1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qapi/error.h" 33 #include "hw/sysbus.h" 34 #include "hw/arm/arm.h" 35 #include "hw/arm/primecell.h" 36 #include "hw/arm/virt.h" 37 #include "hw/devices.h" 38 #include "net/net.h" 39 #include "sysemu/block-backend.h" 40 #include "sysemu/device_tree.h" 41 #include "sysemu/numa.h" 42 #include "sysemu/sysemu.h" 43 #include "sysemu/kvm.h" 44 #include "hw/boards.h" 45 #include "hw/compat.h" 46 #include "hw/loader.h" 47 #include "exec/address-spaces.h" 48 #include "qemu/bitops.h" 49 #include "qemu/error-report.h" 50 #include "hw/pci-host/gpex.h" 51 #include "hw/arm/virt-acpi-build.h" 52 #include "hw/arm/sysbus-fdt.h" 53 #include "hw/platform-bus.h" 54 #include "hw/arm/fdt.h" 55 #include "hw/intc/arm_gic.h" 56 #include "hw/intc/arm_gicv3_common.h" 57 #include "kvm_arm.h" 58 #include "hw/smbios/smbios.h" 59 #include "qapi/visitor.h" 60 #include "standard-headers/linux/input.h" 61 62 /* Number of external interrupt lines to configure the GIC with */ 63 #define NUM_IRQS 256 64 65 #define PLATFORM_BUS_NUM_IRQS 64 66 67 static ARMPlatformBusSystemParams platform_bus_params; 68 69 typedef struct VirtBoardInfo { 70 struct arm_boot_info bootinfo; 71 const char *cpu_model; 72 const MemMapEntry *memmap; 73 const int *irqmap; 74 int smp_cpus; 75 void *fdt; 76 int fdt_size; 77 uint32_t clock_phandle; 78 uint32_t gic_phandle; 79 uint32_t msi_phandle; 80 bool using_psci; 81 } VirtBoardInfo; 82 83 typedef struct { 84 MachineClass parent; 85 VirtBoardInfo *daughterboard; 86 bool disallow_affinity_adjustment; 87 bool no_its; 88 bool no_pmu; 89 } VirtMachineClass; 90 91 typedef struct { 92 MachineState parent; 93 bool secure; 94 bool highmem; 95 int32_t gic_version; 96 } VirtMachineState; 97 98 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt") 99 #define VIRT_MACHINE(obj) \ 100 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 101 #define VIRT_MACHINE_GET_CLASS(obj) \ 102 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 103 #define VIRT_MACHINE_CLASS(klass) \ 104 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 105 106 107 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 108 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 109 void *data) \ 110 { \ 111 MachineClass *mc = MACHINE_CLASS(oc); \ 112 virt_machine_##major##_##minor##_options(mc); \ 113 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 114 if (latest) { \ 115 mc->alias = "virt"; \ 116 } \ 117 } \ 118 static const TypeInfo machvirt_##major##_##minor##_info = { \ 119 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 120 .parent = TYPE_VIRT_MACHINE, \ 121 .instance_init = virt_##major##_##minor##_instance_init, \ 122 .class_init = virt_##major##_##minor##_class_init, \ 123 }; \ 124 static void machvirt_machine_##major##_##minor##_init(void) \ 125 { \ 126 type_register_static(&machvirt_##major##_##minor##_info); \ 127 } \ 128 type_init(machvirt_machine_##major##_##minor##_init); 129 130 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 131 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 132 #define DEFINE_VIRT_MACHINE(major, minor) \ 133 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 134 135 136 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means 137 * RAM can go up to the 256GB mark, leaving 256GB of the physical 138 * address space unallocated and free for future use between 256G and 512G. 139 * If we need to provide more RAM to VMs in the future then we need to: 140 * * allocate a second bank of RAM starting at 2TB and working up 141 * * fix the DT and ACPI table generation code in QEMU to correctly 142 * report two split lumps of RAM to the guest 143 * * fix KVM in the host kernel to allow guests with >40 bit address spaces 144 * (We don't want to fill all the way up to 512GB with RAM because 145 * we might want it for non-RAM purposes later. Conversely it seems 146 * reasonable to assume that anybody configuring a VM with a quarter 147 * of a terabyte of RAM will be doing it on a host with more than a 148 * terabyte of physical address space.) 149 */ 150 #define RAMLIMIT_GB 255 151 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024) 152 153 /* Addresses and sizes of our components. 154 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 155 * 128MB..256MB is used for miscellaneous device I/O. 156 * 256MB..1GB is reserved for possible future PCI support (ie where the 157 * PCI memory window will go if we add a PCI host controller). 158 * 1GB and up is RAM (which may happily spill over into the 159 * high memory region beyond 4GB). 160 * This represents a compromise between how much RAM can be given to 161 * a 32 bit VM and leaving space for expansion and in particular for PCI. 162 * Note that devices should generally be placed at multiples of 0x10000, 163 * to accommodate guests using 64K pages. 164 */ 165 static const MemMapEntry a15memmap[] = { 166 /* Space up to 0x8000000 is reserved for a boot ROM */ 167 [VIRT_FLASH] = { 0, 0x08000000 }, 168 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 169 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 170 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 171 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 172 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 173 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 174 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 175 /* This redistributor space allows up to 2*64kB*123 CPUs */ 176 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 177 [VIRT_UART] = { 0x09000000, 0x00001000 }, 178 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 179 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 180 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 181 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 182 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 183 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 184 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 185 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 186 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 187 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 188 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 189 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES }, 190 /* Second PCIe window, 512GB wide at the 512GB boundary */ 191 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 192 }; 193 194 static const int a15irqmap[] = { 195 [VIRT_UART] = 1, 196 [VIRT_RTC] = 2, 197 [VIRT_PCIE] = 3, /* ... to 6 */ 198 [VIRT_GPIO] = 7, 199 [VIRT_SECURE_UART] = 8, 200 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 201 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 202 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 203 }; 204 205 static VirtBoardInfo machines[] = { 206 { 207 .cpu_model = "cortex-a15", 208 .memmap = a15memmap, 209 .irqmap = a15irqmap, 210 }, 211 { 212 .cpu_model = "cortex-a53", 213 .memmap = a15memmap, 214 .irqmap = a15irqmap, 215 }, 216 { 217 .cpu_model = "cortex-a57", 218 .memmap = a15memmap, 219 .irqmap = a15irqmap, 220 }, 221 { 222 .cpu_model = "host", 223 .memmap = a15memmap, 224 .irqmap = a15irqmap, 225 }, 226 }; 227 228 static VirtBoardInfo *find_machine_info(const char *cpu) 229 { 230 int i; 231 232 for (i = 0; i < ARRAY_SIZE(machines); i++) { 233 if (strcmp(cpu, machines[i].cpu_model) == 0) { 234 return &machines[i]; 235 } 236 } 237 return NULL; 238 } 239 240 static void create_fdt(VirtBoardInfo *vbi) 241 { 242 void *fdt = create_device_tree(&vbi->fdt_size); 243 244 if (!fdt) { 245 error_report("create_device_tree() failed"); 246 exit(1); 247 } 248 249 vbi->fdt = fdt; 250 251 /* Header */ 252 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 253 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 254 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 255 256 /* 257 * /chosen and /memory nodes must exist for load_dtb 258 * to fill in necessary properties later 259 */ 260 qemu_fdt_add_subnode(fdt, "/chosen"); 261 qemu_fdt_add_subnode(fdt, "/memory"); 262 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 263 264 /* Clock node, for the benefit of the UART. The kernel device tree 265 * binding documentation claims the PL011 node clock properties are 266 * optional but in practice if you omit them the kernel refuses to 267 * probe for the device. 268 */ 269 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 270 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 271 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 272 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 273 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 274 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 275 "clk24mhz"); 276 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 277 278 } 279 280 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 281 { 282 uint32_t cpu_suspend_fn; 283 uint32_t cpu_off_fn; 284 uint32_t cpu_on_fn; 285 uint32_t migrate_fn; 286 void *fdt = vbi->fdt; 287 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 288 289 if (!vbi->using_psci) { 290 return; 291 } 292 293 qemu_fdt_add_subnode(fdt, "/psci"); 294 if (armcpu->psci_version == 2) { 295 const char comp[] = "arm,psci-0.2\0arm,psci"; 296 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 297 298 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 299 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 300 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 301 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 302 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 303 } else { 304 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 305 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 306 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 307 } 308 } else { 309 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 310 311 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 312 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 313 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 314 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 315 } 316 317 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 318 * to the instruction that should be used to invoke PSCI functions. 319 * However, the device tree binding uses 'method' instead, so that is 320 * what we should use here. 321 */ 322 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 323 324 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 325 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 326 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 327 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 328 } 329 330 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype) 331 { 332 /* Note that on A15 h/w these interrupts are level-triggered, 333 * but for the GIC implementation provided by both QEMU and KVM 334 * they are edge-triggered. 335 */ 336 ARMCPU *armcpu; 337 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 338 339 if (gictype == 2) { 340 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 341 GIC_FDT_IRQ_PPI_CPU_WIDTH, 342 (1 << vbi->smp_cpus) - 1); 343 } 344 345 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 346 347 armcpu = ARM_CPU(qemu_get_cpu(0)); 348 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 349 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 350 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 351 compat, sizeof(compat)); 352 } else { 353 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 354 "arm,armv7-timer"); 355 } 356 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0); 357 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 358 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 359 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 360 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 361 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 362 } 363 364 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 365 { 366 int cpu; 367 int addr_cells = 1; 368 unsigned int i; 369 370 /* 371 * From Documentation/devicetree/bindings/arm/cpus.txt 372 * On ARM v8 64-bit systems value should be set to 2, 373 * that corresponds to the MPIDR_EL1 register size. 374 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 375 * in the system, #address-cells can be set to 1, since 376 * MPIDR_EL1[63:32] bits are not used for CPUs 377 * identification. 378 * 379 * Here we actually don't know whether our system is 32- or 64-bit one. 380 * The simplest way to go is to examine affinity IDs of all our CPUs. If 381 * at least one of them has Aff3 populated, we set #address-cells to 2. 382 */ 383 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 384 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 385 386 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 387 addr_cells = 2; 388 break; 389 } 390 } 391 392 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 393 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 394 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 395 396 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 397 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 398 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 399 400 qemu_fdt_add_subnode(vbi->fdt, nodename); 401 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 402 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 403 armcpu->dtb_compatible); 404 405 if (vbi->using_psci && vbi->smp_cpus > 1) { 406 qemu_fdt_setprop_string(vbi->fdt, nodename, 407 "enable-method", "psci"); 408 } 409 410 if (addr_cells == 2) { 411 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 412 armcpu->mp_affinity); 413 } else { 414 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 415 armcpu->mp_affinity); 416 } 417 418 i = numa_get_node_for_cpu(cpu); 419 if (i < nb_numa_nodes) { 420 qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i); 421 } 422 423 g_free(nodename); 424 } 425 } 426 427 static void fdt_add_its_gic_node(VirtBoardInfo *vbi) 428 { 429 vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 430 qemu_fdt_add_subnode(vbi->fdt, "/intc/its"); 431 qemu_fdt_setprop_string(vbi->fdt, "/intc/its", "compatible", 432 "arm,gic-v3-its"); 433 qemu_fdt_setprop(vbi->fdt, "/intc/its", "msi-controller", NULL, 0); 434 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/its", "reg", 435 2, vbi->memmap[VIRT_GIC_ITS].base, 436 2, vbi->memmap[VIRT_GIC_ITS].size); 437 qemu_fdt_setprop_cell(vbi->fdt, "/intc/its", "phandle", vbi->msi_phandle); 438 } 439 440 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 441 { 442 vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 443 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 444 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 445 "arm,gic-v2m-frame"); 446 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 447 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 448 2, vbi->memmap[VIRT_GIC_V2M].base, 449 2, vbi->memmap[VIRT_GIC_V2M].size); 450 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->msi_phandle); 451 } 452 453 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type) 454 { 455 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 456 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 457 458 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 459 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 460 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 461 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 462 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 463 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 464 if (type == 3) { 465 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 466 "arm,gic-v3"); 467 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 468 2, vbi->memmap[VIRT_GIC_DIST].base, 469 2, vbi->memmap[VIRT_GIC_DIST].size, 470 2, vbi->memmap[VIRT_GIC_REDIST].base, 471 2, vbi->memmap[VIRT_GIC_REDIST].size); 472 } else { 473 /* 'cortex-a15-gic' means 'GIC v2' */ 474 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 475 "arm,cortex-a15-gic"); 476 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 477 2, vbi->memmap[VIRT_GIC_DIST].base, 478 2, vbi->memmap[VIRT_GIC_DIST].size, 479 2, vbi->memmap[VIRT_GIC_CPU].base, 480 2, vbi->memmap[VIRT_GIC_CPU].size); 481 } 482 483 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 484 } 485 486 static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype) 487 { 488 CPUState *cpu; 489 ARMCPU *armcpu; 490 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 491 492 CPU_FOREACH(cpu) { 493 armcpu = ARM_CPU(cpu); 494 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) || 495 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) { 496 return; 497 } 498 } 499 500 if (gictype == 2) { 501 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 502 GIC_FDT_IRQ_PPI_CPU_WIDTH, 503 (1 << vbi->smp_cpus) - 1); 504 } 505 506 armcpu = ARM_CPU(qemu_get_cpu(0)); 507 qemu_fdt_add_subnode(vbi->fdt, "/pmu"); 508 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 509 const char compat[] = "arm,armv8-pmuv3"; 510 qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible", 511 compat, sizeof(compat)); 512 qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts", 513 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 514 } 515 } 516 517 static void create_its(VirtBoardInfo *vbi, DeviceState *gicdev) 518 { 519 const char *itsclass = its_class_name(); 520 DeviceState *dev; 521 522 if (!itsclass) { 523 /* Do nothing if not supported */ 524 return; 525 } 526 527 dev = qdev_create(NULL, itsclass); 528 529 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", 530 &error_abort); 531 qdev_init_nofail(dev); 532 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_ITS].base); 533 534 fdt_add_its_gic_node(vbi); 535 } 536 537 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 538 { 539 int i; 540 int irq = vbi->irqmap[VIRT_GIC_V2M]; 541 DeviceState *dev; 542 543 dev = qdev_create(NULL, "arm-gicv2m"); 544 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 545 qdev_prop_set_uint32(dev, "base-spi", irq); 546 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 547 qdev_init_nofail(dev); 548 549 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 550 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 551 } 552 553 fdt_add_v2m_gic_node(vbi); 554 } 555 556 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, 557 bool secure, bool no_its) 558 { 559 /* We create a standalone GIC */ 560 DeviceState *gicdev; 561 SysBusDevice *gicbusdev; 562 const char *gictype; 563 int i; 564 565 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 566 567 gicdev = qdev_create(NULL, gictype); 568 qdev_prop_set_uint32(gicdev, "revision", type); 569 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 570 /* Note that the num-irq property counts both internal and external 571 * interrupts; there are always 32 of the former (mandated by GIC spec). 572 */ 573 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 574 if (!kvm_irqchip_in_kernel()) { 575 qdev_prop_set_bit(gicdev, "has-security-extensions", secure); 576 } 577 qdev_init_nofail(gicdev); 578 gicbusdev = SYS_BUS_DEVICE(gicdev); 579 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 580 if (type == 3) { 581 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base); 582 } else { 583 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 584 } 585 586 /* Wire the outputs from each CPU's generic timer to the 587 * appropriate GIC PPI inputs, and the GIC's IRQ output to 588 * the CPU's IRQ input. 589 */ 590 for (i = 0; i < smp_cpus; i++) { 591 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 592 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 593 int irq; 594 /* Mapping from the output timer irq lines from the CPU to the 595 * GIC PPI inputs we use for the virt board. 596 */ 597 const int timer_irq[] = { 598 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 599 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 600 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 601 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 602 }; 603 604 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 605 qdev_connect_gpio_out(cpudev, irq, 606 qdev_get_gpio_in(gicdev, 607 ppibase + timer_irq[irq])); 608 } 609 610 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 611 sysbus_connect_irq(gicbusdev, i + smp_cpus, 612 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 613 } 614 615 for (i = 0; i < NUM_IRQS; i++) { 616 pic[i] = qdev_get_gpio_in(gicdev, i); 617 } 618 619 fdt_add_gic_node(vbi, type); 620 621 if (type == 3 && !no_its) { 622 create_its(vbi, gicdev); 623 } else if (type == 2) { 624 create_v2m(vbi, pic); 625 } 626 } 627 628 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart, 629 MemoryRegion *mem, CharDriverState *chr) 630 { 631 char *nodename; 632 hwaddr base = vbi->memmap[uart].base; 633 hwaddr size = vbi->memmap[uart].size; 634 int irq = vbi->irqmap[uart]; 635 const char compat[] = "arm,pl011\0arm,primecell"; 636 const char clocknames[] = "uartclk\0apb_pclk"; 637 DeviceState *dev = qdev_create(NULL, "pl011"); 638 SysBusDevice *s = SYS_BUS_DEVICE(dev); 639 640 qdev_prop_set_chr(dev, "chardev", chr); 641 qdev_init_nofail(dev); 642 memory_region_add_subregion(mem, base, 643 sysbus_mmio_get_region(s, 0)); 644 sysbus_connect_irq(s, 0, pic[irq]); 645 646 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 647 qemu_fdt_add_subnode(vbi->fdt, nodename); 648 /* Note that we can't use setprop_string because of the embedded NUL */ 649 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 650 compat, sizeof(compat)); 651 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 652 2, base, 2, size); 653 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 654 GIC_FDT_IRQ_TYPE_SPI, irq, 655 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 656 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 657 vbi->clock_phandle, vbi->clock_phandle); 658 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 659 clocknames, sizeof(clocknames)); 660 661 if (uart == VIRT_UART) { 662 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 663 } else { 664 /* Mark as not usable by the normal world */ 665 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 666 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 667 } 668 669 g_free(nodename); 670 } 671 672 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 673 { 674 char *nodename; 675 hwaddr base = vbi->memmap[VIRT_RTC].base; 676 hwaddr size = vbi->memmap[VIRT_RTC].size; 677 int irq = vbi->irqmap[VIRT_RTC]; 678 const char compat[] = "arm,pl031\0arm,primecell"; 679 680 sysbus_create_simple("pl031", base, pic[irq]); 681 682 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 683 qemu_fdt_add_subnode(vbi->fdt, nodename); 684 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 685 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 686 2, base, 2, size); 687 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 688 GIC_FDT_IRQ_TYPE_SPI, irq, 689 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 690 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 691 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 692 g_free(nodename); 693 } 694 695 static DeviceState *gpio_key_dev; 696 static void virt_powerdown_req(Notifier *n, void *opaque) 697 { 698 /* use gpio Pin 3 for power button event */ 699 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 700 } 701 702 static Notifier virt_system_powerdown_notifier = { 703 .notify = virt_powerdown_req 704 }; 705 706 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic) 707 { 708 char *nodename; 709 DeviceState *pl061_dev; 710 hwaddr base = vbi->memmap[VIRT_GPIO].base; 711 hwaddr size = vbi->memmap[VIRT_GPIO].size; 712 int irq = vbi->irqmap[VIRT_GPIO]; 713 const char compat[] = "arm,pl061\0arm,primecell"; 714 715 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 716 717 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt); 718 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 719 qemu_fdt_add_subnode(vbi->fdt, nodename); 720 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 721 2, base, 2, size); 722 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 723 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2); 724 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0); 725 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 726 GIC_FDT_IRQ_TYPE_SPI, irq, 727 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 728 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 729 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 730 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle); 731 732 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 733 qdev_get_gpio_in(pl061_dev, 3)); 734 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys"); 735 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys"); 736 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0); 737 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1); 738 739 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff"); 740 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff", 741 "label", "GPIO Key Poweroff"); 742 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code", 743 KEY_POWER); 744 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff", 745 "gpios", phandle, 3, 0); 746 747 /* connect powerdown request */ 748 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 749 750 g_free(nodename); 751 } 752 753 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 754 { 755 int i; 756 hwaddr size = vbi->memmap[VIRT_MMIO].size; 757 758 /* We create the transports in forwards order. Since qbus_realize() 759 * prepends (not appends) new child buses, the incrementing loop below will 760 * create a list of virtio-mmio buses with decreasing base addresses. 761 * 762 * When a -device option is processed from the command line, 763 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 764 * order. The upshot is that -device options in increasing command line 765 * order are mapped to virtio-mmio buses with decreasing base addresses. 766 * 767 * When this code was originally written, that arrangement ensured that the 768 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 769 * the first -device on the command line. (The end-to-end order is a 770 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 771 * guest kernel's name-to-address assignment strategy.) 772 * 773 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 774 * the message, if not necessarily the code, of commit 70161ff336. 775 * Therefore the loop now establishes the inverse of the original intent. 776 * 777 * Unfortunately, we can't counteract the kernel change by reversing the 778 * loop; it would break existing command lines. 779 * 780 * In any case, the kernel makes no guarantee about the stability of 781 * enumeration order of virtio devices (as demonstrated by it changing 782 * between kernel versions). For reliable and stable identification 783 * of disks users must use UUIDs or similar mechanisms. 784 */ 785 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 786 int irq = vbi->irqmap[VIRT_MMIO] + i; 787 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 788 789 sysbus_create_simple("virtio-mmio", base, pic[irq]); 790 } 791 792 /* We add dtb nodes in reverse order so that they appear in the finished 793 * device tree lowest address first. 794 * 795 * Note that this mapping is independent of the loop above. The previous 796 * loop influences virtio device to virtio transport assignment, whereas 797 * this loop controls how virtio transports are laid out in the dtb. 798 */ 799 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 800 char *nodename; 801 int irq = vbi->irqmap[VIRT_MMIO] + i; 802 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 803 804 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 805 qemu_fdt_add_subnode(vbi->fdt, nodename); 806 qemu_fdt_setprop_string(vbi->fdt, nodename, 807 "compatible", "virtio,mmio"); 808 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 809 2, base, 2, size); 810 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 811 GIC_FDT_IRQ_TYPE_SPI, irq, 812 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 813 g_free(nodename); 814 } 815 } 816 817 static void create_one_flash(const char *name, hwaddr flashbase, 818 hwaddr flashsize, const char *file, 819 MemoryRegion *sysmem) 820 { 821 /* Create and map a single flash device. We use the same 822 * parameters as the flash devices on the Versatile Express board. 823 */ 824 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 825 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 826 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 827 const uint64_t sectorlength = 256 * 1024; 828 829 if (dinfo) { 830 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 831 &error_abort); 832 } 833 834 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 835 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 836 qdev_prop_set_uint8(dev, "width", 4); 837 qdev_prop_set_uint8(dev, "device-width", 2); 838 qdev_prop_set_bit(dev, "big-endian", false); 839 qdev_prop_set_uint16(dev, "id0", 0x89); 840 qdev_prop_set_uint16(dev, "id1", 0x18); 841 qdev_prop_set_uint16(dev, "id2", 0x00); 842 qdev_prop_set_uint16(dev, "id3", 0x00); 843 qdev_prop_set_string(dev, "name", name); 844 qdev_init_nofail(dev); 845 846 memory_region_add_subregion(sysmem, flashbase, 847 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); 848 849 if (file) { 850 char *fn; 851 int image_size; 852 853 if (drive_get(IF_PFLASH, 0, 0)) { 854 error_report("The contents of the first flash device may be " 855 "specified with -bios or with -drive if=pflash... " 856 "but you cannot use both options at once"); 857 exit(1); 858 } 859 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file); 860 if (!fn) { 861 error_report("Could not find ROM image '%s'", file); 862 exit(1); 863 } 864 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0)); 865 g_free(fn); 866 if (image_size < 0) { 867 error_report("Could not load ROM image '%s'", file); 868 exit(1); 869 } 870 } 871 } 872 873 static void create_flash(const VirtBoardInfo *vbi, 874 MemoryRegion *sysmem, 875 MemoryRegion *secure_sysmem) 876 { 877 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 878 * Any file passed via -bios goes in the first of these. 879 * sysmem is the system memory space. secure_sysmem is the secure view 880 * of the system, and the first flash device should be made visible only 881 * there. The second flash device is visible to both secure and nonsecure. 882 * If sysmem == secure_sysmem this means there is no separate Secure 883 * address space and both flash devices are generally visible. 884 */ 885 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 886 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 887 char *nodename; 888 889 create_one_flash("virt.flash0", flashbase, flashsize, 890 bios_name, secure_sysmem); 891 create_one_flash("virt.flash1", flashbase + flashsize, flashsize, 892 NULL, sysmem); 893 894 if (sysmem == secure_sysmem) { 895 /* Report both flash devices as a single node in the DT */ 896 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 897 qemu_fdt_add_subnode(vbi->fdt, nodename); 898 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 899 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 900 2, flashbase, 2, flashsize, 901 2, flashbase + flashsize, 2, flashsize); 902 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 903 g_free(nodename); 904 } else { 905 /* Report the devices as separate nodes so we can mark one as 906 * only visible to the secure world. 907 */ 908 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 909 qemu_fdt_add_subnode(vbi->fdt, nodename); 910 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 911 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 912 2, flashbase, 2, flashsize); 913 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 914 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 915 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 916 g_free(nodename); 917 918 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 919 qemu_fdt_add_subnode(vbi->fdt, nodename); 920 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 921 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 922 2, flashbase + flashsize, 2, flashsize); 923 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 924 g_free(nodename); 925 } 926 } 927 928 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as) 929 { 930 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 931 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 932 FWCfgState *fw_cfg; 933 char *nodename; 934 935 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 936 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 937 938 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 939 qemu_fdt_add_subnode(vbi->fdt, nodename); 940 qemu_fdt_setprop_string(vbi->fdt, nodename, 941 "compatible", "qemu,fw-cfg-mmio"); 942 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 943 2, base, 2, size); 944 g_free(nodename); 945 } 946 947 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 948 int first_irq, const char *nodename) 949 { 950 int devfn, pin; 951 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 952 uint32_t *irq_map = full_irq_map; 953 954 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 955 for (pin = 0; pin < 4; pin++) { 956 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 957 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 958 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 959 int i; 960 961 uint32_t map[] = { 962 devfn << 8, 0, 0, /* devfn */ 963 pin + 1, /* PCI pin */ 964 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 965 966 /* Convert map to big endian */ 967 for (i = 0; i < 10; i++) { 968 irq_map[i] = cpu_to_be32(map[i]); 969 } 970 irq_map += 10; 971 } 972 } 973 974 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 975 full_irq_map, sizeof(full_irq_map)); 976 977 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 978 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 979 0x7 /* PCI irq */); 980 } 981 982 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 983 bool use_highmem) 984 { 985 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 986 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 987 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 988 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 989 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 990 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 991 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 992 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 993 hwaddr base = base_mmio; 994 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 995 int irq = vbi->irqmap[VIRT_PCIE]; 996 MemoryRegion *mmio_alias; 997 MemoryRegion *mmio_reg; 998 MemoryRegion *ecam_alias; 999 MemoryRegion *ecam_reg; 1000 DeviceState *dev; 1001 char *nodename; 1002 int i; 1003 PCIHostState *pci; 1004 1005 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1006 qdev_init_nofail(dev); 1007 1008 /* Map only the first size_ecam bytes of ECAM space */ 1009 ecam_alias = g_new0(MemoryRegion, 1); 1010 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1011 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1012 ecam_reg, 0, size_ecam); 1013 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1014 1015 /* Map the MMIO window into system address space so as to expose 1016 * the section of PCI MMIO space which starts at the same base address 1017 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1018 * the window). 1019 */ 1020 mmio_alias = g_new0(MemoryRegion, 1); 1021 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1022 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1023 mmio_reg, base_mmio, size_mmio); 1024 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1025 1026 if (use_highmem) { 1027 /* Map high MMIO space */ 1028 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1029 1030 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1031 mmio_reg, base_mmio_high, size_mmio_high); 1032 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1033 high_mmio_alias); 1034 } 1035 1036 /* Map IO port space */ 1037 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1038 1039 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1040 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1041 } 1042 1043 pci = PCI_HOST_BRIDGE(dev); 1044 if (pci->bus) { 1045 for (i = 0; i < nb_nics; i++) { 1046 NICInfo *nd = &nd_table[i]; 1047 1048 if (!nd->model) { 1049 nd->model = g_strdup("virtio"); 1050 } 1051 1052 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1053 } 1054 } 1055 1056 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1057 qemu_fdt_add_subnode(vbi->fdt, nodename); 1058 qemu_fdt_setprop_string(vbi->fdt, nodename, 1059 "compatible", "pci-host-ecam-generic"); 1060 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 1061 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 1062 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 1063 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 1064 nr_pcie_buses - 1); 1065 qemu_fdt_setprop(vbi->fdt, nodename, "dma-coherent", NULL, 0); 1066 1067 if (vbi->msi_phandle) { 1068 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", 1069 vbi->msi_phandle); 1070 } 1071 1072 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 1073 2, base_ecam, 2, size_ecam); 1074 1075 if (use_highmem) { 1076 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 1077 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1078 2, base_pio, 2, size_pio, 1079 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1080 2, base_mmio, 2, size_mmio, 1081 1, FDT_PCI_RANGE_MMIO_64BIT, 1082 2, base_mmio_high, 1083 2, base_mmio_high, 2, size_mmio_high); 1084 } else { 1085 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 1086 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1087 2, base_pio, 2, size_pio, 1088 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1089 2, base_mmio, 2, size_mmio); 1090 } 1091 1092 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 1093 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 1094 1095 g_free(nodename); 1096 } 1097 1098 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 1099 { 1100 DeviceState *dev; 1101 SysBusDevice *s; 1102 int i; 1103 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 1104 MemoryRegion *sysmem = get_system_memory(); 1105 1106 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 1107 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 1108 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 1109 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 1110 1111 fdt_params->system_params = &platform_bus_params; 1112 fdt_params->binfo = &vbi->bootinfo; 1113 fdt_params->intc = "/intc"; 1114 /* 1115 * register a machine init done notifier that creates the device tree 1116 * nodes of the platform bus and its children dynamic sysbus devices 1117 */ 1118 arm_register_platform_bus_fdt_creator(fdt_params); 1119 1120 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1121 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1122 qdev_prop_set_uint32(dev, "num_irqs", 1123 platform_bus_params.platform_bus_num_irqs); 1124 qdev_prop_set_uint32(dev, "mmio_size", 1125 platform_bus_params.platform_bus_size); 1126 qdev_init_nofail(dev); 1127 s = SYS_BUS_DEVICE(dev); 1128 1129 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 1130 int irqn = platform_bus_params.platform_bus_first_irq + i; 1131 sysbus_connect_irq(s, i, pic[irqn]); 1132 } 1133 1134 memory_region_add_subregion(sysmem, 1135 platform_bus_params.platform_bus_base, 1136 sysbus_mmio_get_region(s, 0)); 1137 } 1138 1139 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem) 1140 { 1141 MemoryRegion *secram = g_new(MemoryRegion, 1); 1142 char *nodename; 1143 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base; 1144 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size; 1145 1146 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal); 1147 vmstate_register_ram_global(secram); 1148 memory_region_add_subregion(secure_sysmem, base, secram); 1149 1150 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1151 qemu_fdt_add_subnode(vbi->fdt, nodename); 1152 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory"); 1153 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size); 1154 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 1155 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 1156 1157 g_free(nodename); 1158 } 1159 1160 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1161 { 1162 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 1163 1164 *fdt_size = board->fdt_size; 1165 return board->fdt; 1166 } 1167 1168 static void virt_build_smbios(VirtGuestInfo *guest_info) 1169 { 1170 FWCfgState *fw_cfg = guest_info->fw_cfg; 1171 uint8_t *smbios_tables, *smbios_anchor; 1172 size_t smbios_tables_len, smbios_anchor_len; 1173 const char *product = "QEMU Virtual Machine"; 1174 1175 if (!fw_cfg) { 1176 return; 1177 } 1178 1179 if (kvm_enabled()) { 1180 product = "KVM Virtual Machine"; 1181 } 1182 1183 smbios_set_defaults("QEMU", product, 1184 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 1185 1186 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 1187 &smbios_anchor, &smbios_anchor_len); 1188 1189 if (smbios_anchor) { 1190 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 1191 smbios_tables, smbios_tables_len); 1192 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 1193 smbios_anchor, smbios_anchor_len); 1194 } 1195 } 1196 1197 static 1198 void virt_guest_info_machine_done(Notifier *notifier, void *data) 1199 { 1200 VirtGuestInfoState *guest_info_state = container_of(notifier, 1201 VirtGuestInfoState, machine_done); 1202 virt_acpi_setup(&guest_info_state->info); 1203 virt_build_smbios(&guest_info_state->info); 1204 } 1205 1206 static void machvirt_init(MachineState *machine) 1207 { 1208 VirtMachineState *vms = VIRT_MACHINE(machine); 1209 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1210 qemu_irq pic[NUM_IRQS]; 1211 MemoryRegion *sysmem = get_system_memory(); 1212 MemoryRegion *secure_sysmem = NULL; 1213 int gic_version = vms->gic_version; 1214 int n, virt_max_cpus; 1215 MemoryRegion *ram = g_new(MemoryRegion, 1); 1216 const char *cpu_model = machine->cpu_model; 1217 VirtBoardInfo *vbi; 1218 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1219 VirtGuestInfo *guest_info = &guest_info_state->info; 1220 char **cpustr; 1221 ObjectClass *oc; 1222 const char *typename; 1223 CPUClass *cc; 1224 Error *err = NULL; 1225 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1226 uint8_t clustersz; 1227 1228 if (!cpu_model) { 1229 cpu_model = "cortex-a15"; 1230 } 1231 1232 /* We can probe only here because during property set 1233 * KVM is not available yet 1234 */ 1235 if (!gic_version) { 1236 if (!kvm_enabled()) { 1237 error_report("gic-version=host requires KVM"); 1238 exit(1); 1239 } 1240 1241 gic_version = kvm_arm_vgic_probe(); 1242 if (!gic_version) { 1243 error_report("Unable to determine GIC version supported by host"); 1244 exit(1); 1245 } 1246 } 1247 1248 /* Separate the actual CPU model name from any appended features */ 1249 cpustr = g_strsplit(cpu_model, ",", 2); 1250 1251 vbi = find_machine_info(cpustr[0]); 1252 1253 if (!vbi) { 1254 error_report("mach-virt: CPU %s not supported", cpustr[0]); 1255 exit(1); 1256 } 1257 1258 /* If we have an EL3 boot ROM then the assumption is that it will 1259 * implement PSCI itself, so disable QEMU's internal implementation 1260 * so it doesn't get in the way. Instead of starting secondary 1261 * CPUs in PSCI powerdown state we will start them all running and 1262 * let the boot ROM sort them out. 1263 * The usual case is that we do use QEMU's PSCI implementation. 1264 */ 1265 vbi->using_psci = !(vms->secure && firmware_loaded); 1266 1267 /* The maximum number of CPUs depends on the GIC version, or on how 1268 * many redistributors we can fit into the memory map. 1269 */ 1270 if (gic_version == 3) { 1271 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000; 1272 clustersz = GICV3_TARGETLIST_BITS; 1273 } else { 1274 virt_max_cpus = GIC_NCPU; 1275 clustersz = GIC_TARGETLIST_BITS; 1276 } 1277 1278 if (max_cpus > virt_max_cpus) { 1279 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1280 "supported by machine 'mach-virt' (%d)", 1281 max_cpus, virt_max_cpus); 1282 exit(1); 1283 } 1284 1285 vbi->smp_cpus = smp_cpus; 1286 1287 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 1288 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB); 1289 exit(1); 1290 } 1291 1292 if (vms->secure) { 1293 if (kvm_enabled()) { 1294 error_report("mach-virt: KVM does not support Security extensions"); 1295 exit(1); 1296 } 1297 1298 /* The Secure view of the world is the same as the NonSecure, 1299 * but with a few extra devices. Create it as a container region 1300 * containing the system memory at low priority; any secure-only 1301 * devices go in at higher priority and take precedence. 1302 */ 1303 secure_sysmem = g_new(MemoryRegion, 1); 1304 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1305 UINT64_MAX); 1306 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1307 } 1308 1309 create_fdt(vbi); 1310 1311 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 1312 if (!oc) { 1313 error_report("Unable to find CPU definition"); 1314 exit(1); 1315 } 1316 typename = object_class_get_name(oc); 1317 1318 /* convert -smp CPU options specified by the user into global props */ 1319 cc = CPU_CLASS(oc); 1320 cc->parse_features(typename, cpustr[1], &err); 1321 g_strfreev(cpustr); 1322 if (err) { 1323 error_report_err(err); 1324 exit(1); 1325 } 1326 1327 for (n = 0; n < smp_cpus; n++) { 1328 Object *cpuobj = object_new(typename); 1329 if (!vmc->disallow_affinity_adjustment) { 1330 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1331 * GIC's target-list limitations. 32-bit KVM hosts currently 1332 * always create clusters of 4 CPUs, but that is expected to 1333 * change when they gain support for gicv3. When KVM is enabled 1334 * it will override the changes we make here, therefore our 1335 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1336 * and to improve SGI efficiency. 1337 */ 1338 uint8_t aff1 = n / clustersz; 1339 uint8_t aff0 = n % clustersz; 1340 object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0, 1341 "mp-affinity", NULL); 1342 } 1343 1344 if (!vms->secure) { 1345 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1346 } 1347 1348 if (vbi->using_psci) { 1349 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, 1350 "psci-conduit", NULL); 1351 1352 /* Secondary CPUs start in PSCI powered-down state */ 1353 if (n > 0) { 1354 object_property_set_bool(cpuobj, true, 1355 "start-powered-off", NULL); 1356 } 1357 } 1358 1359 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1360 object_property_set_bool(cpuobj, false, "pmu", NULL); 1361 } 1362 1363 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1364 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 1365 "reset-cbar", &error_abort); 1366 } 1367 1368 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1369 &error_abort); 1370 if (vms->secure) { 1371 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1372 "secure-memory", &error_abort); 1373 } 1374 1375 object_property_set_bool(cpuobj, true, "realized", NULL); 1376 } 1377 fdt_add_timer_nodes(vbi, gic_version); 1378 fdt_add_cpu_nodes(vbi); 1379 fdt_add_psci_node(vbi); 1380 1381 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1382 machine->ram_size); 1383 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 1384 1385 create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem); 1386 1387 create_gic(vbi, pic, gic_version, vms->secure, vmc->no_its); 1388 1389 fdt_add_pmu_nodes(vbi, gic_version); 1390 1391 create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]); 1392 1393 if (vms->secure) { 1394 create_secure_ram(vbi, secure_sysmem); 1395 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]); 1396 } 1397 1398 create_rtc(vbi, pic); 1399 1400 create_pcie(vbi, pic, vms->highmem); 1401 1402 create_gpio(vbi, pic); 1403 1404 /* Create mmio transports, so the user can create virtio backends 1405 * (which will be automatically plugged in to the transports). If 1406 * no backend is created the transport will just sit harmlessly idle. 1407 */ 1408 create_virtio_devices(vbi, pic); 1409 1410 create_fw_cfg(vbi, &address_space_memory); 1411 rom_set_fw(fw_cfg_find()); 1412 1413 guest_info->smp_cpus = smp_cpus; 1414 guest_info->fw_cfg = fw_cfg_find(); 1415 guest_info->memmap = vbi->memmap; 1416 guest_info->irqmap = vbi->irqmap; 1417 guest_info->use_highmem = vms->highmem; 1418 guest_info->gic_version = gic_version; 1419 guest_info->no_its = vmc->no_its; 1420 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 1421 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1422 1423 vbi->bootinfo.ram_size = machine->ram_size; 1424 vbi->bootinfo.kernel_filename = machine->kernel_filename; 1425 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1426 vbi->bootinfo.initrd_filename = machine->initrd_filename; 1427 vbi->bootinfo.nb_cpus = smp_cpus; 1428 vbi->bootinfo.board_id = -1; 1429 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1430 vbi->bootinfo.get_dtb = machvirt_dtb; 1431 vbi->bootinfo.firmware_loaded = firmware_loaded; 1432 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1433 1434 /* 1435 * arm_load_kernel machine init done notifier registration must 1436 * happen before the platform_bus_create call. In this latter, 1437 * another notifier is registered which adds platform bus nodes. 1438 * Notifiers are executed in registration reverse order. 1439 */ 1440 create_platform_bus(vbi, pic); 1441 } 1442 1443 static bool virt_get_secure(Object *obj, Error **errp) 1444 { 1445 VirtMachineState *vms = VIRT_MACHINE(obj); 1446 1447 return vms->secure; 1448 } 1449 1450 static void virt_set_secure(Object *obj, bool value, Error **errp) 1451 { 1452 VirtMachineState *vms = VIRT_MACHINE(obj); 1453 1454 vms->secure = value; 1455 } 1456 1457 static bool virt_get_highmem(Object *obj, Error **errp) 1458 { 1459 VirtMachineState *vms = VIRT_MACHINE(obj); 1460 1461 return vms->highmem; 1462 } 1463 1464 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1465 { 1466 VirtMachineState *vms = VIRT_MACHINE(obj); 1467 1468 vms->highmem = value; 1469 } 1470 1471 static char *virt_get_gic_version(Object *obj, Error **errp) 1472 { 1473 VirtMachineState *vms = VIRT_MACHINE(obj); 1474 const char *val = vms->gic_version == 3 ? "3" : "2"; 1475 1476 return g_strdup(val); 1477 } 1478 1479 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1480 { 1481 VirtMachineState *vms = VIRT_MACHINE(obj); 1482 1483 if (!strcmp(value, "3")) { 1484 vms->gic_version = 3; 1485 } else if (!strcmp(value, "2")) { 1486 vms->gic_version = 2; 1487 } else if (!strcmp(value, "host")) { 1488 vms->gic_version = 0; /* Will probe later */ 1489 } else { 1490 error_setg(errp, "Invalid gic-version value"); 1491 error_append_hint(errp, "Valid values are 3, 2, host.\n"); 1492 } 1493 } 1494 1495 static void virt_machine_class_init(ObjectClass *oc, void *data) 1496 { 1497 MachineClass *mc = MACHINE_CLASS(oc); 1498 1499 mc->init = machvirt_init; 1500 /* Start max_cpus at the maximum QEMU supports. We'll further restrict 1501 * it later in machvirt_init, where we have more information about the 1502 * configuration of the particular instance. 1503 */ 1504 mc->max_cpus = 255; 1505 mc->has_dynamic_sysbus = true; 1506 mc->block_default_type = IF_VIRTIO; 1507 mc->no_cdrom = 1; 1508 mc->pci_allow_0_address = true; 1509 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 1510 mc->minimum_page_bits = 12; 1511 } 1512 1513 static const TypeInfo virt_machine_info = { 1514 .name = TYPE_VIRT_MACHINE, 1515 .parent = TYPE_MACHINE, 1516 .abstract = true, 1517 .instance_size = sizeof(VirtMachineState), 1518 .class_size = sizeof(VirtMachineClass), 1519 .class_init = virt_machine_class_init, 1520 }; 1521 1522 static void machvirt_machine_init(void) 1523 { 1524 type_register_static(&virt_machine_info); 1525 } 1526 type_init(machvirt_machine_init); 1527 1528 static void virt_2_9_instance_init(Object *obj) 1529 { 1530 VirtMachineState *vms = VIRT_MACHINE(obj); 1531 1532 /* EL3 is disabled by default on virt: this makes us consistent 1533 * between KVM and TCG for this board, and it also allows us to 1534 * boot UEFI blobs which assume no TrustZone support. 1535 */ 1536 vms->secure = false; 1537 object_property_add_bool(obj, "secure", virt_get_secure, 1538 virt_set_secure, NULL); 1539 object_property_set_description(obj, "secure", 1540 "Set on/off to enable/disable the ARM " 1541 "Security Extensions (TrustZone)", 1542 NULL); 1543 1544 /* High memory is enabled by default */ 1545 vms->highmem = true; 1546 object_property_add_bool(obj, "highmem", virt_get_highmem, 1547 virt_set_highmem, NULL); 1548 object_property_set_description(obj, "highmem", 1549 "Set on/off to enable/disable using " 1550 "physical address space above 32 bits", 1551 NULL); 1552 /* Default GIC type is v2 */ 1553 vms->gic_version = 2; 1554 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1555 virt_set_gic_version, NULL); 1556 object_property_set_description(obj, "gic-version", 1557 "Set GIC version. " 1558 "Valid values are 2, 3 and host", NULL); 1559 } 1560 1561 static void virt_machine_2_9_options(MachineClass *mc) 1562 { 1563 } 1564 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9) 1565 1566 #define VIRT_COMPAT_2_8 \ 1567 HW_COMPAT_2_8 1568 1569 static void virt_2_8_instance_init(Object *obj) 1570 { 1571 virt_2_9_instance_init(obj); 1572 } 1573 1574 static void virt_machine_2_8_options(MachineClass *mc) 1575 { 1576 virt_machine_2_9_options(mc); 1577 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8); 1578 } 1579 DEFINE_VIRT_MACHINE(2, 8) 1580 1581 #define VIRT_COMPAT_2_7 \ 1582 HW_COMPAT_2_7 1583 1584 static void virt_2_7_instance_init(Object *obj) 1585 { 1586 virt_2_8_instance_init(obj); 1587 } 1588 1589 static void virt_machine_2_7_options(MachineClass *mc) 1590 { 1591 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1592 1593 virt_machine_2_8_options(mc); 1594 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7); 1595 /* ITS was introduced with 2.8 */ 1596 vmc->no_its = true; 1597 /* Stick with 1K pages for migration compatibility */ 1598 mc->minimum_page_bits = 0; 1599 } 1600 DEFINE_VIRT_MACHINE(2, 7) 1601 1602 #define VIRT_COMPAT_2_6 \ 1603 HW_COMPAT_2_6 1604 1605 static void virt_2_6_instance_init(Object *obj) 1606 { 1607 virt_2_7_instance_init(obj); 1608 } 1609 1610 static void virt_machine_2_6_options(MachineClass *mc) 1611 { 1612 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1613 1614 virt_machine_2_7_options(mc); 1615 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6); 1616 vmc->disallow_affinity_adjustment = true; 1617 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 1618 vmc->no_pmu = true; 1619 } 1620 DEFINE_VIRT_MACHINE(2, 6) 1621