xref: /openbmc/qemu/hw/arm/virt.c (revision fbe5dac7)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/devices.h"
40 #include "net/net.h"
41 #include "sysemu/block-backend.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 
62 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
63     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
64                                                     void *data) \
65     { \
66         MachineClass *mc = MACHINE_CLASS(oc); \
67         virt_machine_##major##_##minor##_options(mc); \
68         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
69         if (latest) { \
70             mc->alias = "virt"; \
71         } \
72     } \
73     static const TypeInfo machvirt_##major##_##minor##_info = { \
74         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
75         .parent = TYPE_VIRT_MACHINE, \
76         .instance_init = virt_##major##_##minor##_instance_init, \
77         .class_init = virt_##major##_##minor##_class_init, \
78     }; \
79     static void machvirt_machine_##major##_##minor##_init(void) \
80     { \
81         type_register_static(&machvirt_##major##_##minor##_info); \
82     } \
83     type_init(machvirt_machine_##major##_##minor##_init);
84 
85 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
86     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
87 #define DEFINE_VIRT_MACHINE(major, minor) \
88     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89 
90 
91 /* Number of external interrupt lines to configure the GIC with */
92 #define NUM_IRQS 256
93 
94 #define PLATFORM_BUS_NUM_IRQS 64
95 
96 static ARMPlatformBusSystemParams platform_bus_params;
97 
98 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
99  * RAM can go up to the 256GB mark, leaving 256GB of the physical
100  * address space unallocated and free for future use between 256G and 512G.
101  * If we need to provide more RAM to VMs in the future then we need to:
102  *  * allocate a second bank of RAM starting at 2TB and working up
103  *  * fix the DT and ACPI table generation code in QEMU to correctly
104  *    report two split lumps of RAM to the guest
105  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
106  * (We don't want to fill all the way up to 512GB with RAM because
107  * we might want it for non-RAM purposes later. Conversely it seems
108  * reasonable to assume that anybody configuring a VM with a quarter
109  * of a terabyte of RAM will be doing it on a host with more than a
110  * terabyte of physical address space.)
111  */
112 #define RAMLIMIT_GB 255
113 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
114 
115 /* Addresses and sizes of our components.
116  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
117  * 128MB..256MB is used for miscellaneous device I/O.
118  * 256MB..1GB is reserved for possible future PCI support (ie where the
119  * PCI memory window will go if we add a PCI host controller).
120  * 1GB and up is RAM (which may happily spill over into the
121  * high memory region beyond 4GB).
122  * This represents a compromise between how much RAM can be given to
123  * a 32 bit VM and leaving space for expansion and in particular for PCI.
124  * Note that devices should generally be placed at multiples of 0x10000,
125  * to accommodate guests using 64K pages.
126  */
127 static const MemMapEntry a15memmap[] = {
128     /* Space up to 0x8000000 is reserved for a boot ROM */
129     [VIRT_FLASH] =              {          0, 0x08000000 },
130     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
131     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
132     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
133     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
134     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
135     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
136     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
137     /* This redistributor space allows up to 2*64kB*123 CPUs */
138     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
139     [VIRT_UART] =               { 0x09000000, 0x00001000 },
140     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
141     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
142     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
143     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
144     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
145     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
147     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
148     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
149     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
150     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
151     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
152     /* Second PCIe window, 512GB wide at the 512GB boundary */
153     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
154 };
155 
156 static const int a15irqmap[] = {
157     [VIRT_UART] = 1,
158     [VIRT_RTC] = 2,
159     [VIRT_PCIE] = 3, /* ... to 6 */
160     [VIRT_GPIO] = 7,
161     [VIRT_SECURE_UART] = 8,
162     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
163     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
164     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 };
166 
167 static const char *valid_cpus[] = {
168     ARM_CPU_TYPE_NAME("cortex-a15"),
169     ARM_CPU_TYPE_NAME("cortex-a53"),
170     ARM_CPU_TYPE_NAME("cortex-a57"),
171     ARM_CPU_TYPE_NAME("host"),
172 };
173 
174 static bool cpu_type_valid(const char *cpu)
175 {
176     int i;
177 
178     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
179         if (strcmp(cpu, valid_cpus[i]) == 0) {
180             return true;
181         }
182     }
183     return false;
184 }
185 
186 static void create_fdt(VirtMachineState *vms)
187 {
188     void *fdt = create_device_tree(&vms->fdt_size);
189 
190     if (!fdt) {
191         error_report("create_device_tree() failed");
192         exit(1);
193     }
194 
195     vms->fdt = fdt;
196 
197     /* Header */
198     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
199     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
200     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
201 
202     /*
203      * /chosen and /memory nodes must exist for load_dtb
204      * to fill in necessary properties later
205      */
206     qemu_fdt_add_subnode(fdt, "/chosen");
207     qemu_fdt_add_subnode(fdt, "/memory");
208     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
209 
210     /* Clock node, for the benefit of the UART. The kernel device tree
211      * binding documentation claims the PL011 node clock properties are
212      * optional but in practice if you omit them the kernel refuses to
213      * probe for the device.
214      */
215     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
216     qemu_fdt_add_subnode(fdt, "/apb-pclk");
217     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
218     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
219     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
220     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
221                                 "clk24mhz");
222     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
223 
224     if (have_numa_distance) {
225         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
226         uint32_t *matrix = g_malloc0(size);
227         int idx, i, j;
228 
229         for (i = 0; i < nb_numa_nodes; i++) {
230             for (j = 0; j < nb_numa_nodes; j++) {
231                 idx = (i * nb_numa_nodes + j) * 3;
232                 matrix[idx + 0] = cpu_to_be32(i);
233                 matrix[idx + 1] = cpu_to_be32(j);
234                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
235             }
236         }
237 
238         qemu_fdt_add_subnode(fdt, "/distance-map");
239         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
240                                 "numa-distance-map-v1");
241         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
242                          matrix, size);
243         g_free(matrix);
244     }
245 }
246 
247 static void fdt_add_psci_node(const VirtMachineState *vms)
248 {
249     uint32_t cpu_suspend_fn;
250     uint32_t cpu_off_fn;
251     uint32_t cpu_on_fn;
252     uint32_t migrate_fn;
253     void *fdt = vms->fdt;
254     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
255     const char *psci_method;
256 
257     switch (vms->psci_conduit) {
258     case QEMU_PSCI_CONDUIT_DISABLED:
259         return;
260     case QEMU_PSCI_CONDUIT_HVC:
261         psci_method = "hvc";
262         break;
263     case QEMU_PSCI_CONDUIT_SMC:
264         psci_method = "smc";
265         break;
266     default:
267         g_assert_not_reached();
268     }
269 
270     qemu_fdt_add_subnode(fdt, "/psci");
271     if (armcpu->psci_version == 2) {
272         const char comp[] = "arm,psci-0.2\0arm,psci";
273         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
274 
275         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
276         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
277             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
278             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
279             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
280         } else {
281             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
282             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
283             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
284         }
285     } else {
286         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
287 
288         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
289         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
290         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
291         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
292     }
293 
294     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
295      * to the instruction that should be used to invoke PSCI functions.
296      * However, the device tree binding uses 'method' instead, so that is
297      * what we should use here.
298      */
299     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
300 
301     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
302     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
303     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
304     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
305 }
306 
307 static void fdt_add_timer_nodes(const VirtMachineState *vms)
308 {
309     /* On real hardware these interrupts are level-triggered.
310      * On KVM they were edge-triggered before host kernel version 4.4,
311      * and level-triggered afterwards.
312      * On emulated QEMU they are level-triggered.
313      *
314      * Getting the DTB info about them wrong is awkward for some
315      * guest kernels:
316      *  pre-4.8 ignore the DT and leave the interrupt configured
317      *   with whatever the GIC reset value (or the bootloader) left it at
318      *  4.8 before rc6 honour the incorrect data by programming it back
319      *   into the GIC, causing problems
320      *  4.8rc6 and later ignore the DT and always write "level triggered"
321      *   into the GIC
322      *
323      * For backwards-compatibility, virt-2.8 and earlier will continue
324      * to say these are edge-triggered, but later machines will report
325      * the correct information.
326      */
327     ARMCPU *armcpu;
328     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
329     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
330 
331     if (vmc->claim_edge_triggered_timers) {
332         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
333     }
334 
335     if (vms->gic_version == 2) {
336         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
337                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
338                              (1 << vms->smp_cpus) - 1);
339     }
340 
341     qemu_fdt_add_subnode(vms->fdt, "/timer");
342 
343     armcpu = ARM_CPU(qemu_get_cpu(0));
344     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
345         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
346         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
347                          compat, sizeof(compat));
348     } else {
349         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
350                                 "arm,armv7-timer");
351     }
352     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
353     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
354                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
355                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
356                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
357                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
358 }
359 
360 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
361 {
362     int cpu;
363     int addr_cells = 1;
364     const MachineState *ms = MACHINE(vms);
365 
366     /*
367      * From Documentation/devicetree/bindings/arm/cpus.txt
368      *  On ARM v8 64-bit systems value should be set to 2,
369      *  that corresponds to the MPIDR_EL1 register size.
370      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
371      *  in the system, #address-cells can be set to 1, since
372      *  MPIDR_EL1[63:32] bits are not used for CPUs
373      *  identification.
374      *
375      *  Here we actually don't know whether our system is 32- or 64-bit one.
376      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
377      *  at least one of them has Aff3 populated, we set #address-cells to 2.
378      */
379     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
380         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
381 
382         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
383             addr_cells = 2;
384             break;
385         }
386     }
387 
388     qemu_fdt_add_subnode(vms->fdt, "/cpus");
389     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
390     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
391 
392     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
393         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
394         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
395         CPUState *cs = CPU(armcpu);
396 
397         qemu_fdt_add_subnode(vms->fdt, nodename);
398         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
399         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
400                                     armcpu->dtb_compatible);
401 
402         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
403             && vms->smp_cpus > 1) {
404             qemu_fdt_setprop_string(vms->fdt, nodename,
405                                         "enable-method", "psci");
406         }
407 
408         if (addr_cells == 2) {
409             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
410                                  armcpu->mp_affinity);
411         } else {
412             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
413                                   armcpu->mp_affinity);
414         }
415 
416         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
417             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
418                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
419         }
420 
421         g_free(nodename);
422     }
423 }
424 
425 static void fdt_add_its_gic_node(VirtMachineState *vms)
426 {
427     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
428     qemu_fdt_add_subnode(vms->fdt, "/intc/its");
429     qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
430                             "arm,gic-v3-its");
431     qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
432     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
433                                  2, vms->memmap[VIRT_GIC_ITS].base,
434                                  2, vms->memmap[VIRT_GIC_ITS].size);
435     qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
436 }
437 
438 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
439 {
440     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
441     qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
442     qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
443                             "arm,gic-v2m-frame");
444     qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
445     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
446                                  2, vms->memmap[VIRT_GIC_V2M].base,
447                                  2, vms->memmap[VIRT_GIC_V2M].size);
448     qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
449 }
450 
451 static void fdt_add_gic_node(VirtMachineState *vms)
452 {
453     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
454     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
455 
456     qemu_fdt_add_subnode(vms->fdt, "/intc");
457     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
458     qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
459     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
460     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
461     qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
462     if (vms->gic_version == 3) {
463         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
464                                 "arm,gic-v3");
465         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
466                                      2, vms->memmap[VIRT_GIC_DIST].base,
467                                      2, vms->memmap[VIRT_GIC_DIST].size,
468                                      2, vms->memmap[VIRT_GIC_REDIST].base,
469                                      2, vms->memmap[VIRT_GIC_REDIST].size);
470         if (vms->virt) {
471             qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
472                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
473                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
474         }
475     } else {
476         /* 'cortex-a15-gic' means 'GIC v2' */
477         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
478                                 "arm,cortex-a15-gic");
479         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
480                                       2, vms->memmap[VIRT_GIC_DIST].base,
481                                       2, vms->memmap[VIRT_GIC_DIST].size,
482                                       2, vms->memmap[VIRT_GIC_CPU].base,
483                                       2, vms->memmap[VIRT_GIC_CPU].size);
484     }
485 
486     qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
487 }
488 
489 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
490 {
491     CPUState *cpu;
492     ARMCPU *armcpu;
493     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
494 
495     CPU_FOREACH(cpu) {
496         armcpu = ARM_CPU(cpu);
497         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
498             return;
499         }
500         if (kvm_enabled()) {
501             if (kvm_irqchip_in_kernel()) {
502                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
503             }
504             kvm_arm_pmu_init(cpu);
505         }
506     }
507 
508     if (vms->gic_version == 2) {
509         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
510                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
511                              (1 << vms->smp_cpus) - 1);
512     }
513 
514     armcpu = ARM_CPU(qemu_get_cpu(0));
515     qemu_fdt_add_subnode(vms->fdt, "/pmu");
516     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
517         const char compat[] = "arm,armv8-pmuv3";
518         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
519                          compat, sizeof(compat));
520         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
521                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
522     }
523 }
524 
525 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
526 {
527     const char *itsclass = its_class_name();
528     DeviceState *dev;
529 
530     if (!itsclass) {
531         /* Do nothing if not supported */
532         return;
533     }
534 
535     dev = qdev_create(NULL, itsclass);
536 
537     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
538                              &error_abort);
539     qdev_init_nofail(dev);
540     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
541 
542     fdt_add_its_gic_node(vms);
543 }
544 
545 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
546 {
547     int i;
548     int irq = vms->irqmap[VIRT_GIC_V2M];
549     DeviceState *dev;
550 
551     dev = qdev_create(NULL, "arm-gicv2m");
552     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
553     qdev_prop_set_uint32(dev, "base-spi", irq);
554     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
555     qdev_init_nofail(dev);
556 
557     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
558         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
559     }
560 
561     fdt_add_v2m_gic_node(vms);
562 }
563 
564 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
565 {
566     /* We create a standalone GIC */
567     DeviceState *gicdev;
568     SysBusDevice *gicbusdev;
569     const char *gictype;
570     int type = vms->gic_version, i;
571 
572     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
573 
574     gicdev = qdev_create(NULL, gictype);
575     qdev_prop_set_uint32(gicdev, "revision", type);
576     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
577     /* Note that the num-irq property counts both internal and external
578      * interrupts; there are always 32 of the former (mandated by GIC spec).
579      */
580     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
581     if (!kvm_irqchip_in_kernel()) {
582         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
583     }
584     qdev_init_nofail(gicdev);
585     gicbusdev = SYS_BUS_DEVICE(gicdev);
586     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
587     if (type == 3) {
588         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
589     } else {
590         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
591     }
592 
593     /* Wire the outputs from each CPU's generic timer and the GICv3
594      * maintenance interrupt signal to the appropriate GIC PPI inputs,
595      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
596      */
597     for (i = 0; i < smp_cpus; i++) {
598         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
599         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
600         int irq;
601         /* Mapping from the output timer irq lines from the CPU to the
602          * GIC PPI inputs we use for the virt board.
603          */
604         const int timer_irq[] = {
605             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
606             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
607             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
608             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
609         };
610 
611         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
612             qdev_connect_gpio_out(cpudev, irq,
613                                   qdev_get_gpio_in(gicdev,
614                                                    ppibase + timer_irq[irq]));
615         }
616 
617         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
618                                     qdev_get_gpio_in(gicdev, ppibase
619                                                      + ARCH_GICV3_MAINT_IRQ));
620         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
621                                     qdev_get_gpio_in(gicdev, ppibase
622                                                      + VIRTUAL_PMU_IRQ));
623 
624         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
625         sysbus_connect_irq(gicbusdev, i + smp_cpus,
626                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
627         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
628                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
629         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
630                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
631     }
632 
633     for (i = 0; i < NUM_IRQS; i++) {
634         pic[i] = qdev_get_gpio_in(gicdev, i);
635     }
636 
637     fdt_add_gic_node(vms);
638 
639     if (type == 3 && vms->its) {
640         create_its(vms, gicdev);
641     } else if (type == 2) {
642         create_v2m(vms, pic);
643     }
644 }
645 
646 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
647                         MemoryRegion *mem, Chardev *chr)
648 {
649     char *nodename;
650     hwaddr base = vms->memmap[uart].base;
651     hwaddr size = vms->memmap[uart].size;
652     int irq = vms->irqmap[uart];
653     const char compat[] = "arm,pl011\0arm,primecell";
654     const char clocknames[] = "uartclk\0apb_pclk";
655     DeviceState *dev = qdev_create(NULL, "pl011");
656     SysBusDevice *s = SYS_BUS_DEVICE(dev);
657 
658     qdev_prop_set_chr(dev, "chardev", chr);
659     qdev_init_nofail(dev);
660     memory_region_add_subregion(mem, base,
661                                 sysbus_mmio_get_region(s, 0));
662     sysbus_connect_irq(s, 0, pic[irq]);
663 
664     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
665     qemu_fdt_add_subnode(vms->fdt, nodename);
666     /* Note that we can't use setprop_string because of the embedded NUL */
667     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
668                          compat, sizeof(compat));
669     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
670                                      2, base, 2, size);
671     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
672                                GIC_FDT_IRQ_TYPE_SPI, irq,
673                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
674     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
675                                vms->clock_phandle, vms->clock_phandle);
676     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
677                          clocknames, sizeof(clocknames));
678 
679     if (uart == VIRT_UART) {
680         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
681     } else {
682         /* Mark as not usable by the normal world */
683         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
684         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
685     }
686 
687     g_free(nodename);
688 }
689 
690 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
691 {
692     char *nodename;
693     hwaddr base = vms->memmap[VIRT_RTC].base;
694     hwaddr size = vms->memmap[VIRT_RTC].size;
695     int irq = vms->irqmap[VIRT_RTC];
696     const char compat[] = "arm,pl031\0arm,primecell";
697 
698     sysbus_create_simple("pl031", base, pic[irq]);
699 
700     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
701     qemu_fdt_add_subnode(vms->fdt, nodename);
702     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
703     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
704                                  2, base, 2, size);
705     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
706                            GIC_FDT_IRQ_TYPE_SPI, irq,
707                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
708     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
709     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
710     g_free(nodename);
711 }
712 
713 static DeviceState *gpio_key_dev;
714 static void virt_powerdown_req(Notifier *n, void *opaque)
715 {
716     /* use gpio Pin 3 for power button event */
717     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
718 }
719 
720 static Notifier virt_system_powerdown_notifier = {
721     .notify = virt_powerdown_req
722 };
723 
724 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
725 {
726     char *nodename;
727     DeviceState *pl061_dev;
728     hwaddr base = vms->memmap[VIRT_GPIO].base;
729     hwaddr size = vms->memmap[VIRT_GPIO].size;
730     int irq = vms->irqmap[VIRT_GPIO];
731     const char compat[] = "arm,pl061\0arm,primecell";
732 
733     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
734 
735     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
736     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
737     qemu_fdt_add_subnode(vms->fdt, nodename);
738     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
739                                  2, base, 2, size);
740     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
741     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
742     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
743     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
744                            GIC_FDT_IRQ_TYPE_SPI, irq,
745                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
746     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
747     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
748     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
749 
750     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
751                                         qdev_get_gpio_in(pl061_dev, 3));
752     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
753     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
754     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
755     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
756 
757     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
758     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
759                             "label", "GPIO Key Poweroff");
760     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
761                           KEY_POWER);
762     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
763                            "gpios", phandle, 3, 0);
764 
765     /* connect powerdown request */
766     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
767 
768     g_free(nodename);
769 }
770 
771 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
772 {
773     int i;
774     hwaddr size = vms->memmap[VIRT_MMIO].size;
775 
776     /* We create the transports in forwards order. Since qbus_realize()
777      * prepends (not appends) new child buses, the incrementing loop below will
778      * create a list of virtio-mmio buses with decreasing base addresses.
779      *
780      * When a -device option is processed from the command line,
781      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
782      * order. The upshot is that -device options in increasing command line
783      * order are mapped to virtio-mmio buses with decreasing base addresses.
784      *
785      * When this code was originally written, that arrangement ensured that the
786      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
787      * the first -device on the command line. (The end-to-end order is a
788      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
789      * guest kernel's name-to-address assignment strategy.)
790      *
791      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
792      * the message, if not necessarily the code, of commit 70161ff336.
793      * Therefore the loop now establishes the inverse of the original intent.
794      *
795      * Unfortunately, we can't counteract the kernel change by reversing the
796      * loop; it would break existing command lines.
797      *
798      * In any case, the kernel makes no guarantee about the stability of
799      * enumeration order of virtio devices (as demonstrated by it changing
800      * between kernel versions). For reliable and stable identification
801      * of disks users must use UUIDs or similar mechanisms.
802      */
803     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
804         int irq = vms->irqmap[VIRT_MMIO] + i;
805         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
806 
807         sysbus_create_simple("virtio-mmio", base, pic[irq]);
808     }
809 
810     /* We add dtb nodes in reverse order so that they appear in the finished
811      * device tree lowest address first.
812      *
813      * Note that this mapping is independent of the loop above. The previous
814      * loop influences virtio device to virtio transport assignment, whereas
815      * this loop controls how virtio transports are laid out in the dtb.
816      */
817     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
818         char *nodename;
819         int irq = vms->irqmap[VIRT_MMIO] + i;
820         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
821 
822         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
823         qemu_fdt_add_subnode(vms->fdt, nodename);
824         qemu_fdt_setprop_string(vms->fdt, nodename,
825                                 "compatible", "virtio,mmio");
826         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
827                                      2, base, 2, size);
828         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
829                                GIC_FDT_IRQ_TYPE_SPI, irq,
830                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
831         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
832         g_free(nodename);
833     }
834 }
835 
836 static void create_one_flash(const char *name, hwaddr flashbase,
837                              hwaddr flashsize, const char *file,
838                              MemoryRegion *sysmem)
839 {
840     /* Create and map a single flash device. We use the same
841      * parameters as the flash devices on the Versatile Express board.
842      */
843     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
844     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
845     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
846     const uint64_t sectorlength = 256 * 1024;
847 
848     if (dinfo) {
849         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
850                             &error_abort);
851     }
852 
853     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
854     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
855     qdev_prop_set_uint8(dev, "width", 4);
856     qdev_prop_set_uint8(dev, "device-width", 2);
857     qdev_prop_set_bit(dev, "big-endian", false);
858     qdev_prop_set_uint16(dev, "id0", 0x89);
859     qdev_prop_set_uint16(dev, "id1", 0x18);
860     qdev_prop_set_uint16(dev, "id2", 0x00);
861     qdev_prop_set_uint16(dev, "id3", 0x00);
862     qdev_prop_set_string(dev, "name", name);
863     qdev_init_nofail(dev);
864 
865     memory_region_add_subregion(sysmem, flashbase,
866                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
867 
868     if (file) {
869         char *fn;
870         int image_size;
871 
872         if (drive_get(IF_PFLASH, 0, 0)) {
873             error_report("The contents of the first flash device may be "
874                          "specified with -bios or with -drive if=pflash... "
875                          "but you cannot use both options at once");
876             exit(1);
877         }
878         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
879         if (!fn) {
880             error_report("Could not find ROM image '%s'", file);
881             exit(1);
882         }
883         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
884         g_free(fn);
885         if (image_size < 0) {
886             error_report("Could not load ROM image '%s'", file);
887             exit(1);
888         }
889     }
890 }
891 
892 static void create_flash(const VirtMachineState *vms,
893                          MemoryRegion *sysmem,
894                          MemoryRegion *secure_sysmem)
895 {
896     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
897      * Any file passed via -bios goes in the first of these.
898      * sysmem is the system memory space. secure_sysmem is the secure view
899      * of the system, and the first flash device should be made visible only
900      * there. The second flash device is visible to both secure and nonsecure.
901      * If sysmem == secure_sysmem this means there is no separate Secure
902      * address space and both flash devices are generally visible.
903      */
904     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
905     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
906     char *nodename;
907 
908     create_one_flash("virt.flash0", flashbase, flashsize,
909                      bios_name, secure_sysmem);
910     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
911                      NULL, sysmem);
912 
913     if (sysmem == secure_sysmem) {
914         /* Report both flash devices as a single node in the DT */
915         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
916         qemu_fdt_add_subnode(vms->fdt, nodename);
917         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
918         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
919                                      2, flashbase, 2, flashsize,
920                                      2, flashbase + flashsize, 2, flashsize);
921         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
922         g_free(nodename);
923     } else {
924         /* Report the devices as separate nodes so we can mark one as
925          * only visible to the secure world.
926          */
927         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
928         qemu_fdt_add_subnode(vms->fdt, nodename);
929         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
930         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
931                                      2, flashbase, 2, flashsize);
932         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
933         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
934         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
935         g_free(nodename);
936 
937         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
938         qemu_fdt_add_subnode(vms->fdt, nodename);
939         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
940         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
941                                      2, flashbase + flashsize, 2, flashsize);
942         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
943         g_free(nodename);
944     }
945 }
946 
947 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
948 {
949     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
950     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
951     FWCfgState *fw_cfg;
952     char *nodename;
953 
954     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
955     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
956 
957     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
958     qemu_fdt_add_subnode(vms->fdt, nodename);
959     qemu_fdt_setprop_string(vms->fdt, nodename,
960                             "compatible", "qemu,fw-cfg-mmio");
961     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
962                                  2, base, 2, size);
963     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
964     g_free(nodename);
965     return fw_cfg;
966 }
967 
968 static void create_pcie_irq_map(const VirtMachineState *vms,
969                                 uint32_t gic_phandle,
970                                 int first_irq, const char *nodename)
971 {
972     int devfn, pin;
973     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
974     uint32_t *irq_map = full_irq_map;
975 
976     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
977         for (pin = 0; pin < 4; pin++) {
978             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
979             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
980             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
981             int i;
982 
983             uint32_t map[] = {
984                 devfn << 8, 0, 0,                           /* devfn */
985                 pin + 1,                                    /* PCI pin */
986                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
987 
988             /* Convert map to big endian */
989             for (i = 0; i < 10; i++) {
990                 irq_map[i] = cpu_to_be32(map[i]);
991             }
992             irq_map += 10;
993         }
994     }
995 
996     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
997                      full_irq_map, sizeof(full_irq_map));
998 
999     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1000                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1001                            0x7           /* PCI irq */);
1002 }
1003 
1004 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
1005 {
1006     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1007     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1008     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1009     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1010     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1011     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1012     hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
1013     hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
1014     hwaddr base = base_mmio;
1015     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1016     int irq = vms->irqmap[VIRT_PCIE];
1017     MemoryRegion *mmio_alias;
1018     MemoryRegion *mmio_reg;
1019     MemoryRegion *ecam_alias;
1020     MemoryRegion *ecam_reg;
1021     DeviceState *dev;
1022     char *nodename;
1023     int i;
1024     PCIHostState *pci;
1025 
1026     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1027     qdev_init_nofail(dev);
1028 
1029     /* Map only the first size_ecam bytes of ECAM space */
1030     ecam_alias = g_new0(MemoryRegion, 1);
1031     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1032     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1033                              ecam_reg, 0, size_ecam);
1034     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1035 
1036     /* Map the MMIO window into system address space so as to expose
1037      * the section of PCI MMIO space which starts at the same base address
1038      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1039      * the window).
1040      */
1041     mmio_alias = g_new0(MemoryRegion, 1);
1042     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1043     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1044                              mmio_reg, base_mmio, size_mmio);
1045     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1046 
1047     if (vms->highmem) {
1048         /* Map high MMIO space */
1049         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1050 
1051         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1052                                  mmio_reg, base_mmio_high, size_mmio_high);
1053         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1054                                     high_mmio_alias);
1055     }
1056 
1057     /* Map IO port space */
1058     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1059 
1060     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1061         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1062         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1063     }
1064 
1065     pci = PCI_HOST_BRIDGE(dev);
1066     if (pci->bus) {
1067         for (i = 0; i < nb_nics; i++) {
1068             NICInfo *nd = &nd_table[i];
1069 
1070             if (!nd->model) {
1071                 nd->model = g_strdup("virtio");
1072             }
1073 
1074             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1075         }
1076     }
1077 
1078     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1079     qemu_fdt_add_subnode(vms->fdt, nodename);
1080     qemu_fdt_setprop_string(vms->fdt, nodename,
1081                             "compatible", "pci-host-ecam-generic");
1082     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1083     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1084     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1085     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1086                            nr_pcie_buses - 1);
1087     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1088 
1089     if (vms->msi_phandle) {
1090         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1091                                vms->msi_phandle);
1092     }
1093 
1094     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1095                                  2, base_ecam, 2, size_ecam);
1096 
1097     if (vms->highmem) {
1098         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1099                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1100                                      2, base_pio, 2, size_pio,
1101                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1102                                      2, base_mmio, 2, size_mmio,
1103                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1104                                      2, base_mmio_high,
1105                                      2, base_mmio_high, 2, size_mmio_high);
1106     } else {
1107         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1108                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1109                                      2, base_pio, 2, size_pio,
1110                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1111                                      2, base_mmio, 2, size_mmio);
1112     }
1113 
1114     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1115     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1116 
1117     g_free(nodename);
1118 }
1119 
1120 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1121 {
1122     DeviceState *dev;
1123     SysBusDevice *s;
1124     int i;
1125     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1126     MemoryRegion *sysmem = get_system_memory();
1127 
1128     platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1129     platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1130     platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1131     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1132 
1133     fdt_params->system_params = &platform_bus_params;
1134     fdt_params->binfo = &vms->bootinfo;
1135     fdt_params->intc = "/intc";
1136     /*
1137      * register a machine init done notifier that creates the device tree
1138      * nodes of the platform bus and its children dynamic sysbus devices
1139      */
1140     arm_register_platform_bus_fdt_creator(fdt_params);
1141 
1142     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1143     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1144     qdev_prop_set_uint32(dev, "num_irqs",
1145         platform_bus_params.platform_bus_num_irqs);
1146     qdev_prop_set_uint32(dev, "mmio_size",
1147         platform_bus_params.platform_bus_size);
1148     qdev_init_nofail(dev);
1149     s = SYS_BUS_DEVICE(dev);
1150 
1151     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1152         int irqn = platform_bus_params.platform_bus_first_irq + i;
1153         sysbus_connect_irq(s, i, pic[irqn]);
1154     }
1155 
1156     memory_region_add_subregion(sysmem,
1157                                 platform_bus_params.platform_bus_base,
1158                                 sysbus_mmio_get_region(s, 0));
1159 }
1160 
1161 static void create_secure_ram(VirtMachineState *vms,
1162                               MemoryRegion *secure_sysmem)
1163 {
1164     MemoryRegion *secram = g_new(MemoryRegion, 1);
1165     char *nodename;
1166     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1167     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1168 
1169     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1170                            &error_fatal);
1171     memory_region_add_subregion(secure_sysmem, base, secram);
1172 
1173     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1174     qemu_fdt_add_subnode(vms->fdt, nodename);
1175     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1176     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1177     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1178     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1179 
1180     g_free(nodename);
1181 }
1182 
1183 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1184 {
1185     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1186                                                  bootinfo);
1187 
1188     *fdt_size = board->fdt_size;
1189     return board->fdt;
1190 }
1191 
1192 static void virt_build_smbios(VirtMachineState *vms)
1193 {
1194     uint8_t *smbios_tables, *smbios_anchor;
1195     size_t smbios_tables_len, smbios_anchor_len;
1196     const char *product = "QEMU Virtual Machine";
1197 
1198     if (!vms->fw_cfg) {
1199         return;
1200     }
1201 
1202     if (kvm_enabled()) {
1203         product = "KVM Virtual Machine";
1204     }
1205 
1206     smbios_set_defaults("QEMU", product,
1207                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1208 
1209     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1210                       &smbios_anchor, &smbios_anchor_len);
1211 
1212     if (smbios_anchor) {
1213         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1214                         smbios_tables, smbios_tables_len);
1215         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1216                         smbios_anchor, smbios_anchor_len);
1217     }
1218 }
1219 
1220 static
1221 void virt_machine_done(Notifier *notifier, void *data)
1222 {
1223     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1224                                          machine_done);
1225 
1226     virt_acpi_setup(vms);
1227     virt_build_smbios(vms);
1228 }
1229 
1230 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1231 {
1232     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1233     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1234 
1235     if (!vmc->disallow_affinity_adjustment) {
1236         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1237          * GIC's target-list limitations. 32-bit KVM hosts currently
1238          * always create clusters of 4 CPUs, but that is expected to
1239          * change when they gain support for gicv3. When KVM is enabled
1240          * it will override the changes we make here, therefore our
1241          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1242          * and to improve SGI efficiency.
1243          */
1244         if (vms->gic_version == 3) {
1245             clustersz = GICV3_TARGETLIST_BITS;
1246         } else {
1247             clustersz = GIC_TARGETLIST_BITS;
1248         }
1249     }
1250     return arm_cpu_mp_affinity(idx, clustersz);
1251 }
1252 
1253 static void machvirt_init(MachineState *machine)
1254 {
1255     VirtMachineState *vms = VIRT_MACHINE(machine);
1256     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1257     MachineClass *mc = MACHINE_GET_CLASS(machine);
1258     const CPUArchIdList *possible_cpus;
1259     qemu_irq pic[NUM_IRQS];
1260     MemoryRegion *sysmem = get_system_memory();
1261     MemoryRegion *secure_sysmem = NULL;
1262     int n, virt_max_cpus;
1263     MemoryRegion *ram = g_new(MemoryRegion, 1);
1264     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1265 
1266     /* We can probe only here because during property set
1267      * KVM is not available yet
1268      */
1269     if (!vms->gic_version) {
1270         if (!kvm_enabled()) {
1271             error_report("gic-version=host requires KVM");
1272             exit(1);
1273         }
1274 
1275         vms->gic_version = kvm_arm_vgic_probe();
1276         if (!vms->gic_version) {
1277             error_report("Unable to determine GIC version supported by host");
1278             exit(1);
1279         }
1280     }
1281 
1282     if (!cpu_type_valid(machine->cpu_type)) {
1283         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1284         exit(1);
1285     }
1286 
1287     /* If we have an EL3 boot ROM then the assumption is that it will
1288      * implement PSCI itself, so disable QEMU's internal implementation
1289      * so it doesn't get in the way. Instead of starting secondary
1290      * CPUs in PSCI powerdown state we will start them all running and
1291      * let the boot ROM sort them out.
1292      * The usual case is that we do use QEMU's PSCI implementation;
1293      * if the guest has EL2 then we will use SMC as the conduit,
1294      * and otherwise we will use HVC (for backwards compatibility and
1295      * because if we're using KVM then we must use HVC).
1296      */
1297     if (vms->secure && firmware_loaded) {
1298         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1299     } else if (vms->virt) {
1300         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1301     } else {
1302         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1303     }
1304 
1305     /* The maximum number of CPUs depends on the GIC version, or on how
1306      * many redistributors we can fit into the memory map.
1307      */
1308     if (vms->gic_version == 3) {
1309         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1310     } else {
1311         virt_max_cpus = GIC_NCPU;
1312     }
1313 
1314     if (max_cpus > virt_max_cpus) {
1315         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1316                      "supported by machine 'mach-virt' (%d)",
1317                      max_cpus, virt_max_cpus);
1318         exit(1);
1319     }
1320 
1321     vms->smp_cpus = smp_cpus;
1322 
1323     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1324         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1325         exit(1);
1326     }
1327 
1328     if (vms->virt && kvm_enabled()) {
1329         error_report("mach-virt: KVM does not support providing "
1330                      "Virtualization extensions to the guest CPU");
1331         exit(1);
1332     }
1333 
1334     if (vms->secure) {
1335         if (kvm_enabled()) {
1336             error_report("mach-virt: KVM does not support Security extensions");
1337             exit(1);
1338         }
1339 
1340         /* The Secure view of the world is the same as the NonSecure,
1341          * but with a few extra devices. Create it as a container region
1342          * containing the system memory at low priority; any secure-only
1343          * devices go in at higher priority and take precedence.
1344          */
1345         secure_sysmem = g_new(MemoryRegion, 1);
1346         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1347                            UINT64_MAX);
1348         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1349     }
1350 
1351     create_fdt(vms);
1352 
1353     possible_cpus = mc->possible_cpu_arch_ids(machine);
1354     for (n = 0; n < possible_cpus->len; n++) {
1355         Object *cpuobj;
1356         CPUState *cs;
1357 
1358         if (n >= smp_cpus) {
1359             break;
1360         }
1361 
1362         cpuobj = object_new(possible_cpus->cpus[n].type);
1363         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1364                                 "mp-affinity", NULL);
1365 
1366         cs = CPU(cpuobj);
1367         cs->cpu_index = n;
1368 
1369         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1370                           &error_fatal);
1371 
1372         if (!vms->secure) {
1373             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1374         }
1375 
1376         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1377             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1378         }
1379 
1380         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1381             object_property_set_int(cpuobj, vms->psci_conduit,
1382                                     "psci-conduit", NULL);
1383 
1384             /* Secondary CPUs start in PSCI powered-down state */
1385             if (n > 0) {
1386                 object_property_set_bool(cpuobj, true,
1387                                          "start-powered-off", NULL);
1388             }
1389         }
1390 
1391         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1392             object_property_set_bool(cpuobj, false, "pmu", NULL);
1393         }
1394 
1395         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1396             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1397                                     "reset-cbar", &error_abort);
1398         }
1399 
1400         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1401                                  &error_abort);
1402         if (vms->secure) {
1403             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1404                                      "secure-memory", &error_abort);
1405         }
1406 
1407         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1408         object_unref(cpuobj);
1409     }
1410     fdt_add_timer_nodes(vms);
1411     fdt_add_cpu_nodes(vms);
1412     fdt_add_psci_node(vms);
1413 
1414     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1415                                          machine->ram_size);
1416     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1417 
1418     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1419 
1420     create_gic(vms, pic);
1421 
1422     fdt_add_pmu_nodes(vms);
1423 
1424     create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1425 
1426     if (vms->secure) {
1427         create_secure_ram(vms, secure_sysmem);
1428         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1429     }
1430 
1431     create_rtc(vms, pic);
1432 
1433     create_pcie(vms, pic);
1434 
1435     create_gpio(vms, pic);
1436 
1437     /* Create mmio transports, so the user can create virtio backends
1438      * (which will be automatically plugged in to the transports). If
1439      * no backend is created the transport will just sit harmlessly idle.
1440      */
1441     create_virtio_devices(vms, pic);
1442 
1443     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1444     rom_set_fw(vms->fw_cfg);
1445 
1446     vms->machine_done.notify = virt_machine_done;
1447     qemu_add_machine_init_done_notifier(&vms->machine_done);
1448 
1449     vms->bootinfo.ram_size = machine->ram_size;
1450     vms->bootinfo.kernel_filename = machine->kernel_filename;
1451     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1452     vms->bootinfo.initrd_filename = machine->initrd_filename;
1453     vms->bootinfo.nb_cpus = smp_cpus;
1454     vms->bootinfo.board_id = -1;
1455     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1456     vms->bootinfo.get_dtb = machvirt_dtb;
1457     vms->bootinfo.firmware_loaded = firmware_loaded;
1458     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1459 
1460     /*
1461      * arm_load_kernel machine init done notifier registration must
1462      * happen before the platform_bus_create call. In this latter,
1463      * another notifier is registered which adds platform bus nodes.
1464      * Notifiers are executed in registration reverse order.
1465      */
1466     create_platform_bus(vms, pic);
1467 }
1468 
1469 static bool virt_get_secure(Object *obj, Error **errp)
1470 {
1471     VirtMachineState *vms = VIRT_MACHINE(obj);
1472 
1473     return vms->secure;
1474 }
1475 
1476 static void virt_set_secure(Object *obj, bool value, Error **errp)
1477 {
1478     VirtMachineState *vms = VIRT_MACHINE(obj);
1479 
1480     vms->secure = value;
1481 }
1482 
1483 static bool virt_get_virt(Object *obj, Error **errp)
1484 {
1485     VirtMachineState *vms = VIRT_MACHINE(obj);
1486 
1487     return vms->virt;
1488 }
1489 
1490 static void virt_set_virt(Object *obj, bool value, Error **errp)
1491 {
1492     VirtMachineState *vms = VIRT_MACHINE(obj);
1493 
1494     vms->virt = value;
1495 }
1496 
1497 static bool virt_get_highmem(Object *obj, Error **errp)
1498 {
1499     VirtMachineState *vms = VIRT_MACHINE(obj);
1500 
1501     return vms->highmem;
1502 }
1503 
1504 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1505 {
1506     VirtMachineState *vms = VIRT_MACHINE(obj);
1507 
1508     vms->highmem = value;
1509 }
1510 
1511 static bool virt_get_its(Object *obj, Error **errp)
1512 {
1513     VirtMachineState *vms = VIRT_MACHINE(obj);
1514 
1515     return vms->its;
1516 }
1517 
1518 static void virt_set_its(Object *obj, bool value, Error **errp)
1519 {
1520     VirtMachineState *vms = VIRT_MACHINE(obj);
1521 
1522     vms->its = value;
1523 }
1524 
1525 static char *virt_get_gic_version(Object *obj, Error **errp)
1526 {
1527     VirtMachineState *vms = VIRT_MACHINE(obj);
1528     const char *val = vms->gic_version == 3 ? "3" : "2";
1529 
1530     return g_strdup(val);
1531 }
1532 
1533 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1534 {
1535     VirtMachineState *vms = VIRT_MACHINE(obj);
1536 
1537     if (!strcmp(value, "3")) {
1538         vms->gic_version = 3;
1539     } else if (!strcmp(value, "2")) {
1540         vms->gic_version = 2;
1541     } else if (!strcmp(value, "host")) {
1542         vms->gic_version = 0; /* Will probe later */
1543     } else {
1544         error_setg(errp, "Invalid gic-version value");
1545         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1546     }
1547 }
1548 
1549 static CpuInstanceProperties
1550 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1551 {
1552     MachineClass *mc = MACHINE_GET_CLASS(ms);
1553     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1554 
1555     assert(cpu_index < possible_cpus->len);
1556     return possible_cpus->cpus[cpu_index].props;
1557 }
1558 
1559 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1560 {
1561     return idx % nb_numa_nodes;
1562 }
1563 
1564 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1565 {
1566     int n;
1567     VirtMachineState *vms = VIRT_MACHINE(ms);
1568 
1569     if (ms->possible_cpus) {
1570         assert(ms->possible_cpus->len == max_cpus);
1571         return ms->possible_cpus;
1572     }
1573 
1574     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1575                                   sizeof(CPUArchId) * max_cpus);
1576     ms->possible_cpus->len = max_cpus;
1577     for (n = 0; n < ms->possible_cpus->len; n++) {
1578         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1579         ms->possible_cpus->cpus[n].arch_id =
1580             virt_cpu_mp_affinity(vms, n);
1581         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1582         ms->possible_cpus->cpus[n].props.thread_id = n;
1583     }
1584     return ms->possible_cpus;
1585 }
1586 
1587 static void virt_machine_class_init(ObjectClass *oc, void *data)
1588 {
1589     MachineClass *mc = MACHINE_CLASS(oc);
1590 
1591     mc->init = machvirt_init;
1592     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1593      * it later in machvirt_init, where we have more information about the
1594      * configuration of the particular instance.
1595      */
1596     mc->max_cpus = 255;
1597     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1598     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1599     mc->block_default_type = IF_VIRTIO;
1600     mc->no_cdrom = 1;
1601     mc->pci_allow_0_address = true;
1602     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1603     mc->minimum_page_bits = 12;
1604     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1605     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1606     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1607     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1608 }
1609 
1610 static const TypeInfo virt_machine_info = {
1611     .name          = TYPE_VIRT_MACHINE,
1612     .parent        = TYPE_MACHINE,
1613     .abstract      = true,
1614     .instance_size = sizeof(VirtMachineState),
1615     .class_size    = sizeof(VirtMachineClass),
1616     .class_init    = virt_machine_class_init,
1617 };
1618 
1619 static void machvirt_machine_init(void)
1620 {
1621     type_register_static(&virt_machine_info);
1622 }
1623 type_init(machvirt_machine_init);
1624 
1625 static void virt_2_12_instance_init(Object *obj)
1626 {
1627     VirtMachineState *vms = VIRT_MACHINE(obj);
1628     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1629 
1630     /* EL3 is disabled by default on virt: this makes us consistent
1631      * between KVM and TCG for this board, and it also allows us to
1632      * boot UEFI blobs which assume no TrustZone support.
1633      */
1634     vms->secure = false;
1635     object_property_add_bool(obj, "secure", virt_get_secure,
1636                              virt_set_secure, NULL);
1637     object_property_set_description(obj, "secure",
1638                                     "Set on/off to enable/disable the ARM "
1639                                     "Security Extensions (TrustZone)",
1640                                     NULL);
1641 
1642     /* EL2 is also disabled by default, for similar reasons */
1643     vms->virt = false;
1644     object_property_add_bool(obj, "virtualization", virt_get_virt,
1645                              virt_set_virt, NULL);
1646     object_property_set_description(obj, "virtualization",
1647                                     "Set on/off to enable/disable emulating a "
1648                                     "guest CPU which implements the ARM "
1649                                     "Virtualization Extensions",
1650                                     NULL);
1651 
1652     /* High memory is enabled by default */
1653     vms->highmem = true;
1654     object_property_add_bool(obj, "highmem", virt_get_highmem,
1655                              virt_set_highmem, NULL);
1656     object_property_set_description(obj, "highmem",
1657                                     "Set on/off to enable/disable using "
1658                                     "physical address space above 32 bits",
1659                                     NULL);
1660     /* Default GIC type is v2 */
1661     vms->gic_version = 2;
1662     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1663                         virt_set_gic_version, NULL);
1664     object_property_set_description(obj, "gic-version",
1665                                     "Set GIC version. "
1666                                     "Valid values are 2, 3 and host", NULL);
1667 
1668     if (vmc->no_its) {
1669         vms->its = false;
1670     } else {
1671         /* Default allows ITS instantiation */
1672         vms->its = true;
1673         object_property_add_bool(obj, "its", virt_get_its,
1674                                  virt_set_its, NULL);
1675         object_property_set_description(obj, "its",
1676                                         "Set on/off to enable/disable "
1677                                         "ITS instantiation",
1678                                         NULL);
1679     }
1680 
1681     vms->memmap = a15memmap;
1682     vms->irqmap = a15irqmap;
1683 }
1684 
1685 static void virt_machine_2_12_options(MachineClass *mc)
1686 {
1687 }
1688 DEFINE_VIRT_MACHINE_AS_LATEST(2, 12)
1689 
1690 #define VIRT_COMPAT_2_11 \
1691     HW_COMPAT_2_11
1692 
1693 static void virt_2_11_instance_init(Object *obj)
1694 {
1695     virt_2_12_instance_init(obj);
1696 }
1697 
1698 static void virt_machine_2_11_options(MachineClass *mc)
1699 {
1700     virt_machine_2_12_options(mc);
1701     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1702 }
1703 DEFINE_VIRT_MACHINE(2, 11)
1704 
1705 #define VIRT_COMPAT_2_10 \
1706     HW_COMPAT_2_10
1707 
1708 static void virt_2_10_instance_init(Object *obj)
1709 {
1710     virt_2_11_instance_init(obj);
1711 }
1712 
1713 static void virt_machine_2_10_options(MachineClass *mc)
1714 {
1715     virt_machine_2_11_options(mc);
1716     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1717 }
1718 DEFINE_VIRT_MACHINE(2, 10)
1719 
1720 #define VIRT_COMPAT_2_9 \
1721     HW_COMPAT_2_9
1722 
1723 static void virt_2_9_instance_init(Object *obj)
1724 {
1725     virt_2_10_instance_init(obj);
1726 }
1727 
1728 static void virt_machine_2_9_options(MachineClass *mc)
1729 {
1730     virt_machine_2_10_options(mc);
1731     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1732 }
1733 DEFINE_VIRT_MACHINE(2, 9)
1734 
1735 #define VIRT_COMPAT_2_8 \
1736     HW_COMPAT_2_8
1737 
1738 static void virt_2_8_instance_init(Object *obj)
1739 {
1740     virt_2_9_instance_init(obj);
1741 }
1742 
1743 static void virt_machine_2_8_options(MachineClass *mc)
1744 {
1745     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1746 
1747     virt_machine_2_9_options(mc);
1748     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1749     /* For 2.8 and earlier we falsely claimed in the DT that
1750      * our timers were edge-triggered, not level-triggered.
1751      */
1752     vmc->claim_edge_triggered_timers = true;
1753 }
1754 DEFINE_VIRT_MACHINE(2, 8)
1755 
1756 #define VIRT_COMPAT_2_7 \
1757     HW_COMPAT_2_7
1758 
1759 static void virt_2_7_instance_init(Object *obj)
1760 {
1761     virt_2_8_instance_init(obj);
1762 }
1763 
1764 static void virt_machine_2_7_options(MachineClass *mc)
1765 {
1766     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1767 
1768     virt_machine_2_8_options(mc);
1769     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1770     /* ITS was introduced with 2.8 */
1771     vmc->no_its = true;
1772     /* Stick with 1K pages for migration compatibility */
1773     mc->minimum_page_bits = 0;
1774 }
1775 DEFINE_VIRT_MACHINE(2, 7)
1776 
1777 #define VIRT_COMPAT_2_6 \
1778     HW_COMPAT_2_6
1779 
1780 static void virt_2_6_instance_init(Object *obj)
1781 {
1782     virt_2_7_instance_init(obj);
1783 }
1784 
1785 static void virt_machine_2_6_options(MachineClass *mc)
1786 {
1787     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1788 
1789     virt_machine_2_7_options(mc);
1790     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1791     vmc->disallow_affinity_adjustment = true;
1792     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1793     vmc->no_pmu = true;
1794 }
1795 DEFINE_VIRT_MACHINE(2, 6)
1796