xref: /openbmc/qemu/hw/audio/fmopl.c (revision a719a27c)
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
10 
11 /*
12 	preliminary :
13 	Problem :
14 	note:
15 */
16 
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18  *
19  * This library is free software; you can redistribute it and/or
20  * modify it under the terms of the GNU Lesser General Public
21  * License as published by the Free Software Foundation; either
22  * version 2.1 of the License, or (at your option) any later version.
23  *
24  * This library is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public
30  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
31  */
32 
33 #define INLINE		static inline
34 #define HAS_YM3812	1
35 
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <stdarg.h>
40 #include <math.h>
41 //#include "driver.h"		/* use M.A.M.E. */
42 #include "fmopl.h"
43 
44 #ifndef PI
45 #define PI 3.14159265358979323846
46 #endif
47 
48 #ifndef ARRAY_SIZE
49 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
50 #endif
51 
52 /* -------------------- for debug --------------------- */
53 /* #define OPL_OUTPUT_LOG */
54 #ifdef OPL_OUTPUT_LOG
55 static FILE *opl_dbg_fp = NULL;
56 static FM_OPL *opl_dbg_opl[16];
57 static int opl_dbg_maxchip,opl_dbg_chip;
58 #endif
59 
60 /* -------------------- preliminary define section --------------------- */
61 /* attack/decay rate time rate */
62 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
63 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
64 
65 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
66 
67 #define FREQ_BITS 24			/* frequency turn          */
68 
69 /* counter bits = 20 , octerve 7 */
70 #define FREQ_RATE   (1<<(FREQ_BITS-20))
71 #define TL_BITS    (FREQ_BITS+2)
72 
73 /* final output shift , limit minimum and maximum */
74 #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
75 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
76 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
77 
78 /* -------------------- quality selection --------------------- */
79 
80 /* sinwave entries */
81 /* used static memory = SIN_ENT * 4 (byte) */
82 #define SIN_ENT 2048
83 
84 /* output level entries (envelope,sinwave) */
85 /* envelope counter lower bits */
86 #define ENV_BITS 16
87 /* envelope output entries */
88 #define EG_ENT   4096
89 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
90 /* used static  memory = EG_ENT*4 (byte)                     */
91 
92 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
93 #define EG_DED   EG_OFF
94 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
95 #define EG_AED   EG_DST
96 #define EG_AST   0                       /* ATTACK START */
97 
98 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
99 
100 /* LFO table entries */
101 #define VIB_ENT 512
102 #define VIB_SHIFT (32-9)
103 #define AMS_ENT 512
104 #define AMS_SHIFT (32-9)
105 
106 #define VIB_RATE 256
107 
108 /* -------------------- local defines , macros --------------------- */
109 
110 /* register number to channel number , slot offset */
111 #define SLOT1 0
112 #define SLOT2 1
113 
114 /* envelope phase */
115 #define ENV_MOD_RR  0x00
116 #define ENV_MOD_DR  0x01
117 #define ENV_MOD_AR  0x02
118 
119 /* -------------------- tables --------------------- */
120 static const int slot_array[32]=
121 {
122 	 0, 2, 4, 1, 3, 5,-1,-1,
123 	 6, 8,10, 7, 9,11,-1,-1,
124 	12,14,16,13,15,17,-1,-1,
125 	-1,-1,-1,-1,-1,-1,-1,-1
126 };
127 
128 /* key scale level */
129 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
130 #define DV (EG_STEP/2)
131 static const UINT32 KSL_TABLE[8*16]=
132 {
133 	/* OCT 0 */
134 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
136 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
138 	/* OCT 1 */
139 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
140 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
141 	 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
142 	 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
143 	/* OCT 2 */
144 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
145 	 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
146 	 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
147 	 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
148 	/* OCT 3 */
149 	 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
150 	 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
151 	 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
152 	 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
153 	/* OCT 4 */
154 	 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
155 	 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
156 	 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
157 	10.875/DV,11.250/DV,11.625/DV,12.000/DV,
158 	/* OCT 5 */
159 	 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
160 	 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
161 	12.000/DV,12.750/DV,13.125/DV,13.500/DV,
162 	13.875/DV,14.250/DV,14.625/DV,15.000/DV,
163 	/* OCT 6 */
164 	 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
165 	12.000/DV,13.125/DV,13.875/DV,14.625/DV,
166 	15.000/DV,15.750/DV,16.125/DV,16.500/DV,
167 	16.875/DV,17.250/DV,17.625/DV,18.000/DV,
168 	/* OCT 7 */
169 	 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
170 	15.000/DV,16.125/DV,16.875/DV,17.625/DV,
171 	18.000/DV,18.750/DV,19.125/DV,19.500/DV,
172 	19.875/DV,20.250/DV,20.625/DV,21.000/DV
173 };
174 #undef DV
175 
176 /* sustain lebel table (3db per step) */
177 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
178 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
179 static const INT32 SL_TABLE[16]={
180  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
181  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
182 };
183 #undef SC
184 
185 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
186 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
187 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
188 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
189 static INT32 *TL_TABLE;
190 
191 /* pointers to TL_TABLE with sinwave output offset */
192 static INT32 **SIN_TABLE;
193 
194 /* LFO table */
195 static INT32 *AMS_TABLE;
196 static INT32 *VIB_TABLE;
197 
198 /* envelope output curve table */
199 /* attack + decay + OFF */
200 static INT32 ENV_CURVE[2*EG_ENT+1];
201 
202 /* multiple table */
203 #define ML 2
204 static const UINT32 MUL_TABLE[16]= {
205 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
206    0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
207    8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
208 };
209 #undef ML
210 
211 /* dummy attack / decay rate ( when rate == 0 ) */
212 static INT32 RATE_0[16]=
213 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
214 
215 /* -------------------- static state --------------------- */
216 
217 /* lock level of common table */
218 static int num_lock = 0;
219 
220 /* work table */
221 static void *cur_chip = NULL;	/* current chip point */
222 /* currenct chip state */
223 /* static OPLSAMPLE  *bufL,*bufR; */
224 static OPL_CH *S_CH;
225 static OPL_CH *E_CH;
226 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
227 
228 static INT32 outd[1];
229 static INT32 ams;
230 static INT32 vib;
231 static INT32 *ams_table;
232 static INT32 *vib_table;
233 static INT32 amsIncr;
234 static INT32 vibIncr;
235 static INT32 feedback2;		/* connect for SLOT 2 */
236 
237 /* log output level */
238 #define LOG_ERR  3      /* ERROR       */
239 #define LOG_WAR  2      /* WARNING     */
240 #define LOG_INF  1      /* INFORMATION */
241 
242 //#define LOG_LEVEL LOG_INF
243 #define LOG_LEVEL	LOG_ERR
244 
245 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
246 #define LOG(n,x)
247 
248 /* --------------------- subroutines  --------------------- */
249 
250 INLINE int Limit( int val, int max, int min ) {
251 	if ( val > max )
252 		val = max;
253 	else if ( val < min )
254 		val = min;
255 
256 	return val;
257 }
258 
259 /* status set and IRQ handling */
260 INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
261 {
262 	/* set status flag */
263 	OPL->status |= flag;
264 	if(!(OPL->status & 0x80))
265 	{
266 		if(OPL->status & OPL->statusmask)
267 		{	/* IRQ on */
268 			OPL->status |= 0x80;
269 			/* callback user interrupt handler (IRQ is OFF to ON) */
270 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
271 		}
272 	}
273 }
274 
275 /* status reset and IRQ handling */
276 INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
277 {
278 	/* reset status flag */
279 	OPL->status &=~flag;
280 	if((OPL->status & 0x80))
281 	{
282 		if (!(OPL->status & OPL->statusmask) )
283 		{
284 			OPL->status &= 0x7f;
285 			/* callback user interrupt handler (IRQ is ON to OFF) */
286 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
287 		}
288 	}
289 }
290 
291 /* IRQ mask set */
292 INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
293 {
294 	OPL->statusmask = flag;
295 	/* IRQ handling check */
296 	OPL_STATUS_SET(OPL,0);
297 	OPL_STATUS_RESET(OPL,0);
298 }
299 
300 /* ----- key on  ----- */
301 INLINE void OPL_KEYON(OPL_SLOT *SLOT)
302 {
303 	/* sin wave restart */
304 	SLOT->Cnt = 0;
305 	/* set attack */
306 	SLOT->evm = ENV_MOD_AR;
307 	SLOT->evs = SLOT->evsa;
308 	SLOT->evc = EG_AST;
309 	SLOT->eve = EG_AED;
310 }
311 /* ----- key off ----- */
312 INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
313 {
314 	if( SLOT->evm > ENV_MOD_RR)
315 	{
316 		/* set envelope counter from envleope output */
317 		SLOT->evm = ENV_MOD_RR;
318 		if( !(SLOT->evc&EG_DST) )
319 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
320 			SLOT->evc = EG_DST;
321 		SLOT->eve = EG_DED;
322 		SLOT->evs = SLOT->evsr;
323 	}
324 }
325 
326 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
327 /* return : envelope output */
328 INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
329 {
330 	/* calcrate envelope generator */
331 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
332 	{
333 		switch( SLOT->evm ){
334 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
335 			/* next DR */
336 			SLOT->evm = ENV_MOD_DR;
337 			SLOT->evc = EG_DST;
338 			SLOT->eve = SLOT->SL;
339 			SLOT->evs = SLOT->evsd;
340 			break;
341 		case ENV_MOD_DR: /* DECAY -> SL or RR */
342 			SLOT->evc = SLOT->SL;
343 			SLOT->eve = EG_DED;
344 			if(SLOT->eg_typ)
345 			{
346 				SLOT->evs = 0;
347 			}
348 			else
349 			{
350 				SLOT->evm = ENV_MOD_RR;
351 				SLOT->evs = SLOT->evsr;
352 			}
353 			break;
354 		case ENV_MOD_RR: /* RR -> OFF */
355 			SLOT->evc = EG_OFF;
356 			SLOT->eve = EG_OFF+1;
357 			SLOT->evs = 0;
358 			break;
359 		}
360 	}
361 	/* calcrate envelope */
362 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
363 }
364 
365 /* set algorithm connection */
366 static void set_algorithm( OPL_CH *CH)
367 {
368 	INT32 *carrier = &outd[0];
369 	CH->connect1 = CH->CON ? carrier : &feedback2;
370 	CH->connect2 = carrier;
371 }
372 
373 /* ---------- frequency counter for operater update ---------- */
374 INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
375 {
376 	int ksr;
377 
378 	/* frequency step counter */
379 	SLOT->Incr = CH->fc * SLOT->mul;
380 	ksr = CH->kcode >> SLOT->KSR;
381 
382 	if( SLOT->ksr != ksr )
383 	{
384 		SLOT->ksr = ksr;
385 		/* attack , decay rate recalcration */
386 		SLOT->evsa = SLOT->AR[ksr];
387 		SLOT->evsd = SLOT->DR[ksr];
388 		SLOT->evsr = SLOT->RR[ksr];
389 	}
390 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
391 }
392 
393 /* set multi,am,vib,EG-TYP,KSR,mul */
394 INLINE void set_mul(FM_OPL *OPL,int slot,int v)
395 {
396 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
397 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
398 
399 	SLOT->mul    = MUL_TABLE[v&0x0f];
400 	SLOT->KSR    = (v&0x10) ? 0 : 2;
401 	SLOT->eg_typ = (v&0x20)>>5;
402 	SLOT->vib    = (v&0x40);
403 	SLOT->ams    = (v&0x80);
404 	CALC_FCSLOT(CH,SLOT);
405 }
406 
407 /* set ksl & tl */
408 INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
409 {
410 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
411 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
412 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
413 
414 	SLOT->ksl = ksl ? 3-ksl : 31;
415 	SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
416 
417 	if( !(OPL->mode&0x80) )
418 	{	/* not CSM latch total level */
419 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
420 	}
421 }
422 
423 /* set attack rate & decay rate  */
424 INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
425 {
426 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
427 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
428 	int ar = v>>4;
429 	int dr = v&0x0f;
430 
431 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
432 	SLOT->evsa = SLOT->AR[SLOT->ksr];
433 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
434 
435 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
436 	SLOT->evsd = SLOT->DR[SLOT->ksr];
437 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
438 }
439 
440 /* set sustain level & release rate */
441 INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
442 {
443 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
444 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
445 	int sl = v>>4;
446 	int rr = v & 0x0f;
447 
448 	SLOT->SL = SL_TABLE[sl];
449 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
450 	SLOT->RR = &OPL->DR_TABLE[rr<<2];
451 	SLOT->evsr = SLOT->RR[SLOT->ksr];
452 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
453 }
454 
455 /* operator output calcrator */
456 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
457 /* ---------- calcrate one of channel ---------- */
458 INLINE void OPL_CALC_CH( OPL_CH *CH )
459 {
460 	UINT32 env_out;
461 	OPL_SLOT *SLOT;
462 
463 	feedback2 = 0;
464 	/* SLOT 1 */
465 	SLOT = &CH->SLOT[SLOT1];
466 	env_out=OPL_CALC_SLOT(SLOT);
467 	if( env_out < EG_ENT-1 )
468 	{
469 		/* PG */
470 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
471 		else          SLOT->Cnt += SLOT->Incr;
472 		/* connectoion */
473 		if(CH->FB)
474 		{
475 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
476 			CH->op1_out[1] = CH->op1_out[0];
477 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
478 		}
479 		else
480 		{
481 			*CH->connect1 += OP_OUT(SLOT,env_out,0);
482 		}
483 	}else
484 	{
485 		CH->op1_out[1] = CH->op1_out[0];
486 		CH->op1_out[0] = 0;
487 	}
488 	/* SLOT 2 */
489 	SLOT = &CH->SLOT[SLOT2];
490 	env_out=OPL_CALC_SLOT(SLOT);
491 	if( env_out < EG_ENT-1 )
492 	{
493 		/* PG */
494 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
495 		else          SLOT->Cnt += SLOT->Incr;
496 		/* connectoion */
497 		outd[0] += OP_OUT(SLOT,env_out, feedback2);
498 	}
499 }
500 
501 /* ---------- calcrate rhythm block ---------- */
502 #define WHITE_NOISE_db 6.0
503 INLINE void OPL_CALC_RH( OPL_CH *CH )
504 {
505 	UINT32 env_tam,env_sd,env_top,env_hh;
506 	int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
507 	INT32 tone8;
508 
509 	OPL_SLOT *SLOT;
510 	int env_out;
511 
512 	/* BD : same as FM serial mode and output level is large */
513 	feedback2 = 0;
514 	/* SLOT 1 */
515 	SLOT = &CH[6].SLOT[SLOT1];
516 	env_out=OPL_CALC_SLOT(SLOT);
517 	if( env_out < EG_ENT-1 )
518 	{
519 		/* PG */
520 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
521 		else          SLOT->Cnt += SLOT->Incr;
522 		/* connectoion */
523 		if(CH[6].FB)
524 		{
525 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
526 			CH[6].op1_out[1] = CH[6].op1_out[0];
527 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
528 		}
529 		else
530 		{
531 			feedback2 = OP_OUT(SLOT,env_out,0);
532 		}
533 	}else
534 	{
535 		feedback2 = 0;
536 		CH[6].op1_out[1] = CH[6].op1_out[0];
537 		CH[6].op1_out[0] = 0;
538 	}
539 	/* SLOT 2 */
540 	SLOT = &CH[6].SLOT[SLOT2];
541 	env_out=OPL_CALC_SLOT(SLOT);
542 	if( env_out < EG_ENT-1 )
543 	{
544 		/* PG */
545 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
546 		else          SLOT->Cnt += SLOT->Incr;
547 		/* connectoion */
548 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
549 	}
550 
551 	// SD  (17) = mul14[fnum7] + white noise
552 	// TAM (15) = mul15[fnum8]
553 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
554 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
555 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
556 	env_tam=OPL_CALC_SLOT(SLOT8_1);
557 	env_top=OPL_CALC_SLOT(SLOT8_2);
558 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
559 
560 	/* PG */
561 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
562 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
563 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
564 	else             SLOT7_2->Cnt += (CH[7].fc*8);
565 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
566 	else             SLOT8_1->Cnt += SLOT8_1->Incr;
567 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
568 	else             SLOT8_2->Cnt += (CH[8].fc*48);
569 
570 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
571 
572 	/* SD */
573 	if( env_sd < EG_ENT-1 )
574 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
575 	/* TAM */
576 	if( env_tam < EG_ENT-1 )
577 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
578 	/* TOP-CY */
579 	if( env_top < EG_ENT-1 )
580 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
581 	/* HH */
582 	if( env_hh  < EG_ENT-1 )
583 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
584 }
585 
586 /* ----------- initialize time tabls ----------- */
587 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
588 {
589 	int i;
590 	double rate;
591 
592 	/* make attack rate & decay rate tables */
593 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
594 	for (i = 4;i <= 60;i++){
595 		rate  = OPL->freqbase;						/* frequency rate */
596 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
597 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */
598 		rate *= (double)(EG_ENT<<ENV_BITS);
599 		OPL->AR_TABLE[i] = rate / ARRATE;
600 		OPL->DR_TABLE[i] = rate / DRRATE;
601 	}
602 	for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
603 	{
604 		OPL->AR_TABLE[i] = EG_AED-1;
605 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
606 	}
607 #if 0
608 	for (i = 0;i < 64 ;i++){	/* make for overflow area */
609 		LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
610 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
611 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
612 	}
613 #endif
614 }
615 
616 /* ---------- generic table initialize ---------- */
617 static int OPLOpenTable( void )
618 {
619 	int s,t;
620 	double rate;
621 	int i,j;
622 	double pom;
623 
624 	/* allocate dynamic tables */
625 	if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
626 		return 0;
627 	if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
628 	{
629 		free(TL_TABLE);
630 		return 0;
631 	}
632 	if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
633 	{
634 		free(TL_TABLE);
635 		free(SIN_TABLE);
636 		return 0;
637 	}
638 	if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
639 	{
640 		free(TL_TABLE);
641 		free(SIN_TABLE);
642 		free(AMS_TABLE);
643 		return 0;
644 	}
645 	/* make total level table */
646 	for (t = 0;t < EG_ENT-1 ;t++){
647 		rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);	/* dB -> voltage */
648 		TL_TABLE[       t] =  (int)rate;
649 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
650 /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
651 	}
652 	/* fill volume off area */
653 	for ( t = EG_ENT-1; t < TL_MAX ;t++){
654 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
655 	}
656 
657 	/* make sinwave table (total level offet) */
658 	/* degree 0 = degree 180                   = off */
659 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
660 	for (s = 1;s <= SIN_ENT/4;s++){
661 		pom = sin(2*PI*s/SIN_ENT); /* sin     */
662 		pom = 20*log10(1/pom);	   /* decibel */
663 		j = pom / EG_STEP;         /* TL_TABLE steps */
664 
665         /* degree 0   -  90    , degree 180 -  90 : plus section */
666 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
667         /* degree 180 - 270    , degree 360 - 270 : minus section */
668 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
669 /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
670 	}
671 	for (s = 0;s < SIN_ENT;s++)
672 	{
673 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
674 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
675 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
676 	}
677 
678 	/* envelope counter -> envelope output table */
679 	for (i=0; i<EG_ENT; i++)
680 	{
681 		/* ATTACK curve */
682 		pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
683 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
684 		ENV_CURVE[i] = (int)pom;
685 		/* DECAY ,RELEASE curve */
686 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
687 	}
688 	/* off */
689 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
690 	/* make LFO ams table */
691 	for (i=0; i<AMS_ENT; i++)
692 	{
693 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
694 		AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
695 		AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
696 	}
697 	/* make LFO vibrate table */
698 	for (i=0; i<VIB_ENT; i++)
699 	{
700 		/* 100cent = 1seminote = 6% ?? */
701 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
702 		VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
703 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
704 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
705 	}
706 	return 1;
707 }
708 
709 
710 static void OPLCloseTable( void )
711 {
712 	free(TL_TABLE);
713 	free(SIN_TABLE);
714 	free(AMS_TABLE);
715 	free(VIB_TABLE);
716 }
717 
718 /* CSM Key Control */
719 INLINE void CSMKeyControll(OPL_CH *CH)
720 {
721 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
722 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
723 	/* all key off */
724 	OPL_KEYOFF(slot1);
725 	OPL_KEYOFF(slot2);
726 	/* total level latch */
727 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
728 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
729 	/* key on */
730 	CH->op1_out[0] = CH->op1_out[1] = 0;
731 	OPL_KEYON(slot1);
732 	OPL_KEYON(slot2);
733 }
734 
735 /* ---------- opl initialize ---------- */
736 static void OPL_initialize(FM_OPL *OPL)
737 {
738 	int fn;
739 
740 	/* frequency base */
741 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
742 	/* Timer base time */
743 	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
744 	/* make time tables */
745 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
746 	/* make fnumber -> increment counter table */
747 	for( fn=0 ; fn < 1024 ; fn++ )
748 	{
749 		OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
750 	}
751 	/* LFO freq.table */
752 	OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
753 	OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
754 }
755 
756 /* ---------- write a OPL registers ---------- */
757 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
758 {
759 	OPL_CH *CH;
760 	int slot;
761 	int block_fnum;
762 
763 	switch(r&0xe0)
764 	{
765 	case 0x00: /* 00-1f:control */
766 		switch(r&0x1f)
767 		{
768 		case 0x01:
769 			/* wave selector enable */
770 			if(OPL->type&OPL_TYPE_WAVESEL)
771 			{
772 				OPL->wavesel = v&0x20;
773 				if(!OPL->wavesel)
774 				{
775 					/* preset compatible mode */
776 					int c;
777 					for(c=0;c<OPL->max_ch;c++)
778 					{
779 						OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
780 						OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
781 					}
782 				}
783 			}
784 			return;
785 		case 0x02:	/* Timer 1 */
786 			OPL->T[0] = (256-v)*4;
787 			break;
788 		case 0x03:	/* Timer 2 */
789 			OPL->T[1] = (256-v)*16;
790 			return;
791 		case 0x04:	/* IRQ clear / mask and Timer enable */
792 			if(v&0x80)
793 			{	/* IRQ flag clear */
794 				OPL_STATUS_RESET(OPL,0x7f);
795 			}
796 			else
797 			{	/* set IRQ mask ,timer enable*/
798 				UINT8 st1 = v&1;
799 				UINT8 st2 = (v>>1)&1;
800 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
801 				OPL_STATUS_RESET(OPL,v&0x78);
802 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
803 				/* timer 2 */
804 				if(OPL->st[1] != st2)
805 				{
806 					double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
807 					OPL->st[1] = st2;
808 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
809 				}
810 				/* timer 1 */
811 				if(OPL->st[0] != st1)
812 				{
813 					double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
814 					OPL->st[0] = st1;
815 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
816 				}
817 			}
818 			return;
819 #if BUILD_Y8950
820 		case 0x06:		/* Key Board OUT */
821 			if(OPL->type&OPL_TYPE_KEYBOARD)
822 			{
823 				if(OPL->keyboardhandler_w)
824 					OPL->keyboardhandler_w(OPL->keyboard_param,v);
825 				else
826 					LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
827 			}
828 			return;
829 		case 0x07:	/* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
830 			if(OPL->type&OPL_TYPE_ADPCM)
831 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
832 			return;
833 		case 0x08:	/* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
834 			OPL->mode = v;
835 			v&=0x1f;	/* for DELTA-T unit */
836 		case 0x09:		/* START ADD */
837 		case 0x0a:
838 		case 0x0b:		/* STOP ADD  */
839 		case 0x0c:
840 		case 0x0d:		/* PRESCALE   */
841 		case 0x0e:
842 		case 0x0f:		/* ADPCM data */
843 		case 0x10: 		/* DELTA-N    */
844 		case 0x11: 		/* DELTA-N    */
845 		case 0x12: 		/* EG-CTRL    */
846 			if(OPL->type&OPL_TYPE_ADPCM)
847 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
848 			return;
849 #if 0
850 		case 0x15:		/* DAC data    */
851 		case 0x16:
852 		case 0x17:		/* SHIFT    */
853 			return;
854 		case 0x18:		/* I/O CTRL (Direction) */
855 			if(OPL->type&OPL_TYPE_IO)
856 				OPL->portDirection = v&0x0f;
857 			return;
858 		case 0x19:		/* I/O DATA */
859 			if(OPL->type&OPL_TYPE_IO)
860 			{
861 				OPL->portLatch = v;
862 				if(OPL->porthandler_w)
863 					OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
864 			}
865 			return;
866 		case 0x1a:		/* PCM data */
867 			return;
868 #endif
869 #endif
870 		}
871 		break;
872 	case 0x20:	/* am,vib,ksr,eg type,mul */
873 		slot = slot_array[r&0x1f];
874 		if(slot == -1) return;
875 		set_mul(OPL,slot,v);
876 		return;
877 	case 0x40:
878 		slot = slot_array[r&0x1f];
879 		if(slot == -1) return;
880 		set_ksl_tl(OPL,slot,v);
881 		return;
882 	case 0x60:
883 		slot = slot_array[r&0x1f];
884 		if(slot == -1) return;
885 		set_ar_dr(OPL,slot,v);
886 		return;
887 	case 0x80:
888 		slot = slot_array[r&0x1f];
889 		if(slot == -1) return;
890 		set_sl_rr(OPL,slot,v);
891 		return;
892 	case 0xa0:
893 		switch(r)
894 		{
895 		case 0xbd:
896 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
897 			{
898 			UINT8 rkey = OPL->rhythm^v;
899 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
900 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
901 			OPL->rhythm  = v&0x3f;
902 			if(OPL->rhythm&0x20)
903 			{
904 #if 0
905 				usrintf_showmessage("OPL Rhythm mode select");
906 #endif
907 				/* BD key on/off */
908 				if(rkey&0x10)
909 				{
910 					if(v&0x10)
911 					{
912 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
913 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
914 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
915 					}
916 					else
917 					{
918 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
919 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
920 					}
921 				}
922 				/* SD key on/off */
923 				if(rkey&0x08)
924 				{
925 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
926 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
927 				}/* TAM key on/off */
928 				if(rkey&0x04)
929 				{
930 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
931 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
932 				}
933 				/* TOP-CY key on/off */
934 				if(rkey&0x02)
935 				{
936 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
937 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
938 				}
939 				/* HH key on/off */
940 				if(rkey&0x01)
941 				{
942 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
943 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
944 				}
945 			}
946 			}
947 			return;
948 		}
949 		/* keyon,block,fnum */
950 		if( (r&0x0f) > 8) return;
951 		CH = &OPL->P_CH[r&0x0f];
952 		if(!(r&0x10))
953 		{	/* a0-a8 */
954 			block_fnum  = (CH->block_fnum&0x1f00) | v;
955 		}
956 		else
957 		{	/* b0-b8 */
958 			int keyon = (v>>5)&1;
959 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
960 			if(CH->keyon != keyon)
961 			{
962 				if( (CH->keyon=keyon) )
963 				{
964 					CH->op1_out[0] = CH->op1_out[1] = 0;
965 					OPL_KEYON(&CH->SLOT[SLOT1]);
966 					OPL_KEYON(&CH->SLOT[SLOT2]);
967 				}
968 				else
969 				{
970 					OPL_KEYOFF(&CH->SLOT[SLOT1]);
971 					OPL_KEYOFF(&CH->SLOT[SLOT2]);
972 				}
973 			}
974 		}
975 		/* update */
976 		if(CH->block_fnum != block_fnum)
977 		{
978 			int blockRv = 7-(block_fnum>>10);
979 			int fnum   = block_fnum&0x3ff;
980 			CH->block_fnum = block_fnum;
981 
982 			CH->ksl_base = KSL_TABLE[block_fnum>>6];
983 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
984 			CH->kcode = CH->block_fnum>>9;
985 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
986 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
987 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
988 		}
989 		return;
990 	case 0xc0:
991 		/* FB,C */
992 		if( (r&0x0f) > 8) return;
993 		CH = &OPL->P_CH[r&0x0f];
994 		{
995 		int feedback = (v>>1)&7;
996 		CH->FB   = feedback ? (8+1) - feedback : 0;
997 		CH->CON = v&1;
998 		set_algorithm(CH);
999 		}
1000 		return;
1001 	case 0xe0: /* wave type */
1002 		slot = slot_array[r&0x1f];
1003 		if(slot == -1) return;
1004 		CH = &OPL->P_CH[slot/2];
1005 		if(OPL->wavesel)
1006 		{
1007 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1008 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1009 		}
1010 		return;
1011 	}
1012 }
1013 
1014 /* lock/unlock for common table */
1015 static int OPL_LockTable(void)
1016 {
1017 	num_lock++;
1018 	if(num_lock>1) return 0;
1019 	/* first time */
1020 	cur_chip = NULL;
1021 	/* allocate total level table (128kb space) */
1022 	if( !OPLOpenTable() )
1023 	{
1024 		num_lock--;
1025 		return -1;
1026 	}
1027 	return 0;
1028 }
1029 
1030 static void OPL_UnLockTable(void)
1031 {
1032 	if(num_lock) num_lock--;
1033 	if(num_lock) return;
1034 	/* last time */
1035 	cur_chip = NULL;
1036 	OPLCloseTable();
1037 }
1038 
1039 #if (BUILD_YM3812 || BUILD_YM3526)
1040 /*******************************************************************************/
1041 /*		YM3812 local section                                                   */
1042 /*******************************************************************************/
1043 
1044 /* ---------- update one of chip ----------- */
1045 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1046 {
1047     int i;
1048 	int data;
1049 	OPLSAMPLE *buf = buffer;
1050 	UINT32 amsCnt  = OPL->amsCnt;
1051 	UINT32 vibCnt  = OPL->vibCnt;
1052 	UINT8 rhythm = OPL->rhythm&0x20;
1053 	OPL_CH *CH,*R_CH;
1054 
1055 	if( (void *)OPL != cur_chip ){
1056 		cur_chip = (void *)OPL;
1057 		/* channel pointers */
1058 		S_CH = OPL->P_CH;
1059 		E_CH = &S_CH[9];
1060 		/* rhythm slot */
1061 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1062 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1063 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1064 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1065 		/* LFO state */
1066 		amsIncr = OPL->amsIncr;
1067 		vibIncr = OPL->vibIncr;
1068 		ams_table = OPL->ams_table;
1069 		vib_table = OPL->vib_table;
1070 	}
1071 	R_CH = rhythm ? &S_CH[6] : E_CH;
1072     for( i=0; i < length ; i++ )
1073 	{
1074 		/*            channel A         channel B         channel C      */
1075 		/* LFO */
1076 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1077 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1078 		outd[0] = 0;
1079 		/* FM part */
1080 		for(CH=S_CH ; CH < R_CH ; CH++)
1081 			OPL_CALC_CH(CH);
1082 		/* Rythn part */
1083 		if(rhythm)
1084 			OPL_CALC_RH(S_CH);
1085 		/* limit check */
1086 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1087 		/* store to sound buffer */
1088 		buf[i] = data >> OPL_OUTSB;
1089 	}
1090 
1091 	OPL->amsCnt = amsCnt;
1092 	OPL->vibCnt = vibCnt;
1093 #ifdef OPL_OUTPUT_LOG
1094 	if(opl_dbg_fp)
1095 	{
1096 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1097 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1098 		fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1099 	}
1100 #endif
1101 }
1102 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1103 
1104 #if BUILD_Y8950
1105 
1106 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1107 {
1108     int i;
1109 	int data;
1110 	OPLSAMPLE *buf = buffer;
1111 	UINT32 amsCnt  = OPL->amsCnt;
1112 	UINT32 vibCnt  = OPL->vibCnt;
1113 	UINT8 rhythm = OPL->rhythm&0x20;
1114 	OPL_CH *CH,*R_CH;
1115 	YM_DELTAT *DELTAT = OPL->deltat;
1116 
1117 	/* setup DELTA-T unit */
1118 	YM_DELTAT_DECODE_PRESET(DELTAT);
1119 
1120 	if( (void *)OPL != cur_chip ){
1121 		cur_chip = (void *)OPL;
1122 		/* channel pointers */
1123 		S_CH = OPL->P_CH;
1124 		E_CH = &S_CH[9];
1125 		/* rhythm slot */
1126 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1127 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1128 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1129 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1130 		/* LFO state */
1131 		amsIncr = OPL->amsIncr;
1132 		vibIncr = OPL->vibIncr;
1133 		ams_table = OPL->ams_table;
1134 		vib_table = OPL->vib_table;
1135 	}
1136 	R_CH = rhythm ? &S_CH[6] : E_CH;
1137     for( i=0; i < length ; i++ )
1138 	{
1139 		/*            channel A         channel B         channel C      */
1140 		/* LFO */
1141 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1142 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1143 		outd[0] = 0;
1144 		/* deltaT ADPCM */
1145 		if( DELTAT->portstate )
1146 			YM_DELTAT_ADPCM_CALC(DELTAT);
1147 		/* FM part */
1148 		for(CH=S_CH ; CH < R_CH ; CH++)
1149 			OPL_CALC_CH(CH);
1150 		/* Rythn part */
1151 		if(rhythm)
1152 			OPL_CALC_RH(S_CH);
1153 		/* limit check */
1154 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1155 		/* store to sound buffer */
1156 		buf[i] = data >> OPL_OUTSB;
1157 	}
1158 	OPL->amsCnt = amsCnt;
1159 	OPL->vibCnt = vibCnt;
1160 	/* deltaT START flag */
1161 	if( !DELTAT->portstate )
1162 		OPL->status &= 0xfe;
1163 }
1164 #endif
1165 
1166 /* ---------- reset one of chip ---------- */
1167 void OPLResetChip(FM_OPL *OPL)
1168 {
1169 	int c,s;
1170 	int i;
1171 
1172 	/* reset chip */
1173 	OPL->mode   = 0;	/* normal mode */
1174 	OPL_STATUS_RESET(OPL,0x7f);
1175 	/* reset with register write */
1176 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1177 	OPLWriteReg(OPL,0x02,0); /* Timer1 */
1178 	OPLWriteReg(OPL,0x03,0); /* Timer2 */
1179 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1180 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1181 	/* reset OPerator paramater */
1182 	for( c = 0 ; c < OPL->max_ch ; c++ )
1183 	{
1184 		OPL_CH *CH = &OPL->P_CH[c];
1185 		/* OPL->P_CH[c].PAN = OPN_CENTER; */
1186 		for(s = 0 ; s < 2 ; s++ )
1187 		{
1188 			/* wave table */
1189 			CH->SLOT[s].wavetable = &SIN_TABLE[0];
1190 			/* CH->SLOT[s].evm = ENV_MOD_RR; */
1191 			CH->SLOT[s].evc = EG_OFF;
1192 			CH->SLOT[s].eve = EG_OFF+1;
1193 			CH->SLOT[s].evs = 0;
1194 		}
1195 	}
1196 #if BUILD_Y8950
1197 	if(OPL->type&OPL_TYPE_ADPCM)
1198 	{
1199 		YM_DELTAT *DELTAT = OPL->deltat;
1200 
1201 		DELTAT->freqbase = OPL->freqbase;
1202 		DELTAT->output_pointer = outd;
1203 		DELTAT->portshift = 5;
1204 		DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1205 		YM_DELTAT_ADPCM_Reset(DELTAT,0);
1206 	}
1207 #endif
1208 }
1209 
1210 /* ----------  Create one of vietual YM3812 ----------       */
1211 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1212 FM_OPL *OPLCreate(int type, int clock, int rate)
1213 {
1214 	char *ptr;
1215 	FM_OPL *OPL;
1216 	int state_size;
1217 	int max_ch = 9; /* normaly 9 channels */
1218 
1219 	if( OPL_LockTable() ==-1) return NULL;
1220 	/* allocate OPL state space */
1221 	state_size  = sizeof(FM_OPL);
1222 	state_size += sizeof(OPL_CH)*max_ch;
1223 #if BUILD_Y8950
1224 	if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1225 #endif
1226 	/* allocate memory block */
1227 	ptr = malloc(state_size);
1228 	if(ptr==NULL) return NULL;
1229 	/* clear */
1230 	memset(ptr,0,state_size);
1231 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1232 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1233 #if BUILD_Y8950
1234 	if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1235 #endif
1236 	/* set channel state pointer */
1237 	OPL->type  = type;
1238 	OPL->clock = clock;
1239 	OPL->rate  = rate;
1240 	OPL->max_ch = max_ch;
1241 	/* init grobal tables */
1242 	OPL_initialize(OPL);
1243 	/* reset chip */
1244 	OPLResetChip(OPL);
1245 #ifdef OPL_OUTPUT_LOG
1246 	if(!opl_dbg_fp)
1247 	{
1248 		opl_dbg_fp = fopen("opllog.opl","wb");
1249 		opl_dbg_maxchip = 0;
1250 	}
1251 	if(opl_dbg_fp)
1252 	{
1253 		opl_dbg_opl[opl_dbg_maxchip] = OPL;
1254 		fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1255 			type,
1256 			clock&0xff,
1257 			(clock/0x100)&0xff,
1258 			(clock/0x10000)&0xff,
1259 			(clock/0x1000000)&0xff);
1260 		opl_dbg_maxchip++;
1261 	}
1262 #endif
1263 	return OPL;
1264 }
1265 
1266 /* ----------  Destroy one of vietual YM3812 ----------       */
1267 void OPLDestroy(FM_OPL *OPL)
1268 {
1269 #ifdef OPL_OUTPUT_LOG
1270 	if(opl_dbg_fp)
1271 	{
1272 		fclose(opl_dbg_fp);
1273 		opl_dbg_fp = NULL;
1274 	}
1275 #endif
1276 	OPL_UnLockTable();
1277 	free(OPL);
1278 }
1279 
1280 /* ----------  Option handlers ----------       */
1281 
1282 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1283 {
1284 	OPL->TimerHandler   = TimerHandler;
1285 	OPL->TimerParam = channelOffset;
1286 }
1287 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1288 {
1289 	OPL->IRQHandler     = IRQHandler;
1290 	OPL->IRQParam = param;
1291 }
1292 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1293 {
1294 	OPL->UpdateHandler = UpdateHandler;
1295 	OPL->UpdateParam = param;
1296 }
1297 #if BUILD_Y8950
1298 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1299 {
1300 	OPL->porthandler_w = PortHandler_w;
1301 	OPL->porthandler_r = PortHandler_r;
1302 	OPL->port_param = param;
1303 }
1304 
1305 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1306 {
1307 	OPL->keyboardhandler_w = KeyboardHandler_w;
1308 	OPL->keyboardhandler_r = KeyboardHandler_r;
1309 	OPL->keyboard_param = param;
1310 }
1311 #endif
1312 /* ---------- YM3812 I/O interface ---------- */
1313 int OPLWrite(FM_OPL *OPL,int a,int v)
1314 {
1315 	if( !(a&1) )
1316 	{	/* address port */
1317 		OPL->address = v & 0xff;
1318 	}
1319 	else
1320 	{	/* data port */
1321 		if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1322 #ifdef OPL_OUTPUT_LOG
1323 	if(opl_dbg_fp)
1324 	{
1325 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1326 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1327 		fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1328 	}
1329 #endif
1330 		OPLWriteReg(OPL,OPL->address,v);
1331 	}
1332 	return OPL->status>>7;
1333 }
1334 
1335 unsigned char OPLRead(FM_OPL *OPL,int a)
1336 {
1337 	if( !(a&1) )
1338 	{	/* status port */
1339 		return OPL->status & (OPL->statusmask|0x80);
1340 	}
1341 	/* data port */
1342 	switch(OPL->address)
1343 	{
1344 	case 0x05: /* KeyBoard IN */
1345 		if(OPL->type&OPL_TYPE_KEYBOARD)
1346 		{
1347 			if(OPL->keyboardhandler_r)
1348 				return OPL->keyboardhandler_r(OPL->keyboard_param);
1349 			else {
1350 				LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1351 			}
1352 		}
1353 		return 0;
1354 #if 0
1355 	case 0x0f: /* ADPCM-DATA  */
1356 		return 0;
1357 #endif
1358 	case 0x19: /* I/O DATA    */
1359 		if(OPL->type&OPL_TYPE_IO)
1360 		{
1361 			if(OPL->porthandler_r)
1362 				return OPL->porthandler_r(OPL->port_param);
1363 			else {
1364 				LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1365 			}
1366 		}
1367 		return 0;
1368 	case 0x1a: /* PCM-DATA    */
1369 		return 0;
1370 	}
1371 	return 0;
1372 }
1373 
1374 int OPLTimerOver(FM_OPL *OPL,int c)
1375 {
1376 	if( c )
1377 	{	/* Timer B */
1378 		OPL_STATUS_SET(OPL,0x20);
1379 	}
1380 	else
1381 	{	/* Timer A */
1382 		OPL_STATUS_SET(OPL,0x40);
1383 		/* CSM mode key,TL control */
1384 		if( OPL->mode & 0x80 )
1385 		{	/* CSM mode total level latch and auto key on */
1386 			int ch;
1387 			if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1388 			for(ch=0;ch<9;ch++)
1389 				CSMKeyControll( &OPL->P_CH[ch] );
1390 		}
1391 	}
1392 	/* reload timer */
1393 	if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1394 	return OPL->status>>7;
1395 }
1396