xref: /openbmc/qemu/hw/audio/fmopl.c (revision 781c67ca)
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
10 
11 /*
12 	preliminary :
13 	Problem :
14 	note:
15 */
16 
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18  *
19  * This library is free software; you can redistribute it and/or
20  * modify it under the terms of the GNU Lesser General Public
21  * License as published by the Free Software Foundation; either
22  * version 2.1 of the License, or (at your option) any later version.
23  *
24  * This library is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public
30  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
31  */
32 
33 #include "qemu/osdep.h"
34 #include <math.h>
35 //#include "driver.h"		/* use M.A.M.E. */
36 #include "fmopl.h"
37 #ifndef PI
38 #define PI 3.14159265358979323846
39 #endif
40 
41 /* -------------------- for debug --------------------- */
42 /* #define OPL_OUTPUT_LOG */
43 #ifdef OPL_OUTPUT_LOG
44 static FILE *opl_dbg_fp = NULL;
45 static FM_OPL *opl_dbg_opl[16];
46 static int opl_dbg_maxchip,opl_dbg_chip;
47 #endif
48 
49 /* -------------------- preliminary define section --------------------- */
50 /* attack/decay rate time rate */
51 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
52 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
53 
54 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
55 
56 #define FREQ_BITS 24			/* frequency turn          */
57 
58 /* counter bits = 20 , octerve 7 */
59 #define FREQ_RATE   (1<<(FREQ_BITS-20))
60 #define TL_BITS    (FREQ_BITS+2)
61 
62 /* final output shift , limit minimum and maximum */
63 #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
64 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
65 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
66 
67 /* -------------------- quality selection --------------------- */
68 
69 /* sinwave entries */
70 /* used static memory = SIN_ENT * 4 (byte) */
71 #define SIN_ENT 2048
72 
73 /* output level entries (envelope,sinwave) */
74 /* envelope counter lower bits */
75 #define ENV_BITS 16
76 /* envelope output entries */
77 #define EG_ENT   4096
78 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
79 /* used static  memory = EG_ENT*4 (byte)                     */
80 
81 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
82 #define EG_DED   EG_OFF
83 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
84 #define EG_AED   EG_DST
85 #define EG_AST   0                       /* ATTACK START */
86 
87 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
88 
89 /* LFO table entries */
90 #define VIB_ENT 512
91 #define VIB_SHIFT (32-9)
92 #define AMS_ENT 512
93 #define AMS_SHIFT (32-9)
94 
95 #define VIB_RATE 256
96 
97 /* -------------------- local defines , macros --------------------- */
98 
99 /* register number to channel number , slot offset */
100 #define SLOT1 0
101 #define SLOT2 1
102 
103 /* envelope phase */
104 #define ENV_MOD_RR  0x00
105 #define ENV_MOD_DR  0x01
106 #define ENV_MOD_AR  0x02
107 
108 /* -------------------- tables --------------------- */
109 static const int slot_array[32]=
110 {
111 	 0, 2, 4, 1, 3, 5,-1,-1,
112 	 6, 8,10, 7, 9,11,-1,-1,
113 	12,14,16,13,15,17,-1,-1,
114 	-1,-1,-1,-1,-1,-1,-1,-1
115 };
116 
117 /* key scale level */
118 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
119 #define DV (EG_STEP/2)
120 static const uint32_t KSL_TABLE[8*16]=
121 {
122 	/* OCT 0 */
123 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
124 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
125 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
126 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
127 	/* OCT 1 */
128 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
129 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
130 	 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
131 	 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
132 	/* OCT 2 */
133 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 	 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
135 	 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
136 	 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
137 	/* OCT 3 */
138 	 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
139 	 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
140 	 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
141 	 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
142 	/* OCT 4 */
143 	 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
144 	 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
145 	 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
146 	10.875/DV,11.250/DV,11.625/DV,12.000/DV,
147 	/* OCT 5 */
148 	 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
149 	 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
150 	12.000/DV,12.750/DV,13.125/DV,13.500/DV,
151 	13.875/DV,14.250/DV,14.625/DV,15.000/DV,
152 	/* OCT 6 */
153 	 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
154 	12.000/DV,13.125/DV,13.875/DV,14.625/DV,
155 	15.000/DV,15.750/DV,16.125/DV,16.500/DV,
156 	16.875/DV,17.250/DV,17.625/DV,18.000/DV,
157 	/* OCT 7 */
158 	 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
159 	15.000/DV,16.125/DV,16.875/DV,17.625/DV,
160 	18.000/DV,18.750/DV,19.125/DV,19.500/DV,
161 	19.875/DV,20.250/DV,20.625/DV,21.000/DV
162 };
163 #undef DV
164 
165 /* sustain lebel table (3db per step) */
166 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
167 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
168 static const int32_t SL_TABLE[16]={
169  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
170  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
171 };
172 #undef SC
173 
174 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
175 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
176 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
177 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
178 static int32_t *TL_TABLE;
179 
180 /* pointers to TL_TABLE with sinwave output offset */
181 static int32_t **SIN_TABLE;
182 
183 /* LFO table */
184 static int32_t *AMS_TABLE;
185 static int32_t *VIB_TABLE;
186 
187 /* envelope output curve table */
188 /* attack + decay + OFF */
189 static int32_t *ENV_CURVE;
190 
191 /* multiple table */
192 #define ML 2
193 static const uint32_t MUL_TABLE[16]= {
194 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
195    0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
196    8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
197 };
198 #undef ML
199 
200 /* dummy attack / decay rate ( when rate == 0 ) */
201 static int32_t RATE_0[16]=
202 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
203 
204 /* -------------------- static state --------------------- */
205 
206 /* lock level of common table */
207 static int num_lock = 0;
208 
209 /* work table */
210 static void *cur_chip = NULL;	/* current chip point */
211 /* currenct chip state */
212 /* static OPLSAMPLE  *bufL,*bufR; */
213 static OPL_CH *S_CH;
214 static OPL_CH *E_CH;
215 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
216 
217 static int32_t outd[1];
218 static int32_t ams;
219 static int32_t vib;
220 static int32_t *ams_table;
221 static int32_t *vib_table;
222 static int32_t amsIncr;
223 static int32_t vibIncr;
224 static int32_t feedback2;		/* connect for SLOT 2 */
225 
226 /* log output level */
227 #define LOG_ERR  3      /* ERROR       */
228 #define LOG_WAR  2      /* WARNING     */
229 #define LOG_INF  1      /* INFORMATION */
230 
231 //#define LOG_LEVEL LOG_INF
232 #define LOG_LEVEL	LOG_ERR
233 
234 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
235 #define LOG(n,x)
236 
237 /* --------------------- subroutines  --------------------- */
238 
239 static inline int Limit( int val, int max, int min ) {
240 	if ( val > max )
241 		val = max;
242 	else if ( val < min )
243 		val = min;
244 
245 	return val;
246 }
247 
248 /* status set and IRQ handling */
249 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
250 {
251 	/* set status flag */
252 	OPL->status |= flag;
253 	if(!(OPL->status & 0x80))
254 	{
255 		if(OPL->status & OPL->statusmask)
256 		{	/* IRQ on */
257 			OPL->status |= 0x80;
258 		}
259 	}
260 }
261 
262 /* status reset and IRQ handling */
263 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
264 {
265 	/* reset status flag */
266 	OPL->status &=~flag;
267 	if((OPL->status & 0x80))
268 	{
269 		if (!(OPL->status & OPL->statusmask) )
270 		{
271 			OPL->status &= 0x7f;
272 		}
273 	}
274 }
275 
276 /* IRQ mask set */
277 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
278 {
279 	OPL->statusmask = flag;
280 	/* IRQ handling check */
281 	OPL_STATUS_SET(OPL,0);
282 	OPL_STATUS_RESET(OPL,0);
283 }
284 
285 /* ----- key on  ----- */
286 static inline void OPL_KEYON(OPL_SLOT *SLOT)
287 {
288 	/* sin wave restart */
289 	SLOT->Cnt = 0;
290 	/* set attack */
291 	SLOT->evm = ENV_MOD_AR;
292 	SLOT->evs = SLOT->evsa;
293 	SLOT->evc = EG_AST;
294 	SLOT->eve = EG_AED;
295 }
296 /* ----- key off ----- */
297 static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
298 {
299 	if( SLOT->evm > ENV_MOD_RR)
300 	{
301 		/* set envelope counter from envleope output */
302 		SLOT->evm = ENV_MOD_RR;
303 		if( !(SLOT->evc&EG_DST) )
304 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
305 			SLOT->evc = EG_DST;
306 		SLOT->eve = EG_DED;
307 		SLOT->evs = SLOT->evsr;
308 	}
309 }
310 
311 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
312 /* return : envelope output */
313 static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT )
314 {
315 	/* calcrate envelope generator */
316 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
317 	{
318 		switch( SLOT->evm ){
319 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
320 			/* next DR */
321 			SLOT->evm = ENV_MOD_DR;
322 			SLOT->evc = EG_DST;
323 			SLOT->eve = SLOT->SL;
324 			SLOT->evs = SLOT->evsd;
325 			break;
326 		case ENV_MOD_DR: /* DECAY -> SL or RR */
327 			SLOT->evc = SLOT->SL;
328 			SLOT->eve = EG_DED;
329 			if(SLOT->eg_typ)
330 			{
331 				SLOT->evs = 0;
332 			}
333 			else
334 			{
335 				SLOT->evm = ENV_MOD_RR;
336 				SLOT->evs = SLOT->evsr;
337 			}
338 			break;
339 		case ENV_MOD_RR: /* RR -> OFF */
340 			SLOT->evc = EG_OFF;
341 			SLOT->eve = EG_OFF+1;
342 			SLOT->evs = 0;
343 			break;
344 		}
345 	}
346 	/* calcrate envelope */
347 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
348 }
349 
350 /* set algorithm connection */
351 static void set_algorithm( OPL_CH *CH)
352 {
353 	int32_t *carrier = &outd[0];
354 	CH->connect1 = CH->CON ? carrier : &feedback2;
355 	CH->connect2 = carrier;
356 }
357 
358 /* ---------- frequency counter for operater update ---------- */
359 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
360 {
361 	int ksr;
362 
363 	/* frequency step counter */
364 	SLOT->Incr = CH->fc * SLOT->mul;
365 	ksr = CH->kcode >> SLOT->KSR;
366 
367 	if( SLOT->ksr != ksr )
368 	{
369 		SLOT->ksr = ksr;
370 		/* attack , decay rate recalcration */
371 		SLOT->evsa = SLOT->AR[ksr];
372 		SLOT->evsd = SLOT->DR[ksr];
373 		SLOT->evsr = SLOT->RR[ksr];
374 	}
375 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
376 }
377 
378 /* set multi,am,vib,EG-TYP,KSR,mul */
379 static inline void set_mul(FM_OPL *OPL,int slot,int v)
380 {
381 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
382 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
383 
384 	SLOT->mul    = MUL_TABLE[v&0x0f];
385 	SLOT->KSR    = (v&0x10) ? 0 : 2;
386 	SLOT->eg_typ = (v&0x20)>>5;
387 	SLOT->vib    = (v&0x40);
388 	SLOT->ams    = (v&0x80);
389 	CALC_FCSLOT(CH,SLOT);
390 }
391 
392 /* set ksl & tl */
393 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
394 {
395 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
396 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
397 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
398 
399 	SLOT->ksl = ksl ? 3-ksl : 31;
400 	SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
401 
402 	if( !(OPL->mode&0x80) )
403 	{	/* not CSM latch total level */
404 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
405 	}
406 }
407 
408 /* set attack rate & decay rate  */
409 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
410 {
411 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
412 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
413 	int ar = v>>4;
414 	int dr = v&0x0f;
415 
416 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
417 	SLOT->evsa = SLOT->AR[SLOT->ksr];
418 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
419 
420 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
421 	SLOT->evsd = SLOT->DR[SLOT->ksr];
422 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
423 }
424 
425 /* set sustain level & release rate */
426 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
427 {
428 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
429 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
430 	int sl = v>>4;
431 	int rr = v & 0x0f;
432 
433 	SLOT->SL = SL_TABLE[sl];
434 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
435 	SLOT->RR = &OPL->DR_TABLE[rr<<2];
436 	SLOT->evsr = SLOT->RR[SLOT->ksr];
437 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
438 }
439 
440 /* operator output calcrator */
441 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
442 /* ---------- calcrate one of channel ---------- */
443 static inline void OPL_CALC_CH( OPL_CH *CH )
444 {
445 	uint32_t env_out;
446 	OPL_SLOT *SLOT;
447 
448 	feedback2 = 0;
449 	/* SLOT 1 */
450 	SLOT = &CH->SLOT[SLOT1];
451 	env_out=OPL_CALC_SLOT(SLOT);
452 	if( env_out < EG_ENT-1 )
453 	{
454 		/* PG */
455 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
456 		else          SLOT->Cnt += SLOT->Incr;
457 		/* connectoion */
458 		if(CH->FB)
459 		{
460 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
461 			CH->op1_out[1] = CH->op1_out[0];
462 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
463 		}
464 		else
465 		{
466 			*CH->connect1 += OP_OUT(SLOT,env_out,0);
467 		}
468 	}else
469 	{
470 		CH->op1_out[1] = CH->op1_out[0];
471 		CH->op1_out[0] = 0;
472 	}
473 	/* SLOT 2 */
474 	SLOT = &CH->SLOT[SLOT2];
475 	env_out=OPL_CALC_SLOT(SLOT);
476 	if( env_out < EG_ENT-1 )
477 	{
478 		/* PG */
479 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
480 		else          SLOT->Cnt += SLOT->Incr;
481 		/* connectoion */
482 		outd[0] += OP_OUT(SLOT,env_out, feedback2);
483 	}
484 }
485 
486 /* ---------- calcrate rhythm block ---------- */
487 #define WHITE_NOISE_db 6.0
488 static inline void OPL_CALC_RH( OPL_CH *CH )
489 {
490 	uint32_t env_tam,env_sd,env_top,env_hh;
491 	int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
492 	int32_t tone8;
493 
494 	OPL_SLOT *SLOT;
495 	int env_out;
496 
497 	/* BD : same as FM serial mode and output level is large */
498 	feedback2 = 0;
499 	/* SLOT 1 */
500 	SLOT = &CH[6].SLOT[SLOT1];
501 	env_out=OPL_CALC_SLOT(SLOT);
502 	if( env_out < EG_ENT-1 )
503 	{
504 		/* PG */
505 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
506 		else          SLOT->Cnt += SLOT->Incr;
507 		/* connectoion */
508 		if(CH[6].FB)
509 		{
510 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
511 			CH[6].op1_out[1] = CH[6].op1_out[0];
512 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
513 		}
514 		else
515 		{
516 			feedback2 = OP_OUT(SLOT,env_out,0);
517 		}
518 	}else
519 	{
520 		feedback2 = 0;
521 		CH[6].op1_out[1] = CH[6].op1_out[0];
522 		CH[6].op1_out[0] = 0;
523 	}
524 	/* SLOT 2 */
525 	SLOT = &CH[6].SLOT[SLOT2];
526 	env_out=OPL_CALC_SLOT(SLOT);
527 	if( env_out < EG_ENT-1 )
528 	{
529 		/* PG */
530 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
531 		else          SLOT->Cnt += SLOT->Incr;
532 		/* connectoion */
533 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
534 	}
535 
536 	// SD  (17) = mul14[fnum7] + white noise
537 	// TAM (15) = mul15[fnum8]
538 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
539 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
540 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
541 	env_tam=OPL_CALC_SLOT(SLOT8_1);
542 	env_top=OPL_CALC_SLOT(SLOT8_2);
543 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
544 
545 	/* PG */
546 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
547 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
548 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
549 	else             SLOT7_2->Cnt += (CH[7].fc*8);
550 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
551 	else             SLOT8_1->Cnt += SLOT8_1->Incr;
552 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
553 	else             SLOT8_2->Cnt += (CH[8].fc*48);
554 
555 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
556 
557 	/* SD */
558 	if( env_sd < EG_ENT-1 )
559 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
560 	/* TAM */
561 	if( env_tam < EG_ENT-1 )
562 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
563 	/* TOP-CY */
564 	if( env_top < EG_ENT-1 )
565 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
566 	/* HH */
567 	if( env_hh  < EG_ENT-1 )
568 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
569 }
570 
571 /* ----------- initialize time tabls ----------- */
572 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
573 {
574 	int i;
575 	double rate;
576 
577 	/* make attack rate & decay rate tables */
578 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
579 	for (i = 4;i <= 60;i++){
580 		rate  = OPL->freqbase;						/* frequency rate */
581 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
582 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */
583 		rate *= (double)(EG_ENT<<ENV_BITS);
584 		OPL->AR_TABLE[i] = rate / ARRATE;
585 		OPL->DR_TABLE[i] = rate / DRRATE;
586 	}
587 	for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
588 	{
589 		OPL->AR_TABLE[i] = EG_AED-1;
590 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
591 	}
592 #if 0
593 	for (i = 0;i < 64 ;i++){	/* make for overflow area */
594 		LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
595 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
596 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
597 	}
598 #endif
599 }
600 
601 /* ---------- generic table initialize ---------- */
602 static int OPLOpenTable( void )
603 {
604 	int s,t;
605 	double rate;
606 	int i,j;
607 	double pom;
608 
609 	/* allocate dynamic tables */
610 	if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL)
611 		return 0;
612 	if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL)
613 	{
614 		free(TL_TABLE);
615 		return 0;
616 	}
617 	if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL)
618 	{
619 		free(TL_TABLE);
620 		free(SIN_TABLE);
621 		return 0;
622 	}
623 	if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL)
624 	{
625 		free(TL_TABLE);
626 		free(SIN_TABLE);
627 		free(AMS_TABLE);
628 		return 0;
629 	}
630 	/* make total level table */
631 	for (t = 0;t < EG_ENT-1 ;t++){
632 		rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);	/* dB -> voltage */
633 		TL_TABLE[       t] =  (int)rate;
634 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
635 /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
636 	}
637 	/* fill volume off area */
638 	for ( t = EG_ENT-1; t < TL_MAX ;t++){
639 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
640 	}
641 
642 	/* make sinwave table (total level offet) */
643 	/* degree 0 = degree 180                   = off */
644 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
645 	for (s = 1;s <= SIN_ENT/4;s++){
646 		pom = sin(2*PI*s/SIN_ENT); /* sin     */
647 		pom = 20*log10(1/pom);	   /* decibel */
648 		j = pom / EG_STEP;         /* TL_TABLE steps */
649 
650         /* degree 0   -  90    , degree 180 -  90 : plus section */
651 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
652         /* degree 180 - 270    , degree 360 - 270 : minus section */
653 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
654 /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
655 	}
656 	for (s = 0;s < SIN_ENT;s++)
657 	{
658 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
659 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
660 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
661 	}
662 
663 	/* envelope counter -> envelope output table */
664 	for (i=0; i<EG_ENT; i++)
665 	{
666 		/* ATTACK curve */
667 		pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
668 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
669 		ENV_CURVE[i] = (int)pom;
670 		/* DECAY ,RELEASE curve */
671 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
672 	}
673 	/* off */
674 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
675 	/* make LFO ams table */
676 	for (i=0; i<AMS_ENT; i++)
677 	{
678 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
679 		AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
680 		AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
681 	}
682 	/* make LFO vibrate table */
683 	for (i=0; i<VIB_ENT; i++)
684 	{
685 		/* 100cent = 1seminote = 6% ?? */
686 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
687 		VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
688 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
689 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
690 	}
691 	return 1;
692 }
693 
694 
695 static void OPLCloseTable( void )
696 {
697 	free(TL_TABLE);
698 	free(SIN_TABLE);
699 	free(AMS_TABLE);
700 	free(VIB_TABLE);
701 }
702 
703 /* CSM Key Control */
704 static inline void CSMKeyControll(OPL_CH *CH)
705 {
706 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
707 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
708 	/* all key off */
709 	OPL_KEYOFF(slot1);
710 	OPL_KEYOFF(slot2);
711 	/* total level latch */
712 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
713 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
714 	/* key on */
715 	CH->op1_out[0] = CH->op1_out[1] = 0;
716 	OPL_KEYON(slot1);
717 	OPL_KEYON(slot2);
718 }
719 
720 /* ---------- opl initialize ---------- */
721 static void OPL_initialize(FM_OPL *OPL)
722 {
723 	int fn;
724 
725 	/* frequency base */
726 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
727 	/* Timer base time */
728 	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
729 	/* make time tables */
730 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
731 	/* make fnumber -> increment counter table */
732 	for( fn=0 ; fn < 1024 ; fn++ )
733 	{
734 		OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
735 	}
736 	/* LFO freq.table */
737 	OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
738 	OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
739 }
740 
741 /* ---------- write a OPL registers ---------- */
742 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
743 {
744 	OPL_CH *CH;
745 	int slot;
746 	int block_fnum;
747 
748 	switch(r&0xe0)
749 	{
750 	case 0x00: /* 00-1f:control */
751 		switch(r&0x1f)
752 		{
753 		case 0x01:
754 			/* wave selector enable */
755 			OPL->wavesel = v&0x20;
756                         if(!OPL->wavesel)
757 			{
758 				/* preset compatible mode */
759 				int c;
760 				for(c=0;c<OPL->max_ch;c++)
761 				{
762 					OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
763 					OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
764 				}
765 			}
766 			return;
767 		case 0x02:	/* Timer 1 */
768 			OPL->T[0] = (256-v)*4;
769 			break;
770 		case 0x03:	/* Timer 2 */
771 			OPL->T[1] = (256-v)*16;
772 			return;
773 		case 0x04:	/* IRQ clear / mask and Timer enable */
774 			if(v&0x80)
775 			{	/* IRQ flag clear */
776 				OPL_STATUS_RESET(OPL,0x7f);
777 			}
778 			else
779 			{	/* set IRQ mask ,timer enable*/
780 				uint8_t st1 = v&1;
781 				uint8_t st2 = (v>>1)&1;
782 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
783 				OPL_STATUS_RESET(OPL,v&0x78);
784 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
785 				/* timer 2 */
786 				if(OPL->st[1] != st2)
787 				{
788 					double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
789 					OPL->st[1] = st2;
790                     if (OPL->TimerHandler) {
791                         (OPL->TimerHandler)(OPL->TimerParam, 1, interval);
792                     }
793 				}
794 				/* timer 1 */
795 				if(OPL->st[0] != st1)
796 				{
797 					double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
798 					OPL->st[0] = st1;
799                     if (OPL->TimerHandler) {
800                         (OPL->TimerHandler)(OPL->TimerParam, 0, interval);
801                     }
802 				}
803 			}
804 			return;
805 		}
806 		break;
807 	case 0x20:	/* am,vib,ksr,eg type,mul */
808 		slot = slot_array[r&0x1f];
809 		if(slot == -1) return;
810 		set_mul(OPL,slot,v);
811 		return;
812 	case 0x40:
813 		slot = slot_array[r&0x1f];
814 		if(slot == -1) return;
815 		set_ksl_tl(OPL,slot,v);
816 		return;
817 	case 0x60:
818 		slot = slot_array[r&0x1f];
819 		if(slot == -1) return;
820 		set_ar_dr(OPL,slot,v);
821 		return;
822 	case 0x80:
823 		slot = slot_array[r&0x1f];
824 		if(slot == -1) return;
825 		set_sl_rr(OPL,slot,v);
826 		return;
827 	case 0xa0:
828 		switch(r)
829 		{
830 		case 0xbd:
831 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
832 			{
833 			uint8_t rkey = OPL->rhythm^v;
834 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
835 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
836 			OPL->rhythm  = v&0x3f;
837 			if(OPL->rhythm&0x20)
838 			{
839 #if 0
840 				usrintf_showmessage("OPL Rhythm mode select");
841 #endif
842 				/* BD key on/off */
843 				if(rkey&0x10)
844 				{
845 					if(v&0x10)
846 					{
847 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
848 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
849 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
850 					}
851 					else
852 					{
853 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
854 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
855 					}
856 				}
857 				/* SD key on/off */
858 				if(rkey&0x08)
859 				{
860 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
861 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
862 				}/* TAM key on/off */
863 				if(rkey&0x04)
864 				{
865 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
866 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
867 				}
868 				/* TOP-CY key on/off */
869 				if(rkey&0x02)
870 				{
871 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
872 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
873 				}
874 				/* HH key on/off */
875 				if(rkey&0x01)
876 				{
877 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
878 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
879 				}
880 			}
881 			}
882 			return;
883 		}
884 		/* keyon,block,fnum */
885 		if( (r&0x0f) > 8) return;
886 		CH = &OPL->P_CH[r&0x0f];
887 		if(!(r&0x10))
888 		{	/* a0-a8 */
889 			block_fnum  = (CH->block_fnum&0x1f00) | v;
890 		}
891 		else
892 		{	/* b0-b8 */
893 			int keyon = (v>>5)&1;
894 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
895 			if(CH->keyon != keyon)
896 			{
897 				if( (CH->keyon=keyon) )
898 				{
899 					CH->op1_out[0] = CH->op1_out[1] = 0;
900 					OPL_KEYON(&CH->SLOT[SLOT1]);
901 					OPL_KEYON(&CH->SLOT[SLOT2]);
902 				}
903 				else
904 				{
905 					OPL_KEYOFF(&CH->SLOT[SLOT1]);
906 					OPL_KEYOFF(&CH->SLOT[SLOT2]);
907 				}
908 			}
909 		}
910 		/* update */
911 		if(CH->block_fnum != block_fnum)
912 		{
913 			int blockRv = 7-(block_fnum>>10);
914 			int fnum   = block_fnum&0x3ff;
915 			CH->block_fnum = block_fnum;
916 
917 			CH->ksl_base = KSL_TABLE[block_fnum>>6];
918 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
919 			CH->kcode = CH->block_fnum>>9;
920 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
921 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
922 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
923 		}
924 		return;
925 	case 0xc0:
926 		/* FB,C */
927 		if( (r&0x0f) > 8) return;
928 		CH = &OPL->P_CH[r&0x0f];
929 		{
930 		int feedback = (v>>1)&7;
931 		CH->FB   = feedback ? (8+1) - feedback : 0;
932 		CH->CON = v&1;
933 		set_algorithm(CH);
934 		}
935 		return;
936 	case 0xe0: /* wave type */
937 		slot = slot_array[r&0x1f];
938 		if(slot == -1) return;
939 		CH = &OPL->P_CH[slot/2];
940 		if(OPL->wavesel)
941 		{
942 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
943 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
944 		}
945 		return;
946 	}
947 }
948 
949 /* lock/unlock for common table */
950 static int OPL_LockTable(void)
951 {
952 	num_lock++;
953 	if(num_lock>1) return 0;
954 	/* first time */
955 	cur_chip = NULL;
956 	/* allocate total level table (128kb space) */
957 	if( !OPLOpenTable() )
958 	{
959 		num_lock--;
960 		return -1;
961 	}
962 	return 0;
963 }
964 
965 static void OPL_UnLockTable(void)
966 {
967 	if(num_lock) num_lock--;
968 	if(num_lock) return;
969 	/* last time */
970 	cur_chip = NULL;
971 	OPLCloseTable();
972 }
973 
974 /*******************************************************************************/
975 /*		YM3812 local section                                                   */
976 /*******************************************************************************/
977 
978 /* ---------- update one of chip ----------- */
979 void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length)
980 {
981     int i;
982 	int data;
983 	int16_t *buf = buffer;
984 	uint32_t amsCnt  = OPL->amsCnt;
985 	uint32_t  vibCnt  = OPL->vibCnt;
986 	uint8_t rhythm = OPL->rhythm&0x20;
987 	OPL_CH *CH,*R_CH;
988 
989 	if( (void *)OPL != cur_chip ){
990 		cur_chip = (void *)OPL;
991 		/* channel pointers */
992 		S_CH = OPL->P_CH;
993 		E_CH = &S_CH[9];
994 		/* rhythm slot */
995 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
996 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
997 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
998 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
999 		/* LFO state */
1000 		amsIncr = OPL->amsIncr;
1001 		vibIncr = OPL->vibIncr;
1002 		ams_table = OPL->ams_table;
1003 		vib_table = OPL->vib_table;
1004 	}
1005 	R_CH = rhythm ? &S_CH[6] : E_CH;
1006     for( i=0; i < length ; i++ )
1007 	{
1008 		/*            channel A         channel B         channel C      */
1009 		/* LFO */
1010 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1011 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1012 		outd[0] = 0;
1013 		/* FM part */
1014 		for(CH=S_CH ; CH < R_CH ; CH++)
1015 			OPL_CALC_CH(CH);
1016 		/* Rythn part */
1017 		if(rhythm)
1018 			OPL_CALC_RH(S_CH);
1019 		/* limit check */
1020 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1021 		/* store to sound buffer */
1022 		buf[i] = data >> OPL_OUTSB;
1023 	}
1024 
1025 	OPL->amsCnt = amsCnt;
1026 	OPL->vibCnt = vibCnt;
1027 #ifdef OPL_OUTPUT_LOG
1028 	if(opl_dbg_fp)
1029 	{
1030 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1031 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1032 		fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1033 	}
1034 #endif
1035 }
1036 
1037 /* ---------- reset one of chip ---------- */
1038 static void OPLResetChip(FM_OPL *OPL)
1039 {
1040 	int c,s;
1041 	int i;
1042 
1043 	/* reset chip */
1044 	OPL->mode   = 0;	/* normal mode */
1045 	OPL_STATUS_RESET(OPL,0x7f);
1046 	/* reset with register write */
1047 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1048 	OPLWriteReg(OPL,0x02,0); /* Timer1 */
1049 	OPLWriteReg(OPL,0x03,0); /* Timer2 */
1050 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1051 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1052 	/* reset operator parameter */
1053 	for( c = 0 ; c < OPL->max_ch ; c++ )
1054 	{
1055 		OPL_CH *CH = &OPL->P_CH[c];
1056 		/* OPL->P_CH[c].PAN = OPN_CENTER; */
1057 		for(s = 0 ; s < 2 ; s++ )
1058 		{
1059 			/* wave table */
1060 			CH->SLOT[s].wavetable = &SIN_TABLE[0];
1061 			/* CH->SLOT[s].evm = ENV_MOD_RR; */
1062 			CH->SLOT[s].evc = EG_OFF;
1063 			CH->SLOT[s].eve = EG_OFF+1;
1064 			CH->SLOT[s].evs = 0;
1065 		}
1066 	}
1067 }
1068 
1069 /* ----------  Create one of virtual YM3812 ----------       */
1070 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1071 FM_OPL *OPLCreate(int clock, int rate)
1072 {
1073 	char *ptr;
1074 	FM_OPL *OPL;
1075 	int state_size;
1076 	int max_ch = 9; /* normaly 9 channels */
1077 
1078 	if( OPL_LockTable() ==-1) return NULL;
1079 	/* allocate OPL state space */
1080 	state_size  = sizeof(FM_OPL);
1081 	state_size += sizeof(OPL_CH)*max_ch;
1082 	/* allocate memory block */
1083 	ptr = malloc(state_size);
1084 	if(ptr==NULL) return NULL;
1085 	/* clear */
1086 	memset(ptr,0,state_size);
1087 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1088 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1089 	/* set channel state pointer */
1090 	OPL->clock = clock;
1091 	OPL->rate  = rate;
1092 	OPL->max_ch = max_ch;
1093     ENV_CURVE = g_new(int32_t, 2 * EG_ENT + 1);
1094 	/* init grobal tables */
1095 	OPL_initialize(OPL);
1096 	/* reset chip */
1097 	OPLResetChip(OPL);
1098 #ifdef OPL_OUTPUT_LOG
1099 	if(!opl_dbg_fp)
1100 	{
1101 		opl_dbg_fp = fopen("opllog.opl","wb");
1102 		opl_dbg_maxchip = 0;
1103 	}
1104 	if(opl_dbg_fp)
1105 	{
1106 		opl_dbg_opl[opl_dbg_maxchip] = OPL;
1107 		fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1108 			type,
1109 			clock&0xff,
1110 			(clock/0x100)&0xff,
1111 			(clock/0x10000)&0xff,
1112 			(clock/0x1000000)&0xff);
1113 		opl_dbg_maxchip++;
1114 	}
1115 #endif
1116 	return OPL;
1117 }
1118 
1119 /* ----------  Destroy one of virtual YM3812 ----------       */
1120 void OPLDestroy(FM_OPL *OPL)
1121 {
1122 #ifdef OPL_OUTPUT_LOG
1123 	if(opl_dbg_fp)
1124 	{
1125 		fclose(opl_dbg_fp);
1126 		opl_dbg_fp = NULL;
1127 	}
1128 #endif
1129 	OPL_UnLockTable();
1130 	free(OPL);
1131     g_free(ENV_CURVE);
1132 }
1133 
1134 /* ----------  Option handlers ----------       */
1135 
1136 void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,
1137                         void *param)
1138 {
1139 	OPL->TimerHandler   = TimerHandler;
1140     OPL->TimerParam = param;
1141 }
1142 
1143 /* ---------- YM3812 I/O interface ---------- */
1144 int OPLWrite(FM_OPL *OPL,int a,int v)
1145 {
1146 	if( !(a&1) )
1147 	{	/* address port */
1148 		OPL->address = v & 0xff;
1149 	}
1150 	else
1151 	{	/* data port */
1152 #ifdef OPL_OUTPUT_LOG
1153 	if(opl_dbg_fp)
1154 	{
1155 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1156 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1157 		fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1158 	}
1159 #endif
1160 		OPLWriteReg(OPL,OPL->address,v);
1161 	}
1162 	return OPL->status>>7;
1163 }
1164 
1165 unsigned char OPLRead(FM_OPL *OPL,int a)
1166 {
1167 	if( !(a&1) )
1168 	{	/* status port */
1169 		return OPL->status & (OPL->statusmask|0x80);
1170 	}
1171 	/* data port */
1172 	switch(OPL->address)
1173 	{
1174 	case 0x05: /* KeyBoard IN */
1175 		return 0;
1176 #if 0
1177 	case 0x0f: /* ADPCM-DATA  */
1178 		return 0;
1179 #endif
1180 	case 0x19: /* I/O DATA    */
1181 		return 0;
1182 	case 0x1a: /* PCM-DATA    */
1183 		return 0;
1184 	}
1185 	return 0;
1186 }
1187 
1188 int OPLTimerOver(FM_OPL *OPL,int c)
1189 {
1190 	if( c )
1191 	{	/* Timer B */
1192 		OPL_STATUS_SET(OPL,0x20);
1193 	}
1194 	else
1195 	{	/* Timer A */
1196 		OPL_STATUS_SET(OPL,0x40);
1197 		/* CSM mode key,TL control */
1198 		if( OPL->mode & 0x80 )
1199 		{	/* CSM mode total level latch and auto key on */
1200 			int ch;
1201 			for(ch=0;ch<9;ch++)
1202 				CSMKeyControll( &OPL->P_CH[ch] );
1203 		}
1204 	}
1205 	/* reload timer */
1206     if (OPL->TimerHandler) {
1207         (OPL->TimerHandler)(OPL->TimerParam, c,
1208                             (double)OPL->T[c] * OPL->TimerBase);
1209     }
1210 	return OPL->status>>7;
1211 }
1212