1 /* 2 ** 3 ** File: fmopl.c -- software implementation of FM sound generator 4 ** 5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development 6 ** 7 ** Version 0.37a 8 ** 9 */ 10 11 /* 12 preliminary : 13 Problem : 14 note: 15 */ 16 17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL. 18 * 19 * This library is free software; you can redistribute it and/or 20 * modify it under the terms of the GNU Lesser General Public 21 * License as published by the Free Software Foundation; either 22 * version 2.1 of the License, or (at your option) any later version. 23 * 24 * This library is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 27 * Lesser General Public License for more details. 28 * 29 * You should have received a copy of the GNU Lesser General Public 30 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 31 */ 32 33 #define INLINE static inline 34 #define HAS_YM3812 1 35 36 #include <stdio.h> 37 #include <stdlib.h> 38 #include <string.h> 39 #include <stdarg.h> 40 #include <math.h> 41 //#include "driver.h" /* use M.A.M.E. */ 42 #include "fmopl.h" 43 44 #ifndef PI 45 #define PI 3.14159265358979323846 46 #endif 47 48 #ifndef ARRAY_SIZE 49 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 50 #endif 51 52 /* -------------------- for debug --------------------- */ 53 /* #define OPL_OUTPUT_LOG */ 54 #ifdef OPL_OUTPUT_LOG 55 static FILE *opl_dbg_fp = NULL; 56 static FM_OPL *opl_dbg_opl[16]; 57 static int opl_dbg_maxchip,opl_dbg_chip; 58 #endif 59 60 /* -------------------- preliminary define section --------------------- */ 61 /* attack/decay rate time rate */ 62 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ 63 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ 64 65 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ 66 67 #define FREQ_BITS 24 /* frequency turn */ 68 69 /* counter bits = 20 , octerve 7 */ 70 #define FREQ_RATE (1<<(FREQ_BITS-20)) 71 #define TL_BITS (FREQ_BITS+2) 72 73 /* final output shift , limit minimum and maximum */ 74 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ 75 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) 76 #define OPL_MINOUT (-0x8000<<OPL_OUTSB) 77 78 /* -------------------- quality selection --------------------- */ 79 80 /* sinwave entries */ 81 /* used static memory = SIN_ENT * 4 (byte) */ 82 #define SIN_ENT 2048 83 84 /* output level entries (envelope,sinwave) */ 85 /* envelope counter lower bits */ 86 #define ENV_BITS 16 87 /* envelope output entries */ 88 #define EG_ENT 4096 89 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ 90 /* used static memory = EG_ENT*4 (byte) */ 91 92 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ 93 #define EG_DED EG_OFF 94 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ 95 #define EG_AED EG_DST 96 #define EG_AST 0 /* ATTACK START */ 97 98 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ 99 100 /* LFO table entries */ 101 #define VIB_ENT 512 102 #define VIB_SHIFT (32-9) 103 #define AMS_ENT 512 104 #define AMS_SHIFT (32-9) 105 106 #define VIB_RATE 256 107 108 /* -------------------- local defines , macros --------------------- */ 109 110 /* register number to channel number , slot offset */ 111 #define SLOT1 0 112 #define SLOT2 1 113 114 /* envelope phase */ 115 #define ENV_MOD_RR 0x00 116 #define ENV_MOD_DR 0x01 117 #define ENV_MOD_AR 0x02 118 119 /* -------------------- tables --------------------- */ 120 static const int slot_array[32]= 121 { 122 0, 2, 4, 1, 3, 5,-1,-1, 123 6, 8,10, 7, 9,11,-1,-1, 124 12,14,16,13,15,17,-1,-1, 125 -1,-1,-1,-1,-1,-1,-1,-1 126 }; 127 128 /* key scale level */ 129 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */ 130 #define DV (EG_STEP/2) 131 static const UINT32 KSL_TABLE[8*16]= 132 { 133 /* OCT 0 */ 134 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 135 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 136 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 137 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 138 /* OCT 1 */ 139 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 140 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 141 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, 142 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, 143 /* OCT 2 */ 144 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 145 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, 146 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, 147 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, 148 /* OCT 3 */ 149 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, 150 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, 151 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, 152 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, 153 /* OCT 4 */ 154 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, 155 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, 156 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, 157 10.875/DV,11.250/DV,11.625/DV,12.000/DV, 158 /* OCT 5 */ 159 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, 160 9.000/DV,10.125/DV,10.875/DV,11.625/DV, 161 12.000/DV,12.750/DV,13.125/DV,13.500/DV, 162 13.875/DV,14.250/DV,14.625/DV,15.000/DV, 163 /* OCT 6 */ 164 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, 165 12.000/DV,13.125/DV,13.875/DV,14.625/DV, 166 15.000/DV,15.750/DV,16.125/DV,16.500/DV, 167 16.875/DV,17.250/DV,17.625/DV,18.000/DV, 168 /* OCT 7 */ 169 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, 170 15.000/DV,16.125/DV,16.875/DV,17.625/DV, 171 18.000/DV,18.750/DV,19.125/DV,19.500/DV, 172 19.875/DV,20.250/DV,20.625/DV,21.000/DV 173 }; 174 #undef DV 175 176 /* sustain lebel table (3db per step) */ 177 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ 178 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST 179 static const INT32 SL_TABLE[16]={ 180 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), 181 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) 182 }; 183 #undef SC 184 185 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ 186 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ 187 /* TL_TABLE[ 0 to TL_MAX ] : plus section */ 188 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ 189 static INT32 *TL_TABLE; 190 191 /* pointers to TL_TABLE with sinwave output offset */ 192 static INT32 **SIN_TABLE; 193 194 /* LFO table */ 195 static INT32 *AMS_TABLE; 196 static INT32 *VIB_TABLE; 197 198 /* envelope output curve table */ 199 /* attack + decay + OFF */ 200 static INT32 ENV_CURVE[2*EG_ENT+1]; 201 202 /* multiple table */ 203 #define ML 2 204 static const UINT32 MUL_TABLE[16]= { 205 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ 206 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, 207 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML 208 }; 209 #undef ML 210 211 /* dummy attack / decay rate ( when rate == 0 ) */ 212 static INT32 RATE_0[16]= 213 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 214 215 /* -------------------- static state --------------------- */ 216 217 /* lock level of common table */ 218 static int num_lock = 0; 219 220 /* work table */ 221 static void *cur_chip = NULL; /* current chip point */ 222 /* currenct chip state */ 223 /* static OPLSAMPLE *bufL,*bufR; */ 224 static OPL_CH *S_CH; 225 static OPL_CH *E_CH; 226 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; 227 228 static INT32 outd[1]; 229 static INT32 ams; 230 static INT32 vib; 231 static INT32 *ams_table; 232 static INT32 *vib_table; 233 static INT32 amsIncr; 234 static INT32 vibIncr; 235 static INT32 feedback2; /* connect for SLOT 2 */ 236 237 /* log output level */ 238 #define LOG_ERR 3 /* ERROR */ 239 #define LOG_WAR 2 /* WARNING */ 240 #define LOG_INF 1 /* INFORMATION */ 241 242 //#define LOG_LEVEL LOG_INF 243 #define LOG_LEVEL LOG_ERR 244 245 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x 246 #define LOG(n,x) 247 248 /* --------------------- subroutines --------------------- */ 249 250 INLINE int Limit( int val, int max, int min ) { 251 if ( val > max ) 252 val = max; 253 else if ( val < min ) 254 val = min; 255 256 return val; 257 } 258 259 /* status set and IRQ handling */ 260 INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag) 261 { 262 /* set status flag */ 263 OPL->status |= flag; 264 if(!(OPL->status & 0x80)) 265 { 266 if(OPL->status & OPL->statusmask) 267 { /* IRQ on */ 268 OPL->status |= 0x80; 269 /* callback user interrupt handler (IRQ is OFF to ON) */ 270 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1); 271 } 272 } 273 } 274 275 /* status reset and IRQ handling */ 276 INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag) 277 { 278 /* reset status flag */ 279 OPL->status &=~flag; 280 if((OPL->status & 0x80)) 281 { 282 if (!(OPL->status & OPL->statusmask) ) 283 { 284 OPL->status &= 0x7f; 285 /* callback user interrupt handler (IRQ is ON to OFF) */ 286 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0); 287 } 288 } 289 } 290 291 /* IRQ mask set */ 292 INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) 293 { 294 OPL->statusmask = flag; 295 /* IRQ handling check */ 296 OPL_STATUS_SET(OPL,0); 297 OPL_STATUS_RESET(OPL,0); 298 } 299 300 /* ----- key on ----- */ 301 INLINE void OPL_KEYON(OPL_SLOT *SLOT) 302 { 303 /* sin wave restart */ 304 SLOT->Cnt = 0; 305 /* set attack */ 306 SLOT->evm = ENV_MOD_AR; 307 SLOT->evs = SLOT->evsa; 308 SLOT->evc = EG_AST; 309 SLOT->eve = EG_AED; 310 } 311 /* ----- key off ----- */ 312 INLINE void OPL_KEYOFF(OPL_SLOT *SLOT) 313 { 314 if( SLOT->evm > ENV_MOD_RR) 315 { 316 /* set envelope counter from envleope output */ 317 SLOT->evm = ENV_MOD_RR; 318 if( !(SLOT->evc&EG_DST) ) 319 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; 320 SLOT->evc = EG_DST; 321 SLOT->eve = EG_DED; 322 SLOT->evs = SLOT->evsr; 323 } 324 } 325 326 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ 327 /* return : envelope output */ 328 INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT ) 329 { 330 /* calcrate envelope generator */ 331 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve ) 332 { 333 switch( SLOT->evm ){ 334 case ENV_MOD_AR: /* ATTACK -> DECAY1 */ 335 /* next DR */ 336 SLOT->evm = ENV_MOD_DR; 337 SLOT->evc = EG_DST; 338 SLOT->eve = SLOT->SL; 339 SLOT->evs = SLOT->evsd; 340 break; 341 case ENV_MOD_DR: /* DECAY -> SL or RR */ 342 SLOT->evc = SLOT->SL; 343 SLOT->eve = EG_DED; 344 if(SLOT->eg_typ) 345 { 346 SLOT->evs = 0; 347 } 348 else 349 { 350 SLOT->evm = ENV_MOD_RR; 351 SLOT->evs = SLOT->evsr; 352 } 353 break; 354 case ENV_MOD_RR: /* RR -> OFF */ 355 SLOT->evc = EG_OFF; 356 SLOT->eve = EG_OFF+1; 357 SLOT->evs = 0; 358 break; 359 } 360 } 361 /* calcrate envelope */ 362 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0); 363 } 364 365 /* set algorithm connection */ 366 static void set_algorithm( OPL_CH *CH) 367 { 368 INT32 *carrier = &outd[0]; 369 CH->connect1 = CH->CON ? carrier : &feedback2; 370 CH->connect2 = carrier; 371 } 372 373 /* ---------- frequency counter for operater update ---------- */ 374 INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) 375 { 376 int ksr; 377 378 /* frequency step counter */ 379 SLOT->Incr = CH->fc * SLOT->mul; 380 ksr = CH->kcode >> SLOT->KSR; 381 382 if( SLOT->ksr != ksr ) 383 { 384 SLOT->ksr = ksr; 385 /* attack , decay rate recalcration */ 386 SLOT->evsa = SLOT->AR[ksr]; 387 SLOT->evsd = SLOT->DR[ksr]; 388 SLOT->evsr = SLOT->RR[ksr]; 389 } 390 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); 391 } 392 393 /* set multi,am,vib,EG-TYP,KSR,mul */ 394 INLINE void set_mul(FM_OPL *OPL,int slot,int v) 395 { 396 OPL_CH *CH = &OPL->P_CH[slot/2]; 397 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 398 399 SLOT->mul = MUL_TABLE[v&0x0f]; 400 SLOT->KSR = (v&0x10) ? 0 : 2; 401 SLOT->eg_typ = (v&0x20)>>5; 402 SLOT->vib = (v&0x40); 403 SLOT->ams = (v&0x80); 404 CALC_FCSLOT(CH,SLOT); 405 } 406 407 /* set ksl & tl */ 408 INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v) 409 { 410 OPL_CH *CH = &OPL->P_CH[slot/2]; 411 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 412 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */ 413 414 SLOT->ksl = ksl ? 3-ksl : 31; 415 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */ 416 417 if( !(OPL->mode&0x80) ) 418 { /* not CSM latch total level */ 419 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); 420 } 421 } 422 423 /* set attack rate & decay rate */ 424 INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v) 425 { 426 OPL_CH *CH = &OPL->P_CH[slot/2]; 427 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 428 int ar = v>>4; 429 int dr = v&0x0f; 430 431 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0; 432 SLOT->evsa = SLOT->AR[SLOT->ksr]; 433 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa; 434 435 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; 436 SLOT->evsd = SLOT->DR[SLOT->ksr]; 437 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd; 438 } 439 440 /* set sustain level & release rate */ 441 INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v) 442 { 443 OPL_CH *CH = &OPL->P_CH[slot/2]; 444 OPL_SLOT *SLOT = &CH->SLOT[slot&1]; 445 int sl = v>>4; 446 int rr = v & 0x0f; 447 448 SLOT->SL = SL_TABLE[sl]; 449 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL; 450 SLOT->RR = &OPL->DR_TABLE[rr<<2]; 451 SLOT->evsr = SLOT->RR[SLOT->ksr]; 452 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr; 453 } 454 455 /* operator output calcrator */ 456 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] 457 /* ---------- calcrate one of channel ---------- */ 458 INLINE void OPL_CALC_CH( OPL_CH *CH ) 459 { 460 UINT32 env_out; 461 OPL_SLOT *SLOT; 462 463 feedback2 = 0; 464 /* SLOT 1 */ 465 SLOT = &CH->SLOT[SLOT1]; 466 env_out=OPL_CALC_SLOT(SLOT); 467 if( env_out < EG_ENT-1 ) 468 { 469 /* PG */ 470 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 471 else SLOT->Cnt += SLOT->Incr; 472 /* connectoion */ 473 if(CH->FB) 474 { 475 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB; 476 CH->op1_out[1] = CH->op1_out[0]; 477 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1); 478 } 479 else 480 { 481 *CH->connect1 += OP_OUT(SLOT,env_out,0); 482 } 483 }else 484 { 485 CH->op1_out[1] = CH->op1_out[0]; 486 CH->op1_out[0] = 0; 487 } 488 /* SLOT 2 */ 489 SLOT = &CH->SLOT[SLOT2]; 490 env_out=OPL_CALC_SLOT(SLOT); 491 if( env_out < EG_ENT-1 ) 492 { 493 /* PG */ 494 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 495 else SLOT->Cnt += SLOT->Incr; 496 /* connectoion */ 497 outd[0] += OP_OUT(SLOT,env_out, feedback2); 498 } 499 } 500 501 /* ---------- calcrate rhythm block ---------- */ 502 #define WHITE_NOISE_db 6.0 503 INLINE void OPL_CALC_RH( OPL_CH *CH ) 504 { 505 UINT32 env_tam,env_sd,env_top,env_hh; 506 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP); 507 INT32 tone8; 508 509 OPL_SLOT *SLOT; 510 int env_out; 511 512 /* BD : same as FM serial mode and output level is large */ 513 feedback2 = 0; 514 /* SLOT 1 */ 515 SLOT = &CH[6].SLOT[SLOT1]; 516 env_out=OPL_CALC_SLOT(SLOT); 517 if( env_out < EG_ENT-1 ) 518 { 519 /* PG */ 520 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 521 else SLOT->Cnt += SLOT->Incr; 522 /* connectoion */ 523 if(CH[6].FB) 524 { 525 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB; 526 CH[6].op1_out[1] = CH[6].op1_out[0]; 527 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1); 528 } 529 else 530 { 531 feedback2 = OP_OUT(SLOT,env_out,0); 532 } 533 }else 534 { 535 feedback2 = 0; 536 CH[6].op1_out[1] = CH[6].op1_out[0]; 537 CH[6].op1_out[0] = 0; 538 } 539 /* SLOT 2 */ 540 SLOT = &CH[6].SLOT[SLOT2]; 541 env_out=OPL_CALC_SLOT(SLOT); 542 if( env_out < EG_ENT-1 ) 543 { 544 /* PG */ 545 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); 546 else SLOT->Cnt += SLOT->Incr; 547 /* connectoion */ 548 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2; 549 } 550 551 // SD (17) = mul14[fnum7] + white noise 552 // TAM (15) = mul15[fnum8] 553 // TOP (18) = fnum6(mul18[fnum8]+whitenoise) 554 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise 555 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise; 556 env_tam=OPL_CALC_SLOT(SLOT8_1); 557 env_top=OPL_CALC_SLOT(SLOT8_2); 558 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise; 559 560 /* PG */ 561 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE); 562 else SLOT7_1->Cnt += 2*SLOT7_1->Incr; 563 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE); 564 else SLOT7_2->Cnt += (CH[7].fc*8); 565 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE); 566 else SLOT8_1->Cnt += SLOT8_1->Incr; 567 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE); 568 else SLOT8_2->Cnt += (CH[8].fc*48); 569 570 tone8 = OP_OUT(SLOT8_2,whitenoise,0 ); 571 572 /* SD */ 573 if( env_sd < EG_ENT-1 ) 574 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8; 575 /* TAM */ 576 if( env_tam < EG_ENT-1 ) 577 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2; 578 /* TOP-CY */ 579 if( env_top < EG_ENT-1 ) 580 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2; 581 /* HH */ 582 if( env_hh < EG_ENT-1 ) 583 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2; 584 } 585 586 /* ----------- initialize time tabls ----------- */ 587 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE ) 588 { 589 int i; 590 double rate; 591 592 /* make attack rate & decay rate tables */ 593 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; 594 for (i = 4;i <= 60;i++){ 595 rate = OPL->freqbase; /* frequency rate */ 596 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ 597 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */ 598 rate *= (double)(EG_ENT<<ENV_BITS); 599 OPL->AR_TABLE[i] = rate / ARRATE; 600 OPL->DR_TABLE[i] = rate / DRRATE; 601 } 602 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++) 603 { 604 OPL->AR_TABLE[i] = EG_AED-1; 605 OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; 606 } 607 #if 0 608 for (i = 0;i < 64 ;i++){ /* make for overflow area */ 609 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i, 610 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), 611 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) )); 612 } 613 #endif 614 } 615 616 /* ---------- generic table initialize ---------- */ 617 static int OPLOpenTable( void ) 618 { 619 int s,t; 620 double rate; 621 int i,j; 622 double pom; 623 624 /* allocate dynamic tables */ 625 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL) 626 return 0; 627 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL) 628 { 629 free(TL_TABLE); 630 return 0; 631 } 632 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL) 633 { 634 free(TL_TABLE); 635 free(SIN_TABLE); 636 return 0; 637 } 638 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL) 639 { 640 free(TL_TABLE); 641 free(SIN_TABLE); 642 free(AMS_TABLE); 643 return 0; 644 } 645 /* make total level table */ 646 for (t = 0;t < EG_ENT-1 ;t++){ 647 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */ 648 TL_TABLE[ t] = (int)rate; 649 TL_TABLE[TL_MAX+t] = -TL_TABLE[t]; 650 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ 651 } 652 /* fill volume off area */ 653 for ( t = EG_ENT-1; t < TL_MAX ;t++){ 654 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0; 655 } 656 657 /* make sinwave table (total level offet) */ 658 /* degree 0 = degree 180 = off */ 659 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1]; 660 for (s = 1;s <= SIN_ENT/4;s++){ 661 pom = sin(2*PI*s/SIN_ENT); /* sin */ 662 pom = 20*log10(1/pom); /* decibel */ 663 j = pom / EG_STEP; /* TL_TABLE steps */ 664 665 /* degree 0 - 90 , degree 180 - 90 : plus section */ 666 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j]; 667 /* degree 180 - 270 , degree 360 - 270 : minus section */ 668 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j]; 669 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ 670 } 671 for (s = 0;s < SIN_ENT;s++) 672 { 673 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; 674 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)]; 675 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s]; 676 } 677 678 /* envelope counter -> envelope output table */ 679 for (i=0; i<EG_ENT; i++) 680 { 681 /* ATTACK curve */ 682 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT; 683 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ 684 ENV_CURVE[i] = (int)pom; 685 /* DECAY ,RELEASE curve */ 686 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i; 687 } 688 /* off */ 689 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1; 690 /* make LFO ams table */ 691 for (i=0; i<AMS_ENT; i++) 692 { 693 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */ 694 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */ 695 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */ 696 } 697 /* make LFO vibrate table */ 698 for (i=0; i<VIB_ENT; i++) 699 { 700 /* 100cent = 1seminote = 6% ?? */ 701 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */ 702 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */ 703 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */ 704 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ 705 } 706 return 1; 707 } 708 709 710 static void OPLCloseTable( void ) 711 { 712 free(TL_TABLE); 713 free(SIN_TABLE); 714 free(AMS_TABLE); 715 free(VIB_TABLE); 716 } 717 718 /* CSM Key Control */ 719 INLINE void CSMKeyControll(OPL_CH *CH) 720 { 721 OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; 722 OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; 723 /* all key off */ 724 OPL_KEYOFF(slot1); 725 OPL_KEYOFF(slot2); 726 /* total level latch */ 727 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); 728 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); 729 /* key on */ 730 CH->op1_out[0] = CH->op1_out[1] = 0; 731 OPL_KEYON(slot1); 732 OPL_KEYON(slot2); 733 } 734 735 /* ---------- opl initialize ---------- */ 736 static void OPL_initialize(FM_OPL *OPL) 737 { 738 int fn; 739 740 /* frequency base */ 741 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0; 742 /* Timer base time */ 743 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); 744 /* make time tables */ 745 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE ); 746 /* make fnumber -> increment counter table */ 747 for( fn=0 ; fn < 1024 ; fn++ ) 748 { 749 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2; 750 } 751 /* LFO freq.table */ 752 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0; 753 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0; 754 } 755 756 /* ---------- write a OPL registers ---------- */ 757 static void OPLWriteReg(FM_OPL *OPL, int r, int v) 758 { 759 OPL_CH *CH; 760 int slot; 761 int block_fnum; 762 763 switch(r&0xe0) 764 { 765 case 0x00: /* 00-1f:control */ 766 switch(r&0x1f) 767 { 768 case 0x01: 769 /* wave selector enable */ 770 if(OPL->type&OPL_TYPE_WAVESEL) 771 { 772 OPL->wavesel = v&0x20; 773 if(!OPL->wavesel) 774 { 775 /* preset compatible mode */ 776 int c; 777 for(c=0;c<OPL->max_ch;c++) 778 { 779 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; 780 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; 781 } 782 } 783 } 784 return; 785 case 0x02: /* Timer 1 */ 786 OPL->T[0] = (256-v)*4; 787 break; 788 case 0x03: /* Timer 2 */ 789 OPL->T[1] = (256-v)*16; 790 return; 791 case 0x04: /* IRQ clear / mask and Timer enable */ 792 if(v&0x80) 793 { /* IRQ flag clear */ 794 OPL_STATUS_RESET(OPL,0x7f); 795 } 796 else 797 { /* set IRQ mask ,timer enable*/ 798 UINT8 st1 = v&1; 799 UINT8 st2 = (v>>1)&1; 800 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ 801 OPL_STATUS_RESET(OPL,v&0x78); 802 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); 803 /* timer 2 */ 804 if(OPL->st[1] != st2) 805 { 806 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; 807 OPL->st[1] = st2; 808 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval); 809 } 810 /* timer 1 */ 811 if(OPL->st[0] != st1) 812 { 813 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; 814 OPL->st[0] = st1; 815 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval); 816 } 817 } 818 return; 819 #if BUILD_Y8950 820 case 0x06: /* Key Board OUT */ 821 if(OPL->type&OPL_TYPE_KEYBOARD) 822 { 823 if(OPL->keyboardhandler_w) 824 OPL->keyboardhandler_w(OPL->keyboard_param,v); 825 else 826 LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n")); 827 } 828 return; 829 case 0x07: /* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ 830 if(OPL->type&OPL_TYPE_ADPCM) 831 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); 832 return; 833 case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ 834 OPL->mode = v; 835 v&=0x1f; /* for DELTA-T unit */ 836 case 0x09: /* START ADD */ 837 case 0x0a: 838 case 0x0b: /* STOP ADD */ 839 case 0x0c: 840 case 0x0d: /* PRESCALE */ 841 case 0x0e: 842 case 0x0f: /* ADPCM data */ 843 case 0x10: /* DELTA-N */ 844 case 0x11: /* DELTA-N */ 845 case 0x12: /* EG-CTRL */ 846 if(OPL->type&OPL_TYPE_ADPCM) 847 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); 848 return; 849 #if 0 850 case 0x15: /* DAC data */ 851 case 0x16: 852 case 0x17: /* SHIFT */ 853 return; 854 case 0x18: /* I/O CTRL (Direction) */ 855 if(OPL->type&OPL_TYPE_IO) 856 OPL->portDirection = v&0x0f; 857 return; 858 case 0x19: /* I/O DATA */ 859 if(OPL->type&OPL_TYPE_IO) 860 { 861 OPL->portLatch = v; 862 if(OPL->porthandler_w) 863 OPL->porthandler_w(OPL->port_param,v&OPL->portDirection); 864 } 865 return; 866 case 0x1a: /* PCM data */ 867 return; 868 #endif 869 #endif 870 } 871 break; 872 case 0x20: /* am,vib,ksr,eg type,mul */ 873 slot = slot_array[r&0x1f]; 874 if(slot == -1) return; 875 set_mul(OPL,slot,v); 876 return; 877 case 0x40: 878 slot = slot_array[r&0x1f]; 879 if(slot == -1) return; 880 set_ksl_tl(OPL,slot,v); 881 return; 882 case 0x60: 883 slot = slot_array[r&0x1f]; 884 if(slot == -1) return; 885 set_ar_dr(OPL,slot,v); 886 return; 887 case 0x80: 888 slot = slot_array[r&0x1f]; 889 if(slot == -1) return; 890 set_sl_rr(OPL,slot,v); 891 return; 892 case 0xa0: 893 switch(r) 894 { 895 case 0xbd: 896 /* amsep,vibdep,r,bd,sd,tom,tc,hh */ 897 { 898 UINT8 rkey = OPL->rhythm^v; 899 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0]; 900 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0]; 901 OPL->rhythm = v&0x3f; 902 if(OPL->rhythm&0x20) 903 { 904 #if 0 905 usrintf_showmessage("OPL Rhythm mode select"); 906 #endif 907 /* BD key on/off */ 908 if(rkey&0x10) 909 { 910 if(v&0x10) 911 { 912 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; 913 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]); 914 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]); 915 } 916 else 917 { 918 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]); 919 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]); 920 } 921 } 922 /* SD key on/off */ 923 if(rkey&0x08) 924 { 925 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]); 926 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]); 927 }/* TAM key on/off */ 928 if(rkey&0x04) 929 { 930 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]); 931 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]); 932 } 933 /* TOP-CY key on/off */ 934 if(rkey&0x02) 935 { 936 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]); 937 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]); 938 } 939 /* HH key on/off */ 940 if(rkey&0x01) 941 { 942 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]); 943 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]); 944 } 945 } 946 } 947 return; 948 } 949 /* keyon,block,fnum */ 950 if( (r&0x0f) > 8) return; 951 CH = &OPL->P_CH[r&0x0f]; 952 if(!(r&0x10)) 953 { /* a0-a8 */ 954 block_fnum = (CH->block_fnum&0x1f00) | v; 955 } 956 else 957 { /* b0-b8 */ 958 int keyon = (v>>5)&1; 959 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); 960 if(CH->keyon != keyon) 961 { 962 if( (CH->keyon=keyon) ) 963 { 964 CH->op1_out[0] = CH->op1_out[1] = 0; 965 OPL_KEYON(&CH->SLOT[SLOT1]); 966 OPL_KEYON(&CH->SLOT[SLOT2]); 967 } 968 else 969 { 970 OPL_KEYOFF(&CH->SLOT[SLOT1]); 971 OPL_KEYOFF(&CH->SLOT[SLOT2]); 972 } 973 } 974 } 975 /* update */ 976 if(CH->block_fnum != block_fnum) 977 { 978 int blockRv = 7-(block_fnum>>10); 979 int fnum = block_fnum&0x3ff; 980 CH->block_fnum = block_fnum; 981 982 CH->ksl_base = KSL_TABLE[block_fnum>>6]; 983 CH->fc = OPL->FN_TABLE[fnum]>>blockRv; 984 CH->kcode = CH->block_fnum>>9; 985 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1; 986 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); 987 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); 988 } 989 return; 990 case 0xc0: 991 /* FB,C */ 992 if( (r&0x0f) > 8) return; 993 CH = &OPL->P_CH[r&0x0f]; 994 { 995 int feedback = (v>>1)&7; 996 CH->FB = feedback ? (8+1) - feedback : 0; 997 CH->CON = v&1; 998 set_algorithm(CH); 999 } 1000 return; 1001 case 0xe0: /* wave type */ 1002 slot = slot_array[r&0x1f]; 1003 if(slot == -1) return; 1004 CH = &OPL->P_CH[slot/2]; 1005 if(OPL->wavesel) 1006 { 1007 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ 1008 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT]; 1009 } 1010 return; 1011 } 1012 } 1013 1014 /* lock/unlock for common table */ 1015 static int OPL_LockTable(void) 1016 { 1017 num_lock++; 1018 if(num_lock>1) return 0; 1019 /* first time */ 1020 cur_chip = NULL; 1021 /* allocate total level table (128kb space) */ 1022 if( !OPLOpenTable() ) 1023 { 1024 num_lock--; 1025 return -1; 1026 } 1027 return 0; 1028 } 1029 1030 static void OPL_UnLockTable(void) 1031 { 1032 if(num_lock) num_lock--; 1033 if(num_lock) return; 1034 /* last time */ 1035 cur_chip = NULL; 1036 OPLCloseTable(); 1037 } 1038 1039 #if (BUILD_YM3812 || BUILD_YM3526) 1040 /*******************************************************************************/ 1041 /* YM3812 local section */ 1042 /*******************************************************************************/ 1043 1044 /* ---------- update one of chip ----------- */ 1045 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) 1046 { 1047 int i; 1048 int data; 1049 OPLSAMPLE *buf = buffer; 1050 UINT32 amsCnt = OPL->amsCnt; 1051 UINT32 vibCnt = OPL->vibCnt; 1052 UINT8 rhythm = OPL->rhythm&0x20; 1053 OPL_CH *CH,*R_CH; 1054 1055 if( (void *)OPL != cur_chip ){ 1056 cur_chip = (void *)OPL; 1057 /* channel pointers */ 1058 S_CH = OPL->P_CH; 1059 E_CH = &S_CH[9]; 1060 /* rhythm slot */ 1061 SLOT7_1 = &S_CH[7].SLOT[SLOT1]; 1062 SLOT7_2 = &S_CH[7].SLOT[SLOT2]; 1063 SLOT8_1 = &S_CH[8].SLOT[SLOT1]; 1064 SLOT8_2 = &S_CH[8].SLOT[SLOT2]; 1065 /* LFO state */ 1066 amsIncr = OPL->amsIncr; 1067 vibIncr = OPL->vibIncr; 1068 ams_table = OPL->ams_table; 1069 vib_table = OPL->vib_table; 1070 } 1071 R_CH = rhythm ? &S_CH[6] : E_CH; 1072 for( i=0; i < length ; i++ ) 1073 { 1074 /* channel A channel B channel C */ 1075 /* LFO */ 1076 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; 1077 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; 1078 outd[0] = 0; 1079 /* FM part */ 1080 for(CH=S_CH ; CH < R_CH ; CH++) 1081 OPL_CALC_CH(CH); 1082 /* Rythn part */ 1083 if(rhythm) 1084 OPL_CALC_RH(S_CH); 1085 /* limit check */ 1086 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); 1087 /* store to sound buffer */ 1088 buf[i] = data >> OPL_OUTSB; 1089 } 1090 1091 OPL->amsCnt = amsCnt; 1092 OPL->vibCnt = vibCnt; 1093 #ifdef OPL_OUTPUT_LOG 1094 if(opl_dbg_fp) 1095 { 1096 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) 1097 if( opl_dbg_opl[opl_dbg_chip] == OPL) break; 1098 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256); 1099 } 1100 #endif 1101 } 1102 #endif /* (BUILD_YM3812 || BUILD_YM3526) */ 1103 1104 #if BUILD_Y8950 1105 1106 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) 1107 { 1108 int i; 1109 int data; 1110 OPLSAMPLE *buf = buffer; 1111 UINT32 amsCnt = OPL->amsCnt; 1112 UINT32 vibCnt = OPL->vibCnt; 1113 UINT8 rhythm = OPL->rhythm&0x20; 1114 OPL_CH *CH,*R_CH; 1115 YM_DELTAT *DELTAT = OPL->deltat; 1116 1117 /* setup DELTA-T unit */ 1118 YM_DELTAT_DECODE_PRESET(DELTAT); 1119 1120 if( (void *)OPL != cur_chip ){ 1121 cur_chip = (void *)OPL; 1122 /* channel pointers */ 1123 S_CH = OPL->P_CH; 1124 E_CH = &S_CH[9]; 1125 /* rhythm slot */ 1126 SLOT7_1 = &S_CH[7].SLOT[SLOT1]; 1127 SLOT7_2 = &S_CH[7].SLOT[SLOT2]; 1128 SLOT8_1 = &S_CH[8].SLOT[SLOT1]; 1129 SLOT8_2 = &S_CH[8].SLOT[SLOT2]; 1130 /* LFO state */ 1131 amsIncr = OPL->amsIncr; 1132 vibIncr = OPL->vibIncr; 1133 ams_table = OPL->ams_table; 1134 vib_table = OPL->vib_table; 1135 } 1136 R_CH = rhythm ? &S_CH[6] : E_CH; 1137 for( i=0; i < length ; i++ ) 1138 { 1139 /* channel A channel B channel C */ 1140 /* LFO */ 1141 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; 1142 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; 1143 outd[0] = 0; 1144 /* deltaT ADPCM */ 1145 if( DELTAT->portstate ) 1146 YM_DELTAT_ADPCM_CALC(DELTAT); 1147 /* FM part */ 1148 for(CH=S_CH ; CH < R_CH ; CH++) 1149 OPL_CALC_CH(CH); 1150 /* Rythn part */ 1151 if(rhythm) 1152 OPL_CALC_RH(S_CH); 1153 /* limit check */ 1154 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); 1155 /* store to sound buffer */ 1156 buf[i] = data >> OPL_OUTSB; 1157 } 1158 OPL->amsCnt = amsCnt; 1159 OPL->vibCnt = vibCnt; 1160 /* deltaT START flag */ 1161 if( !DELTAT->portstate ) 1162 OPL->status &= 0xfe; 1163 } 1164 #endif 1165 1166 /* ---------- reset one of chip ---------- */ 1167 void OPLResetChip(FM_OPL *OPL) 1168 { 1169 int c,s; 1170 int i; 1171 1172 /* reset chip */ 1173 OPL->mode = 0; /* normal mode */ 1174 OPL_STATUS_RESET(OPL,0x7f); 1175 /* reset with register write */ 1176 OPLWriteReg(OPL,0x01,0); /* wabesel disable */ 1177 OPLWriteReg(OPL,0x02,0); /* Timer1 */ 1178 OPLWriteReg(OPL,0x03,0); /* Timer2 */ 1179 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ 1180 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); 1181 /* reset OPerator paramater */ 1182 for( c = 0 ; c < OPL->max_ch ; c++ ) 1183 { 1184 OPL_CH *CH = &OPL->P_CH[c]; 1185 /* OPL->P_CH[c].PAN = OPN_CENTER; */ 1186 for(s = 0 ; s < 2 ; s++ ) 1187 { 1188 /* wave table */ 1189 CH->SLOT[s].wavetable = &SIN_TABLE[0]; 1190 /* CH->SLOT[s].evm = ENV_MOD_RR; */ 1191 CH->SLOT[s].evc = EG_OFF; 1192 CH->SLOT[s].eve = EG_OFF+1; 1193 CH->SLOT[s].evs = 0; 1194 } 1195 } 1196 #if BUILD_Y8950 1197 if(OPL->type&OPL_TYPE_ADPCM) 1198 { 1199 YM_DELTAT *DELTAT = OPL->deltat; 1200 1201 DELTAT->freqbase = OPL->freqbase; 1202 DELTAT->output_pointer = outd; 1203 DELTAT->portshift = 5; 1204 DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS; 1205 YM_DELTAT_ADPCM_Reset(DELTAT,0); 1206 } 1207 #endif 1208 } 1209 1210 /* ---------- Create one of vietual YM3812 ---------- */ 1211 /* 'rate' is sampling rate and 'bufsiz' is the size of the */ 1212 FM_OPL *OPLCreate(int type, int clock, int rate) 1213 { 1214 char *ptr; 1215 FM_OPL *OPL; 1216 int state_size; 1217 int max_ch = 9; /* normaly 9 channels */ 1218 1219 if( OPL_LockTable() ==-1) return NULL; 1220 /* allocate OPL state space */ 1221 state_size = sizeof(FM_OPL); 1222 state_size += sizeof(OPL_CH)*max_ch; 1223 #if BUILD_Y8950 1224 if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT); 1225 #endif 1226 /* allocate memory block */ 1227 ptr = malloc(state_size); 1228 if(ptr==NULL) return NULL; 1229 /* clear */ 1230 memset(ptr,0,state_size); 1231 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL); 1232 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch; 1233 #if BUILD_Y8950 1234 if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT); 1235 #endif 1236 /* set channel state pointer */ 1237 OPL->type = type; 1238 OPL->clock = clock; 1239 OPL->rate = rate; 1240 OPL->max_ch = max_ch; 1241 /* init grobal tables */ 1242 OPL_initialize(OPL); 1243 /* reset chip */ 1244 OPLResetChip(OPL); 1245 #ifdef OPL_OUTPUT_LOG 1246 if(!opl_dbg_fp) 1247 { 1248 opl_dbg_fp = fopen("opllog.opl","wb"); 1249 opl_dbg_maxchip = 0; 1250 } 1251 if(opl_dbg_fp) 1252 { 1253 opl_dbg_opl[opl_dbg_maxchip] = OPL; 1254 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip, 1255 type, 1256 clock&0xff, 1257 (clock/0x100)&0xff, 1258 (clock/0x10000)&0xff, 1259 (clock/0x1000000)&0xff); 1260 opl_dbg_maxchip++; 1261 } 1262 #endif 1263 return OPL; 1264 } 1265 1266 /* ---------- Destroy one of vietual YM3812 ---------- */ 1267 void OPLDestroy(FM_OPL *OPL) 1268 { 1269 #ifdef OPL_OUTPUT_LOG 1270 if(opl_dbg_fp) 1271 { 1272 fclose(opl_dbg_fp); 1273 opl_dbg_fp = NULL; 1274 } 1275 #endif 1276 OPL_UnLockTable(); 1277 free(OPL); 1278 } 1279 1280 /* ---------- Option handlers ---------- */ 1281 1282 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset) 1283 { 1284 OPL->TimerHandler = TimerHandler; 1285 OPL->TimerParam = channelOffset; 1286 } 1287 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param) 1288 { 1289 OPL->IRQHandler = IRQHandler; 1290 OPL->IRQParam = param; 1291 } 1292 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param) 1293 { 1294 OPL->UpdateHandler = UpdateHandler; 1295 OPL->UpdateParam = param; 1296 } 1297 #if BUILD_Y8950 1298 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param) 1299 { 1300 OPL->porthandler_w = PortHandler_w; 1301 OPL->porthandler_r = PortHandler_r; 1302 OPL->port_param = param; 1303 } 1304 1305 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param) 1306 { 1307 OPL->keyboardhandler_w = KeyboardHandler_w; 1308 OPL->keyboardhandler_r = KeyboardHandler_r; 1309 OPL->keyboard_param = param; 1310 } 1311 #endif 1312 /* ---------- YM3812 I/O interface ---------- */ 1313 int OPLWrite(FM_OPL *OPL,int a,int v) 1314 { 1315 if( !(a&1) ) 1316 { /* address port */ 1317 OPL->address = v & 0xff; 1318 } 1319 else 1320 { /* data port */ 1321 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); 1322 #ifdef OPL_OUTPUT_LOG 1323 if(opl_dbg_fp) 1324 { 1325 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) 1326 if( opl_dbg_opl[opl_dbg_chip] == OPL) break; 1327 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v); 1328 } 1329 #endif 1330 OPLWriteReg(OPL,OPL->address,v); 1331 } 1332 return OPL->status>>7; 1333 } 1334 1335 unsigned char OPLRead(FM_OPL *OPL,int a) 1336 { 1337 if( !(a&1) ) 1338 { /* status port */ 1339 return OPL->status & (OPL->statusmask|0x80); 1340 } 1341 /* data port */ 1342 switch(OPL->address) 1343 { 1344 case 0x05: /* KeyBoard IN */ 1345 if(OPL->type&OPL_TYPE_KEYBOARD) 1346 { 1347 if(OPL->keyboardhandler_r) 1348 return OPL->keyboardhandler_r(OPL->keyboard_param); 1349 else { 1350 LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n")); 1351 } 1352 } 1353 return 0; 1354 #if 0 1355 case 0x0f: /* ADPCM-DATA */ 1356 return 0; 1357 #endif 1358 case 0x19: /* I/O DATA */ 1359 if(OPL->type&OPL_TYPE_IO) 1360 { 1361 if(OPL->porthandler_r) 1362 return OPL->porthandler_r(OPL->port_param); 1363 else { 1364 LOG(LOG_WAR,("OPL:read unmapped I/O port\n")); 1365 } 1366 } 1367 return 0; 1368 case 0x1a: /* PCM-DATA */ 1369 return 0; 1370 } 1371 return 0; 1372 } 1373 1374 int OPLTimerOver(FM_OPL *OPL,int c) 1375 { 1376 if( c ) 1377 { /* Timer B */ 1378 OPL_STATUS_SET(OPL,0x20); 1379 } 1380 else 1381 { /* Timer A */ 1382 OPL_STATUS_SET(OPL,0x40); 1383 /* CSM mode key,TL control */ 1384 if( OPL->mode & 0x80 ) 1385 { /* CSM mode total level latch and auto key on */ 1386 int ch; 1387 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); 1388 for(ch=0;ch<9;ch++) 1389 CSMKeyControll( &OPL->P_CH[ch] ); 1390 } 1391 } 1392 /* reload timer */ 1393 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase); 1394 return OPL->status>>7; 1395 } 1396