xref: /openbmc/qemu/hw/arm/virt.c (revision f8821260)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/kvm.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "qemu/bitops.h"
42 #include "qemu/error-report.h"
43 
44 #define NUM_VIRTIO_TRANSPORTS 32
45 
46 /* Number of external interrupt lines to configure the GIC with */
47 #define NUM_IRQS 128
48 
49 #define GIC_FDT_IRQ_TYPE_SPI 0
50 #define GIC_FDT_IRQ_TYPE_PPI 1
51 
52 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
53 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
54 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
55 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
56 
57 #define GIC_FDT_IRQ_PPI_CPU_START 8
58 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
59 
60 enum {
61     VIRT_FLASH,
62     VIRT_MEM,
63     VIRT_CPUPERIPHS,
64     VIRT_GIC_DIST,
65     VIRT_GIC_CPU,
66     VIRT_UART,
67     VIRT_MMIO,
68 };
69 
70 typedef struct MemMapEntry {
71     hwaddr base;
72     hwaddr size;
73 } MemMapEntry;
74 
75 typedef struct VirtBoardInfo {
76     struct arm_boot_info bootinfo;
77     const char *cpu_model;
78     const MemMapEntry *memmap;
79     const int *irqmap;
80     int smp_cpus;
81     void *fdt;
82     int fdt_size;
83     uint32_t clock_phandle;
84 } VirtBoardInfo;
85 
86 /* Addresses and sizes of our components.
87  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
88  * 128MB..256MB is used for miscellaneous device I/O.
89  * 256MB..1GB is reserved for possible future PCI support (ie where the
90  * PCI memory window will go if we add a PCI host controller).
91  * 1GB and up is RAM (which may happily spill over into the
92  * high memory region beyond 4GB).
93  * This represents a compromise between how much RAM can be given to
94  * a 32 bit VM and leaving space for expansion and in particular for PCI.
95  */
96 static const MemMapEntry a15memmap[] = {
97     /* Space up to 0x8000000 is reserved for a boot ROM */
98     [VIRT_FLASH] = { 0, 0x8000000 },
99     [VIRT_CPUPERIPHS] = { 0x8000000, 0x20000 },
100     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
101     [VIRT_GIC_DIST] = { 0x8000000, 0x10000 },
102     [VIRT_GIC_CPU] = { 0x8010000, 0x10000 },
103     [VIRT_UART] = { 0x9000000, 0x1000 },
104     [VIRT_MMIO] = { 0xa000000, 0x200 },
105     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
106     /* 0x10000000 .. 0x40000000 reserved for PCI */
107     [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
108 };
109 
110 static const int a15irqmap[] = {
111     [VIRT_UART] = 1,
112     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
113 };
114 
115 static VirtBoardInfo machines[] = {
116     {
117         .cpu_model = "cortex-a15",
118         .memmap = a15memmap,
119         .irqmap = a15irqmap,
120     },
121     {
122         .cpu_model = "cortex-a57",
123         .memmap = a15memmap,
124         .irqmap = a15irqmap,
125     },
126     {
127         .cpu_model = "host",
128         .memmap = a15memmap,
129         .irqmap = a15irqmap,
130     },
131 };
132 
133 static VirtBoardInfo *find_machine_info(const char *cpu)
134 {
135     int i;
136 
137     for (i = 0; i < ARRAY_SIZE(machines); i++) {
138         if (strcmp(cpu, machines[i].cpu_model) == 0) {
139             return &machines[i];
140         }
141     }
142     return NULL;
143 }
144 
145 static void create_fdt(VirtBoardInfo *vbi)
146 {
147     void *fdt = create_device_tree(&vbi->fdt_size);
148 
149     if (!fdt) {
150         error_report("create_device_tree() failed");
151         exit(1);
152     }
153 
154     vbi->fdt = fdt;
155 
156     /* Header */
157     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
158     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
159     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
160 
161     /*
162      * /chosen and /memory nodes must exist for load_dtb
163      * to fill in necessary properties later
164      */
165     qemu_fdt_add_subnode(fdt, "/chosen");
166     qemu_fdt_add_subnode(fdt, "/memory");
167     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
168 
169     /* Clock node, for the benefit of the UART. The kernel device tree
170      * binding documentation claims the PL011 node clock properties are
171      * optional but in practice if you omit them the kernel refuses to
172      * probe for the device.
173      */
174     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
175     qemu_fdt_add_subnode(fdt, "/apb-pclk");
176     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
177     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
178     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
179     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
180                                 "clk24mhz");
181     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
182 
183 }
184 
185 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
186 {
187     void *fdt = vbi->fdt;
188     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
189 
190     /* No PSCI for TCG yet */
191     if (kvm_enabled()) {
192         qemu_fdt_add_subnode(fdt, "/psci");
193         if (armcpu->psci_version == 2) {
194             const char comp[] = "arm,psci-0.2\0arm,psci";
195             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
196         } else {
197             qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
198         }
199 
200         qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
201         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend",
202                                   PSCI_FN_CPU_SUSPEND);
203         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF);
204         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON);
205         qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE);
206     }
207 }
208 
209 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
210 {
211     /* Note that on A15 h/w these interrupts are level-triggered,
212      * but for the GIC implementation provided by both QEMU and KVM
213      * they are edge-triggered.
214      */
215     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
216 
217     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
218                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
219 
220     qemu_fdt_add_subnode(vbi->fdt, "/timer");
221     qemu_fdt_setprop_string(vbi->fdt, "/timer",
222                                 "compatible", "arm,armv7-timer");
223     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
224                                GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
225                                GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
226                                GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
227                                GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
228 }
229 
230 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
231 {
232     int cpu;
233 
234     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
235     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
236     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
237 
238     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
239         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
240         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
241 
242         qemu_fdt_add_subnode(vbi->fdt, nodename);
243         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
244         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
245                                     armcpu->dtb_compatible);
246 
247         if (vbi->smp_cpus > 1) {
248             qemu_fdt_setprop_string(vbi->fdt, nodename,
249                                         "enable-method", "psci");
250         }
251 
252         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
253         g_free(nodename);
254     }
255 }
256 
257 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
258 {
259     uint32_t gic_phandle;
260 
261     gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
262     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
263 
264     qemu_fdt_add_subnode(vbi->fdt, "/intc");
265     /* 'cortex-a15-gic' means 'GIC v2' */
266     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
267                             "arm,cortex-a15-gic");
268     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
269     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
270     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
271                                      2, vbi->memmap[VIRT_GIC_DIST].base,
272                                      2, vbi->memmap[VIRT_GIC_DIST].size,
273                                      2, vbi->memmap[VIRT_GIC_CPU].base,
274                                      2, vbi->memmap[VIRT_GIC_CPU].size);
275     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
276 }
277 
278 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
279 {
280     /* We create a standalone GIC v2 */
281     DeviceState *gicdev;
282     SysBusDevice *gicbusdev;
283     const char *gictype = "arm_gic";
284     int i;
285 
286     if (kvm_irqchip_in_kernel()) {
287         gictype = "kvm-arm-gic";
288     }
289 
290     gicdev = qdev_create(NULL, gictype);
291     qdev_prop_set_uint32(gicdev, "revision", 2);
292     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
293     /* Note that the num-irq property counts both internal and external
294      * interrupts; there are always 32 of the former (mandated by GIC spec).
295      */
296     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
297     qdev_init_nofail(gicdev);
298     gicbusdev = SYS_BUS_DEVICE(gicdev);
299     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
300     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
301 
302     /* Wire the outputs from each CPU's generic timer to the
303      * appropriate GIC PPI inputs, and the GIC's IRQ output to
304      * the CPU's IRQ input.
305      */
306     for (i = 0; i < smp_cpus; i++) {
307         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
308         int ppibase = NUM_IRQS + i * 32;
309         /* physical timer; we wire it up to the non-secure timer's ID,
310          * since a real A15 always has TrustZone but QEMU doesn't.
311          */
312         qdev_connect_gpio_out(cpudev, 0,
313                               qdev_get_gpio_in(gicdev, ppibase + 30));
314         /* virtual timer */
315         qdev_connect_gpio_out(cpudev, 1,
316                               qdev_get_gpio_in(gicdev, ppibase + 27));
317 
318         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
319     }
320 
321     for (i = 0; i < NUM_IRQS; i++) {
322         pic[i] = qdev_get_gpio_in(gicdev, i);
323     }
324 
325     fdt_add_gic_node(vbi);
326 }
327 
328 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
329 {
330     char *nodename;
331     hwaddr base = vbi->memmap[VIRT_UART].base;
332     hwaddr size = vbi->memmap[VIRT_UART].size;
333     int irq = vbi->irqmap[VIRT_UART];
334     const char compat[] = "arm,pl011\0arm,primecell";
335     const char clocknames[] = "uartclk\0apb_pclk";
336 
337     sysbus_create_simple("pl011", base, pic[irq]);
338 
339     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
340     qemu_fdt_add_subnode(vbi->fdt, nodename);
341     /* Note that we can't use setprop_string because of the embedded NUL */
342     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
343                          compat, sizeof(compat));
344     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
345                                      2, base, 2, size);
346     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
347                                GIC_FDT_IRQ_TYPE_SPI, irq,
348                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
349     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
350                                vbi->clock_phandle, vbi->clock_phandle);
351     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
352                          clocknames, sizeof(clocknames));
353     g_free(nodename);
354 }
355 
356 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
357 {
358     int i;
359     hwaddr size = vbi->memmap[VIRT_MMIO].size;
360 
361     /* Note that we have to create the transports in forwards order
362      * so that command line devices are inserted lowest address first,
363      * and then add dtb nodes in reverse order so that they appear in
364      * the finished device tree lowest address first.
365      */
366     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
367         int irq = vbi->irqmap[VIRT_MMIO] + i;
368         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
369 
370         sysbus_create_simple("virtio-mmio", base, pic[irq]);
371     }
372 
373     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
374         char *nodename;
375         int irq = vbi->irqmap[VIRT_MMIO] + i;
376         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
377 
378         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
379         qemu_fdt_add_subnode(vbi->fdt, nodename);
380         qemu_fdt_setprop_string(vbi->fdt, nodename,
381                                 "compatible", "virtio,mmio");
382         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
383                                      2, base, 2, size);
384         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
385                                GIC_FDT_IRQ_TYPE_SPI, irq,
386                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
387         g_free(nodename);
388     }
389 }
390 
391 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
392 {
393     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
394 
395     *fdt_size = board->fdt_size;
396     return board->fdt;
397 }
398 
399 static void machvirt_init(MachineState *machine)
400 {
401     qemu_irq pic[NUM_IRQS];
402     MemoryRegion *sysmem = get_system_memory();
403     int n;
404     MemoryRegion *ram = g_new(MemoryRegion, 1);
405     const char *cpu_model = machine->cpu_model;
406     VirtBoardInfo *vbi;
407 
408     if (!cpu_model) {
409         cpu_model = "cortex-a15";
410     }
411 
412     vbi = find_machine_info(cpu_model);
413 
414     if (!vbi) {
415         error_report("mach-virt: CPU %s not supported", cpu_model);
416         exit(1);
417     }
418 
419     vbi->smp_cpus = smp_cpus;
420 
421     /*
422      * Only supported method of starting secondary CPUs is PSCI and
423      * PSCI is not yet supported with TCG, so limit smp_cpus to 1
424      * if we're not using KVM.
425      */
426     if (!kvm_enabled() && smp_cpus > 1) {
427         error_report("mach-virt: must enable KVM to use multiple CPUs");
428         exit(1);
429     }
430 
431     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
432         error_report("mach-virt: cannot model more than 30GB RAM");
433         exit(1);
434     }
435 
436     create_fdt(vbi);
437     fdt_add_timer_nodes(vbi);
438 
439     for (n = 0; n < smp_cpus; n++) {
440         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
441         Object *cpuobj;
442 
443         if (!oc) {
444             fprintf(stderr, "Unable to find CPU definition\n");
445             exit(1);
446         }
447         cpuobj = object_new(object_class_get_name(oc));
448 
449         /* Secondary CPUs start in PSCI powered-down state */
450         if (n > 0) {
451             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
452         }
453 
454         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
455             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
456                                     "reset-cbar", &error_abort);
457         }
458 
459         object_property_set_bool(cpuobj, true, "realized", NULL);
460     }
461     fdt_add_cpu_nodes(vbi);
462     fdt_add_psci_node(vbi);
463 
464     memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size);
465     vmstate_register_ram_global(ram);
466     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
467 
468     create_gic(vbi, pic);
469 
470     create_uart(vbi, pic);
471 
472     /* Create mmio transports, so the user can create virtio backends
473      * (which will be automatically plugged in to the transports). If
474      * no backend is created the transport will just sit harmlessly idle.
475      */
476     create_virtio_devices(vbi, pic);
477 
478     vbi->bootinfo.ram_size = machine->ram_size;
479     vbi->bootinfo.kernel_filename = machine->kernel_filename;
480     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
481     vbi->bootinfo.initrd_filename = machine->initrd_filename;
482     vbi->bootinfo.nb_cpus = smp_cpus;
483     vbi->bootinfo.board_id = -1;
484     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
485     vbi->bootinfo.get_dtb = machvirt_dtb;
486     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
487 }
488 
489 static QEMUMachine machvirt_a15_machine = {
490     .name = "virt",
491     .desc = "ARM Virtual Machine",
492     .init = machvirt_init,
493     .max_cpus = 4,
494 };
495 
496 static void machvirt_machine_init(void)
497 {
498     qemu_register_machine(&machvirt_a15_machine);
499 }
500 
501 machine_init(machvirt_machine_init);
502