1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
10
11 /*
12 preliminary :
13 Problem :
14 note:
15 */
16
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18 *
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
23 *
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
28 *
29 * You should have received a copy of the GNU Lesser General Public
30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
31 */
32
33 #include "qemu/osdep.h"
34 #include <math.h>
35 //#include "driver.h" /* use M.A.M.E. */
36 #include "fmopl.h"
37 #ifndef PI
38 #define PI 3.14159265358979323846
39 #endif
40
41 /* -------------------- for debug --------------------- */
42 /* #define OPL_OUTPUT_LOG */
43 #ifdef OPL_OUTPUT_LOG
44 static FILE *opl_dbg_fp = NULL;
45 static FM_OPL *opl_dbg_opl[16];
46 static int opl_dbg_maxchip,opl_dbg_chip;
47 #endif
48
49 /* -------------------- preliminary define section --------------------- */
50 /* attack/decay rate time rate */
51 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
52 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
53
54 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
55
56 #define FREQ_BITS 24 /* frequency turn */
57
58 /* counter bits = 20 , octerve 7 */
59 #define FREQ_RATE (1<<(FREQ_BITS-20))
60 #define TL_BITS (FREQ_BITS+2)
61
62 /* final output shift , limit minimum and maximum */
63 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
64 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
65 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
66
67 /* -------------------- quality selection --------------------- */
68
69 /* sinwave entries */
70 /* used static memory = SIN_ENT * 4 (byte) */
71 #define SIN_ENT 2048
72
73 /* output level entries (envelope,sinwave) */
74 /* envelope counter lower bits */
75 #define ENV_BITS 16
76 /* envelope output entries */
77 #define EG_ENT 4096
78 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
79 /* used static memory = EG_ENT*4 (byte) */
80
81 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
82 #define EG_DED EG_OFF
83 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
84 #define EG_AED EG_DST
85 #define EG_AST 0 /* ATTACK START */
86
87 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
88
89 /* LFO table entries */
90 #define VIB_ENT 512
91 #define VIB_SHIFT (32-9)
92 #define AMS_ENT 512
93 #define AMS_SHIFT (32-9)
94
95 #define VIB_RATE 256
96
97 /* -------------------- local defines , macros --------------------- */
98
99 /* register number to channel number , slot offset */
100 #define SLOT1 0
101 #define SLOT2 1
102
103 /* envelope phase */
104 #define ENV_MOD_RR 0x00
105 #define ENV_MOD_DR 0x01
106 #define ENV_MOD_AR 0x02
107
108 /* -------------------- tables --------------------- */
109 static const int slot_array[32]=
110 {
111 0, 2, 4, 1, 3, 5,-1,-1,
112 6, 8,10, 7, 9,11,-1,-1,
113 12,14,16,13,15,17,-1,-1,
114 -1,-1,-1,-1,-1,-1,-1,-1
115 };
116
117 /* key scale level */
118 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
119 #define DV (EG_STEP/2)
120 static const uint32_t KSL_TABLE[8*16]=
121 {
122 /* OCT 0 */
123 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
124 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
125 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
126 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
127 /* OCT 1 */
128 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
129 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
130 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
131 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
132 /* OCT 2 */
133 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
135 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
136 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
137 /* OCT 3 */
138 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
139 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
140 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
141 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
142 /* OCT 4 */
143 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
144 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
145 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
146 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
147 /* OCT 5 */
148 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
149 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
150 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
151 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
152 /* OCT 6 */
153 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
154 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
155 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
156 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
157 /* OCT 7 */
158 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
159 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
160 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
161 19.875/DV,20.250/DV,20.625/DV,21.000/DV
162 };
163 #undef DV
164
165 /* sustain lebel table (3db per step) */
166 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
167 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
168 static const int32_t SL_TABLE[16]={
169 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
170 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
171 };
172 #undef SC
173
174 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
175 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
176 /* TL_TABLE[ 0 to TL_MAX ] : plus section */
177 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
178 static int32_t *TL_TABLE;
179
180 /* pointers to TL_TABLE with sinwave output offset */
181 static int32_t **SIN_TABLE;
182
183 /* LFO table */
184 static int32_t *AMS_TABLE;
185 static int32_t *VIB_TABLE;
186
187 /* envelope output curve table */
188 /* attack + decay + OFF */
189 static int32_t *ENV_CURVE;
190
191 /* multiple table */
192 #define ML 2
193 static const uint32_t MUL_TABLE[16]= {
194 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
195 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
196 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
197 };
198 #undef ML
199
200 /* dummy attack / decay rate ( when rate == 0 ) */
201 static int32_t RATE_0[16]=
202 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
203
204 /* -------------------- static state --------------------- */
205
206 /* lock level of common table */
207 static int num_lock = 0;
208
209 /* work table */
210 static void *cur_chip = NULL; /* current chip point */
211 /* currenct chip state */
212 /* static OPLSAMPLE *bufL,*bufR; */
213 static OPL_CH *S_CH;
214 static OPL_CH *E_CH;
215 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
216
217 static int32_t outd[1];
218 static int32_t ams;
219 static int32_t vib;
220 static int32_t *ams_table;
221 static int32_t *vib_table;
222 static int32_t amsIncr;
223 static int32_t vibIncr;
224 static int32_t feedback2; /* connect for SLOT 2 */
225
226 /* log output level */
227 #define LOG_ERR 3 /* ERROR */
228 #define LOG_WAR 2 /* WARNING */
229 #define LOG_INF 1 /* INFORMATION */
230
231 //#define LOG_LEVEL LOG_INF
232 #define LOG_LEVEL LOG_ERR
233
234 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
235 #define LOG(n,x)
236
237 /* --------------------- subroutines --------------------- */
238
Limit(int val,int max,int min)239 static inline int Limit( int val, int max, int min ) {
240 if ( val > max )
241 val = max;
242 else if ( val < min )
243 val = min;
244
245 return val;
246 }
247
248 /* status set and IRQ handling */
OPL_STATUS_SET(FM_OPL * OPL,int flag)249 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
250 {
251 /* set status flag */
252 OPL->status |= flag;
253 if(!(OPL->status & 0x80))
254 {
255 if(OPL->status & OPL->statusmask)
256 { /* IRQ on */
257 OPL->status |= 0x80;
258 }
259 }
260 }
261
262 /* status reset and IRQ handling */
OPL_STATUS_RESET(FM_OPL * OPL,int flag)263 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
264 {
265 /* reset status flag */
266 OPL->status &=~flag;
267 if((OPL->status & 0x80))
268 {
269 if (!(OPL->status & OPL->statusmask) )
270 {
271 OPL->status &= 0x7f;
272 }
273 }
274 }
275
276 /* IRQ mask set */
OPL_STATUSMASK_SET(FM_OPL * OPL,int flag)277 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
278 {
279 OPL->statusmask = flag;
280 /* IRQ handling check */
281 OPL_STATUS_SET(OPL,0);
282 OPL_STATUS_RESET(OPL,0);
283 }
284
285 /* ----- key on ----- */
OPL_KEYON(OPL_SLOT * SLOT)286 static inline void OPL_KEYON(OPL_SLOT *SLOT)
287 {
288 /* sin wave restart */
289 SLOT->Cnt = 0;
290 /* set attack */
291 SLOT->evm = ENV_MOD_AR;
292 SLOT->evs = SLOT->evsa;
293 SLOT->evc = EG_AST;
294 SLOT->eve = EG_AED;
295 }
296 /* ----- key off ----- */
OPL_KEYOFF(OPL_SLOT * SLOT)297 static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
298 {
299 if( SLOT->evm > ENV_MOD_RR)
300 {
301 /* set envelope counter from envleope output */
302 SLOT->evm = ENV_MOD_RR;
303 if( !(SLOT->evc&EG_DST) )
304 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
305 SLOT->evc = EG_DST;
306 SLOT->eve = EG_DED;
307 SLOT->evs = SLOT->evsr;
308 }
309 }
310
311 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
312 /* return : envelope output */
OPL_CALC_SLOT(OPL_SLOT * SLOT)313 static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT )
314 {
315 /* calcrate envelope generator */
316 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
317 {
318 switch( SLOT->evm ){
319 case ENV_MOD_AR: /* ATTACK -> DECAY1 */
320 /* next DR */
321 SLOT->evm = ENV_MOD_DR;
322 SLOT->evc = EG_DST;
323 SLOT->eve = SLOT->SL;
324 SLOT->evs = SLOT->evsd;
325 break;
326 case ENV_MOD_DR: /* DECAY -> SL or RR */
327 SLOT->evc = SLOT->SL;
328 SLOT->eve = EG_DED;
329 if(SLOT->eg_typ)
330 {
331 SLOT->evs = 0;
332 }
333 else
334 {
335 SLOT->evm = ENV_MOD_RR;
336 SLOT->evs = SLOT->evsr;
337 }
338 break;
339 case ENV_MOD_RR: /* RR -> OFF */
340 SLOT->evc = EG_OFF;
341 SLOT->eve = EG_OFF+1;
342 SLOT->evs = 0;
343 break;
344 }
345 }
346 /* calcrate envelope */
347 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
348 }
349
350 /* set algorithm connection */
set_algorithm(OPL_CH * CH)351 static void set_algorithm( OPL_CH *CH)
352 {
353 int32_t *carrier = &outd[0];
354 CH->connect1 = CH->CON ? carrier : &feedback2;
355 CH->connect2 = carrier;
356 }
357
358 /* ---------- frequency counter for operator update ---------- */
CALC_FCSLOT(OPL_CH * CH,OPL_SLOT * SLOT)359 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
360 {
361 int ksr;
362
363 /* frequency step counter */
364 SLOT->Incr = CH->fc * SLOT->mul;
365 ksr = CH->kcode >> SLOT->KSR;
366
367 if( SLOT->ksr != ksr )
368 {
369 SLOT->ksr = ksr;
370 /* attack , decay rate recalcration */
371 SLOT->evsa = SLOT->AR[ksr];
372 SLOT->evsd = SLOT->DR[ksr];
373 SLOT->evsr = SLOT->RR[ksr];
374 }
375 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
376 }
377
378 /* set multi,am,vib,EG-TYP,KSR,mul */
set_mul(FM_OPL * OPL,int slot,int v)379 static inline void set_mul(FM_OPL *OPL,int slot,int v)
380 {
381 OPL_CH *CH = &OPL->P_CH[slot/2];
382 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
383
384 SLOT->mul = MUL_TABLE[v&0x0f];
385 SLOT->KSR = (v&0x10) ? 0 : 2;
386 SLOT->eg_typ = (v&0x20)>>5;
387 SLOT->vib = (v&0x40);
388 SLOT->ams = (v&0x80);
389 CALC_FCSLOT(CH,SLOT);
390 }
391
392 /* set ksl & tl */
set_ksl_tl(FM_OPL * OPL,int slot,int v)393 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
394 {
395 OPL_CH *CH = &OPL->P_CH[slot/2];
396 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
397 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
398
399 SLOT->ksl = ksl ? 3-ksl : 31;
400 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
401
402 if( !(OPL->mode&0x80) )
403 { /* not CSM latch total level */
404 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
405 }
406 }
407
408 /* set attack rate & decay rate */
set_ar_dr(FM_OPL * OPL,int slot,int v)409 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
410 {
411 OPL_CH *CH = &OPL->P_CH[slot/2];
412 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
413 int ar = v>>4;
414 int dr = v&0x0f;
415
416 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
417 SLOT->evsa = SLOT->AR[SLOT->ksr];
418 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
419
420 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
421 SLOT->evsd = SLOT->DR[SLOT->ksr];
422 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
423 }
424
425 /* set sustain level & release rate */
set_sl_rr(FM_OPL * OPL,int slot,int v)426 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
427 {
428 OPL_CH *CH = &OPL->P_CH[slot/2];
429 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
430 int sl = v>>4;
431 int rr = v & 0x0f;
432
433 SLOT->SL = SL_TABLE[sl];
434 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
435 SLOT->RR = &OPL->DR_TABLE[rr<<2];
436 SLOT->evsr = SLOT->RR[SLOT->ksr];
437 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
438 }
439
440 /* operator output calcrator */
441 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
442 /* ---------- calcrate one of channel ---------- */
OPL_CALC_CH(OPL_CH * CH)443 static inline void OPL_CALC_CH( OPL_CH *CH )
444 {
445 uint32_t env_out;
446 OPL_SLOT *SLOT;
447
448 feedback2 = 0;
449 /* SLOT 1 */
450 SLOT = &CH->SLOT[SLOT1];
451 env_out=OPL_CALC_SLOT(SLOT);
452 if( env_out < EG_ENT-1 )
453 {
454 /* PG */
455 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
456 else SLOT->Cnt += SLOT->Incr;
457 /* connectoion */
458 if(CH->FB)
459 {
460 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
461 CH->op1_out[1] = CH->op1_out[0];
462 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
463 }
464 else
465 {
466 *CH->connect1 += OP_OUT(SLOT,env_out,0);
467 }
468 }else
469 {
470 CH->op1_out[1] = CH->op1_out[0];
471 CH->op1_out[0] = 0;
472 }
473 /* SLOT 2 */
474 SLOT = &CH->SLOT[SLOT2];
475 env_out=OPL_CALC_SLOT(SLOT);
476 if( env_out < EG_ENT-1 )
477 {
478 /* PG */
479 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
480 else SLOT->Cnt += SLOT->Incr;
481 /* connectoion */
482 outd[0] += OP_OUT(SLOT,env_out, feedback2);
483 }
484 }
485
486 /* ---------- calcrate rhythm block ---------- */
487 #define WHITE_NOISE_db 6.0
OPL_CALC_RH(OPL_CH * CH)488 static inline void OPL_CALC_RH( OPL_CH *CH )
489 {
490 uint32_t env_tam,env_sd,env_top,env_hh;
491 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
492 int32_t tone8;
493
494 OPL_SLOT *SLOT;
495 int env_out;
496
497 /* BD : same as FM serial mode and output level is large */
498 feedback2 = 0;
499 /* SLOT 1 */
500 SLOT = &CH[6].SLOT[SLOT1];
501 env_out=OPL_CALC_SLOT(SLOT);
502 if( env_out < EG_ENT-1 )
503 {
504 /* PG */
505 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
506 else SLOT->Cnt += SLOT->Incr;
507 /* connectoion */
508 if(CH[6].FB)
509 {
510 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
511 CH[6].op1_out[1] = CH[6].op1_out[0];
512 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
513 }
514 else
515 {
516 feedback2 = OP_OUT(SLOT,env_out,0);
517 }
518 }else
519 {
520 feedback2 = 0;
521 CH[6].op1_out[1] = CH[6].op1_out[0];
522 CH[6].op1_out[0] = 0;
523 }
524 /* SLOT 2 */
525 SLOT = &CH[6].SLOT[SLOT2];
526 env_out=OPL_CALC_SLOT(SLOT);
527 if( env_out < EG_ENT-1 )
528 {
529 /* PG */
530 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
531 else SLOT->Cnt += SLOT->Incr;
532 /* connectoion */
533 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
534 }
535
536 // SD (17) = mul14[fnum7] + white noise
537 // TAM (15) = mul15[fnum8]
538 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
539 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
540 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
541 env_tam=OPL_CALC_SLOT(SLOT8_1);
542 env_top=OPL_CALC_SLOT(SLOT8_2);
543 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
544
545 /* PG */
546 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
547 else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
548 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
549 else SLOT7_2->Cnt += (CH[7].fc*8);
550 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
551 else SLOT8_1->Cnt += SLOT8_1->Incr;
552 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
553 else SLOT8_2->Cnt += (CH[8].fc*48);
554
555 tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
556
557 /* SD */
558 if( env_sd < EG_ENT-1 )
559 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
560 /* TAM */
561 if( env_tam < EG_ENT-1 )
562 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
563 /* TOP-CY */
564 if( env_top < EG_ENT-1 )
565 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
566 /* HH */
567 if( env_hh < EG_ENT-1 )
568 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
569 }
570
571 /* ----------- initialize time tabls ----------- */
init_timetables(FM_OPL * OPL,int ARRATE,int DRRATE)572 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
573 {
574 int i;
575 double rate;
576
577 /* make attack rate & decay rate tables */
578 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
579 for (i = 4;i <= 60;i++){
580 rate = OPL->freqbase; /* frequency rate */
581 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
582 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
583 rate *= (double)(EG_ENT<<ENV_BITS);
584 OPL->AR_TABLE[i] = rate / ARRATE;
585 OPL->DR_TABLE[i] = rate / DRRATE;
586 }
587 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
588 {
589 OPL->AR_TABLE[i] = EG_AED-1;
590 OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
591 }
592 #if 0
593 for (i = 0;i < 64 ;i++){ /* make for overflow area */
594 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
595 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
596 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
597 }
598 #endif
599 }
600
601 /* ---------- generic table initialize ---------- */
OPLOpenTable(void)602 static int OPLOpenTable( void )
603 {
604 int s,t;
605 double rate;
606 int i,j;
607 double pom;
608
609 /* allocate dynamic tables */
610 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL)
611 return 0;
612 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL)
613 {
614 free(TL_TABLE);
615 return 0;
616 }
617 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL)
618 {
619 free(TL_TABLE);
620 free(SIN_TABLE);
621 return 0;
622 }
623 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL)
624 {
625 free(TL_TABLE);
626 free(SIN_TABLE);
627 free(AMS_TABLE);
628 return 0;
629 }
630 ENV_CURVE = g_new(int32_t, 2 * EG_ENT + 1);
631 /* make total level table */
632 for (t = 0;t < EG_ENT-1 ;t++){
633 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
634 TL_TABLE[ t] = (int)rate;
635 TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
636 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
637 }
638 /* fill volume off area */
639 for ( t = EG_ENT-1; t < TL_MAX ;t++){
640 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
641 }
642
643 /* make sinwave table (total level offset) */
644 /* degree 0 = degree 180 = off */
645 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
646 for (s = 1;s <= SIN_ENT/4;s++){
647 pom = sin(2*PI*s/SIN_ENT); /* sin */
648 pom = 20*log10(1/pom); /* decibel */
649 j = pom / EG_STEP; /* TL_TABLE steps */
650
651 /* degree 0 - 90 , degree 180 - 90 : plus section */
652 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
653 /* degree 180 - 270 , degree 360 - 270 : minus section */
654 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
655 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
656 }
657 for (s = 0;s < SIN_ENT;s++)
658 {
659 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
660 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
661 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
662 }
663
664 /* envelope counter -> envelope output table */
665 for (i=0; i<EG_ENT; i++)
666 {
667 /* ATTACK curve */
668 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
669 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
670 ENV_CURVE[i] = (int)pom;
671 /* DECAY ,RELEASE curve */
672 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
673 }
674 /* off */
675 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
676 /* make LFO ams table */
677 for (i=0; i<AMS_ENT; i++)
678 {
679 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
680 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
681 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
682 }
683 /* make LFO vibrate table */
684 for (i=0; i<VIB_ENT; i++)
685 {
686 /* 100cent = 1seminote = 6% ?? */
687 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
688 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
689 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
690 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
691 }
692 return 1;
693 }
694
695
OPLCloseTable(void)696 static void OPLCloseTable( void )
697 {
698 g_free(ENV_CURVE);
699 free(TL_TABLE);
700 free(SIN_TABLE);
701 free(AMS_TABLE);
702 free(VIB_TABLE);
703 }
704
705 /* CSM Key Control */
CSMKeyControll(OPL_CH * CH)706 static inline void CSMKeyControll(OPL_CH *CH)
707 {
708 OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
709 OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
710 /* all key off */
711 OPL_KEYOFF(slot1);
712 OPL_KEYOFF(slot2);
713 /* total level latch */
714 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
715 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
716 /* key on */
717 CH->op1_out[0] = CH->op1_out[1] = 0;
718 OPL_KEYON(slot1);
719 OPL_KEYON(slot2);
720 }
721
722 /* ---------- opl initialize ---------- */
OPL_initialize(FM_OPL * OPL)723 static void OPL_initialize(FM_OPL *OPL)
724 {
725 int fn;
726
727 /* frequency base */
728 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
729 /* Timer base time */
730 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
731 /* make time tables */
732 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
733 /* make fnumber -> increment counter table */
734 for( fn=0 ; fn < 1024 ; fn++ )
735 {
736 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
737 }
738 /* LFO freq.table */
739 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
740 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
741 }
742
743 /* ---------- write a OPL registers ---------- */
OPLWriteReg(FM_OPL * OPL,int r,int v)744 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
745 {
746 OPL_CH *CH;
747 int slot;
748 int block_fnum;
749
750 switch(r&0xe0)
751 {
752 case 0x00: /* 00-1f:control */
753 switch(r&0x1f)
754 {
755 case 0x01:
756 /* wave selector enable */
757 OPL->wavesel = v&0x20;
758 if(!OPL->wavesel)
759 {
760 /* preset compatible mode */
761 int c;
762 for(c=0;c<OPL->max_ch;c++)
763 {
764 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
765 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
766 }
767 }
768 return;
769 case 0x02: /* Timer 1 */
770 OPL->T[0] = (256-v)*4;
771 break;
772 case 0x03: /* Timer 2 */
773 OPL->T[1] = (256-v)*16;
774 return;
775 case 0x04: /* IRQ clear / mask and Timer enable */
776 if(v&0x80)
777 { /* IRQ flag clear */
778 OPL_STATUS_RESET(OPL,0x7f);
779 }
780 else
781 { /* set IRQ mask ,timer enable*/
782 uint8_t st1 = v&1;
783 uint8_t st2 = (v>>1)&1;
784 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
785 OPL_STATUS_RESET(OPL,v&0x78);
786 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
787 /* timer 2 */
788 if(OPL->st[1] != st2)
789 {
790 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
791 OPL->st[1] = st2;
792 if (OPL->TimerHandler) {
793 (OPL->TimerHandler)(OPL->TimerParam, 1, interval);
794 }
795 }
796 /* timer 1 */
797 if(OPL->st[0] != st1)
798 {
799 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
800 OPL->st[0] = st1;
801 if (OPL->TimerHandler) {
802 (OPL->TimerHandler)(OPL->TimerParam, 0, interval);
803 }
804 }
805 }
806 return;
807 }
808 break;
809 case 0x20: /* am,vib,ksr,eg type,mul */
810 slot = slot_array[r&0x1f];
811 if(slot == -1) return;
812 set_mul(OPL,slot,v);
813 return;
814 case 0x40:
815 slot = slot_array[r&0x1f];
816 if(slot == -1) return;
817 set_ksl_tl(OPL,slot,v);
818 return;
819 case 0x60:
820 slot = slot_array[r&0x1f];
821 if(slot == -1) return;
822 set_ar_dr(OPL,slot,v);
823 return;
824 case 0x80:
825 slot = slot_array[r&0x1f];
826 if(slot == -1) return;
827 set_sl_rr(OPL,slot,v);
828 return;
829 case 0xa0:
830 switch(r)
831 {
832 case 0xbd:
833 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
834 {
835 uint8_t rkey = OPL->rhythm^v;
836 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
837 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
838 OPL->rhythm = v&0x3f;
839 if(OPL->rhythm&0x20)
840 {
841 #if 0
842 usrintf_showmessage("OPL Rhythm mode select");
843 #endif
844 /* BD key on/off */
845 if(rkey&0x10)
846 {
847 if(v&0x10)
848 {
849 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
850 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
851 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
852 }
853 else
854 {
855 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
856 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
857 }
858 }
859 /* SD key on/off */
860 if(rkey&0x08)
861 {
862 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
863 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
864 }/* TAM key on/off */
865 if(rkey&0x04)
866 {
867 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
868 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
869 }
870 /* TOP-CY key on/off */
871 if(rkey&0x02)
872 {
873 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
874 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
875 }
876 /* HH key on/off */
877 if(rkey&0x01)
878 {
879 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
880 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
881 }
882 }
883 }
884 return;
885 }
886 /* keyon,block,fnum */
887 if( (r&0x0f) > 8) return;
888 CH = &OPL->P_CH[r&0x0f];
889 if(!(r&0x10))
890 { /* a0-a8 */
891 block_fnum = (CH->block_fnum&0x1f00) | v;
892 }
893 else
894 { /* b0-b8 */
895 int keyon = (v>>5)&1;
896 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
897 if(CH->keyon != keyon)
898 {
899 if( (CH->keyon=keyon) )
900 {
901 CH->op1_out[0] = CH->op1_out[1] = 0;
902 OPL_KEYON(&CH->SLOT[SLOT1]);
903 OPL_KEYON(&CH->SLOT[SLOT2]);
904 }
905 else
906 {
907 OPL_KEYOFF(&CH->SLOT[SLOT1]);
908 OPL_KEYOFF(&CH->SLOT[SLOT2]);
909 }
910 }
911 }
912 /* update */
913 if(CH->block_fnum != block_fnum)
914 {
915 int blockRv = 7-(block_fnum>>10);
916 int fnum = block_fnum&0x3ff;
917 CH->block_fnum = block_fnum;
918
919 CH->ksl_base = KSL_TABLE[block_fnum>>6];
920 CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
921 CH->kcode = CH->block_fnum>>9;
922 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
923 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
924 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
925 }
926 return;
927 case 0xc0:
928 /* FB,C */
929 if( (r&0x0f) > 8) return;
930 CH = &OPL->P_CH[r&0x0f];
931 {
932 int feedback = (v>>1)&7;
933 CH->FB = feedback ? (8+1) - feedback : 0;
934 CH->CON = v&1;
935 set_algorithm(CH);
936 }
937 return;
938 case 0xe0: /* wave type */
939 slot = slot_array[r&0x1f];
940 if(slot == -1) return;
941 CH = &OPL->P_CH[slot/2];
942 if(OPL->wavesel)
943 {
944 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
945 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
946 }
947 return;
948 }
949 }
950
951 /* lock/unlock for common table */
OPL_LockTable(void)952 static int OPL_LockTable(void)
953 {
954 num_lock++;
955 if(num_lock>1) return 0;
956 /* first time */
957 cur_chip = NULL;
958 /* allocate total level table (128kb space) */
959 if( !OPLOpenTable() )
960 {
961 num_lock--;
962 return -1;
963 }
964 return 0;
965 }
966
OPL_UnLockTable(void)967 static void OPL_UnLockTable(void)
968 {
969 if(num_lock) num_lock--;
970 if(num_lock) return;
971 /* last time */
972 cur_chip = NULL;
973 OPLCloseTable();
974 }
975
976 /*******************************************************************************/
977 /* YM3812 local section */
978 /*******************************************************************************/
979
980 /* ---------- update one of chip ----------- */
YM3812UpdateOne(FM_OPL * OPL,int16_t * buffer,int length)981 void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length)
982 {
983 int i;
984 int data;
985 int16_t *buf = buffer;
986 uint32_t amsCnt = OPL->amsCnt;
987 uint32_t vibCnt = OPL->vibCnt;
988 uint8_t rhythm = OPL->rhythm&0x20;
989 OPL_CH *CH,*R_CH;
990
991 if( (void *)OPL != cur_chip ){
992 cur_chip = (void *)OPL;
993 /* channel pointers */
994 S_CH = OPL->P_CH;
995 E_CH = &S_CH[9];
996 /* rhythm slot */
997 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
998 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
999 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1000 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1001 /* LFO state */
1002 amsIncr = OPL->amsIncr;
1003 vibIncr = OPL->vibIncr;
1004 ams_table = OPL->ams_table;
1005 vib_table = OPL->vib_table;
1006 }
1007 R_CH = rhythm ? &S_CH[6] : E_CH;
1008 for( i=0; i < length ; i++ )
1009 {
1010 /* channel A channel B channel C */
1011 /* LFO */
1012 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1013 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1014 outd[0] = 0;
1015 /* FM part */
1016 for(CH=S_CH ; CH < R_CH ; CH++)
1017 OPL_CALC_CH(CH);
1018 /* Rythn part */
1019 if(rhythm)
1020 OPL_CALC_RH(S_CH);
1021 /* limit check */
1022 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1023 /* store to sound buffer */
1024 buf[i] = data >> OPL_OUTSB;
1025 }
1026
1027 OPL->amsCnt = amsCnt;
1028 OPL->vibCnt = vibCnt;
1029 #ifdef OPL_OUTPUT_LOG
1030 if(opl_dbg_fp)
1031 {
1032 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1033 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1034 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1035 }
1036 #endif
1037 }
1038
1039 /* ---------- reset one of chip ---------- */
OPLResetChip(FM_OPL * OPL)1040 static void OPLResetChip(FM_OPL *OPL)
1041 {
1042 int c,s;
1043 int i;
1044
1045 /* reset chip */
1046 OPL->mode = 0; /* normal mode */
1047 OPL_STATUS_RESET(OPL,0x7f);
1048 /* reset with register write */
1049 OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1050 OPLWriteReg(OPL,0x02,0); /* Timer1 */
1051 OPLWriteReg(OPL,0x03,0); /* Timer2 */
1052 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1053 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1054 /* reset operator parameter */
1055 for( c = 0 ; c < OPL->max_ch ; c++ )
1056 {
1057 OPL_CH *CH = &OPL->P_CH[c];
1058 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1059 for(s = 0 ; s < 2 ; s++ )
1060 {
1061 /* wave table */
1062 CH->SLOT[s].wavetable = &SIN_TABLE[0];
1063 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1064 CH->SLOT[s].evc = EG_OFF;
1065 CH->SLOT[s].eve = EG_OFF+1;
1066 CH->SLOT[s].evs = 0;
1067 }
1068 }
1069 }
1070
1071 /* ---------- Create one of virtual YM3812 ---------- */
1072 /* 'rate' is sampling rate and 'bufsiz' is the size of the */
OPLCreate(int clock,int rate)1073 FM_OPL *OPLCreate(int clock, int rate)
1074 {
1075 char *ptr;
1076 FM_OPL *OPL;
1077 int state_size;
1078 int max_ch = 9; /* normally 9 channels */
1079
1080 if( OPL_LockTable() ==-1) return NULL;
1081 /* allocate OPL state space */
1082 state_size = sizeof(FM_OPL);
1083 state_size += sizeof(OPL_CH)*max_ch;
1084 /* allocate memory block */
1085 ptr = malloc(state_size);
1086 if(ptr==NULL) return NULL;
1087 /* clear */
1088 memset(ptr,0,state_size);
1089 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1090 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1091 /* set channel state pointer */
1092 OPL->clock = clock;
1093 OPL->rate = rate;
1094 OPL->max_ch = max_ch;
1095 /* init global tables */
1096 OPL_initialize(OPL);
1097 /* reset chip */
1098 OPLResetChip(OPL);
1099 #ifdef OPL_OUTPUT_LOG
1100 if(!opl_dbg_fp)
1101 {
1102 opl_dbg_fp = fopen("opllog.opl","wb");
1103 opl_dbg_maxchip = 0;
1104 }
1105 if(opl_dbg_fp)
1106 {
1107 opl_dbg_opl[opl_dbg_maxchip] = OPL;
1108 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1109 type,
1110 clock&0xff,
1111 (clock/0x100)&0xff,
1112 (clock/0x10000)&0xff,
1113 (clock/0x1000000)&0xff);
1114 opl_dbg_maxchip++;
1115 }
1116 #endif
1117 return OPL;
1118 }
1119
1120 /* ---------- Destroy one of virtual YM3812 ---------- */
OPLDestroy(FM_OPL * OPL)1121 void OPLDestroy(FM_OPL *OPL)
1122 {
1123 #ifdef OPL_OUTPUT_LOG
1124 if(opl_dbg_fp)
1125 {
1126 fclose(opl_dbg_fp);
1127 opl_dbg_fp = NULL;
1128 }
1129 #endif
1130 OPL_UnLockTable();
1131 free(OPL);
1132 }
1133
1134 /* ---------- Option handlers ---------- */
1135
OPLSetTimerHandler(FM_OPL * OPL,OPL_TIMERHANDLER TimerHandler,void * param)1136 void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,
1137 void *param)
1138 {
1139 OPL->TimerHandler = TimerHandler;
1140 OPL->TimerParam = param;
1141 }
1142
1143 /* ---------- YM3812 I/O interface ---------- */
OPLWrite(FM_OPL * OPL,int a,int v)1144 int OPLWrite(FM_OPL *OPL,int a,int v)
1145 {
1146 if( !(a&1) )
1147 { /* address port */
1148 OPL->address = v & 0xff;
1149 }
1150 else
1151 { /* data port */
1152 #ifdef OPL_OUTPUT_LOG
1153 if(opl_dbg_fp)
1154 {
1155 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1156 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1157 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1158 }
1159 #endif
1160 OPLWriteReg(OPL,OPL->address,v);
1161 }
1162 return OPL->status>>7;
1163 }
1164
OPLRead(FM_OPL * OPL,int a)1165 unsigned char OPLRead(FM_OPL *OPL,int a)
1166 {
1167 if( !(a&1) )
1168 { /* status port */
1169 return OPL->status & (OPL->statusmask|0x80);
1170 }
1171 /* data port */
1172 switch(OPL->address)
1173 {
1174 case 0x05: /* KeyBoard IN */
1175 return 0;
1176 #if 0
1177 case 0x0f: /* ADPCM-DATA */
1178 return 0;
1179 #endif
1180 case 0x19: /* I/O DATA */
1181 return 0;
1182 case 0x1a: /* PCM-DATA */
1183 return 0;
1184 }
1185 return 0;
1186 }
1187
OPLTimerOver(FM_OPL * OPL,int c)1188 int OPLTimerOver(FM_OPL *OPL,int c)
1189 {
1190 if( c )
1191 { /* Timer B */
1192 OPL_STATUS_SET(OPL,0x20);
1193 }
1194 else
1195 { /* Timer A */
1196 OPL_STATUS_SET(OPL,0x40);
1197 /* CSM mode key,TL control */
1198 if( OPL->mode & 0x80 )
1199 { /* CSM mode total level latch and auto key on */
1200 int ch;
1201 for(ch=0;ch<9;ch++)
1202 CSMKeyControll( &OPL->P_CH[ch] );
1203 }
1204 }
1205 /* reload timer */
1206 if (OPL->TimerHandler) {
1207 (OPL->TimerHandler)(OPL->TimerParam, c,
1208 (double)OPL->T[c] * OPL->TimerBase);
1209 }
1210 return OPL->status>>7;
1211 }
1212