1 /* 2 ** 3 ** File: fmopl.c -- software implementation of FM sound generator 4 ** 5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development 6 ** 7 ** Version 0.37a 8 ** 9 */ 10 11 /* 12 preliminary : 13 Problem : 14 note: 15 */ 16 17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL. 18 * 19 * This library is free software; you can redistribute it and/or 20 * modify it under the terms of the GNU Lesser General Public 21 * License as published by the Free Software Foundation; either 22 * version 2.1 of the License, or (at your option) any later version. 23 * 24 * This library is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 27 * Lesser General Public License for more details. 28 * 29 * You should have received a copy of the GNU Lesser General Public 30 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 31 */ 32 33 #define HAS_YM3812 1 34 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <stdarg.h> 39 #include <math.h> 40 //#include "driver.h" /* use M.A.M.E. */ 41 #include "fmopl.h" 42 43 #ifndef PI 44 #define PI 3.14159265358979323846 45 #endif 46 47 #ifndef ARRAY_SIZE 48 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 49 #endif 50 51 /* -------------------- for debug --------------------- */ 52 /* #define OPL_OUTPUT_LOG */ 53 #ifdef OPL_OUTPUT_LOG 54 static FILE *opl_dbg_fp = NULL; 55 static FM_OPL *opl_dbg_opl[16]; 56 static int opl_dbg_maxchip,opl_dbg_chip; 57 #endif 58 59 /* -------------------- preliminary define section --------------------- */ 60 /* attack/decay rate time rate */ 61 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ 62 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ 63 64 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ 65 66 #define FREQ_BITS 24 /* frequency turn */ 67 68 /* counter bits = 20 , octerve 7 */ 69 #define FREQ_RATE (1<<(FREQ_BITS-20)) 70 #define TL_BITS (FREQ_BITS+2) 71 72 /* final output shift , limit minimum and maximum */ 73 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ 74 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) 75 #define OPL_MINOUT (-0x8000<<OPL_OUTSB) 76 77 /* -------------------- quality selection --------------------- */ 78 79 /* sinwave entries */ 80 /* used static memory = SIN_ENT * 4 (byte) */ 81 #define SIN_ENT 2048 82 83 /* output level entries (envelope,sinwave) */ 84 /* envelope counter lower bits */ 85 #define ENV_BITS 16 86 /* envelope output entries */ 87 #define EG_ENT 4096 88 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ 89 /* used static memory = EG_ENT*4 (byte) */ 90 91 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ 92 #define EG_DED EG_OFF 93 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ 94 #define EG_AED EG_DST 95 #define EG_AST 0 /* ATTACK START */ 96 97 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ 98 99 /* LFO table entries */ 100 #define VIB_ENT 512 101 #define VIB_SHIFT (32-9) 102 #define AMS_ENT 512 103 #define AMS_SHIFT (32-9) 104 105 #define VIB_RATE 256 106 107 /* -------------------- local defines , macros --------------------- */ 108 109 /* register number to channel number , slot offset */ 110 #define SLOT1 0 111 #define SLOT2 1 112 113 /* envelope phase */ 114 #define ENV_MOD_RR 0x00 115 #define ENV_MOD_DR 0x01 116 #define ENV_MOD_AR 0x02 117 118 /* -------------------- tables --------------------- */ 119 static const int slot_array[32]= 120 { 121 0, 2, 4, 1, 3, 5,-1,-1, 122 6, 8,10, 7, 9,11,-1,-1, 123 12,14,16,13,15,17,-1,-1, 124 -1,-1,-1,-1,-1,-1,-1,-1 125 }; 126 127 /* key scale level */ 128 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */ 129 #define DV (EG_STEP/2) 130 static const UINT32 KSL_TABLE[8*16]= 131 { 132 /* OCT 0 */ 133 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 134 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 135 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 136 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 137 /* OCT 1 */ 138 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 139 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 140 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, 141 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, 142 /* OCT 2 */ 143 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 144 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, 145 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, 146 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, 147 /* OCT 3 */ 148 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, 149 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, 150 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, 151 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, 152 /* OCT 4 */ 153 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, 154 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, 155 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, 156 10.875/DV,11.250/DV,11.625/DV,12.000/DV, 157 /* OCT 5 */ 158 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, 159 9.000/DV,10.125/DV,10.875/DV,11.625/DV, 160 12.000/DV,12.750/DV,13.125/DV,13.500/DV, 161 13.875/DV,14.250/DV,14.625/DV,15.000/DV, 162 /* OCT 6 */ 163 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, 164 12.000/DV,13.125/DV,13.875/DV,14.625/DV, 165 15.000/DV,15.750/DV,16.125/DV,16.500/DV, 166 16.875/DV,17.250/DV,17.625/DV,18.000/DV, 167 /* OCT 7 */ 168 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, 169 15.000/DV,16.125/DV,16.875/DV,17.625/DV, 170 18.000/DV,18.750/DV,19.125/DV,19.500/DV, 171 19.875/DV,20.250/DV,20.625/DV,21.000/DV 172 }; 173 #undef DV 174 175 /* sustain lebel table (3db per step) */ 176 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ 177 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST 178 static const INT32 SL_TABLE[16]={ 179 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), 180 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) 181 }; 182 #undef SC 183 184 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ 185 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ 186 /* TL_TABLE[ 0 to TL_MAX ] : plus section */ 187 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ 188 static INT32 *TL_TABLE; 189 190 /* pointers to TL_TABLE with sinwave output offset */ 191 static INT32 **SIN_TABLE; 192 193 /* LFO table */ 194 static INT32 *AMS_TABLE; 195 static INT32 *VIB_TABLE; 196 197 /* envelope output curve table */ 198 /* attack + decay + OFF */ 199 static INT32 ENV_CURVE[2*EG_ENT+1]; 200 201 /* multiple table */ 202 #define ML 2 203 static const UINT32 MUL_TABLE[16]= { 204 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ 205 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, 206 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML 207 }; 208 #undef ML 209 210 /* dummy attack / decay rate ( when rate == 0 ) */ 211 static INT32 RATE_0[16]= 212 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 213 214 /* -------------------- static state --------------------- */ 215 216 /* lock level of common table */ 217 static int num_lock = 0; 218 219 /* work table */ 220 static void *cur_chip = NULL; /* current chip point */ 221 /* currenct chip state */ 222 /* static OPLSAMPLE *bufL,*bufR; */ 223 static OPL_CH *S_CH; 224 static OPL_CH *E_CH; 225 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; 226 227 static INT32 outd[1]; 228 static INT32 ams; 229 static INT32 vib; 230 static INT32 *ams_table; 231 static INT32 *vib_table; 232 static INT32 amsIncr; 233 static INT32 vibIncr; 234 static INT32 feedback2; /* connect for SLOT 2 */ 235 236 /* log output level */ 237 #define LOG_ERR 3 /* ERROR */ 238 #define LOG_WAR 2 /* WARNING */ 239 #define LOG_INF 1 /* INFORMATION */ 240 241 //#define LOG_LEVEL LOG_INF 242 #define LOG_LEVEL LOG_ERR 243 244 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x 245 #define LOG(n,x) 246 247 /* --------------------- subroutines --------------------- */ 248 249 static inline int Limit( int val, int max, int min ) { 250 if ( val > max ) 251 val = max; 252 else if ( val < min ) 253 val = min; 254 255 return val; 256 } 257 258 /* status set and IRQ handling */ 259 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag) 260 { 261 /* set status flag */ 262 OPL->status |= flag; 263 if(!(OPL->status & 0x80)) 264 { 265 if(OPL->status & OPL->statusmask) 266 { /* IRQ on */ 267 OPL->status |= 0x80; 268 /* callback user interrupt handler (IRQ is OFF to ON) */ 269 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1); 270 } 271 } 272 } 273 274 /* status reset and IRQ handling */ 275 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag) 276 { 277 /* reset status flag */ 278 OPL->status &=~flag; 279 if((OPL->status & 0x80)) 280 { 281 if (!(OPL->status & OPL->statusmask) ) 282 { 283 OPL->status &= 0x7f; 284 /* callback user interrupt handler (IRQ is ON to OFF) */ 285 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0); 286 } 287 } 288 } 289 290 /* IRQ mask set */ 291 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) 292 { 293 OPL->statusmask = flag; 294 /* IRQ handling check */ 295 OPL_STATUS_SET(OPL,0); 296 OPL_STATUS_RESET(OPL,0); 297 } 298 299 /* ----- key on ----- */ 300 static inline void OPL_KEYON(OPL_SLOT *SLOT) 301 { 302 /* sin wave restart */ 303 SLOT->Cnt = 0; 304 /* set attack */ 305 SLOT->evm = ENV_MOD_AR; 306 SLOT->evs = SLOT->evsa; 307 SLOT->evc = EG_AST; 308 SLOT->eve = EG_AED; 309 } 310 /* ----- key off ----- */ 311 static inline void OPL_KEYOFF(OPL_SLOT *SLOT) 312 { 313 if( SLOT->evm > ENV_MOD_RR) 314 { 315 /* set envelope counter from envleope output */ 316 SLOT->evm = ENV_MOD_RR; 317 if( !(SLOT->evc&EG_DST) ) 318 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; 319 SLOT->evc = EG_DST; 320 SLOT->eve = EG_DED; 321 SLOT->evs = SLOT->evsr; 322 } 323 } 324 325 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ 326 /* return : envelope output */ 327 static inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT ) 328 { 329 /* calcrate envelope generator */ 330 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve ) 331 { 332 switch( SLOT->evm ){ 333 case ENV_MOD_AR: /* ATTACK -> DECAY1 */ 334 /* next DR */ 335 SLOT->evm = ENV_MOD_DR; 336 SLOT->evc = EG_DST; 337 SLOT->eve = SLOT->SL; 338 SLOT->evs = SLOT->evsd; 339 break; 340 case ENV_MOD_DR: /* DECAY -> SL or RR */ 341 SLOT->evc = SLOT->SL; 342 SLOT->eve = EG_DED; 343 if(SLOT->eg_typ) 344 { 345 SLOT->evs = 0; 346 } 347 else 348 { 349 SLOT->evm = ENV_MOD_RR; 350 SLOT->evs = SLOT->evsr; 351 } 352 break; 353 case ENV_MOD_RR: /* RR -> OFF */ 354 SLOT->evc = EG_OFF; 355 SLOT->eve = EG_OFF+1; 356 SLOT->evs = 0; 357 break; 358 } 359 } 360 /* calcrate envelope */ 361 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0); 362 } 363 364 /* set algorithm connection */ 365 static void set_algorithm( OPL_CH *CH) 366 { 367 INT32 *carrier = &outd[0]; 368 CH->connect1 = CH->CON ? carrier : &feedback2; 369 CH->connect2 = carrier; 370 } 371 372 /* ---------- frequency counter for operater update ---------- */ 373 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) 374 { 375 int ksr; 376 377 /* frequency step counter */ 378 SLOT->Incr = CH->fc * SLOT->mul; 379 ksr = CH->kcode >> SLOT->KSR; 380 381 if( SLOT->ksr != ksr ) 382 { 383 SLOT->ksr = ksr; 384 /* attack , decay rate recalcration */ 385 SLOT->evsa = SLOT->AR[ksr]; 386 SLOT->evsd = SLOT->DR[ksr]; 387 SLOT->evsr = SLOT->RR[ksr]; 388 } 389 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); 390 } 391 392 /* set multi,am,vib,EG-TYP,KSR,mul */ 393 static inline void set_mul(FM_OPL *OPL,int slot,int v) 394 { 395 OPL_CH *CH = &OPL->P_CH[slot/2]; 396 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 397 398 SLOT->mul = MUL_TABLE[v&0x0f]; 399 SLOT->KSR = (v&0x10) ? 0 : 2; 400 SLOT->eg_typ = (v&0x20)>>5; 401 SLOT->vib = (v&0x40); 402 SLOT->ams = (v&0x80); 403 CALC_FCSLOT(CH,SLOT); 404 } 405 406 /* set ksl & tl */ 407 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v) 408 { 409 OPL_CH *CH = &OPL->P_CH[slot/2]; 410 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 411 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */ 412 413 SLOT->ksl = ksl ? 3-ksl : 31; 414 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */ 415 416 if( !(OPL->mode&0x80) ) 417 { /* not CSM latch total level */ 418 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); 419 } 420 } 421 422 /* set attack rate & decay rate */ 423 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v) 424 { 425 OPL_CH *CH = &OPL->P_CH[slot/2]; 426 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 427 int ar = v>>4; 428 int dr = v&0x0f; 429 430 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0; 431 SLOT->evsa = SLOT->AR[SLOT->ksr]; 432 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa; 433 434 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; 435 SLOT->evsd = SLOT->DR[SLOT->ksr]; 436 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd; 437 } 438 439 /* set sustain level & release rate */ 440 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v) 441 { 442 OPL_CH *CH = &OPL->P_CH[slot/2]; 443 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 444 int sl = v>>4; 445 int rr = v & 0x0f; 446 447 SLOT->SL = SL_TABLE[sl]; 448 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL; 449 SLOT->RR = &OPL->DR_TABLE[rr<<2]; 450 SLOT->evsr = SLOT->RR[SLOT->ksr]; 451 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr; 452 } 453 454 /* operator output calcrator */ 455 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] 456 /* ---------- calcrate one of channel ---------- */ 457 static inline void OPL_CALC_CH( OPL_CH *CH ) 458 { 459 UINT32 env_out; 460 OPL_SLOT *SLOT; 461 462 feedback2 = 0; 463 /* SLOT 1 */ 464 SLOT = &CH->SLOT[SLOT1]; 465 env_out=OPL_CALC_SLOT(SLOT); 466 if( env_out < EG_ENT-1 ) 467 { 468 /* PG */ 469 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 470 else SLOT->Cnt += SLOT->Incr; 471 /* connectoion */ 472 if(CH->FB) 473 { 474 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB; 475 CH->op1_out[1] = CH->op1_out[0]; 476 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1); 477 } 478 else 479 { 480 *CH->connect1 += OP_OUT(SLOT,env_out,0); 481 } 482 }else 483 { 484 CH->op1_out[1] = CH->op1_out[0]; 485 CH->op1_out[0] = 0; 486 } 487 /* SLOT 2 */ 488 SLOT = &CH->SLOT[SLOT2]; 489 env_out=OPL_CALC_SLOT(SLOT); 490 if( env_out < EG_ENT-1 ) 491 { 492 /* PG */ 493 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 494 else SLOT->Cnt += SLOT->Incr; 495 /* connectoion */ 496 outd[0] += OP_OUT(SLOT,env_out, feedback2); 497 } 498 } 499 500 /* ---------- calcrate rhythm block ---------- */ 501 #define WHITE_NOISE_db 6.0 502 static inline void OPL_CALC_RH( OPL_CH *CH ) 503 { 504 UINT32 env_tam,env_sd,env_top,env_hh; 505 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP); 506 INT32 tone8; 507 508 OPL_SLOT *SLOT; 509 int env_out; 510 511 /* BD : same as FM serial mode and output level is large */ 512 feedback2 = 0; 513 /* SLOT 1 */ 514 SLOT = &CH[6].SLOT[SLOT1]; 515 env_out=OPL_CALC_SLOT(SLOT); 516 if( env_out < EG_ENT-1 ) 517 { 518 /* PG */ 519 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 520 else SLOT->Cnt += SLOT->Incr; 521 /* connectoion */ 522 if(CH[6].FB) 523 { 524 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB; 525 CH[6].op1_out[1] = CH[6].op1_out[0]; 526 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1); 527 } 528 else 529 { 530 feedback2 = OP_OUT(SLOT,env_out,0); 531 } 532 }else 533 { 534 feedback2 = 0; 535 CH[6].op1_out[1] = CH[6].op1_out[0]; 536 CH[6].op1_out[0] = 0; 537 } 538 /* SLOT 2 */ 539 SLOT = &CH[6].SLOT[SLOT2]; 540 env_out=OPL_CALC_SLOT(SLOT); 541 if( env_out < EG_ENT-1 ) 542 { 543 /* PG */ 544 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 545 else SLOT->Cnt += SLOT->Incr; 546 /* connectoion */ 547 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2; 548 } 549 550 // SD (17) = mul14[fnum7] + white noise 551 // TAM (15) = mul15[fnum8] 552 // TOP (18) = fnum6(mul18[fnum8]+whitenoise) 553 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise 554 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise; 555 env_tam=OPL_CALC_SLOT(SLOT8_1); 556 env_top=OPL_CALC_SLOT(SLOT8_2); 557 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise; 558 559 /* PG */ 560 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE); 561 else SLOT7_1->Cnt += 2*SLOT7_1->Incr; 562 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE); 563 else SLOT7_2->Cnt += (CH[7].fc*8); 564 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE); 565 else SLOT8_1->Cnt += SLOT8_1->Incr; 566 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE); 567 else SLOT8_2->Cnt += (CH[8].fc*48); 568 569 tone8 = OP_OUT(SLOT8_2,whitenoise,0 ); 570 571 /* SD */ 572 if( env_sd < EG_ENT-1 ) 573 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8; 574 /* TAM */ 575 if( env_tam < EG_ENT-1 ) 576 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2; 577 /* TOP-CY */ 578 if( env_top < EG_ENT-1 ) 579 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2; 580 /* HH */ 581 if( env_hh < EG_ENT-1 ) 582 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2; 583 } 584 585 /* ----------- initialize time tabls ----------- */ 586 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE ) 587 { 588 int i; 589 double rate; 590 591 /* make attack rate & decay rate tables */ 592 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; 593 for (i = 4;i <= 60;i++){ 594 rate = OPL->freqbase; /* frequency rate */ 595 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ 596 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */ 597 rate *= (double)(EG_ENT<<ENV_BITS); 598 OPL->AR_TABLE[i] = rate / ARRATE; 599 OPL->DR_TABLE[i] = rate / DRRATE; 600 } 601 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++) 602 { 603 OPL->AR_TABLE[i] = EG_AED-1; 604 OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; 605 } 606 #if 0 607 for (i = 0;i < 64 ;i++){ /* make for overflow area */ 608 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i, 609 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), 610 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) )); 611 } 612 #endif 613 } 614 615 /* ---------- generic table initialize ---------- */ 616 static int OPLOpenTable( void ) 617 { 618 int s,t; 619 double rate; 620 int i,j; 621 double pom; 622 623 /* allocate dynamic tables */ 624 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL) 625 return 0; 626 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL) 627 { 628 free(TL_TABLE); 629 return 0; 630 } 631 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL) 632 { 633 free(TL_TABLE); 634 free(SIN_TABLE); 635 return 0; 636 } 637 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL) 638 { 639 free(TL_TABLE); 640 free(SIN_TABLE); 641 free(AMS_TABLE); 642 return 0; 643 } 644 /* make total level table */ 645 for (t = 0;t < EG_ENT-1 ;t++){ 646 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */ 647 TL_TABLE[ t] = (int)rate; 648 TL_TABLE[TL_MAX+t] = -TL_TABLE[t]; 649 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ 650 } 651 /* fill volume off area */ 652 for ( t = EG_ENT-1; t < TL_MAX ;t++){ 653 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0; 654 } 655 656 /* make sinwave table (total level offet) */ 657 /* degree 0 = degree 180 = off */ 658 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1]; 659 for (s = 1;s <= SIN_ENT/4;s++){ 660 pom = sin(2*PI*s/SIN_ENT); /* sin */ 661 pom = 20*log10(1/pom); /* decibel */ 662 j = pom / EG_STEP; /* TL_TABLE steps */ 663 664 /* degree 0 - 90 , degree 180 - 90 : plus section */ 665 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j]; 666 /* degree 180 - 270 , degree 360 - 270 : minus section */ 667 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j]; 668 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ 669 } 670 for (s = 0;s < SIN_ENT;s++) 671 { 672 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; 673 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)]; 674 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s]; 675 } 676 677 /* envelope counter -> envelope output table */ 678 for (i=0; i<EG_ENT; i++) 679 { 680 /* ATTACK curve */ 681 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT; 682 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ 683 ENV_CURVE[i] = (int)pom; 684 /* DECAY ,RELEASE curve */ 685 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i; 686 } 687 /* off */ 688 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1; 689 /* make LFO ams table */ 690 for (i=0; i<AMS_ENT; i++) 691 { 692 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */ 693 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */ 694 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */ 695 } 696 /* make LFO vibrate table */ 697 for (i=0; i<VIB_ENT; i++) 698 { 699 /* 100cent = 1seminote = 6% ?? */ 700 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */ 701 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */ 702 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */ 703 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ 704 } 705 return 1; 706 } 707 708 709 static void OPLCloseTable( void ) 710 { 711 free(TL_TABLE); 712 free(SIN_TABLE); 713 free(AMS_TABLE); 714 free(VIB_TABLE); 715 } 716 717 /* CSM Key Control */ 718 static inline void CSMKeyControll(OPL_CH *CH) 719 { 720 OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; 721 OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; 722 /* all key off */ 723 OPL_KEYOFF(slot1); 724 OPL_KEYOFF(slot2); 725 /* total level latch */ 726 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); 727 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); 728 /* key on */ 729 CH->op1_out[0] = CH->op1_out[1] = 0; 730 OPL_KEYON(slot1); 731 OPL_KEYON(slot2); 732 } 733 734 /* ---------- opl initialize ---------- */ 735 static void OPL_initialize(FM_OPL *OPL) 736 { 737 int fn; 738 739 /* frequency base */ 740 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0; 741 /* Timer base time */ 742 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); 743 /* make time tables */ 744 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE ); 745 /* make fnumber -> increment counter table */ 746 for( fn=0 ; fn < 1024 ; fn++ ) 747 { 748 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2; 749 } 750 /* LFO freq.table */ 751 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0; 752 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0; 753 } 754 755 /* ---------- write a OPL registers ---------- */ 756 static void OPLWriteReg(FM_OPL *OPL, int r, int v) 757 { 758 OPL_CH *CH; 759 int slot; 760 int block_fnum; 761 762 switch(r&0xe0) 763 { 764 case 0x00: /* 00-1f:control */ 765 switch(r&0x1f) 766 { 767 case 0x01: 768 /* wave selector enable */ 769 if(OPL->type&OPL_TYPE_WAVESEL) 770 { 771 OPL->wavesel = v&0x20; 772 if(!OPL->wavesel) 773 { 774 /* preset compatible mode */ 775 int c; 776 for(c=0;c<OPL->max_ch;c++) 777 { 778 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; 779 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; 780 } 781 } 782 } 783 return; 784 case 0x02: /* Timer 1 */ 785 OPL->T[0] = (256-v)*4; 786 break; 787 case 0x03: /* Timer 2 */ 788 OPL->T[1] = (256-v)*16; 789 return; 790 case 0x04: /* IRQ clear / mask and Timer enable */ 791 if(v&0x80) 792 { /* IRQ flag clear */ 793 OPL_STATUS_RESET(OPL,0x7f); 794 } 795 else 796 { /* set IRQ mask ,timer enable*/ 797 UINT8 st1 = v&1; 798 UINT8 st2 = (v>>1)&1; 799 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ 800 OPL_STATUS_RESET(OPL,v&0x78); 801 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); 802 /* timer 2 */ 803 if(OPL->st[1] != st2) 804 { 805 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; 806 OPL->st[1] = st2; 807 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval); 808 } 809 /* timer 1 */ 810 if(OPL->st[0] != st1) 811 { 812 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; 813 OPL->st[0] = st1; 814 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval); 815 } 816 } 817 return; 818 #if BUILD_Y8950 819 case 0x06: /* Key Board OUT */ 820 if(OPL->type&OPL_TYPE_KEYBOARD) 821 { 822 if(OPL->keyboardhandler_w) 823 OPL->keyboardhandler_w(OPL->keyboard_param,v); 824 else 825 LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n")); 826 } 827 return; 828 case 0x07: /* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ 829 if(OPL->type&OPL_TYPE_ADPCM) 830 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); 831 return; 832 case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ 833 OPL->mode = v; 834 v&=0x1f; /* for DELTA-T unit */ 835 case 0x09: /* START ADD */ 836 case 0x0a: 837 case 0x0b: /* STOP ADD */ 838 case 0x0c: 839 case 0x0d: /* PRESCALE */ 840 case 0x0e: 841 case 0x0f: /* ADPCM data */ 842 case 0x10: /* DELTA-N */ 843 case 0x11: /* DELTA-N */ 844 case 0x12: /* EG-CTRL */ 845 if(OPL->type&OPL_TYPE_ADPCM) 846 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); 847 return; 848 #if 0 849 case 0x15: /* DAC data */ 850 case 0x16: 851 case 0x17: /* SHIFT */ 852 return; 853 case 0x18: /* I/O CTRL (Direction) */ 854 if(OPL->type&OPL_TYPE_IO) 855 OPL->portDirection = v&0x0f; 856 return; 857 case 0x19: /* I/O DATA */ 858 if(OPL->type&OPL_TYPE_IO) 859 { 860 OPL->portLatch = v; 861 if(OPL->porthandler_w) 862 OPL->porthandler_w(OPL->port_param,v&OPL->portDirection); 863 } 864 return; 865 case 0x1a: /* PCM data */ 866 return; 867 #endif 868 #endif 869 } 870 break; 871 case 0x20: /* am,vib,ksr,eg type,mul */ 872 slot = slot_array[r&0x1f]; 873 if(slot == -1) return; 874 set_mul(OPL,slot,v); 875 return; 876 case 0x40: 877 slot = slot_array[r&0x1f]; 878 if(slot == -1) return; 879 set_ksl_tl(OPL,slot,v); 880 return; 881 case 0x60: 882 slot = slot_array[r&0x1f]; 883 if(slot == -1) return; 884 set_ar_dr(OPL,slot,v); 885 return; 886 case 0x80: 887 slot = slot_array[r&0x1f]; 888 if(slot == -1) return; 889 set_sl_rr(OPL,slot,v); 890 return; 891 case 0xa0: 892 switch(r) 893 { 894 case 0xbd: 895 /* amsep,vibdep,r,bd,sd,tom,tc,hh */ 896 { 897 UINT8 rkey = OPL->rhythm^v; 898 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0]; 899 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0]; 900 OPL->rhythm = v&0x3f; 901 if(OPL->rhythm&0x20) 902 { 903 #if 0 904 usrintf_showmessage("OPL Rhythm mode select"); 905 #endif 906 /* BD key on/off */ 907 if(rkey&0x10) 908 { 909 if(v&0x10) 910 { 911 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; 912 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]); 913 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]); 914 } 915 else 916 { 917 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]); 918 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]); 919 } 920 } 921 /* SD key on/off */ 922 if(rkey&0x08) 923 { 924 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]); 925 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]); 926 }/* TAM key on/off */ 927 if(rkey&0x04) 928 { 929 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]); 930 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]); 931 } 932 /* TOP-CY key on/off */ 933 if(rkey&0x02) 934 { 935 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]); 936 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]); 937 } 938 /* HH key on/off */ 939 if(rkey&0x01) 940 { 941 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]); 942 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]); 943 } 944 } 945 } 946 return; 947 } 948 /* keyon,block,fnum */ 949 if( (r&0x0f) > 8) return; 950 CH = &OPL->P_CH[r&0x0f]; 951 if(!(r&0x10)) 952 { /* a0-a8 */ 953 block_fnum = (CH->block_fnum&0x1f00) | v; 954 } 955 else 956 { /* b0-b8 */ 957 int keyon = (v>>5)&1; 958 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); 959 if(CH->keyon != keyon) 960 { 961 if( (CH->keyon=keyon) ) 962 { 963 CH->op1_out[0] = CH->op1_out[1] = 0; 964 OPL_KEYON(&CH->SLOT[SLOT1]); 965 OPL_KEYON(&CH->SLOT[SLOT2]); 966 } 967 else 968 { 969 OPL_KEYOFF(&CH->SLOT[SLOT1]); 970 OPL_KEYOFF(&CH->SLOT[SLOT2]); 971 } 972 } 973 } 974 /* update */ 975 if(CH->block_fnum != block_fnum) 976 { 977 int blockRv = 7-(block_fnum>>10); 978 int fnum = block_fnum&0x3ff; 979 CH->block_fnum = block_fnum; 980 981 CH->ksl_base = KSL_TABLE[block_fnum>>6]; 982 CH->fc = OPL->FN_TABLE[fnum]>>blockRv; 983 CH->kcode = CH->block_fnum>>9; 984 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1; 985 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); 986 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); 987 } 988 return; 989 case 0xc0: 990 /* FB,C */ 991 if( (r&0x0f) > 8) return; 992 CH = &OPL->P_CH[r&0x0f]; 993 { 994 int feedback = (v>>1)&7; 995 CH->FB = feedback ? (8+1) - feedback : 0; 996 CH->CON = v&1; 997 set_algorithm(CH); 998 } 999 return; 1000 case 0xe0: /* wave type */ 1001 slot = slot_array[r&0x1f]; 1002 if(slot == -1) return; 1003 CH = &OPL->P_CH[slot/2]; 1004 if(OPL->wavesel) 1005 { 1006 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ 1007 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT]; 1008 } 1009 return; 1010 } 1011 } 1012 1013 /* lock/unlock for common table */ 1014 static int OPL_LockTable(void) 1015 { 1016 num_lock++; 1017 if(num_lock>1) return 0; 1018 /* first time */ 1019 cur_chip = NULL; 1020 /* allocate total level table (128kb space) */ 1021 if( !OPLOpenTable() ) 1022 { 1023 num_lock--; 1024 return -1; 1025 } 1026 return 0; 1027 } 1028 1029 static void OPL_UnLockTable(void) 1030 { 1031 if(num_lock) num_lock--; 1032 if(num_lock) return; 1033 /* last time */ 1034 cur_chip = NULL; 1035 OPLCloseTable(); 1036 } 1037 1038 #if (BUILD_YM3812 || BUILD_YM3526) 1039 /*******************************************************************************/ 1040 /* YM3812 local section */ 1041 /*******************************************************************************/ 1042 1043 /* ---------- update one of chip ----------- */ 1044 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) 1045 { 1046 int i; 1047 int data; 1048 OPLSAMPLE *buf = buffer; 1049 UINT32 amsCnt = OPL->amsCnt; 1050 UINT32 vibCnt = OPL->vibCnt; 1051 UINT8 rhythm = OPL->rhythm&0x20; 1052 OPL_CH *CH,*R_CH; 1053 1054 if( (void *)OPL != cur_chip ){ 1055 cur_chip = (void *)OPL; 1056 /* channel pointers */ 1057 S_CH = OPL->P_CH; 1058 E_CH = &S_CH[9]; 1059 /* rhythm slot */ 1060 SLOT7_1 = &S_CH[7].SLOT[SLOT1]; 1061 SLOT7_2 = &S_CH[7].SLOT[SLOT2]; 1062 SLOT8_1 = &S_CH[8].SLOT[SLOT1]; 1063 SLOT8_2 = &S_CH[8].SLOT[SLOT2]; 1064 /* LFO state */ 1065 amsIncr = OPL->amsIncr; 1066 vibIncr = OPL->vibIncr; 1067 ams_table = OPL->ams_table; 1068 vib_table = OPL->vib_table; 1069 } 1070 R_CH = rhythm ? &S_CH[6] : E_CH; 1071 for( i=0; i < length ; i++ ) 1072 { 1073 /* channel A channel B channel C */ 1074 /* LFO */ 1075 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; 1076 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; 1077 outd[0] = 0; 1078 /* FM part */ 1079 for(CH=S_CH ; CH < R_CH ; CH++) 1080 OPL_CALC_CH(CH); 1081 /* Rythn part */ 1082 if(rhythm) 1083 OPL_CALC_RH(S_CH); 1084 /* limit check */ 1085 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); 1086 /* store to sound buffer */ 1087 buf[i] = data >> OPL_OUTSB; 1088 } 1089 1090 OPL->amsCnt = amsCnt; 1091 OPL->vibCnt = vibCnt; 1092 #ifdef OPL_OUTPUT_LOG 1093 if(opl_dbg_fp) 1094 { 1095 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) 1096 if( opl_dbg_opl[opl_dbg_chip] == OPL) break; 1097 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256); 1098 } 1099 #endif 1100 } 1101 #endif /* (BUILD_YM3812 || BUILD_YM3526) */ 1102 1103 #if BUILD_Y8950 1104 1105 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) 1106 { 1107 int i; 1108 int data; 1109 OPLSAMPLE *buf = buffer; 1110 UINT32 amsCnt = OPL->amsCnt; 1111 UINT32 vibCnt = OPL->vibCnt; 1112 UINT8 rhythm = OPL->rhythm&0x20; 1113 OPL_CH *CH,*R_CH; 1114 YM_DELTAT *DELTAT = OPL->deltat; 1115 1116 /* setup DELTA-T unit */ 1117 YM_DELTAT_DECODE_PRESET(DELTAT); 1118 1119 if( (void *)OPL != cur_chip ){ 1120 cur_chip = (void *)OPL; 1121 /* channel pointers */ 1122 S_CH = OPL->P_CH; 1123 E_CH = &S_CH[9]; 1124 /* rhythm slot */ 1125 SLOT7_1 = &S_CH[7].SLOT[SLOT1]; 1126 SLOT7_2 = &S_CH[7].SLOT[SLOT2]; 1127 SLOT8_1 = &S_CH[8].SLOT[SLOT1]; 1128 SLOT8_2 = &S_CH[8].SLOT[SLOT2]; 1129 /* LFO state */ 1130 amsIncr = OPL->amsIncr; 1131 vibIncr = OPL->vibIncr; 1132 ams_table = OPL->ams_table; 1133 vib_table = OPL->vib_table; 1134 } 1135 R_CH = rhythm ? &S_CH[6] : E_CH; 1136 for( i=0; i < length ; i++ ) 1137 { 1138 /* channel A channel B channel C */ 1139 /* LFO */ 1140 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; 1141 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; 1142 outd[0] = 0; 1143 /* deltaT ADPCM */ 1144 if( DELTAT->portstate ) 1145 YM_DELTAT_ADPCM_CALC(DELTAT); 1146 /* FM part */ 1147 for(CH=S_CH ; CH < R_CH ; CH++) 1148 OPL_CALC_CH(CH); 1149 /* Rythn part */ 1150 if(rhythm) 1151 OPL_CALC_RH(S_CH); 1152 /* limit check */ 1153 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); 1154 /* store to sound buffer */ 1155 buf[i] = data >> OPL_OUTSB; 1156 } 1157 OPL->amsCnt = amsCnt; 1158 OPL->vibCnt = vibCnt; 1159 /* deltaT START flag */ 1160 if( !DELTAT->portstate ) 1161 OPL->status &= 0xfe; 1162 } 1163 #endif 1164 1165 /* ---------- reset one of chip ---------- */ 1166 void OPLResetChip(FM_OPL *OPL) 1167 { 1168 int c,s; 1169 int i; 1170 1171 /* reset chip */ 1172 OPL->mode = 0; /* normal mode */ 1173 OPL_STATUS_RESET(OPL,0x7f); 1174 /* reset with register write */ 1175 OPLWriteReg(OPL,0x01,0); /* wabesel disable */ 1176 OPLWriteReg(OPL,0x02,0); /* Timer1 */ 1177 OPLWriteReg(OPL,0x03,0); /* Timer2 */ 1178 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ 1179 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); 1180 /* reset operator parameter */ 1181 for( c = 0 ; c < OPL->max_ch ; c++ ) 1182 { 1183 OPL_CH *CH = &OPL->P_CH[c]; 1184 /* OPL->P_CH[c].PAN = OPN_CENTER; */ 1185 for(s = 0 ; s < 2 ; s++ ) 1186 { 1187 /* wave table */ 1188 CH->SLOT[s].wavetable = &SIN_TABLE[0]; 1189 /* CH->SLOT[s].evm = ENV_MOD_RR; */ 1190 CH->SLOT[s].evc = EG_OFF; 1191 CH->SLOT[s].eve = EG_OFF+1; 1192 CH->SLOT[s].evs = 0; 1193 } 1194 } 1195 #if BUILD_Y8950 1196 if(OPL->type&OPL_TYPE_ADPCM) 1197 { 1198 YM_DELTAT *DELTAT = OPL->deltat; 1199 1200 DELTAT->freqbase = OPL->freqbase; 1201 DELTAT->output_pointer = outd; 1202 DELTAT->portshift = 5; 1203 DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS; 1204 YM_DELTAT_ADPCM_Reset(DELTAT,0); 1205 } 1206 #endif 1207 } 1208 1209 /* ---------- Create one of vietual YM3812 ---------- */ 1210 /* 'rate' is sampling rate and 'bufsiz' is the size of the */ 1211 FM_OPL *OPLCreate(int type, int clock, int rate) 1212 { 1213 char *ptr; 1214 FM_OPL *OPL; 1215 int state_size; 1216 int max_ch = 9; /* normaly 9 channels */ 1217 1218 if( OPL_LockTable() ==-1) return NULL; 1219 /* allocate OPL state space */ 1220 state_size = sizeof(FM_OPL); 1221 state_size += sizeof(OPL_CH)*max_ch; 1222 #if BUILD_Y8950 1223 if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT); 1224 #endif 1225 /* allocate memory block */ 1226 ptr = malloc(state_size); 1227 if(ptr==NULL) return NULL; 1228 /* clear */ 1229 memset(ptr,0,state_size); 1230 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL); 1231 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch; 1232 #if BUILD_Y8950 1233 if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT); 1234 #endif 1235 /* set channel state pointer */ 1236 OPL->type = type; 1237 OPL->clock = clock; 1238 OPL->rate = rate; 1239 OPL->max_ch = max_ch; 1240 /* init grobal tables */ 1241 OPL_initialize(OPL); 1242 /* reset chip */ 1243 OPLResetChip(OPL); 1244 #ifdef OPL_OUTPUT_LOG 1245 if(!opl_dbg_fp) 1246 { 1247 opl_dbg_fp = fopen("opllog.opl","wb"); 1248 opl_dbg_maxchip = 0; 1249 } 1250 if(opl_dbg_fp) 1251 { 1252 opl_dbg_opl[opl_dbg_maxchip] = OPL; 1253 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip, 1254 type, 1255 clock&0xff, 1256 (clock/0x100)&0xff, 1257 (clock/0x10000)&0xff, 1258 (clock/0x1000000)&0xff); 1259 opl_dbg_maxchip++; 1260 } 1261 #endif 1262 return OPL; 1263 } 1264 1265 /* ---------- Destroy one of vietual YM3812 ---------- */ 1266 void OPLDestroy(FM_OPL *OPL) 1267 { 1268 #ifdef OPL_OUTPUT_LOG 1269 if(opl_dbg_fp) 1270 { 1271 fclose(opl_dbg_fp); 1272 opl_dbg_fp = NULL; 1273 } 1274 #endif 1275 OPL_UnLockTable(); 1276 free(OPL); 1277 } 1278 1279 /* ---------- Option handlers ---------- */ 1280 1281 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset) 1282 { 1283 OPL->TimerHandler = TimerHandler; 1284 OPL->TimerParam = channelOffset; 1285 } 1286 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param) 1287 { 1288 OPL->IRQHandler = IRQHandler; 1289 OPL->IRQParam = param; 1290 } 1291 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param) 1292 { 1293 OPL->UpdateHandler = UpdateHandler; 1294 OPL->UpdateParam = param; 1295 } 1296 #if BUILD_Y8950 1297 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param) 1298 { 1299 OPL->porthandler_w = PortHandler_w; 1300 OPL->porthandler_r = PortHandler_r; 1301 OPL->port_param = param; 1302 } 1303 1304 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param) 1305 { 1306 OPL->keyboardhandler_w = KeyboardHandler_w; 1307 OPL->keyboardhandler_r = KeyboardHandler_r; 1308 OPL->keyboard_param = param; 1309 } 1310 #endif 1311 /* ---------- YM3812 I/O interface ---------- */ 1312 int OPLWrite(FM_OPL *OPL,int a,int v) 1313 { 1314 if( !(a&1) ) 1315 { /* address port */ 1316 OPL->address = v & 0xff; 1317 } 1318 else 1319 { /* data port */ 1320 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); 1321 #ifdef OPL_OUTPUT_LOG 1322 if(opl_dbg_fp) 1323 { 1324 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) 1325 if( opl_dbg_opl[opl_dbg_chip] == OPL) break; 1326 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v); 1327 } 1328 #endif 1329 OPLWriteReg(OPL,OPL->address,v); 1330 } 1331 return OPL->status>>7; 1332 } 1333 1334 unsigned char OPLRead(FM_OPL *OPL,int a) 1335 { 1336 if( !(a&1) ) 1337 { /* status port */ 1338 return OPL->status & (OPL->statusmask|0x80); 1339 } 1340 /* data port */ 1341 switch(OPL->address) 1342 { 1343 case 0x05: /* KeyBoard IN */ 1344 if(OPL->type&OPL_TYPE_KEYBOARD) 1345 { 1346 if(OPL->keyboardhandler_r) 1347 return OPL->keyboardhandler_r(OPL->keyboard_param); 1348 else { 1349 LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n")); 1350 } 1351 } 1352 return 0; 1353 #if 0 1354 case 0x0f: /* ADPCM-DATA */ 1355 return 0; 1356 #endif 1357 case 0x19: /* I/O DATA */ 1358 if(OPL->type&OPL_TYPE_IO) 1359 { 1360 if(OPL->porthandler_r) 1361 return OPL->porthandler_r(OPL->port_param); 1362 else { 1363 LOG(LOG_WAR,("OPL:read unmapped I/O port\n")); 1364 } 1365 } 1366 return 0; 1367 case 0x1a: /* PCM-DATA */ 1368 return 0; 1369 } 1370 return 0; 1371 } 1372 1373 int OPLTimerOver(FM_OPL *OPL,int c) 1374 { 1375 if( c ) 1376 { /* Timer B */ 1377 OPL_STATUS_SET(OPL,0x20); 1378 } 1379 else 1380 { /* Timer A */ 1381 OPL_STATUS_SET(OPL,0x40); 1382 /* CSM mode key,TL control */ 1383 if( OPL->mode & 0x80 ) 1384 { /* CSM mode total level latch and auto key on */ 1385 int ch; 1386 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); 1387 for(ch=0;ch<9;ch++) 1388 CSMKeyControll( &OPL->P_CH[ch] ); 1389 } 1390 } 1391 /* reload timer */ 1392 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase); 1393 return OPL->status>>7; 1394 } 1395