op1_out[1] = 0; 961 OPL_KEYON(&CH->SLOT[SLOT1]); 962 OPL_KEYON(&CH->SLOT[SLOT2]); 963 } 964 else 965 { 966 OPL_KEYOFF(&CH->SLOT[SLOT1]); 967 OPL_KEYOFF(&CH->SLOT[SLOT2]); 968 } 969 } 970 } 971 /* update */ 972 if(CH->block_fnum != block_fnum) 973 { 974 int blockRv = 7-(block_fnum>>10); 975 int fnum = block_fnum&0x3ff; 976 CH->block_fnum = block_fnum; 977 978 CH->ksl_base = KSL_TABLE[block_fnum>>6]; 979 CH->fc = OPL->FN_TABLE[fnum]>>blockRv; 980 CH->kcode = CH->block_fnum>>9; 981 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1; 982 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); 983 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); 984 } 985 return; 986 case 0xc0: 987 /* FB,C */ 988 if( (r&0x0f) > 8) return; 989 CH = &OPL->P_CH[r&0x0f]; 990 { 991 int feedback = (v>>1)&7; 992 CH->FB = feedback ? (8+1) - feedback : 0; 993 CH->CON = v&1; 994 set_algorithm(CH); 995 } 996 return; 997 case 0xe0: /* wave type */ 998 slot = slot_array[r&0x1f]; 999 if(slot == -1) return; 1000 CH = &OPL->P_CH[slot/2]; 1001 if(OPL->wavesel) 1002 { 1003 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ 1004 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT]; 1005 } 1006 return; 1007 } 1008 } 1009 1010 /* lock/unlock for common table */ 1011 static int OPL_LockTable(void) 1012 { 1013 num_lock++; 1014 if(num_lock>1) return 0; 1015 /* first time */ 1016 cur_chip = NULL; 1017 /* allocate total level table (128kb space) */ 1018 if( !OPLOpenTable() ) 1019 { 1020 num_lock--; 1021 return -1; 1022 } 1023 return 0; 1024 } 1025 1026 static void OPL_UnLockTable(void) 1027 { 1028 if(num_lock) num_lock--; 1029 if(num_lock) return; 1030 /* last time */ 1031 cur_chip = NULL; 1032 OPLCloseTable(); 1033 } 1034 1035 #if (BUILD_YM3812 || BUILD_YM3526) 1036 /*******************************************************************************/ 1037 /* YM3812 local section */ 1038 /*******************************************************************************/ 1039 1040 /* ---------- update one of chip ----------- */ 1041 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) 1042 { 1043 int i; 1044 int data; 1045 OPLSAMPLE *buf = buffer; 1046 UINT32 amsCnt = OPL->amsCnt; 1047 UINT32 vibCnt = OPL->vibCnt; 1048 UINT8 rhythm = OPL->rhythm&0x20; 1049 OPL_CH *CH,*R_CH; 1050 1051 if( (void *)OPL != cur_chip ){ 1052 cur_chip = (void *)OPL; 1053 /* channel pointers */ 1054 S_CH = OPL->P_CH; 1055 E_CH = &S_CH[9]; 1056 /* rhythm slot */ 1057 SLOT7_1 = &S_CH[7].SLOT[SLOT1]; 1058 SLOT7_2 = &S_CH[7].SLOT[SLOT2]; 1059 SLOT8_1 = &S_CH[8].SLOT[SLOT1]; 1060 SLOT8_2 = &S_CH[8].SLOT[SLOT2]; 1061 /* LFO state */ 1062 amsIncr = OPL->amsIncr; 1063 vibIncr = OPL->vibIncr; 1064 ams_table = OPL->ams_table; 1065 vib_table = OPL->vib_table; 1066 } 1067 R_CH = rhythm ? &S_CH[6] : E_CH; 1068 for( i=0; i < length ; i++ ) 1069 { 1070 /* channel A channel B channel C */ 1071 /* LFO */ 1072 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; 1073 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; 1074 outd[0] = 0; 1075 /* FM part */ 1076 for(CH=S_CH ; CH < R_CH ; CH++) 1077 OPL_CALC_CH(CH); 1078 /* Rythn part */ 1079 if(rhythm) 1080 OPL_CALC_RH(S_CH); 1081 /* limit check */ 1082 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); 1083 /* store to sound buffer */ 1084 buf[i] = data >> OPL_OUTSB; 1085 } 1086 1087 OPL->amsCnt = amsCnt; 1088 OPL->vibCnt = vibCnt; 1089 #ifdef OPL_OUTPUT_LOG 1090 if(opl_dbg_fp) 1091 { 1092 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) 1093 if( opl_dbg_opl[opl_dbg_chip] == OPL) break; 1094 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256); 1095 } 1096 #endif 1097 } 1098 #endif /* (BUILD_YM3812 || BUILD_YM3526) */ 1099 1100 #if BUILD_Y8950 1101 1102 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) 1103 { 1104 int i; 1105 int data; 1106 OPLSAMPLE *buf = buffer; 1107 UINT32 amsCnt = OPL->amsCnt; 1108 UINT32 vibCnt = OPL->vibCnt; 1109 UINT8 rhythm = OPL->rhythm&0x20; 1110 OPL_CH *CH,*R_CH; 1111 YM_DELTAT *DELTAT = OPL->deltat; 1112 1113 /* setup DELTA-T unit */ 1114 YM_DELTAT_DECODE_PRESET(DELTAT); 1115 1116 if( (void *)OPL != cur_chip ){ 1117 cur_chip = (void *)OPL; 1118 /* channel pointers */ 1119 S_CH = OPL->P_CH; 1120 E_CH = &S_CH[9]; 1121 /* rhythm slot */ 1122 SLOT7_1 = &S_CH[7].SLOT[SLOT1]; 1123 SLOT7_2 = &S_CH[7].SLOT[SLOT2]; 1124 SLOT8_1 = &S_CH[8].SLOT[SLOT1]; 1125 SLOT8_2 = &S_CH[8].SLOT[SLOT2]; 1126 /* LFO state */ 1127 amsIncr = OPL->amsIncr; 1128 vibIncr = OPL->vibIncr; 1129 ams_table = OPL->ams_table; 1130 vib_table = OPL->vib_table; 1131 } 1132 R_CH = rhythm ? &S_CH[6] : E_CH; 1133 for( i=0; i < length ; i++ ) 1134 { 1135 /* channel A channel B channel C */ 1136 /* LFO */ 1137 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; 1138 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; 1139 outd[0] = 0; 1140 /* deltaT ADPCM */ 1141 if( DELTAT->portstate ) 1142 YM_DELTAT_ADPCM_CALC(DELTAT); 1143 /* FM part */ 1144 for(CH=S_CH ; CH < R_CH ; CH++) 1145 OPL_CALC_CH(CH); 1146 /* Rythn part */ 1147 if(rhythm) 1148 OPL_CALC_RH(S_CH); 1149 /* limit check */ 1150 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); 1151 /* store to sound buffer */ 1152 buf[i] = data >> OPL_OUTSB; 1153 } 1154 OPL->amsCnt = amsCnt; 1155 OPL->vibCnt = vibCnt; 1156 /* deltaT START flag */ 1157 if( !DELTAT->portstate ) 1158 OPL->status &= 0xfe; 1159 } 1160 #endif 1161 1162 /* ---------- reset one of chip ---------- */ 1163 void OPLResetChip(FM_OPL *OPL) 1164 { 1165 int c,s; 1166 int i; 1167 1168 /* reset chip */ 1169 OPL->mode = 0; /* normal mode */ 1170 OPL_STATUS_RESET(OPL,0x7f); 1171 /* reset with register write */ 1172 OPLWriteReg(OPL,0x01,0); /* wabesel disable */ 1173 OPLWriteReg(OPL,0x02,0); /* Timer1 */ 1174 OPLWriteReg(OPL,0x03,0); /* Timer2 */ 1175 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ 1176 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); 1177 /* reset operator parameter */ 1178 for( c = 0 ; c < OPL->max_ch ; c++ ) 1179 { 1180 OPL_CH *CH = &OPL->P_CH[c]; 1181 /* OPL->P_CH[c].PAN = OPN_CENTER; */ 1182 for(s = 0 ; s < 2 ; s++ ) 1183 { 1184 /* wave table */ 1185 CH->SLOT[s].wavetable = &SIN_TABLE[0]; 1186 /* CH->SLOT[s].evm = ENV_MOD_RR; */ 1187 CH->SLOT[s].evc = EG_OFF; 1188 CH->SLOT[s].eve = EG_OFF+1; 1189 CH->SLOT[s].evs = 0; 1190 } 1191 } 1192 #if BUILD_Y8950 1193 if(OPL->type&OPL_TYPE_ADPCM) 1194 { 1195 YM_DELTAT *DELTAT = OPL->deltat; 1196 1197 DELTAT->freqbase = OPL->freqbase; 1198 DELTAT->output_pointer = outd; 1199 DELTAT->portshift = 5; 1200 DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS; 1201 YM_DELTAT_ADPCM_Reset(DELTAT,0); 1202 } 1203 #endif 1204 } 1205 1206 /* ---------- Create one of vietual YM3812 ---------- */ 1207 /* 'rate' is sampling rate and 'bufsiz' is the size of the */ 1208 FM_OPL *OPLCreate(int type, int clock, int rate) 1209 { 1210 char *ptr; 1211 FM_OPL *OPL; 1212 int state_size; 1213 int max_ch = 9; /* normaly 9 channels */ 1214 1215 if( OPL_LockTable() ==-1) return NULL; 1216 /* allocate OPL state space */ 1217 state_size = sizeof(FM_OPL); 1218 state_size += sizeof(OPL_CH)*max_ch; 1219 #if BUILD_Y8950 1220 if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT); 1221 #endif 1222 /* allocate memory block */ 1223 ptr = malloc(state_size); 1224 if(ptr==NULL) return NULL; 1225 /* clear */ 1226 memset(ptr,0,state_size); 1227 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL); 1228 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch; 1229 #if BUILD_Y8950 1230 if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT); 1231 #endif 1232 /* set channel state pointer */ 1233 OPL->type = type; 1234 OPL->clock = clock; 1235 OPL->rate = rate; 1236 OPL->max_ch = max_ch; 1237 /* init grobal tables */ 1238 OPL_initialize(OPL); 1239 /* reset chip */ 1240 OPLResetChip(OPL); 1241 #ifdef OPL_OUTPUT_LOG 1242 if(!opl_dbg_fp) 1243 { 1244 opl_dbg_fp = fopen("opllog.opl","wb"); 1245 opl_dbg_maxchip = 0; 1246 } 1247 if(opl_dbg_fp) 1248 { 1249 opl_dbg_opl[opl_dbg_maxchip] = OPL; 1250 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip, 1251 type, 1252 clock&0xff, 1253 (clock/0x100)&0xff, 1254 (clock/0x10000)&0xff, 1255 (clock/0x1000000)&0xff); 1256 opl_dbg_maxchip++; 1257 } 1258 #endif 1259 return OPL; 1260 } 1261 1262 /* ---------- Destroy one of vietual YM3812 ---------- */ 1263 void OPLDestroy(FM_OPL *OPL) 1264 { 1265 #ifdef OPL_OUTPUT_LOG 1266 if(opl_dbg_fp) 1267 { 1268 fclose(opl_dbg_fp); 1269 opl_dbg_fp = NULL; 1270 } 1271 #endif 1272 OPL_UnLockTable(); 1273 free(OPL); 1274 } 1275 1276 /* ---------- Option handlers ---------- */ 1277 1278 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset) 1279 { 1280 OPL->TimerHandler = TimerHandler; 1281 OPL->TimerParam = channelOffset; 1282 } 1283 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param) 1284 { 1285 OPL->IRQHandler = IRQHandler; 1286 OPL->IRQParam = param; 1287 } 1288 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param) 1289 { 1290 OPL->UpdateHandler = UpdateHandler; 1291 OPL->UpdateParam = param; 1292 } 1293 #if BUILD_Y8950 1294 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param) 1295 { 1296 OPL->porthandler_w = PortHandler_w; 1297 OPL->porthandler_r = PortHandler_r; 1298 OPL->port_param = param; 1299 } 1300 1301 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param) 1302 { 1303 OPL->keyboardhandler_w = KeyboardHandler_w; 1304 OPL->keyboardhandler_r = KeyboardHandler_r; 1305 OPL->keyboard_param = param; 1306 } 1307 #endif 1308 /* ---------- YM3812 I/O interface ---------- */ 1309 int OPLWrite(FM_OPL *OPL,int a,int v) 1310 { 1311 if( !(a&1) ) 1312 { /* address port */ 1313 OPL->address = v & 0xff; 1314 } 1315 else 1316 { /* data port */ 1317 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); 1318 #ifdef OPL_OUTPUT_LOG 1319 if(opl_dbg_fp) 1320 { 1321 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) 1322 if( opl_dbg_opl[opl_dbg_chip] == OPL) break; 1323 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v); 1324 } 1325 #endif 1326 OPLWriteReg(OPL,OPL->address,v); 1327 } 1328 return OPL->status>>7; 1329 } 1330 1331 unsigned char OPLRead(FM_OPL *OPL,int a) 1332 { 1333 if( !(a&1) ) 1334 { /* status port */ 1335 return OPL->status & (OPL->statusmask|0x80); 1336 } 1337 /* data port */ 1338 switch(OPL->address) 1339 { 1340 case 0x05: /* KeyBoard IN */ 1341 if(OPL->type&OPL_TYPE_KEYBOARD) 1342 { 1343 if(OPL->keyboardhandler_r) 1344 return OPL->keyboardhandler_r(OPL->keyboard_param); 1345 else { 1346 LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n")); 1347 } 1348 } 1349 return 0; 1350 #if 0 1351 case 0x0f: /* ADPCM-DATA */ 1352 return 0; 1353 #endif 1354 case 0x19: /* I/O DATA */ 1355 if(OPL->type&OPL_TYPE_IO) 1356 { 1357 if(OPL->porthandler_r) 1358 return OPL->porthandler_r(OPL->port_param); 1359 else { 1360 LOG(LOG_WAR,("OPL:read unmapped I/O port\n")); 1361 } 1362 } 1363 return 0; 1364 case 0x1a: /* PCM-DATA */ 1365 return 0; 1366 } 1367 return 0; 1368 } 1369 1370 int OPLTimerOver(FM_OPL *OPL,int c) 1371 { 1372 if( c ) 1373 { /* Timer B */ 1374 OPL_STATUS_SET(OPL,0x20); 1375 } 1376 else 1377 { /* Timer A */ 1378 OPL_STATUS_SET(OPL,0x40); 1379 /* CSM mode key,TL control */ 1380 if( OPL->mode & 0x80 ) 1381 { /* CSM mode total level latch and auto key on */ 1382 int ch; 1383 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); 1384 for(ch=0;ch<9;ch++) 1385 CSMKeyControll( &OPL->P_CH[ch] ); 1386 } 1387 } 1388 /* reload timer */ 1389 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase); 1390 return OPL->status>>7; 1391 } 1392