1 /* 2 ** 3 ** File: fmopl.c -- software implementation of FM sound generator 4 ** 5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development 6 ** 7 ** Version 0.37a 8 ** 9 */ 10 11 /* 12 preliminary : 13 Problem : 14 note: 15 */ 16 17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL. 18 * 19 * This library is free software; you can redistribute it and/or 20 * modify it under the terms of the GNU Lesser General Public 21 * License as published by the Free Software Foundation; either 22 * version 2.1 of the License, or (at your option) any later version. 23 * 24 * This library is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 27 * Lesser General Public License for more details. 28 * 29 * You should have received a copy of the GNU Lesser General Public 30 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 31 */ 32 33 #include "qemu/osdep.h" 34 #include <math.h> 35 //#include "driver.h" /* use M.A.M.E. */ 36 #include "fmopl.h" 37 #ifndef PI 38 #define PI 3.14159265358979323846 39 #endif 40 41 /* -------------------- for debug --------------------- */ 42 /* #define OPL_OUTPUT_LOG */ 43 #ifdef OPL_OUTPUT_LOG 44 static FILE *opl_dbg_fp = NULL; 45 static FM_OPL *opl_dbg_opl[16]; 46 static int opl_dbg_maxchip,opl_dbg_chip; 47 #endif 48 49 /* -------------------- preliminary define section --------------------- */ 50 /* attack/decay rate time rate */ 51 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ 52 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ 53 54 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ 55 56 #define FREQ_BITS 24 /* frequency turn */ 57 58 /* counter bits = 20 , octerve 7 */ 59 #define FREQ_RATE (1<<(FREQ_BITS-20)) 60 #define TL_BITS (FREQ_BITS+2) 61 62 /* final output shift , limit minimum and maximum */ 63 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ 64 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) 65 #define OPL_MINOUT (-0x8000<<OPL_OUTSB) 66 67 /* -------------------- quality selection --------------------- */ 68 69 /* sinwave entries */ 70 /* used static memory = SIN_ENT * 4 (byte) */ 71 #define SIN_ENT 2048 72 73 /* output level entries (envelope,sinwave) */ 74 /* envelope counter lower bits */ 75 #define ENV_BITS 16 76 /* envelope output entries */ 77 #define EG_ENT 4096 78 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ 79 /* used static memory = EG_ENT*4 (byte) */ 80 81 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ 82 #define EG_DED EG_OFF 83 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ 84 #define EG_AED EG_DST 85 #define EG_AST 0 /* ATTACK START */ 86 87 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ 88 89 /* LFO table entries */ 90 #define VIB_ENT 512 91 #define VIB_SHIFT (32-9) 92 #define AMS_ENT 512 93 #define AMS_SHIFT (32-9) 94 95 #define VIB_RATE 256 96 97 /* -------------------- local defines , macros --------------------- */ 98 99 /* register number to channel number , slot offset */ 100 #define SLOT1 0 101 #define SLOT2 1 102 103 /* envelope phase */ 104 #define ENV_MOD_RR 0x00 105 #define ENV_MOD_DR 0x01 106 #define ENV_MOD_AR 0x02 107 108 /* -------------------- tables --------------------- */ 109 static const int slot_array[32]= 110 { 111 0, 2, 4, 1, 3, 5,-1,-1, 112 6, 8,10, 7, 9,11,-1,-1, 113 12,14,16,13,15,17,-1,-1, 114 -1,-1,-1,-1,-1,-1,-1,-1 115 }; 116 117 /* key scale level */ 118 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */ 119 #define DV (EG_STEP/2) 120 static const uint32_t KSL_TABLE[8*16]= 121 { 122 /* OCT 0 */ 123 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 124 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 125 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 126 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 127 /* OCT 1 */ 128 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 129 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 130 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, 131 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, 132 /* OCT 2 */ 133 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 134 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, 135 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, 136 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, 137 /* OCT 3 */ 138 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, 139 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, 140 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, 141 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, 142 /* OCT 4 */ 143 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, 144 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, 145 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, 146 10.875/DV,11.250/DV,11.625/DV,12.000/DV, 147 /* OCT 5 */ 148 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, 149 9.000/DV,10.125/DV,10.875/DV,11.625/DV, 150 12.000/DV,12.750/DV,13.125/DV,13.500/DV, 151 13.875/DV,14.250/DV,14.625/DV,15.000/DV, 152 /* OCT 6 */ 153 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, 154 12.000/DV,13.125/DV,13.875/DV,14.625/DV, 155 15.000/DV,15.750/DV,16.125/DV,16.500/DV, 156 16.875/DV,17.250/DV,17.625/DV,18.000/DV, 157 /* OCT 7 */ 158 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, 159 15.000/DV,16.125/DV,16.875/DV,17.625/DV, 160 18.000/DV,18.750/DV,19.125/DV,19.500/DV, 161 19.875/DV,20.250/DV,20.625/DV,21.000/DV 162 }; 163 #undef DV 164 165 /* sustain lebel table (3db per step) */ 166 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ 167 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST 168 static const int32_t SL_TABLE[16]={ 169 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), 170 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) 171 }; 172 #undef SC 173 174 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ 175 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ 176 /* TL_TABLE[ 0 to TL_MAX ] : plus section */ 177 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ 178 static int32_t *TL_TABLE; 179 180 /* pointers to TL_TABLE with sinwave output offset */ 181 static int32_t **SIN_TABLE; 182 183 /* LFO table */ 184 static int32_t *AMS_TABLE; 185 static int32_t *VIB_TABLE; 186 187 /* envelope output curve table */ 188 /* attack + decay + OFF */ 189 static int32_t ENV_CURVE[2*EG_ENT+1]; 190 191 /* multiple table */ 192 #define ML 2 193 static const uint32_t MUL_TABLE[16]= { 194 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ 195 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, 196 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML 197 }; 198 #undef ML 199 200 /* dummy attack / decay rate ( when rate == 0 ) */ 201 static int32_t RATE_0[16]= 202 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 203 204 /* -------------------- static state --------------------- */ 205 206 /* lock level of common table */ 207 static int num_lock = 0; 208 209 /* work table */ 210 static void *cur_chip = NULL; /* current chip point */ 211 /* currenct chip state */ 212 /* static OPLSAMPLE *bufL,*bufR; */ 213 static OPL_CH *S_CH; 214 static OPL_CH *E_CH; 215 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; 216 217 static int32_t outd[1]; 218 static int32_t ams; 219 static int32_t vib; 220 static int32_t *ams_table; 221 static int32_t *vib_table; 222 static int32_t amsIncr; 223 static int32_t vibIncr; 224 static int32_t feedback2; /* connect for SLOT 2 */ 225 226 /* log output level */ 227 #define LOG_ERR 3 /* ERROR */ 228 #define LOG_WAR 2 /* WARNING */ 229 #define LOG_INF 1 /* INFORMATION */ 230 231 //#define LOG_LEVEL LOG_INF 232 #define LOG_LEVEL LOG_ERR 233 234 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x 235 #define LOG(n,x) 236 237 /* --------------------- subroutines --------------------- */ 238 239 static inline int Limit( int val, int max, int min ) { 240 if ( val > max ) 241 val = max; 242 else if ( val < min ) 243 val = min; 244 245 return val; 246 } 247 248 /* status set and IRQ handling */ 249 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag) 250 { 251 /* set status flag */ 252 OPL->status |= flag; 253 if(!(OPL->status & 0x80)) 254 { 255 if(OPL->status & OPL->statusmask) 256 { /* IRQ on */ 257 OPL->status |= 0x80; 258 } 259 } 260 } 261 262 /* status reset and IRQ handling */ 263 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag) 264 { 265 /* reset status flag */ 266 OPL->status &=~flag; 267 if((OPL->status & 0x80)) 268 { 269 if (!(OPL->status & OPL->statusmask) ) 270 { 271 OPL->status &= 0x7f; 272 } 273 } 274 } 275 276 /* IRQ mask set */ 277 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) 278 { 279 OPL->statusmask = flag; 280 /* IRQ handling check */ 281 OPL_STATUS_SET(OPL,0); 282 OPL_STATUS_RESET(OPL,0); 283 } 284 285 /* ----- key on ----- */ 286 static inline void OPL_KEYON(OPL_SLOT *SLOT) 287 { 288 /* sin wave restart */ 289 SLOT->Cnt = 0; 290 /* set attack */ 291 SLOT->evm = ENV_MOD_AR; 292 SLOT->evs = SLOT->evsa; 293 SLOT->evc = EG_AST; 294 SLOT->eve = EG_AED; 295 } 296 /* ----- key off ----- */ 297 static inline void OPL_KEYOFF(OPL_SLOT *SLOT) 298 { 299 if( SLOT->evm > ENV_MOD_RR) 300 { 301 /* set envelope counter from envleope output */ 302 SLOT->evm = ENV_MOD_RR; 303 if( !(SLOT->evc&EG_DST) ) 304 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; 305 SLOT->evc = EG_DST; 306 SLOT->eve = EG_DED; 307 SLOT->evs = SLOT->evsr; 308 } 309 } 310 311 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ 312 /* return : envelope output */ 313 static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT ) 314 { 315 /* calcrate envelope generator */ 316 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve ) 317 { 318 switch( SLOT->evm ){ 319 case ENV_MOD_AR: /* ATTACK -> DECAY1 */ 320 /* next DR */ 321 SLOT->evm = ENV_MOD_DR; 322 SLOT->evc = EG_DST; 323 SLOT->eve = SLOT->SL; 324 SLOT->evs = SLOT->evsd; 325 break; 326 case ENV_MOD_DR: /* DECAY -> SL or RR */ 327 SLOT->evc = SLOT->SL; 328 SLOT->eve = EG_DED; 329 if(SLOT->eg_typ) 330 { 331 SLOT->evs = 0; 332 } 333 else 334 { 335 SLOT->evm = ENV_MOD_RR; 336 SLOT->evs = SLOT->evsr; 337 } 338 break; 339 case ENV_MOD_RR: /* RR -> OFF */ 340 SLOT->evc = EG_OFF; 341 SLOT->eve = EG_OFF+1; 342 SLOT->evs = 0; 343 break; 344 } 345 } 346 /* calcrate envelope */ 347 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0); 348 } 349 350 /* set algorithm connection */ 351 static void set_algorithm( OPL_CH *CH) 352 { 353 int32_t *carrier = &outd[0]; 354 CH->connect1 = CH->CON ? carrier : &feedback2; 355 CH->connect2 = carrier; 356 } 357 358 /* ---------- frequency counter for operater update ---------- */ 359 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) 360 { 361 int ksr; 362 363 /* frequency step counter */ 364 SLOT->Incr = CH->fc * SLOT->mul; 365 ksr = CH->kcode >> SLOT->KSR; 366 367 if( SLOT->ksr != ksr ) 368 { 369 SLOT->ksr = ksr; 370 /* attack , decay rate recalcration */ 371 SLOT->evsa = SLOT->AR[ksr]; 372 SLOT->evsd = SLOT->DR[ksr]; 373 SLOT->evsr = SLOT->RR[ksr]; 374 } 375 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); 376 } 377 378 /* set multi,am,vib,EG-TYP,KSR,mul */ 379 static inline void set_mul(FM_OPL *OPL,int slot,int v) 380 { 381 OPL_CH *CH = &OPL->P_CH[slot/2]; 382 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 383 384 SLOT->mul = MUL_TABLE[v&0x0f]; 385 SLOT->KSR = (v&0x10) ? 0 : 2; 386 SLOT->eg_typ = (v&0x20)>>5; 387 SLOT->vib = (v&0x40); 388 SLOT->ams = (v&0x80); 389 CALC_FCSLOT(CH,SLOT); 390 } 391 392 /* set ksl & tl */ 393 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v) 394 { 395 OPL_CH *CH = &OPL->P_CH[slot/2]; 396 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 397 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */ 398 399 SLOT->ksl = ksl ? 3-ksl : 31; 400 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */ 401 402 if( !(OPL->mode&0x80) ) 403 { /* not CSM latch total level */ 404 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); 405 } 406 } 407 408 /* set attack rate & decay rate */ 409 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v) 410 { 411 OPL_CH *CH = &OPL->P_CH[slot/2]; 412 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 413 int ar = v>>4; 414 int dr = v&0x0f; 415 416 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0; 417 SLOT->evsa = SLOT->AR[SLOT->ksr]; 418 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa; 419 420 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; 421 SLOT->evsd = SLOT->DR[SLOT->ksr]; 422 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd; 423 } 424 425 /* set sustain level & release rate */ 426 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v) 427 { 428 OPL_CH *CH = &OPL->P_CH[slot/2]; 429 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 430 int sl = v>>4; 431 int rr = v & 0x0f; 432 433 SLOT->SL = SL_TABLE[sl]; 434 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL; 435 SLOT->RR = &OPL->DR_TABLE[rr<<2]; 436 SLOT->evsr = SLOT->RR[SLOT->ksr]; 437 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr; 438 } 439 440 /* operator output calcrator */ 441 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] 442 /* ---------- calcrate one of channel ---------- */ 443 static inline void OPL_CALC_CH( OPL_CH *CH ) 444 { 445 uint32_t env_out; 446 OPL_SLOT *SLOT; 447 448 feedback2 = 0; 449 /* SLOT 1 */ 450 SLOT = &CH->SLOT[SLOT1]; 451 env_out=OPL_CALC_SLOT(SLOT); 452 if( env_out < EG_ENT-1 ) 453 { 454 /* PG */ 455 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 456 else SLOT->Cnt += SLOT->Incr; 457 /* connectoion */ 458 if(CH->FB) 459 { 460 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB; 461 CH->op1_out[1] = CH->op1_out[0]; 462 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1); 463 } 464 else 465 { 466 *CH->connect1 += OP_OUT(SLOT,env_out,0); 467 } 468 }else 469 { 470 CH->op1_out[1] = CH->op1_out[0]; 471 CH->op1_out[0] = 0; 472 } 473 /* SLOT 2 */ 474 SLOT = &CH->SLOT[SLOT2]; 475 env_out=OPL_CALC_SLOT(SLOT); 476 if( env_out < EG_ENT-1 ) 477 { 478 /* PG */ 479 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 480 else SLOT->Cnt += SLOT->Incr; 481 /* connectoion */ 482 outd[0] += OP_OUT(SLOT,env_out, feedback2); 483 } 484 } 485 486 /* ---------- calcrate rhythm block ---------- */ 487 #define WHITE_NOISE_db 6.0 488 static inline void OPL_CALC_RH( OPL_CH *CH ) 489 { 490 uint32_t env_tam,env_sd,env_top,env_hh; 491 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP); 492 int32_t tone8; 493 494 OPL_SLOT *SLOT; 495 int env_out; 496 497 /* BD : same as FM serial mode and output level is large */ 498 feedback2 = 0; 499 /* SLOT 1 */ 500 SLOT = &CH[6].SLOT[SLOT1]; 501 env_out=OPL_CALC_SLOT(SLOT); 502 if( env_out < EG_ENT-1 ) 503 { 504 /* PG */ 505 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 506 else SLOT->Cnt += SLOT->Incr; 507 /* connectoion */ 508 if(CH[6].FB) 509 { 510 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB; 511 CH[6].op1_out[1] = CH[6].op1_out[0]; 512 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1); 513 } 514 else 515 { 516 feedback2 = OP_OUT(SLOT,env_out,0); 517 } 518 }else 519 { 520 feedback2 = 0; 521 CH[6].op1_out[1] = CH[6].op1_out[0]; 522 CH[6].op1_out[0] = 0; 523 } 524 /* SLOT 2 */ 525 SLOT = &CH[6].SLOT[SLOT2]; 526 env_out=OPL_CALC_SLOT(SLOT); 527 if( env_out < EG_ENT-1 ) 528 { 529 /* PG */ 530 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 531 else SLOT->Cnt += SLOT->Incr; 532 /* connectoion */ 533 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2; 534 } 535 536 // SD (17) = mul14[fnum7] + white noise 537 // TAM (15) = mul15[fnum8] 538 // TOP (18) = fnum6(mul18[fnum8]+whitenoise) 539 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise 540 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise; 541 env_tam=OPL_CALC_SLOT(SLOT8_1); 542 env_top=OPL_CALC_SLOT(SLOT8_2); 543 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise; 544 545 /* PG */ 546 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE); 547 else SLOT7_1->Cnt += 2*SLOT7_1->Incr; 548 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE); 549 else SLOT7_2->Cnt += (CH[7].fc*8); 550 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE); 551 else SLOT8_1->Cnt += SLOT8_1->Incr; 552 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE); 553 else SLOT8_2->Cnt += (CH[8].fc*48); 554 555 tone8 = OP_OUT(SLOT8_2,whitenoise,0 ); 556 557 /* SD */ 558 if( env_sd < EG_ENT-1 ) 559 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8; 560 /* TAM */ 561 if( env_tam < EG_ENT-1 ) 562 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2; 563 /* TOP-CY */ 564 if( env_top < EG_ENT-1 ) 565 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2; 566 /* HH */ 567 if( env_hh < EG_ENT-1 ) 568 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2; 569 } 570 571 /* ----------- initialize time tabls ----------- */ 572 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE ) 573 { 574 int i; 575 double rate; 576 577 /* make attack rate & decay rate tables */ 578 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; 579 for (i = 4;i <= 60;i++){ 580 rate = OPL->freqbase; /* frequency rate */ 581 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ 582 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */ 583 rate *= (double)(EG_ENT<<ENV_BITS); 584 OPL->AR_TABLE[i] = rate / ARRATE; 585 OPL->DR_TABLE[i] = rate / DRRATE; 586 } 587 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++) 588 { 589 OPL->AR_TABLE[i] = EG_AED-1; 590 OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; 591 } 592 #if 0 593 for (i = 0;i < 64 ;i++){ /* make for overflow area */ 594 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i, 595 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), 596 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) )); 597 } 598 #endif 599 } 600 601 /* ---------- generic table initialize ---------- */ 602 static int OPLOpenTable( void ) 603 { 604 int s,t; 605 double rate; 606 int i,j; 607 double pom; 608 609 /* allocate dynamic tables */ 610 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL) 611 return 0; 612 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL) 613 { 614 free(TL_TABLE); 615 return 0; 616 } 617 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL) 618 { 619 free(TL_TABLE); 620 free(SIN_TABLE); 621 return 0; 622 } 623 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL) 624 { 625 free(TL_TABLE); 626 free(SIN_TABLE); 627 free(AMS_TABLE); 628 return 0; 629 } 630 /* make total level table */ 631 for (t = 0;t < EG_ENT-1 ;t++){ 632 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */ 633 TL_TABLE[ t] = (int)rate; 634 TL_TABLE[TL_MAX+t] = -TL_TABLE[t]; 635 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ 636 } 637 /* fill volume off area */ 638 for ( t = EG_ENT-1; t < TL_MAX ;t++){ 639 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0; 640 } 641 642 /* make sinwave table (total level offet) */ 643 /* degree 0 = degree 180 = off */ 644 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1]; 645 for (s = 1;s <= SIN_ENT/4;s++){ 646 pom = sin(2*PI*s/SIN_ENT); /* sin */ 647 pom = 20*log10(1/pom); /* decibel */ 648 j = pom / EG_STEP; /* TL_TABLE steps */ 649 650 /* degree 0 - 90 , degree 180 - 90 : plus section */ 651 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j]; 652 /* degree 180 - 270 , degree 360 - 270 : minus section */ 653 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j]; 654 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ 655 } 656 for (s = 0;s < SIN_ENT;s++) 657 { 658 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; 659 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)]; 660 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s]; 661 } 662 663 /* envelope counter -> envelope output table */ 664 for (i=0; i<EG_ENT; i++) 665 { 666 /* ATTACK curve */ 667 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT; 668 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ 669 ENV_CURVE[i] = (int)pom; 670 /* DECAY ,RELEASE curve */ 671 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i; 672 } 673 /* off */ 674 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1; 675 /* make LFO ams table */ 676 for (i=0; i<AMS_ENT; i++) 677 { 678 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */ 679 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */ 680 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */ 681 } 682 /* make LFO vibrate table */ 683 for (i=0; i<VIB_ENT; i++) 684 { 685 /* 100cent = 1seminote = 6% ?? */ 686 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */ 687 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */ 688 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */ 689 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ 690 } 691 return 1; 692 } 693 694 695 static void OPLCloseTable( void ) 696 { 697 free(TL_TABLE); 698 free(SIN_TABLE); 699 free(AMS_TABLE); 700 free(VIB_TABLE); 701 } 702 703 /* CSM Key Control */ 704 static inline void CSMKeyControll(OPL_CH *CH) 705 { 706 OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; 707 OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; 708 /* all key off */ 709 OPL_KEYOFF(slot1); 710 OPL_KEYOFF(slot2); 711 /* total level latch */ 712 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); 713 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); 714 /* key on */ 715 CH->op1_out[0] = CH->op1_out[1] = 0; 716 OPL_KEYON(slot1); 717 OPL_KEYON(slot2); 718 } 719 720 /* ---------- opl initialize ---------- */ 721 static void OPL_initialize(FM_OPL *OPL) 722 { 723 int fn; 724 725 /* frequency base */ 726 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0; 727 /* Timer base time */ 728 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); 729 /* make time tables */ 730 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE ); 731 /* make fnumber -> increment counter table */ 732 for( fn=0 ; fn < 1024 ; fn++ ) 733 { 734 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2; 735 } 736 /* LFO freq.table */ 737 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0; 738 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0; 739 } 740 741 /* ---------- write a OPL registers ---------- */ 742 static void OPLWriteReg(FM_OPL *OPL, int r, int v) 743 { 744 OPL_CH *CH; 745 int slot; 746 int block_fnum; 747 748 switch(r&0xe0) 749 { 750 case 0x00: /* 00-1f:control */ 751 switch(r&0x1f) 752 { 753 case 0x01: 754 /* wave selector enable */ 755 OPL->wavesel = v&0x20; 756 if(!OPL->wavesel) 757 { 758 /* preset compatible mode */ 759 int c; 760 for(c=0;c<OPL->max_ch;c++) 761 { 762 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; 763 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; 764 } 765 } 766 return; 767 case 0x02: /* Timer 1 */ 768 OPL->T[0] = (256-v)*4; 769 break; 770 case 0x03: /* Timer 2 */ 771 OPL->T[1] = (256-v)*16; 772 return; 773 case 0x04: /* IRQ clear / mask and Timer enable */ 774 if(v&0x80) 775 { /* IRQ flag clear */ 776 OPL_STATUS_RESET(OPL,0x7f); 777 } 778 else 779 { /* set IRQ mask ,timer enable*/ 780 uint8_t st1 = v&1; 781 uint8_t st2 = (v>>1)&1; 782 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ 783 OPL_STATUS_RESET(OPL,v&0x78); 784 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); 785 /* timer 2 */ 786 if(OPL->st[1] != st2) 787 { 788 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; 789 OPL->st[1] = st2; 790 if (OPL->TimerHandler) { 791 (OPL->TimerHandler)(OPL->TimerParam, 1, interval); 792 } 793 } 794 /* timer 1 */ 795 if(OPL->st[0] != st1) 796 { 797 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; 798 OPL->st[0] = st1; 799 if (OPL->TimerHandler) { 800 (OPL->TimerHandler)(OPL->TimerParam, 0, interval); 801 } 802 } 803 } 804 return; 805 } 806 break; 807 case 0x20: /* am,vib,ksr,eg type,mul */ 808 slot = slot_array[r&0x1f]; 809 if(slot == -1) return; 810 set_mul(OPL,slot,v); 811 return; 812 case 0x40: 813 slot = slot_array[r&0x1f]; 814 if(slot == -1) return; 815 set_ksl_tl(OPL,slot,v); 816 return; 817 case 0x60: 818 slot = slot_array[r&0x1f]; 819 if(slot == -1) return; 820 set_ar_dr(OPL,slot,v); 821 return; 822 case 0x80: 823 slot = slot_array[r&0x1f]; 824 if(slot == -1) return; 825 set_sl_rr(OPL,slot,v); 826 return; 827 case 0xa0: 828 switch(r) 829 { 830 case 0xbd: 831 /* amsep,vibdep,r,bd,sd,tom,tc,hh */ 832 { 833 uint8_t rkey = OPL->rhythm^v; 834 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0]; 835 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0]; 836 OPL->rhythm = v&0x3f; 837 if(OPL->rhythm&0x20) 838 { 839 #if 0 840 usrintf_showmessage("OPL Rhythm mode select"); 841 #endif 842 /* BD key on/off */ 843 if(rkey&0x10) 844 { 845 if(v&0x10) 846 { 847 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; 848 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]); 849 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]); 850 } 851 else 852 { 853 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]); 854 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]); 855 } 856 } 857 /* SD key on/off */ 858 if(rkey&0x08) 859 { 860 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]); 861 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]); 862 }/* TAM key on/off */ 863 if(rkey&0x04) 864 { 865 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]); 866 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]); 867 } 868 /* TOP-CY key on/off */ 869 if(rkey&0x02) 870 { 871 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]); 872 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]); 873 } 874 /* HH key on/off */ 875 if(rkey&0x01) 876 { 877 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]); 878 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]); 879 } 880 } 881 } 882 return; 883 } 884 /* keyon,block,fnum */ 885 if( (r&0x0f) > 8) return; 886 CH = &OPL->P_CH[r&0x0f]; 887 if(!(r&0x10)) 888 { /* a0-a8 */ 889 block_fnum = (CH->block_fnum&0x1f00) | v; 890 } 891 else 892 { /* b0-b8 */ 893 int keyon = (v>>5)&1; 894 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); 895 if(CH->keyon != keyon) 896 { 897 if( (CH->keyon=keyon) ) 898 { 899 CH->op1_out[0] = CH->op1_out[1] = 0; 900 OPL_KEYON(&CH->SLOT[SLOT1]); 901 OPL_KEYON(&CH->SLOT[SLOT2]); 902 } 903 else 904 { 905 OPL_KEYOFF(&CH->SLOT[SLOT1]); 906 OPL_KEYOFF(&CH->SLOT[SLOT2]); 907 } 908 } 909 } 910 /* update */ 911 if(CH->block_fnum != block_fnum) 912 { 913 int blockRv = 7-(block_fnum>>10); 914 int fnum = block_fnum&0x3ff; 915 CH->block_fnum = block_fnum; 916 917 CH->ksl_base = KSL_TABLE[block_fnum>>6]; 918 CH->fc = OPL->FN_TABLE[fnum]>>blockRv; 919 CH->kcode = CH->block_fnum>>9; 920 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1; 921 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); 922 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); 923 } 924 return; 925 case 0xc0: 926 /* FB,C */ 927 if( (r&0x0f) > 8) return; 928 CH = &OPL->P_CH[r&0x0f]; 929 { 930 int feedback = (v>>1)&7; 931 CH->FB = feedback ? (8+1) - feedback : 0; 932 CH->CON = v&1; 933 set_algorithm(CH); 934 } 935 return; 936 case 0xe0: /* wave type */ 937 slot = slot_array[r&0x1f]; 938 if(slot == -1) return; 939 CH = &OPL->P_CH[slot/2]; 940 if(OPL->wavesel) 941 { 942 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ 943 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT]; 944 } 945 return; 946 } 947 } 948 949 /* lock/unlock for common table */ 950 static int OPL_LockTable(void) 951 { 952 num_lock++; 953 if(num_lock>1) return 0; 954 /* first time */ 955 cur_chip = NULL; 956 /* allocate total level table (128kb space) */ 957 if( !OPLOpenTable() ) 958 { 959 num_lock--; 960 return -1; 961 } 962 return 0; 963 } 964 965 static void OPL_UnLockTable(void) 966 { 967 if(num_lock) num_lock--; 968 if(num_lock) return; 969 /* last time */ 970 cur_chip = NULL; 971 OPLCloseTable(); 972 } 973 974 /*******************************************************************************/ 975 /* YM3812 local section */ 976 /*******************************************************************************/ 977 978 /* ---------- update one of chip ----------- */ 979 void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length) 980 { 981 int i; 982 int data; 983 int16_t *buf = buffer; 984 uint32_t amsCnt = OPL->amsCnt; 985 uint32_t vibCnt = OPL->vibCnt; 986 uint8_t rhythm = OPL->rhythm&0x20; 987 OPL_CH *CH,*R_CH; 988 989 if( (void *)OPL != cur_chip ){ 990 cur_chip = (void *)OPL; 991 /* channel pointers */ 992 S_CH = OPL->P_CH; 993 E_CH = &S_CH[9]; 994 /* rhythm slot */ 995 SLOT7_1 = &S_CH[7].SLOT[SLOT1]; 996 SLOT7_2 = &S_CH[7].SLOT[SLOT2]; 997 SLOT8_1 = &S_CH[8].SLOT[SLOT1]; 998 SLOT8_2 = &S_CH[8].SLOT[SLOT2]; 999 /* LFO state */ 1000 amsIncr = OPL->amsIncr; 1001 vibIncr = OPL->vibIncr; 1002 ams_table = OPL->ams_table; 1003 vib_table = OPL->vib_table; 1004 } 1005 R_CH = rhythm ? &S_CH[6] : E_CH; 1006 for( i=0; i < length ; i++ ) 1007 { 1008 /* channel A channel B channel C */ 1009 /* LFO */ 1010 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; 1011 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; 1012 outd[0] = 0; 1013 /* FM part */ 1014 for(CH=S_CH ; CH < R_CH ; CH++) 1015 OPL_CALC_CH(CH); 1016 /* Rythn part */ 1017 if(rhythm) 1018 OPL_CALC_RH(S_CH); 1019 /* limit check */ 1020 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); 1021 /* store to sound buffer */ 1022 buf[i] = data >> OPL_OUTSB; 1023 } 1024 1025 OPL->amsCnt = amsCnt; 1026 OPL->vibCnt = vibCnt; 1027 #ifdef OPL_OUTPUT_LOG 1028 if(opl_dbg_fp) 1029 { 1030 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) 1031 if( opl_dbg_opl[opl_dbg_chip] == OPL) break; 1032 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256); 1033 } 1034 #endif 1035 } 1036 1037 /* ---------- reset one of chip ---------- */ 1038 static void OPLResetChip(FM_OPL *OPL) 1039 { 1040 int c,s; 1041 int i; 1042 1043 /* reset chip */ 1044 OPL->mode = 0; /* normal mode */ 1045 OPL_STATUS_RESET(OPL,0x7f); 1046 /* reset with register write */ 1047 OPLWriteReg(OPL,0x01,0); /* wabesel disable */ 1048 OPLWriteReg(OPL,0x02,0); /* Timer1 */ 1049 OPLWriteReg(OPL,0x03,0); /* Timer2 */ 1050 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ 1051 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); 1052 /* reset operator parameter */ 1053 for( c = 0 ; c < OPL->max_ch ; c++ ) 1054 { 1055 OPL_CH *CH = &OPL->P_CH[c]; 1056 /* OPL->P_CH[c].PAN = OPN_CENTER; */ 1057 for(s = 0 ; s < 2 ; s++ ) 1058 { 1059 /* wave table */ 1060 CH->SLOT[s].wavetable = &SIN_TABLE[0]; 1061 /* CH->SLOT[s].evm = ENV_MOD_RR; */ 1062 CH->SLOT[s].evc = EG_OFF; 1063 CH->SLOT[s].eve = EG_OFF+1; 1064 CH->SLOT[s].evs = 0; 1065 } 1066 } 1067 } 1068 1069 /* ---------- Create one of virtual YM3812 ---------- */ 1070 /* 'rate' is sampling rate and 'bufsiz' is the size of the */ 1071 FM_OPL *OPLCreate(int clock, int rate) 1072 { 1073 char *ptr; 1074 FM_OPL *OPL; 1075 int state_size; 1076 int max_ch = 9; /* normaly 9 channels */ 1077 1078 if( OPL_LockTable() ==-1) return NULL; 1079 /* allocate OPL state space */ 1080 state_size = sizeof(FM_OPL); 1081 state_size += sizeof(OPL_CH)*max_ch; 1082 /* allocate memory block */ 1083 ptr = malloc(state_size); 1084 if(ptr==NULL) return NULL; 1085 /* clear */ 1086 memset(ptr,0,state_size); 1087 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL); 1088 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch; 1089 /* set channel state pointer */ 1090 OPL->clock = clock; 1091 OPL->rate = rate; 1092 OPL->max_ch = max_ch; 1093 /* init grobal tables */ 1094 OPL_initialize(OPL); 1095 /* reset chip */ 1096 OPLResetChip(OPL); 1097 #ifdef OPL_OUTPUT_LOG 1098 if(!opl_dbg_fp) 1099 { 1100 opl_dbg_fp = fopen("opllog.opl","wb"); 1101 opl_dbg_maxchip = 0; 1102 } 1103 if(opl_dbg_fp) 1104 { 1105 opl_dbg_opl[opl_dbg_maxchip] = OPL; 1106 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip, 1107 type, 1108 clock&0xff, 1109 (clock/0x100)&0xff, 1110 (clock/0x10000)&0xff, 1111 (clock/0x1000000)&0xff); 1112 opl_dbg_maxchip++; 1113 } 1114 #endif 1115 return OPL; 1116 } 1117 1118 /* ---------- Destroy one of virtual YM3812 ---------- */ 1119 void OPLDestroy(FM_OPL *OPL) 1120 { 1121 #ifdef OPL_OUTPUT_LOG 1122 if(opl_dbg_fp) 1123 { 1124 fclose(opl_dbg_fp); 1125 opl_dbg_fp = NULL; 1126 } 1127 #endif 1128 OPL_UnLockTable(); 1129 free(OPL); 1130 } 1131 1132 /* ---------- Option handlers ---------- */ 1133 1134 void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler, 1135 void *param) 1136 { 1137 OPL->TimerHandler = TimerHandler; 1138 OPL->TimerParam = param; 1139 } 1140 1141 /* ---------- YM3812 I/O interface ---------- */ 1142 int OPLWrite(FM_OPL *OPL,int a,int v) 1143 { 1144 if( !(a&1) ) 1145 { /* address port */ 1146 OPL->address = v & 0xff; 1147 } 1148 else 1149 { /* data port */ 1150 #ifdef OPL_OUTPUT_LOG 1151 if(opl_dbg_fp) 1152 { 1153 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) 1154 if( opl_dbg_opl[opl_dbg_chip] == OPL) break; 1155 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v); 1156 } 1157 #endif 1158 OPLWriteReg(OPL,OPL->address,v); 1159 } 1160 return OPL->status>>7; 1161 } 1162 1163 unsigned char OPLRead(FM_OPL *OPL,int a) 1164 { 1165 if( !(a&1) ) 1166 { /* status port */ 1167 return OPL->status & (OPL->statusmask|0x80); 1168 } 1169 /* data port */ 1170 switch(OPL->address) 1171 { 1172 case 0x05: /* KeyBoard IN */ 1173 return 0; 1174 #if 0 1175 case 0x0f: /* ADPCM-DATA */ 1176 return 0; 1177 #endif 1178 case 0x19: /* I/O DATA */ 1179 return 0; 1180 case 0x1a: /* PCM-DATA */ 1181 return 0; 1182 } 1183 return 0; 1184 } 1185 1186 int OPLTimerOver(FM_OPL *OPL,int c) 1187 { 1188 if( c ) 1189 { /* Timer B */ 1190 OPL_STATUS_SET(OPL,0x20); 1191 } 1192 else 1193 { /* Timer A */ 1194 OPL_STATUS_SET(OPL,0x40); 1195 /* CSM mode key,TL control */ 1196 if( OPL->mode & 0x80 ) 1197 { /* CSM mode total level latch and auto key on */ 1198 int ch; 1199 for(ch=0;ch<9;ch++) 1200 CSMKeyControll( &OPL->P_CH[ch] ); 1201 } 1202 } 1203 /* reload timer */ 1204 if (OPL->TimerHandler) { 1205 (OPL->TimerHandler)(OPL->TimerParam, c, 1206 (double)OPL->T[c] * OPL->TimerBase); 1207 } 1208 return OPL->status>>7; 1209 } 1210