1 /* 2 ** 3 ** File: fmopl.c -- software implementation of FM sound generator 4 ** 5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development 6 ** 7 ** Version 0.37a 8 ** 9 */ 10 11 /* 12 preliminary : 13 Problem : 14 note: 15 */ 16 17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL. 18 * 19 * This library is free software; you can redistribute it and/or 20 * modify it under the terms of the GNU Lesser General Public 21 * License as published by the Free Software Foundation; either 22 * version 2.1 of the License, or (at your option) any later version. 23 * 24 * This library is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 27 * Lesser General Public License for more details. 28 * 29 * You should have received a copy of the GNU Lesser General Public 30 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 31 */ 32 33 #include "qemu/osdep.h" 34 #include <math.h> 35 //#include "driver.h" /* use M.A.M.E. */ 36 #include "fmopl.h" 37 #include "qemu/osdep.h" 38 #ifndef PI 39 #define PI 3.14159265358979323846 40 #endif 41 42 /* -------------------- for debug --------------------- */ 43 /* #define OPL_OUTPUT_LOG */ 44 #ifdef OPL_OUTPUT_LOG 45 static FILE *opl_dbg_fp = NULL; 46 static FM_OPL *opl_dbg_opl[16]; 47 static int opl_dbg_maxchip,opl_dbg_chip; 48 #endif 49 50 /* -------------------- preliminary define section --------------------- */ 51 /* attack/decay rate time rate */ 52 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ 53 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ 54 55 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ 56 57 #define FREQ_BITS 24 /* frequency turn */ 58 59 /* counter bits = 20 , octerve 7 */ 60 #define FREQ_RATE (1<<(FREQ_BITS-20)) 61 #define TL_BITS (FREQ_BITS+2) 62 63 /* final output shift , limit minimum and maximum */ 64 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ 65 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) 66 #define OPL_MINOUT (-0x8000<<OPL_OUTSB) 67 68 /* -------------------- quality selection --------------------- */ 69 70 /* sinwave entries */ 71 /* used static memory = SIN_ENT * 4 (byte) */ 72 #define SIN_ENT 2048 73 74 /* output level entries (envelope,sinwave) */ 75 /* envelope counter lower bits */ 76 #define ENV_BITS 16 77 /* envelope output entries */ 78 #define EG_ENT 4096 79 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ 80 /* used static memory = EG_ENT*4 (byte) */ 81 82 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ 83 #define EG_DED EG_OFF 84 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ 85 #define EG_AED EG_DST 86 #define EG_AST 0 /* ATTACK START */ 87 88 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ 89 90 /* LFO table entries */ 91 #define VIB_ENT 512 92 #define VIB_SHIFT (32-9) 93 #define AMS_ENT 512 94 #define AMS_SHIFT (32-9) 95 96 #define VIB_RATE 256 97 98 /* -------------------- local defines , macros --------------------- */ 99 100 /* register number to channel number , slot offset */ 101 #define SLOT1 0 102 #define SLOT2 1 103 104 /* envelope phase */ 105 #define ENV_MOD_RR 0x00 106 #define ENV_MOD_DR 0x01 107 #define ENV_MOD_AR 0x02 108 109 /* -------------------- tables --------------------- */ 110 static const int slot_array[32]= 111 { 112 0, 2, 4, 1, 3, 5,-1,-1, 113 6, 8,10, 7, 9,11,-1,-1, 114 12,14,16,13,15,17,-1,-1, 115 -1,-1,-1,-1,-1,-1,-1,-1 116 }; 117 118 /* key scale level */ 119 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */ 120 #define DV (EG_STEP/2) 121 static const uint32_t KSL_TABLE[8*16]= 122 { 123 /* OCT 0 */ 124 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 125 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 126 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 127 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 128 /* OCT 1 */ 129 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 130 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 131 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, 132 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, 133 /* OCT 2 */ 134 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 135 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, 136 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, 137 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, 138 /* OCT 3 */ 139 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, 140 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, 141 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, 142 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, 143 /* OCT 4 */ 144 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, 145 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, 146 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, 147 10.875/DV,11.250/DV,11.625/DV,12.000/DV, 148 /* OCT 5 */ 149 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, 150 9.000/DV,10.125/DV,10.875/DV,11.625/DV, 151 12.000/DV,12.750/DV,13.125/DV,13.500/DV, 152 13.875/DV,14.250/DV,14.625/DV,15.000/DV, 153 /* OCT 6 */ 154 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, 155 12.000/DV,13.125/DV,13.875/DV,14.625/DV, 156 15.000/DV,15.750/DV,16.125/DV,16.500/DV, 157 16.875/DV,17.250/DV,17.625/DV,18.000/DV, 158 /* OCT 7 */ 159 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, 160 15.000/DV,16.125/DV,16.875/DV,17.625/DV, 161 18.000/DV,18.750/DV,19.125/DV,19.500/DV, 162 19.875/DV,20.250/DV,20.625/DV,21.000/DV 163 }; 164 #undef DV 165 166 /* sustain lebel table (3db per step) */ 167 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ 168 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST 169 static const int32_t SL_TABLE[16]={ 170 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), 171 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) 172 }; 173 #undef SC 174 175 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ 176 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ 177 /* TL_TABLE[ 0 to TL_MAX ] : plus section */ 178 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ 179 static int32_t *TL_TABLE; 180 181 /* pointers to TL_TABLE with sinwave output offset */ 182 static int32_t **SIN_TABLE; 183 184 /* LFO table */ 185 static int32_t *AMS_TABLE; 186 static int32_t *VIB_TABLE; 187 188 /* envelope output curve table */ 189 /* attack + decay + OFF */ 190 static int32_t ENV_CURVE[2*EG_ENT+1]; 191 192 /* multiple table */ 193 #define ML 2 194 static const uint32_t MUL_TABLE[16]= { 195 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ 196 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, 197 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML 198 }; 199 #undef ML 200 201 /* dummy attack / decay rate ( when rate == 0 ) */ 202 static int32_t RATE_0[16]= 203 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 204 205 /* -------------------- static state --------------------- */ 206 207 /* lock level of common table */ 208 static int num_lock = 0; 209 210 /* work table */ 211 static void *cur_chip = NULL; /* current chip point */ 212 /* currenct chip state */ 213 /* static OPLSAMPLE *bufL,*bufR; */ 214 static OPL_CH *S_CH; 215 static OPL_CH *E_CH; 216 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; 217 218 static int32_t outd[1]; 219 static int32_t ams; 220 static int32_t vib; 221 static int32_t *ams_table; 222 static int32_t *vib_table; 223 static int32_t amsIncr; 224 static int32_t vibIncr; 225 static int32_t feedback2; /* connect for SLOT 2 */ 226 227 /* log output level */ 228 #define LOG_ERR 3 /* ERROR */ 229 #define LOG_WAR 2 /* WARNING */ 230 #define LOG_INF 1 /* INFORMATION */ 231 232 //#define LOG_LEVEL LOG_INF 233 #define LOG_LEVEL LOG_ERR 234 235 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x 236 #define LOG(n,x) 237 238 /* --------------------- subroutines --------------------- */ 239 240 static inline int Limit( int val, int max, int min ) { 241 if ( val > max ) 242 val = max; 243 else if ( val < min ) 244 val = min; 245 246 return val; 247 } 248 249 /* status set and IRQ handling */ 250 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag) 251 { 252 /* set status flag */ 253 OPL->status |= flag; 254 if(!(OPL->status & 0x80)) 255 { 256 if(OPL->status & OPL->statusmask) 257 { /* IRQ on */ 258 OPL->status |= 0x80; 259 } 260 } 261 } 262 263 /* status reset and IRQ handling */ 264 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag) 265 { 266 /* reset status flag */ 267 OPL->status &=~flag; 268 if((OPL->status & 0x80)) 269 { 270 if (!(OPL->status & OPL->statusmask) ) 271 { 272 OPL->status &= 0x7f; 273 } 274 } 275 } 276 277 /* IRQ mask set */ 278 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) 279 { 280 OPL->statusmask = flag; 281 /* IRQ handling check */ 282 OPL_STATUS_SET(OPL,0); 283 OPL_STATUS_RESET(OPL,0); 284 } 285 286 /* ----- key on ----- */ 287 static inline void OPL_KEYON(OPL_SLOT *SLOT) 288 { 289 /* sin wave restart */ 290 SLOT->Cnt = 0; 291 /* set attack */ 292 SLOT->evm = ENV_MOD_AR; 293 SLOT->evs = SLOT->evsa; 294 SLOT->evc = EG_AST; 295 SLOT->eve = EG_AED; 296 } 297 /* ----- key off ----- */ 298 static inline void OPL_KEYOFF(OPL_SLOT *SLOT) 299 { 300 if( SLOT->evm > ENV_MOD_RR) 301 { 302 /* set envelope counter from envleope output */ 303 SLOT->evm = ENV_MOD_RR; 304 if( !(SLOT->evc&EG_DST) ) 305 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; 306 SLOT->evc = EG_DST; 307 SLOT->eve = EG_DED; 308 SLOT->evs = SLOT->evsr; 309 } 310 } 311 312 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ 313 /* return : envelope output */ 314 static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT ) 315 { 316 /* calcrate envelope generator */ 317 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve ) 318 { 319 switch( SLOT->evm ){ 320 case ENV_MOD_AR: /* ATTACK -> DECAY1 */ 321 /* next DR */ 322 SLOT->evm = ENV_MOD_DR; 323 SLOT->evc = EG_DST; 324 SLOT->eve = SLOT->SL; 325 SLOT->evs = SLOT->evsd; 326 break; 327 case ENV_MOD_DR: /* DECAY -> SL or RR */ 328 SLOT->evc = SLOT->SL; 329 SLOT->eve = EG_DED; 330 if(SLOT->eg_typ) 331 { 332 SLOT->evs = 0; 333 } 334 else 335 { 336 SLOT->evm = ENV_MOD_RR; 337 SLOT->evs = SLOT->evsr; 338 } 339 break; 340 case ENV_MOD_RR: /* RR -> OFF */ 341 SLOT->evc = EG_OFF; 342 SLOT->eve = EG_OFF+1; 343 SLOT->evs = 0; 344 break; 345 } 346 } 347 /* calcrate envelope */ 348 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0); 349 } 350 351 /* set algorithm connection */ 352 static void set_algorithm( OPL_CH *CH) 353 { 354 int32_t *carrier = &outd[0]; 355 CH->connect1 = CH->CON ? carrier : &feedback2; 356 CH->connect2 = carrier; 357 } 358 359 /* ---------- frequency counter for operater update ---------- */ 360 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) 361 { 362 int ksr; 363 364 /* frequency step counter */ 365 SLOT->Incr = CH->fc * SLOT->mul; 366 ksr = CH->kcode >> SLOT->KSR; 367 368 if( SLOT->ksr != ksr ) 369 { 370 SLOT->ksr = ksr; 371 /* attack , decay rate recalcration */ 372 SLOT->evsa = SLOT->AR[ksr]; 373 SLOT->evsd = SLOT->DR[ksr]; 374 SLOT->evsr = SLOT->RR[ksr]; 375 } 376 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); 377 } 378 379 /* set multi,am,vib,EG-TYP,KSR,mul */ 380 static inline void set_mul(FM_OPL *OPL,int slot,int v) 381 { 382 OPL_CH *CH = &OPL->P_CH[slot/2]; 383 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 384 385 SLOT->mul = MUL_TABLE[v&0x0f]; 386 SLOT->KSR = (v&0x10) ? 0 : 2; 387 SLOT->eg_typ = (v&0x20)>>5; 388 SLOT->vib = (v&0x40); 389 SLOT->ams = (v&0x80); 390 CALC_FCSLOT(CH,SLOT); 391 } 392 393 /* set ksl & tl */ 394 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v) 395 { 396 OPL_CH *CH = &OPL->P_CH[slot/2]; 397 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 398 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */ 399 400 SLOT->ksl = ksl ? 3-ksl : 31; 401 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */ 402 403 if( !(OPL->mode&0x80) ) 404 { /* not CSM latch total level */ 405 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); 406 } 407 } 408 409 /* set attack rate & decay rate */ 410 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v) 411 { 412 OPL_CH *CH = &OPL->P_CH[slot/2]; 413 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 414 int ar = v>>4; 415 int dr = v&0x0f; 416 417 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0; 418 SLOT->evsa = SLOT->AR[SLOT->ksr]; 419 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa; 420 421 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; 422 SLOT->evsd = SLOT->DR[SLOT->ksr]; 423 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd; 424 } 425 426 /* set sustain level & release rate */ 427 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v) 428 { 429 OPL_CH *CH = &OPL->P_CH[slot/2]; 430 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 431 int sl = v>>4; 432 int rr = v & 0x0f; 433 434 SLOT->SL = SL_TABLE[sl]; 435 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL; 436 SLOT->RR = &OPL->DR_TABLE[rr<<2]; 437 SLOT->evsr = SLOT->RR[SLOT->ksr]; 438 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr; 439 } 440 441 /* operator output calcrator */ 442 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] 443 /* ---------- calcrate one of channel ---------- */ 444 static inline void OPL_CALC_CH( OPL_CH *CH ) 445 { 446 uint32_t env_out; 447 OPL_SLOT *SLOT; 448 449 feedback2 = 0; 450 /* SLOT 1 */ 451 SLOT = &CH->SLOT[SLOT1]; 452 env_out=OPL_CALC_SLOT(SLOT); 453 if( env_out < EG_ENT-1 ) 454 { 455 /* PG */ 456 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 457 else SLOT->Cnt += SLOT->Incr; 458 /* connectoion */ 459 if(CH->FB) 460 { 461 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB; 462 CH->op1_out[1] = CH->op1_out[0]; 463 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1); 464 } 465 else 466 { 467 *CH->connect1 += OP_OUT(SLOT,env_out,0); 468 } 469 }else 470 { 471 CH->op1_out[1] = CH->op1_out[0]; 472 CH->op1_out[0] = 0; 473 } 474 /* SLOT 2 */ 475 SLOT = &CH->SLOT[SLOT2]; 476 env_out=OPL_CALC_SLOT(SLOT); 477 if( env_out < EG_ENT-1 ) 478 { 479 /* PG */ 480 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 481 else SLOT->Cnt += SLOT->Incr; 482 /* connectoion */ 483 outd[0] += OP_OUT(SLOT,env_out, feedback2); 484 } 485 } 486 487 /* ---------- calcrate rhythm block ---------- */ 488 #define WHITE_NOISE_db 6.0 489 static inline void OPL_CALC_RH( OPL_CH *CH ) 490 { 491 uint32_t env_tam,env_sd,env_top,env_hh; 492 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP); 493 int32_t tone8; 494 495 OPL_SLOT *SLOT; 496 int env_out; 497 498 /* BD : same as FM serial mode and output level is large */ 499 feedback2 = 0; 500 /* SLOT 1 */ 501 SLOT = &CH[6].SLOT[SLOT1]; 502 env_out=OPL_CALC_SLOT(SLOT); 503 if( env_out < EG_ENT-1 ) 504 { 505 /* PG */ 506 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 507 else SLOT->Cnt += SLOT->Incr; 508 /* connectoion */ 509 if(CH[6].FB) 510 { 511 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB; 512 CH[6].op1_out[1] = CH[6].op1_out[0]; 513 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1); 514 } 515 else 516 { 517 feedback2 = OP_OUT(SLOT,env_out,0); 518 } 519 }else 520 { 521 feedback2 = 0; 522 CH[6].op1_out[1] = CH[6].op1_out[0]; 523 CH[6].op1_out[0] = 0; 524 } 525 /* SLOT 2 */ 526 SLOT = &CH[6].SLOT[SLOT2]; 527 env_out=OPL_CALC_SLOT(SLOT); 528 if( env_out < EG_ENT-1 ) 529 { 530 /* PG */ 531 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 532 else SLOT->Cnt += SLOT->Incr; 533 /* connectoion */ 534 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2; 535 } 536 537 // SD (17) = mul14[fnum7] + white noise 538 // TAM (15) = mul15[fnum8] 539 // TOP (18) = fnum6(mul18[fnum8]+whitenoise) 540 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise 541 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise; 542 env_tam=OPL_CALC_SLOT(SLOT8_1); 543 env_top=OPL_CALC_SLOT(SLOT8_2); 544 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise; 545 546 /* PG */ 547 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE); 548 else SLOT7_1->Cnt += 2*SLOT7_1->Incr; 549 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE); 550 else SLOT7_2->Cnt += (CH[7].fc*8); 551 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE); 552 else SLOT8_1->Cnt += SLOT8_1->Incr; 553 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE); 554 else SLOT8_2->Cnt += (CH[8].fc*48); 555 556 tone8 = OP_OUT(SLOT8_2,whitenoise,0 ); 557 558 /* SD */ 559 if( env_sd < EG_ENT-1 ) 560 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8; 561 /* TAM */ 562 if( env_tam < EG_ENT-1 ) 563 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2; 564 /* TOP-CY */ 565 if( env_top < EG_ENT-1 ) 566 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2; 567 /* HH */ 568 if( env_hh < EG_ENT-1 ) 569 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2; 570 } 571 572 /* ----------- initialize time tabls ----------- */ 573 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE ) 574 { 575 int i; 576 double rate; 577 578 /* make attack rate & decay rate tables */ 579 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; 580 for (i = 4;i <= 60;i++){ 581 rate = OPL->freqbase; /* frequency rate */ 582 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ 583 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */ 584 rate *= (double)(EG_ENT<<ENV_BITS); 585 OPL->AR_TABLE[i] = rate / ARRATE; 586 OPL->DR_TABLE[i] = rate / DRRATE; 587 } 588 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++) 589 { 590 OPL->AR_TABLE[i] = EG_AED-1; 591 OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; 592 } 593 #if 0 594 for (i = 0;i < 64 ;i++){ /* make for overflow area */ 595 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i, 596 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), 597 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) )); 598 } 599 #endif 600 } 601 602 /* ---------- generic table initialize ---------- */ 603 static int OPLOpenTable( void ) 604 { 605 int s,t; 606 double rate; 607 int i,j; 608 double pom; 609 610 /* allocate dynamic tables */ 611 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL) 612 return 0; 613 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL) 614 { 615 free(TL_TABLE); 616 return 0; 617 } 618 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL) 619 { 620 free(TL_TABLE); 621 free(SIN_TABLE); 622 return 0; 623 } 624 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL) 625 { 626 free(TL_TABLE); 627 free(SIN_TABLE); 628 free(AMS_TABLE); 629 return 0; 630 } 631 /* make total level table */ 632 for (t = 0;t < EG_ENT-1 ;t++){ 633 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */ 634 TL_TABLE[ t] = (int)rate; 635 TL_TABLE[TL_MAX+t] = -TL_TABLE[t]; 636 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ 637 } 638 /* fill volume off area */ 639 for ( t = EG_ENT-1; t < TL_MAX ;t++){ 640 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0; 641 } 642 643 /* make sinwave table (total level offet) */ 644 /* degree 0 = degree 180 = off */ 645 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1]; 646 for (s = 1;s <= SIN_ENT/4;s++){ 647 pom = sin(2*PI*s/SIN_ENT); /* sin */ 648 pom = 20*log10(1/pom); /* decibel */ 649 j = pom / EG_STEP; /* TL_TABLE steps */ 650 651 /* degree 0 - 90 , degree 180 - 90 : plus section */ 652 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j]; 653 /* degree 180 - 270 , degree 360 - 270 : minus section */ 654 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j]; 655 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ 656 } 657 for (s = 0;s < SIN_ENT;s++) 658 { 659 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; 660 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)]; 661 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s]; 662 } 663 664 /* envelope counter -> envelope output table */ 665 for (i=0; i<EG_ENT; i++) 666 { 667 /* ATTACK curve */ 668 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT; 669 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ 670 ENV_CURVE[i] = (int)pom; 671 /* DECAY ,RELEASE curve */ 672 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i; 673 } 674 /* off */ 675 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1; 676 /* make LFO ams table */ 677 for (i=0; i<AMS_ENT; i++) 678 { 679 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */ 680 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */ 681 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */ 682 } 683 /* make LFO vibrate table */ 684 for (i=0; i<VIB_ENT; i++) 685 { 686 /* 100cent = 1seminote = 6% ?? */ 687 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */ 688 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */ 689 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */ 690 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ 691 } 692 return 1; 693 } 694 695 696 static void OPLCloseTable( void ) 697 { 698 free(TL_TABLE); 699 free(SIN_TABLE); 700 free(AMS_TABLE); 701 free(VIB_TABLE); 702 } 703 704 /* CSM Key Control */ 705 static inline void CSMKeyControll(OPL_CH *CH) 706 { 707 OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; 708 OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; 709 /* all key off */ 710 OPL_KEYOFF(slot1); 711 OPL_KEYOFF(slot2); 712 /* total level latch */ 713 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); 714 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); 715 /* key on */ 716 CH->op1_out[0] = CH->op1_out[1] = 0; 717 OPL_KEYON(slot1); 718 OPL_KEYON(slot2); 719 } 720 721 /* ---------- opl initialize ---------- */ 722 static void OPL_initialize(FM_OPL *OPL) 723 { 724 int fn; 725 726 /* frequency base */ 727 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0; 728 /* Timer base time */ 729 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); 730 /* make time tables */ 731 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE ); 732 /* make fnumber -> increment counter table */ 733 for( fn=0 ; fn < 1024 ; fn++ ) 734 { 735 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2; 736 } 737 /* LFO freq.table */ 738 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0; 739 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0; 740 } 741 742 /* ---------- write a OPL registers ---------- */ 743 static void OPLWriteReg(FM_OPL *OPL, int r, int v) 744 { 745 OPL_CH *CH; 746 int slot; 747 int block_fnum; 748 749 switch(r&0xe0) 750 { 751 case 0x00: /* 00-1f:control */ 752 switch(r&0x1f) 753 { 754 case 0x01: 755 /* wave selector enable */ 756 OPL->wavesel = v&0x20; 757 if(!OPL->wavesel) 758 { 759 /* preset compatible mode */ 760 int c; 761 for(c=0;c<OPL->max_ch;c++) 762 { 763 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; 764 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; 765 } 766 } 767 return; 768 case 0x02: /* Timer 1 */ 769 OPL->T[0] = (256-v)*4; 770 break; 771 case 0x03: /* Timer 2 */ 772 OPL->T[1] = (256-v)*16; 773 return; 774 case 0x04: /* IRQ clear / mask and Timer enable */ 775 if(v&0x80) 776 { /* IRQ flag clear */ 777 OPL_STATUS_RESET(OPL,0x7f); 778 } 779 else 780 { /* set IRQ mask ,timer enable*/ 781 uint8_t st1 = v&1; 782 uint8_t st2 = (v>>1)&1; 783 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ 784 OPL_STATUS_RESET(OPL,v&0x78); 785 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); 786 /* timer 2 */ 787 if(OPL->st[1] != st2) 788 { 789 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; 790 OPL->st[1] = st2; 791 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval); 792 } 793 /* timer 1 */ 794 if(OPL->st[0] != st1) 795 { 796 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; 797 OPL->st[0] = st1; 798 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval); 799 } 800 } 801 return; 802 } 803 break; 804 case 0x20: /* am,vib,ksr,eg type,mul */ 805 slot = slot_array[r&0x1f]; 806 if(slot == -1) return; 807 set_mul(OPL,slot,v); 808 return; 809 case 0x40: 810 slot = slot_array[r&0x1f]; 811 if(slot == -1) return; 812 set_ksl_tl(OPL,slot,v); 813 return; 814 case 0x60: 815 slot = slot_array[r&0x1f]; 816 if(slot == -1) return; 817 set_ar_dr(OPL,slot,v); 818 return; 819 case 0x80: 820 slot = slot_array[r&0x1f]; 821 if(slot == -1) return; 822 set_sl_rr(OPL,slot,v); 823 return; 824 case 0xa0: 825 switch(r) 826 { 827 case 0xbd: 828 /* amsep,vibdep,r,bd,sd,tom,tc,hh */ 829 { 830 uint8_t rkey = OPL->rhythm^v; 831 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0]; 832 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0]; 833 OPL->rhythm = v&0x3f; 834 if(OPL->rhythm&0x20) 835 { 836 #if 0 837 usrintf_showmessage("OPL Rhythm mode select"); 838 #endif 839 /* BD key on/off */ 840 if(rkey&0x10) 841 { 842 if(v&0x10) 843 { 844 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; 845 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]); 846 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]); 847 } 848 else 849 { 850 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]); 851 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]); 852 } 853 } 854 /* SD key on/off */ 855 if(rkey&0x08) 856 { 857 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]); 858 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]); 859 }/* TAM key on/off */ 860 if(rkey&0x04) 861 { 862 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]); 863 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]); 864 } 865 /* TOP-CY key on/off */ 866 if(rkey&0x02) 867 { 868 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]); 869 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]); 870 } 871 /* HH key on/off */ 872 if(rkey&0x01) 873 { 874 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]); 875 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]); 876 } 877 } 878 } 879 return; 880 } 881 /* keyon,block,fnum */ 882 if( (r&0x0f) > 8) return; 883 CH = &OPL->P_CH[r&0x0f]; 884 if(!(r&0x10)) 885 { /* a0-a8 */ 886 block_fnum = (CH->block_fnum&0x1f00) | v; 887 } 888 else 889 { /* b0-b8 */ 890 int keyon = (v>>5)&1; 891 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); 892 if(CH->keyon != keyon) 893 { 894 if( (CH->keyon=keyon) ) 895 { 896 CH->op1_out[0] = CH->op1_out[1] = 0; 897 OPL_KEYON(&CH->SLOT[SLOT1]); 898 OPL_KEYON(&CH->SLOT[SLOT2]); 899 } 900 else 901 { 902 OPL_KEYOFF(&CH->SLOT[SLOT1]); 903 OPL_KEYOFF(&CH->SLOT[SLOT2]); 904 } 905 } 906 } 907 /* update */ 908 if(CH->block_fnum != block_fnum) 909 { 910 int blockRv = 7-(block_fnum>>10); 911 int fnum = block_fnum&0x3ff; 912 CH->block_fnum = block_fnum; 913 914 CH->ksl_base = KSL_TABLE[block_fnum>>6]; 915 CH->fc = OPL->FN_TABLE[fnum]>>blockRv; 916 CH->kcode = CH->block_fnum>>9; 917 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1; 918 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); 919 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); 920 } 921 return; 922 case 0xc0: 923 /* FB,C */ 924 if( (r&0x0f) > 8) return; 925 CH = &OPL->P_CH[r&0x0f]; 926 { 927 int feedback = (v>>1)&7; 928 CH->FB = feedback ? (8+1) - feedback : 0; 929 CH->CON = v&1; 930 set_algorithm(CH); 931 } 932 return; 933 case 0xe0: /* wave type */ 934 slot = slot_array[r&0x1f]; 935 if(slot == -1) return; 936 CH = &OPL->P_CH[slot/2]; 937 if(OPL->wavesel) 938 { 939 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ 940 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT]; 941 } 942 return; 943 } 944 } 945 946 /* lock/unlock for common table */ 947 static int OPL_LockTable(void) 948 { 949 num_lock++; 950 if(num_lock>1) return 0; 951 /* first time */ 952 cur_chip = NULL; 953 /* allocate total level table (128kb space) */ 954 if( !OPLOpenTable() ) 955 { 956 num_lock--; 957 return -1; 958 } 959 return 0; 960 } 961 962 static void OPL_UnLockTable(void) 963 { 964 if(num_lock) num_lock--; 965 if(num_lock) return; 966 /* last time */ 967 cur_chip = NULL; 968 OPLCloseTable(); 969 } 970 971 /*******************************************************************************/ 972 /* YM3812 local section */ 973 /*******************************************************************************/ 974 975 /* ---------- update one of chip ----------- */ 976 void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length) 977 { 978 int i; 979 int data; 980 int16_t *buf = buffer; 981 uint32_t amsCnt = OPL->amsCnt; 982 uint32_t vibCnt = OPL->vibCnt; 983 uint8_t rhythm = OPL->rhythm&0x20; 984 OPL_CH *CH,*R_CH; 985 986 if( (void *)OPL != cur_chip ){ 987 cur_chip = (void *)OPL; 988 /* channel pointers */ 989 S_CH = OPL->P_CH; 990 E_CH = &S_CH[9]; 991 /* rhythm slot */ 992 SLOT7_1 = &S_CH[7].SLOT[SLOT1]; 993 SLOT7_2 = &S_CH[7].SLOT[SLOT2]; 994 SLOT8_1 = &S_CH[8].SLOT[SLOT1]; 995 SLOT8_2 = &S_CH[8].SLOT[SLOT2]; 996 /* LFO state */ 997 amsIncr = OPL->amsIncr; 998 vibIncr = OPL->vibIncr; 999 ams_table = OPL->ams_table; 1000 vib_table = OPL->vib_table; 1001 } 1002 R_CH = rhythm ? &S_CH[6] : E_CH; 1003 for( i=0; i < length ; i++ ) 1004 { 1005 /* channel A channel B channel C */ 1006 /* LFO */ 1007 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; 1008 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; 1009 outd[0] = 0; 1010 /* FM part */ 1011 for(CH=S_CH ; CH < R_CH ; CH++) 1012 OPL_CALC_CH(CH); 1013 /* Rythn part */ 1014 if(rhythm) 1015 OPL_CALC_RH(S_CH); 1016 /* limit check */ 1017 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); 1018 /* store to sound buffer */ 1019 buf[i] = data >> OPL_OUTSB; 1020 } 1021 1022 OPL->amsCnt = amsCnt; 1023 OPL->vibCnt = vibCnt; 1024 #ifdef OPL_OUTPUT_LOG 1025 if(opl_dbg_fp) 1026 { 1027 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) 1028 if( opl_dbg_opl[opl_dbg_chip] == OPL) break; 1029 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256); 1030 } 1031 #endif 1032 } 1033 1034 /* ---------- reset one of chip ---------- */ 1035 static void OPLResetChip(FM_OPL *OPL) 1036 { 1037 int c,s; 1038 int i; 1039 1040 /* reset chip */ 1041 OPL->mode = 0; /* normal mode */ 1042 OPL_STATUS_RESET(OPL,0x7f); 1043 /* reset with register write */ 1044 OPLWriteReg(OPL,0x01,0); /* wabesel disable */ 1045 OPLWriteReg(OPL,0x02,0); /* Timer1 */ 1046 OPLWriteReg(OPL,0x03,0); /* Timer2 */ 1047 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ 1048 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); 1049 /* reset operator parameter */ 1050 for( c = 0 ; c < OPL->max_ch ; c++ ) 1051 { 1052 OPL_CH *CH = &OPL->P_CH[c]; 1053 /* OPL->P_CH[c].PAN = OPN_CENTER; */ 1054 for(s = 0 ; s < 2 ; s++ ) 1055 { 1056 /* wave table */ 1057 CH->SLOT[s].wavetable = &SIN_TABLE[0]; 1058 /* CH->SLOT[s].evm = ENV_MOD_RR; */ 1059 CH->SLOT[s].evc = EG_OFF; 1060 CH->SLOT[s].eve = EG_OFF+1; 1061 CH->SLOT[s].evs = 0; 1062 } 1063 } 1064 } 1065 1066 /* ---------- Create one of vietual YM3812 ---------- */ 1067 /* 'rate' is sampling rate and 'bufsiz' is the size of the */ 1068 FM_OPL *OPLCreate(int clock, int rate) 1069 { 1070 char *ptr; 1071 FM_OPL *OPL; 1072 int state_size; 1073 int max_ch = 9; /* normaly 9 channels */ 1074 1075 if( OPL_LockTable() ==-1) return NULL; 1076 /* allocate OPL state space */ 1077 state_size = sizeof(FM_OPL); 1078 state_size += sizeof(OPL_CH)*max_ch; 1079 /* allocate memory block */ 1080 ptr = malloc(state_size); 1081 if(ptr==NULL) return NULL; 1082 /* clear */ 1083 memset(ptr,0,state_size); 1084 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL); 1085 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch; 1086 /* set channel state pointer */ 1087 OPL->clock = clock; 1088 OPL->rate = rate; 1089 OPL->max_ch = max_ch; 1090 /* init grobal tables */ 1091 OPL_initialize(OPL); 1092 /* reset chip */ 1093 OPLResetChip(OPL); 1094 #ifdef OPL_OUTPUT_LOG 1095 if(!opl_dbg_fp) 1096 { 1097 opl_dbg_fp = fopen("opllog.opl","wb"); 1098 opl_dbg_maxchip = 0; 1099 } 1100 if(opl_dbg_fp) 1101 { 1102 opl_dbg_opl[opl_dbg_maxchip] = OPL; 1103 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip, 1104 type, 1105 clock&0xff, 1106 (clock/0x100)&0xff, 1107 (clock/0x10000)&0xff, 1108 (clock/0x1000000)&0xff); 1109 opl_dbg_maxchip++; 1110 } 1111 #endif 1112 return OPL; 1113 } 1114 1115 /* ---------- Destroy one of vietual YM3812 ---------- */ 1116 void OPLDestroy(FM_OPL *OPL) 1117 { 1118 #ifdef OPL_OUTPUT_LOG 1119 if(opl_dbg_fp) 1120 { 1121 fclose(opl_dbg_fp); 1122 opl_dbg_fp = NULL; 1123 } 1124 #endif 1125 OPL_UnLockTable(); 1126 free(OPL); 1127 } 1128 1129 /* ---------- Option handlers ---------- */ 1130 1131 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset) 1132 { 1133 OPL->TimerHandler = TimerHandler; 1134 OPL->TimerParam = channelOffset; 1135 } 1136 1137 /* ---------- YM3812 I/O interface ---------- */ 1138 int OPLWrite(FM_OPL *OPL,int a,int v) 1139 { 1140 if( !(a&1) ) 1141 { /* address port */ 1142 OPL->address = v & 0xff; 1143 } 1144 else 1145 { /* data port */ 1146 #ifdef OPL_OUTPUT_LOG 1147 if(opl_dbg_fp) 1148 { 1149 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) 1150 if( opl_dbg_opl[opl_dbg_chip] == OPL) break; 1151 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v); 1152 } 1153 #endif 1154 OPLWriteReg(OPL,OPL->address,v); 1155 } 1156 return OPL->status>>7; 1157 } 1158 1159 unsigned char OPLRead(FM_OPL *OPL,int a) 1160 { 1161 if( !(a&1) ) 1162 { /* status port */ 1163 return OPL->status & (OPL->statusmask|0x80); 1164 } 1165 /* data port */ 1166 switch(OPL->address) 1167 { 1168 case 0x05: /* KeyBoard IN */ 1169 return 0; 1170 #if 0 1171 case 0x0f: /* ADPCM-DATA */ 1172 return 0; 1173 #endif 1174 case 0x19: /* I/O DATA */ 1175 return 0; 1176 case 0x1a: /* PCM-DATA */ 1177 return 0; 1178 } 1179 return 0; 1180 } 1181 1182 int OPLTimerOver(FM_OPL *OPL,int c) 1183 { 1184 if( c ) 1185 { /* Timer B */ 1186 OPL_STATUS_SET(OPL,0x20); 1187 } 1188 else 1189 { /* Timer A */ 1190 OPL_STATUS_SET(OPL,0x40); 1191 /* CSM mode key,TL control */ 1192 if( OPL->mode & 0x80 ) 1193 { /* CSM mode total level latch and auto key on */ 1194 int ch; 1195 for(ch=0;ch<9;ch++) 1196 CSMKeyControll( &OPL->P_CH[ch] ); 1197 } 1198 } 1199 /* reload timer */ 1200 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase); 1201 return OPL->status>>7; 1202 } 1203