1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "qapi/error.h" 36 #include "hw/sysbus.h" 37 #include "hw/boards.h" 38 #include "hw/arm/boot.h" 39 #include "hw/arm/primecell.h" 40 #include "hw/arm/virt.h" 41 #include "hw/block/flash.h" 42 #include "hw/vfio/vfio-calxeda-xgmac.h" 43 #include "hw/vfio/vfio-amd-xgbe.h" 44 #include "hw/display/ramfb.h" 45 #include "net/net.h" 46 #include "sysemu/device_tree.h" 47 #include "sysemu/numa.h" 48 #include "sysemu/runstate.h" 49 #include "sysemu/sysemu.h" 50 #include "sysemu/kvm.h" 51 #include "hw/loader.h" 52 #include "exec/address-spaces.h" 53 #include "qemu/bitops.h" 54 #include "qemu/error-report.h" 55 #include "qemu/module.h" 56 #include "hw/pci-host/gpex.h" 57 #include "hw/arm/sysbus-fdt.h" 58 #include "hw/platform-bus.h" 59 #include "hw/qdev-properties.h" 60 #include "hw/arm/fdt.h" 61 #include "hw/intc/arm_gic.h" 62 #include "hw/intc/arm_gicv3_common.h" 63 #include "hw/irq.h" 64 #include "kvm_arm.h" 65 #include "hw/firmware/smbios.h" 66 #include "qapi/visitor.h" 67 #include "standard-headers/linux/input.h" 68 #include "hw/arm/smmuv3.h" 69 #include "hw/acpi/acpi.h" 70 #include "target/arm/internals.h" 71 #include "hw/mem/pc-dimm.h" 72 #include "hw/mem/nvdimm.h" 73 #include "hw/acpi/generic_event_device.h" 74 75 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 76 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 77 void *data) \ 78 { \ 79 MachineClass *mc = MACHINE_CLASS(oc); \ 80 virt_machine_##major##_##minor##_options(mc); \ 81 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 82 if (latest) { \ 83 mc->alias = "virt"; \ 84 } \ 85 } \ 86 static const TypeInfo machvirt_##major##_##minor##_info = { \ 87 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 88 .parent = TYPE_VIRT_MACHINE, \ 89 .class_init = virt_##major##_##minor##_class_init, \ 90 }; \ 91 static void machvirt_machine_##major##_##minor##_init(void) \ 92 { \ 93 type_register_static(&machvirt_##major##_##minor##_info); \ 94 } \ 95 type_init(machvirt_machine_##major##_##minor##_init); 96 97 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 98 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 99 #define DEFINE_VIRT_MACHINE(major, minor) \ 100 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 101 102 103 /* Number of external interrupt lines to configure the GIC with */ 104 #define NUM_IRQS 256 105 106 #define PLATFORM_BUS_NUM_IRQS 64 107 108 /* Legacy RAM limit in GB (< version 4.0) */ 109 #define LEGACY_RAMLIMIT_GB 255 110 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 111 112 /* Addresses and sizes of our components. 113 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 114 * 128MB..256MB is used for miscellaneous device I/O. 115 * 256MB..1GB is reserved for possible future PCI support (ie where the 116 * PCI memory window will go if we add a PCI host controller). 117 * 1GB and up is RAM (which may happily spill over into the 118 * high memory region beyond 4GB). 119 * This represents a compromise between how much RAM can be given to 120 * a 32 bit VM and leaving space for expansion and in particular for PCI. 121 * Note that devices should generally be placed at multiples of 0x10000, 122 * to accommodate guests using 64K pages. 123 */ 124 static const MemMapEntry base_memmap[] = { 125 /* Space up to 0x8000000 is reserved for a boot ROM */ 126 [VIRT_FLASH] = { 0, 0x08000000 }, 127 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 128 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 129 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 130 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 131 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 132 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 133 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 134 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 135 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 136 /* This redistributor space allows up to 2*64kB*123 CPUs */ 137 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 138 [VIRT_UART] = { 0x09000000, 0x00001000 }, 139 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 140 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 141 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 142 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 143 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 144 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 145 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 153 /* Actual RAM size depends on initial RAM and device memory settings */ 154 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 155 }; 156 157 /* 158 * Highmem IO Regions: This memory map is floating, located after the RAM. 159 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 160 * top of the RAM, so that its base get the same alignment as the size, 161 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 162 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 163 * Note the extended_memmap is sized so that it eventually also includes the 164 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 165 * index of base_memmap). 166 */ 167 static MemMapEntry extended_memmap[] = { 168 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 169 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 170 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 171 /* Second PCIe window */ 172 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 173 }; 174 175 static const int a15irqmap[] = { 176 [VIRT_UART] = 1, 177 [VIRT_RTC] = 2, 178 [VIRT_PCIE] = 3, /* ... to 6 */ 179 [VIRT_GPIO] = 7, 180 [VIRT_SECURE_UART] = 8, 181 [VIRT_ACPI_GED] = 9, 182 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 183 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 184 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 185 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 186 }; 187 188 static const char *valid_cpus[] = { 189 ARM_CPU_TYPE_NAME("cortex-a7"), 190 ARM_CPU_TYPE_NAME("cortex-a15"), 191 ARM_CPU_TYPE_NAME("cortex-a53"), 192 ARM_CPU_TYPE_NAME("cortex-a57"), 193 ARM_CPU_TYPE_NAME("cortex-a72"), 194 ARM_CPU_TYPE_NAME("host"), 195 ARM_CPU_TYPE_NAME("max"), 196 }; 197 198 static bool cpu_type_valid(const char *cpu) 199 { 200 int i; 201 202 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 203 if (strcmp(cpu, valid_cpus[i]) == 0) { 204 return true; 205 } 206 } 207 return false; 208 } 209 210 static void create_fdt(VirtMachineState *vms) 211 { 212 MachineState *ms = MACHINE(vms); 213 int nb_numa_nodes = ms->numa_state->num_nodes; 214 void *fdt = create_device_tree(&vms->fdt_size); 215 216 if (!fdt) { 217 error_report("create_device_tree() failed"); 218 exit(1); 219 } 220 221 vms->fdt = fdt; 222 223 /* Header */ 224 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 225 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 226 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 227 228 /* /chosen must exist for load_dtb to fill in necessary properties later */ 229 qemu_fdt_add_subnode(fdt, "/chosen"); 230 231 /* Clock node, for the benefit of the UART. The kernel device tree 232 * binding documentation claims the PL011 node clock properties are 233 * optional but in practice if you omit them the kernel refuses to 234 * probe for the device. 235 */ 236 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 237 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 238 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 239 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 240 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 241 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 242 "clk24mhz"); 243 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 244 245 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 246 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 247 uint32_t *matrix = g_malloc0(size); 248 int idx, i, j; 249 250 for (i = 0; i < nb_numa_nodes; i++) { 251 for (j = 0; j < nb_numa_nodes; j++) { 252 idx = (i * nb_numa_nodes + j) * 3; 253 matrix[idx + 0] = cpu_to_be32(i); 254 matrix[idx + 1] = cpu_to_be32(j); 255 matrix[idx + 2] = 256 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 257 } 258 } 259 260 qemu_fdt_add_subnode(fdt, "/distance-map"); 261 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 262 "numa-distance-map-v1"); 263 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 264 matrix, size); 265 g_free(matrix); 266 } 267 } 268 269 static void fdt_add_timer_nodes(const VirtMachineState *vms) 270 { 271 /* On real hardware these interrupts are level-triggered. 272 * On KVM they were edge-triggered before host kernel version 4.4, 273 * and level-triggered afterwards. 274 * On emulated QEMU they are level-triggered. 275 * 276 * Getting the DTB info about them wrong is awkward for some 277 * guest kernels: 278 * pre-4.8 ignore the DT and leave the interrupt configured 279 * with whatever the GIC reset value (or the bootloader) left it at 280 * 4.8 before rc6 honour the incorrect data by programming it back 281 * into the GIC, causing problems 282 * 4.8rc6 and later ignore the DT and always write "level triggered" 283 * into the GIC 284 * 285 * For backwards-compatibility, virt-2.8 and earlier will continue 286 * to say these are edge-triggered, but later machines will report 287 * the correct information. 288 */ 289 ARMCPU *armcpu; 290 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 291 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 292 293 if (vmc->claim_edge_triggered_timers) { 294 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 295 } 296 297 if (vms->gic_version == 2) { 298 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 299 GIC_FDT_IRQ_PPI_CPU_WIDTH, 300 (1 << vms->smp_cpus) - 1); 301 } 302 303 qemu_fdt_add_subnode(vms->fdt, "/timer"); 304 305 armcpu = ARM_CPU(qemu_get_cpu(0)); 306 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 307 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 308 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 309 compat, sizeof(compat)); 310 } else { 311 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 312 "arm,armv7-timer"); 313 } 314 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 315 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 316 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 317 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 318 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 319 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 320 } 321 322 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 323 { 324 int cpu; 325 int addr_cells = 1; 326 const MachineState *ms = MACHINE(vms); 327 328 /* 329 * From Documentation/devicetree/bindings/arm/cpus.txt 330 * On ARM v8 64-bit systems value should be set to 2, 331 * that corresponds to the MPIDR_EL1 register size. 332 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 333 * in the system, #address-cells can be set to 1, since 334 * MPIDR_EL1[63:32] bits are not used for CPUs 335 * identification. 336 * 337 * Here we actually don't know whether our system is 32- or 64-bit one. 338 * The simplest way to go is to examine affinity IDs of all our CPUs. If 339 * at least one of them has Aff3 populated, we set #address-cells to 2. 340 */ 341 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 342 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 343 344 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 345 addr_cells = 2; 346 break; 347 } 348 } 349 350 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 351 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 352 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 353 354 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 355 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 356 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 357 CPUState *cs = CPU(armcpu); 358 359 qemu_fdt_add_subnode(vms->fdt, nodename); 360 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 361 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 362 armcpu->dtb_compatible); 363 364 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 365 && vms->smp_cpus > 1) { 366 qemu_fdt_setprop_string(vms->fdt, nodename, 367 "enable-method", "psci"); 368 } 369 370 if (addr_cells == 2) { 371 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 372 armcpu->mp_affinity); 373 } else { 374 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 375 armcpu->mp_affinity); 376 } 377 378 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 379 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 380 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 381 } 382 383 g_free(nodename); 384 } 385 } 386 387 static void fdt_add_its_gic_node(VirtMachineState *vms) 388 { 389 char *nodename; 390 391 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 392 nodename = g_strdup_printf("/intc/its@%" PRIx64, 393 vms->memmap[VIRT_GIC_ITS].base); 394 qemu_fdt_add_subnode(vms->fdt, nodename); 395 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 396 "arm,gic-v3-its"); 397 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 398 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 399 2, vms->memmap[VIRT_GIC_ITS].base, 400 2, vms->memmap[VIRT_GIC_ITS].size); 401 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 402 g_free(nodename); 403 } 404 405 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 406 { 407 char *nodename; 408 409 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 410 vms->memmap[VIRT_GIC_V2M].base); 411 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 412 qemu_fdt_add_subnode(vms->fdt, nodename); 413 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 414 "arm,gic-v2m-frame"); 415 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 416 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 417 2, vms->memmap[VIRT_GIC_V2M].base, 418 2, vms->memmap[VIRT_GIC_V2M].size); 419 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 420 g_free(nodename); 421 } 422 423 static void fdt_add_gic_node(VirtMachineState *vms) 424 { 425 char *nodename; 426 427 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 428 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 429 430 nodename = g_strdup_printf("/intc@%" PRIx64, 431 vms->memmap[VIRT_GIC_DIST].base); 432 qemu_fdt_add_subnode(vms->fdt, nodename); 433 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 434 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 435 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 436 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 437 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 438 if (vms->gic_version == 3) { 439 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 440 441 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 442 "arm,gic-v3"); 443 444 qemu_fdt_setprop_cell(vms->fdt, nodename, 445 "#redistributor-regions", nb_redist_regions); 446 447 if (nb_redist_regions == 1) { 448 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 449 2, vms->memmap[VIRT_GIC_DIST].base, 450 2, vms->memmap[VIRT_GIC_DIST].size, 451 2, vms->memmap[VIRT_GIC_REDIST].base, 452 2, vms->memmap[VIRT_GIC_REDIST].size); 453 } else { 454 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 455 2, vms->memmap[VIRT_GIC_DIST].base, 456 2, vms->memmap[VIRT_GIC_DIST].size, 457 2, vms->memmap[VIRT_GIC_REDIST].base, 458 2, vms->memmap[VIRT_GIC_REDIST].size, 459 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 460 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 461 } 462 463 if (vms->virt) { 464 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 465 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 466 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 467 } 468 } else { 469 /* 'cortex-a15-gic' means 'GIC v2' */ 470 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 471 "arm,cortex-a15-gic"); 472 if (!vms->virt) { 473 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 474 2, vms->memmap[VIRT_GIC_DIST].base, 475 2, vms->memmap[VIRT_GIC_DIST].size, 476 2, vms->memmap[VIRT_GIC_CPU].base, 477 2, vms->memmap[VIRT_GIC_CPU].size); 478 } else { 479 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 480 2, vms->memmap[VIRT_GIC_DIST].base, 481 2, vms->memmap[VIRT_GIC_DIST].size, 482 2, vms->memmap[VIRT_GIC_CPU].base, 483 2, vms->memmap[VIRT_GIC_CPU].size, 484 2, vms->memmap[VIRT_GIC_HYP].base, 485 2, vms->memmap[VIRT_GIC_HYP].size, 486 2, vms->memmap[VIRT_GIC_VCPU].base, 487 2, vms->memmap[VIRT_GIC_VCPU].size); 488 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 489 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 490 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 491 } 492 } 493 494 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 495 g_free(nodename); 496 } 497 498 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 499 { 500 CPUState *cpu; 501 ARMCPU *armcpu; 502 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 503 504 CPU_FOREACH(cpu) { 505 armcpu = ARM_CPU(cpu); 506 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 507 return; 508 } 509 if (kvm_enabled()) { 510 if (kvm_irqchip_in_kernel()) { 511 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 512 } 513 kvm_arm_pmu_init(cpu); 514 } 515 } 516 517 if (vms->gic_version == 2) { 518 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 519 GIC_FDT_IRQ_PPI_CPU_WIDTH, 520 (1 << vms->smp_cpus) - 1); 521 } 522 523 armcpu = ARM_CPU(qemu_get_cpu(0)); 524 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 525 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 526 const char compat[] = "arm,armv8-pmuv3"; 527 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 528 compat, sizeof(compat)); 529 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 530 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 531 } 532 } 533 534 static inline DeviceState *create_acpi_ged(VirtMachineState *vms, qemu_irq *pic) 535 { 536 DeviceState *dev; 537 MachineState *ms = MACHINE(vms); 538 int irq = vms->irqmap[VIRT_ACPI_GED]; 539 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 540 541 if (ms->ram_slots) { 542 event |= ACPI_GED_MEM_HOTPLUG_EVT; 543 } 544 545 dev = qdev_create(NULL, TYPE_ACPI_GED); 546 qdev_prop_set_uint32(dev, "ged-event", event); 547 548 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 549 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 550 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[irq]); 551 552 qdev_init_nofail(dev); 553 554 return dev; 555 } 556 557 static void create_its(VirtMachineState *vms, DeviceState *gicdev) 558 { 559 const char *itsclass = its_class_name(); 560 DeviceState *dev; 561 562 if (!itsclass) { 563 /* Do nothing if not supported */ 564 return; 565 } 566 567 dev = qdev_create(NULL, itsclass); 568 569 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", 570 &error_abort); 571 qdev_init_nofail(dev); 572 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 573 574 fdt_add_its_gic_node(vms); 575 } 576 577 static void create_v2m(VirtMachineState *vms, qemu_irq *pic) 578 { 579 int i; 580 int irq = vms->irqmap[VIRT_GIC_V2M]; 581 DeviceState *dev; 582 583 dev = qdev_create(NULL, "arm-gicv2m"); 584 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 585 qdev_prop_set_uint32(dev, "base-spi", irq); 586 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 587 qdev_init_nofail(dev); 588 589 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 590 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 591 } 592 593 fdt_add_v2m_gic_node(vms); 594 } 595 596 static void create_gic(VirtMachineState *vms, qemu_irq *pic) 597 { 598 MachineState *ms = MACHINE(vms); 599 /* We create a standalone GIC */ 600 DeviceState *gicdev; 601 SysBusDevice *gicbusdev; 602 const char *gictype; 603 int type = vms->gic_version, i; 604 unsigned int smp_cpus = ms->smp.cpus; 605 uint32_t nb_redist_regions = 0; 606 607 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 608 609 gicdev = qdev_create(NULL, gictype); 610 qdev_prop_set_uint32(gicdev, "revision", type); 611 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 612 /* Note that the num-irq property counts both internal and external 613 * interrupts; there are always 32 of the former (mandated by GIC spec). 614 */ 615 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 616 if (!kvm_irqchip_in_kernel()) { 617 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure); 618 } 619 620 if (type == 3) { 621 uint32_t redist0_capacity = 622 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 623 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 624 625 nb_redist_regions = virt_gicv3_redist_region_count(vms); 626 627 qdev_prop_set_uint32(gicdev, "len-redist-region-count", 628 nb_redist_regions); 629 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count); 630 631 if (nb_redist_regions == 2) { 632 uint32_t redist1_capacity = 633 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 634 635 qdev_prop_set_uint32(gicdev, "redist-region-count[1]", 636 MIN(smp_cpus - redist0_count, redist1_capacity)); 637 } 638 } else { 639 if (!kvm_irqchip_in_kernel()) { 640 qdev_prop_set_bit(gicdev, "has-virtualization-extensions", 641 vms->virt); 642 } 643 } 644 qdev_init_nofail(gicdev); 645 gicbusdev = SYS_BUS_DEVICE(gicdev); 646 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 647 if (type == 3) { 648 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 649 if (nb_redist_regions == 2) { 650 sysbus_mmio_map(gicbusdev, 2, 651 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 652 } 653 } else { 654 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 655 if (vms->virt) { 656 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 657 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 658 } 659 } 660 661 /* Wire the outputs from each CPU's generic timer and the GICv3 662 * maintenance interrupt signal to the appropriate GIC PPI inputs, 663 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 664 */ 665 for (i = 0; i < smp_cpus; i++) { 666 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 667 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 668 int irq; 669 /* Mapping from the output timer irq lines from the CPU to the 670 * GIC PPI inputs we use for the virt board. 671 */ 672 const int timer_irq[] = { 673 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 674 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 675 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 676 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 677 }; 678 679 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 680 qdev_connect_gpio_out(cpudev, irq, 681 qdev_get_gpio_in(gicdev, 682 ppibase + timer_irq[irq])); 683 } 684 685 if (type == 3) { 686 qemu_irq irq = qdev_get_gpio_in(gicdev, 687 ppibase + ARCH_GIC_MAINT_IRQ); 688 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 689 0, irq); 690 } else if (vms->virt) { 691 qemu_irq irq = qdev_get_gpio_in(gicdev, 692 ppibase + ARCH_GIC_MAINT_IRQ); 693 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 694 } 695 696 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 697 qdev_get_gpio_in(gicdev, ppibase 698 + VIRTUAL_PMU_IRQ)); 699 700 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 701 sysbus_connect_irq(gicbusdev, i + smp_cpus, 702 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 703 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 704 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 705 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 706 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 707 } 708 709 for (i = 0; i < NUM_IRQS; i++) { 710 pic[i] = qdev_get_gpio_in(gicdev, i); 711 } 712 713 fdt_add_gic_node(vms); 714 715 if (type == 3 && vms->its) { 716 create_its(vms, gicdev); 717 } else if (type == 2) { 718 create_v2m(vms, pic); 719 } 720 } 721 722 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart, 723 MemoryRegion *mem, Chardev *chr) 724 { 725 char *nodename; 726 hwaddr base = vms->memmap[uart].base; 727 hwaddr size = vms->memmap[uart].size; 728 int irq = vms->irqmap[uart]; 729 const char compat[] = "arm,pl011\0arm,primecell"; 730 const char clocknames[] = "uartclk\0apb_pclk"; 731 DeviceState *dev = qdev_create(NULL, "pl011"); 732 SysBusDevice *s = SYS_BUS_DEVICE(dev); 733 734 qdev_prop_set_chr(dev, "chardev", chr); 735 qdev_init_nofail(dev); 736 memory_region_add_subregion(mem, base, 737 sysbus_mmio_get_region(s, 0)); 738 sysbus_connect_irq(s, 0, pic[irq]); 739 740 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 741 qemu_fdt_add_subnode(vms->fdt, nodename); 742 /* Note that we can't use setprop_string because of the embedded NUL */ 743 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 744 compat, sizeof(compat)); 745 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 746 2, base, 2, size); 747 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 748 GIC_FDT_IRQ_TYPE_SPI, irq, 749 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 750 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 751 vms->clock_phandle, vms->clock_phandle); 752 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 753 clocknames, sizeof(clocknames)); 754 755 if (uart == VIRT_UART) { 756 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 757 } else { 758 /* Mark as not usable by the normal world */ 759 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 760 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 761 762 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen"); 763 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", 764 nodename); 765 } 766 767 g_free(nodename); 768 } 769 770 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic) 771 { 772 char *nodename; 773 hwaddr base = vms->memmap[VIRT_RTC].base; 774 hwaddr size = vms->memmap[VIRT_RTC].size; 775 int irq = vms->irqmap[VIRT_RTC]; 776 const char compat[] = "arm,pl031\0arm,primecell"; 777 778 sysbus_create_simple("pl031", base, pic[irq]); 779 780 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 781 qemu_fdt_add_subnode(vms->fdt, nodename); 782 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 783 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 784 2, base, 2, size); 785 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 786 GIC_FDT_IRQ_TYPE_SPI, irq, 787 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 788 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 789 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 790 g_free(nodename); 791 } 792 793 static DeviceState *gpio_key_dev; 794 static void virt_powerdown_req(Notifier *n, void *opaque) 795 { 796 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 797 798 if (s->acpi_dev) { 799 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 800 } else { 801 /* use gpio Pin 3 for power button event */ 802 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 803 } 804 } 805 806 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic) 807 { 808 char *nodename; 809 DeviceState *pl061_dev; 810 hwaddr base = vms->memmap[VIRT_GPIO].base; 811 hwaddr size = vms->memmap[VIRT_GPIO].size; 812 int irq = vms->irqmap[VIRT_GPIO]; 813 const char compat[] = "arm,pl061\0arm,primecell"; 814 815 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 816 817 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 818 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 819 qemu_fdt_add_subnode(vms->fdt, nodename); 820 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 821 2, base, 2, size); 822 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 823 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 824 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 825 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 826 GIC_FDT_IRQ_TYPE_SPI, irq, 827 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 828 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 829 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 830 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 831 832 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 833 qdev_get_gpio_in(pl061_dev, 3)); 834 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 835 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 836 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 837 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 838 839 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 840 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 841 "label", "GPIO Key Poweroff"); 842 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 843 KEY_POWER); 844 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 845 "gpios", phandle, 3, 0); 846 g_free(nodename); 847 } 848 849 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic) 850 { 851 int i; 852 hwaddr size = vms->memmap[VIRT_MMIO].size; 853 854 /* We create the transports in forwards order. Since qbus_realize() 855 * prepends (not appends) new child buses, the incrementing loop below will 856 * create a list of virtio-mmio buses with decreasing base addresses. 857 * 858 * When a -device option is processed from the command line, 859 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 860 * order. The upshot is that -device options in increasing command line 861 * order are mapped to virtio-mmio buses with decreasing base addresses. 862 * 863 * When this code was originally written, that arrangement ensured that the 864 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 865 * the first -device on the command line. (The end-to-end order is a 866 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 867 * guest kernel's name-to-address assignment strategy.) 868 * 869 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 870 * the message, if not necessarily the code, of commit 70161ff336. 871 * Therefore the loop now establishes the inverse of the original intent. 872 * 873 * Unfortunately, we can't counteract the kernel change by reversing the 874 * loop; it would break existing command lines. 875 * 876 * In any case, the kernel makes no guarantee about the stability of 877 * enumeration order of virtio devices (as demonstrated by it changing 878 * between kernel versions). For reliable and stable identification 879 * of disks users must use UUIDs or similar mechanisms. 880 */ 881 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 882 int irq = vms->irqmap[VIRT_MMIO] + i; 883 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 884 885 sysbus_create_simple("virtio-mmio", base, pic[irq]); 886 } 887 888 /* We add dtb nodes in reverse order so that they appear in the finished 889 * device tree lowest address first. 890 * 891 * Note that this mapping is independent of the loop above. The previous 892 * loop influences virtio device to virtio transport assignment, whereas 893 * this loop controls how virtio transports are laid out in the dtb. 894 */ 895 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 896 char *nodename; 897 int irq = vms->irqmap[VIRT_MMIO] + i; 898 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 899 900 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 901 qemu_fdt_add_subnode(vms->fdt, nodename); 902 qemu_fdt_setprop_string(vms->fdt, nodename, 903 "compatible", "virtio,mmio"); 904 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 905 2, base, 2, size); 906 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 907 GIC_FDT_IRQ_TYPE_SPI, irq, 908 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 909 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 910 g_free(nodename); 911 } 912 } 913 914 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 915 916 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 917 const char *name, 918 const char *alias_prop_name) 919 { 920 /* 921 * Create a single flash device. We use the same parameters as 922 * the flash devices on the Versatile Express board. 923 */ 924 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01); 925 926 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 927 qdev_prop_set_uint8(dev, "width", 4); 928 qdev_prop_set_uint8(dev, "device-width", 2); 929 qdev_prop_set_bit(dev, "big-endian", false); 930 qdev_prop_set_uint16(dev, "id0", 0x89); 931 qdev_prop_set_uint16(dev, "id1", 0x18); 932 qdev_prop_set_uint16(dev, "id2", 0x00); 933 qdev_prop_set_uint16(dev, "id3", 0x00); 934 qdev_prop_set_string(dev, "name", name); 935 object_property_add_child(OBJECT(vms), name, OBJECT(dev), 936 &error_abort); 937 object_property_add_alias(OBJECT(vms), alias_prop_name, 938 OBJECT(dev), "drive", &error_abort); 939 return PFLASH_CFI01(dev); 940 } 941 942 static void virt_flash_create(VirtMachineState *vms) 943 { 944 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 945 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 946 } 947 948 static void virt_flash_map1(PFlashCFI01 *flash, 949 hwaddr base, hwaddr size, 950 MemoryRegion *sysmem) 951 { 952 DeviceState *dev = DEVICE(flash); 953 954 assert(size % VIRT_FLASH_SECTOR_SIZE == 0); 955 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 956 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 957 qdev_init_nofail(dev); 958 959 memory_region_add_subregion(sysmem, base, 960 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 961 0)); 962 } 963 964 static void virt_flash_map(VirtMachineState *vms, 965 MemoryRegion *sysmem, 966 MemoryRegion *secure_sysmem) 967 { 968 /* 969 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 970 * sysmem is the system memory space. secure_sysmem is the secure view 971 * of the system, and the first flash device should be made visible only 972 * there. The second flash device is visible to both secure and nonsecure. 973 * If sysmem == secure_sysmem this means there is no separate Secure 974 * address space and both flash devices are generally visible. 975 */ 976 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 977 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 978 979 virt_flash_map1(vms->flash[0], flashbase, flashsize, 980 secure_sysmem); 981 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 982 sysmem); 983 } 984 985 static void virt_flash_fdt(VirtMachineState *vms, 986 MemoryRegion *sysmem, 987 MemoryRegion *secure_sysmem) 988 { 989 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 990 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 991 char *nodename; 992 993 if (sysmem == secure_sysmem) { 994 /* Report both flash devices as a single node in the DT */ 995 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 996 qemu_fdt_add_subnode(vms->fdt, nodename); 997 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 998 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 999 2, flashbase, 2, flashsize, 1000 2, flashbase + flashsize, 2, flashsize); 1001 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1002 g_free(nodename); 1003 } else { 1004 /* 1005 * Report the devices as separate nodes so we can mark one as 1006 * only visible to the secure world. 1007 */ 1008 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1009 qemu_fdt_add_subnode(vms->fdt, nodename); 1010 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1011 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1012 2, flashbase, 2, flashsize); 1013 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1014 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1015 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1016 g_free(nodename); 1017 1018 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1019 qemu_fdt_add_subnode(vms->fdt, nodename); 1020 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1021 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1022 2, flashbase + flashsize, 2, flashsize); 1023 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1024 g_free(nodename); 1025 } 1026 } 1027 1028 static bool virt_firmware_init(VirtMachineState *vms, 1029 MemoryRegion *sysmem, 1030 MemoryRegion *secure_sysmem) 1031 { 1032 int i; 1033 BlockBackend *pflash_blk0; 1034 1035 /* Map legacy -drive if=pflash to machine properties */ 1036 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1037 pflash_cfi01_legacy_drive(vms->flash[i], 1038 drive_get(IF_PFLASH, 0, i)); 1039 } 1040 1041 virt_flash_map(vms, sysmem, secure_sysmem); 1042 1043 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1044 1045 if (bios_name) { 1046 char *fname; 1047 MemoryRegion *mr; 1048 int image_size; 1049 1050 if (pflash_blk0) { 1051 error_report("The contents of the first flash device may be " 1052 "specified with -bios or with -drive if=pflash... " 1053 "but you cannot use both options at once"); 1054 exit(1); 1055 } 1056 1057 /* Fall back to -bios */ 1058 1059 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1060 if (!fname) { 1061 error_report("Could not find ROM image '%s'", bios_name); 1062 exit(1); 1063 } 1064 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1065 image_size = load_image_mr(fname, mr); 1066 g_free(fname); 1067 if (image_size < 0) { 1068 error_report("Could not load ROM image '%s'", bios_name); 1069 exit(1); 1070 } 1071 } 1072 1073 return pflash_blk0 || bios_name; 1074 } 1075 1076 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1077 { 1078 MachineState *ms = MACHINE(vms); 1079 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1080 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1081 FWCfgState *fw_cfg; 1082 char *nodename; 1083 1084 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1085 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1086 1087 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1088 qemu_fdt_add_subnode(vms->fdt, nodename); 1089 qemu_fdt_setprop_string(vms->fdt, nodename, 1090 "compatible", "qemu,fw-cfg-mmio"); 1091 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1092 2, base, 2, size); 1093 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1094 g_free(nodename); 1095 return fw_cfg; 1096 } 1097 1098 static void create_pcie_irq_map(const VirtMachineState *vms, 1099 uint32_t gic_phandle, 1100 int first_irq, const char *nodename) 1101 { 1102 int devfn, pin; 1103 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1104 uint32_t *irq_map = full_irq_map; 1105 1106 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1107 for (pin = 0; pin < 4; pin++) { 1108 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1109 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1110 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1111 int i; 1112 1113 uint32_t map[] = { 1114 devfn << 8, 0, 0, /* devfn */ 1115 pin + 1, /* PCI pin */ 1116 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1117 1118 /* Convert map to big endian */ 1119 for (i = 0; i < 10; i++) { 1120 irq_map[i] = cpu_to_be32(map[i]); 1121 } 1122 irq_map += 10; 1123 } 1124 } 1125 1126 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1127 full_irq_map, sizeof(full_irq_map)); 1128 1129 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1130 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 1131 0x7 /* PCI irq */); 1132 } 1133 1134 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic, 1135 PCIBus *bus) 1136 { 1137 char *node; 1138 const char compat[] = "arm,smmu-v3"; 1139 int irq = vms->irqmap[VIRT_SMMU]; 1140 int i; 1141 hwaddr base = vms->memmap[VIRT_SMMU].base; 1142 hwaddr size = vms->memmap[VIRT_SMMU].size; 1143 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1144 DeviceState *dev; 1145 1146 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1147 return; 1148 } 1149 1150 dev = qdev_create(NULL, "arm-smmuv3"); 1151 1152 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", 1153 &error_abort); 1154 qdev_init_nofail(dev); 1155 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1156 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1157 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1158 } 1159 1160 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1161 qemu_fdt_add_subnode(vms->fdt, node); 1162 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1163 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1164 1165 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1166 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1167 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1168 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1169 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1170 1171 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1172 sizeof(irq_names)); 1173 1174 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1175 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1176 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1177 1178 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1179 1180 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1181 g_free(node); 1182 } 1183 1184 static void create_pcie(VirtMachineState *vms, qemu_irq *pic) 1185 { 1186 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1187 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1188 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1189 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1190 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1191 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1192 hwaddr base_ecam, size_ecam; 1193 hwaddr base = base_mmio; 1194 int nr_pcie_buses; 1195 int irq = vms->irqmap[VIRT_PCIE]; 1196 MemoryRegion *mmio_alias; 1197 MemoryRegion *mmio_reg; 1198 MemoryRegion *ecam_alias; 1199 MemoryRegion *ecam_reg; 1200 DeviceState *dev; 1201 char *nodename; 1202 int i, ecam_id; 1203 PCIHostState *pci; 1204 1205 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1206 qdev_init_nofail(dev); 1207 1208 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1209 base_ecam = vms->memmap[ecam_id].base; 1210 size_ecam = vms->memmap[ecam_id].size; 1211 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1212 /* Map only the first size_ecam bytes of ECAM space */ 1213 ecam_alias = g_new0(MemoryRegion, 1); 1214 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1215 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1216 ecam_reg, 0, size_ecam); 1217 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1218 1219 /* Map the MMIO window into system address space so as to expose 1220 * the section of PCI MMIO space which starts at the same base address 1221 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1222 * the window). 1223 */ 1224 mmio_alias = g_new0(MemoryRegion, 1); 1225 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1226 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1227 mmio_reg, base_mmio, size_mmio); 1228 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1229 1230 if (vms->highmem) { 1231 /* Map high MMIO space */ 1232 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1233 1234 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1235 mmio_reg, base_mmio_high, size_mmio_high); 1236 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1237 high_mmio_alias); 1238 } 1239 1240 /* Map IO port space */ 1241 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1242 1243 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1244 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1245 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1246 } 1247 1248 pci = PCI_HOST_BRIDGE(dev); 1249 if (pci->bus) { 1250 for (i = 0; i < nb_nics; i++) { 1251 NICInfo *nd = &nd_table[i]; 1252 1253 if (!nd->model) { 1254 nd->model = g_strdup("virtio"); 1255 } 1256 1257 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1258 } 1259 } 1260 1261 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1262 qemu_fdt_add_subnode(vms->fdt, nodename); 1263 qemu_fdt_setprop_string(vms->fdt, nodename, 1264 "compatible", "pci-host-ecam-generic"); 1265 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1266 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1267 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1268 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1269 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1270 nr_pcie_buses - 1); 1271 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1272 1273 if (vms->msi_phandle) { 1274 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1275 vms->msi_phandle); 1276 } 1277 1278 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1279 2, base_ecam, 2, size_ecam); 1280 1281 if (vms->highmem) { 1282 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1283 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1284 2, base_pio, 2, size_pio, 1285 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1286 2, base_mmio, 2, size_mmio, 1287 1, FDT_PCI_RANGE_MMIO_64BIT, 1288 2, base_mmio_high, 1289 2, base_mmio_high, 2, size_mmio_high); 1290 } else { 1291 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1292 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1293 2, base_pio, 2, size_pio, 1294 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1295 2, base_mmio, 2, size_mmio); 1296 } 1297 1298 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1299 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1300 1301 if (vms->iommu) { 1302 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1303 1304 create_smmu(vms, pic, pci->bus); 1305 1306 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1307 0x0, vms->iommu_phandle, 0x0, 0x10000); 1308 } 1309 1310 g_free(nodename); 1311 } 1312 1313 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic) 1314 { 1315 DeviceState *dev; 1316 SysBusDevice *s; 1317 int i; 1318 MemoryRegion *sysmem = get_system_memory(); 1319 1320 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1321 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1322 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1323 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1324 qdev_init_nofail(dev); 1325 vms->platform_bus_dev = dev; 1326 1327 s = SYS_BUS_DEVICE(dev); 1328 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1329 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1330 sysbus_connect_irq(s, i, pic[irqn]); 1331 } 1332 1333 memory_region_add_subregion(sysmem, 1334 vms->memmap[VIRT_PLATFORM_BUS].base, 1335 sysbus_mmio_get_region(s, 0)); 1336 } 1337 1338 static void create_secure_ram(VirtMachineState *vms, 1339 MemoryRegion *secure_sysmem) 1340 { 1341 MemoryRegion *secram = g_new(MemoryRegion, 1); 1342 char *nodename; 1343 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1344 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1345 1346 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1347 &error_fatal); 1348 memory_region_add_subregion(secure_sysmem, base, secram); 1349 1350 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1351 qemu_fdt_add_subnode(vms->fdt, nodename); 1352 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1353 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1354 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1355 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1356 1357 g_free(nodename); 1358 } 1359 1360 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1361 { 1362 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1363 bootinfo); 1364 1365 *fdt_size = board->fdt_size; 1366 return board->fdt; 1367 } 1368 1369 static void virt_build_smbios(VirtMachineState *vms) 1370 { 1371 MachineClass *mc = MACHINE_GET_CLASS(vms); 1372 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1373 uint8_t *smbios_tables, *smbios_anchor; 1374 size_t smbios_tables_len, smbios_anchor_len; 1375 const char *product = "QEMU Virtual Machine"; 1376 1377 if (kvm_enabled()) { 1378 product = "KVM Virtual Machine"; 1379 } 1380 1381 smbios_set_defaults("QEMU", product, 1382 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1383 true, SMBIOS_ENTRY_POINT_30); 1384 1385 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, 1386 &smbios_anchor, &smbios_anchor_len); 1387 1388 if (smbios_anchor) { 1389 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1390 smbios_tables, smbios_tables_len); 1391 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1392 smbios_anchor, smbios_anchor_len); 1393 } 1394 } 1395 1396 static 1397 void virt_machine_done(Notifier *notifier, void *data) 1398 { 1399 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1400 machine_done); 1401 MachineState *ms = MACHINE(vms); 1402 ARMCPU *cpu = ARM_CPU(first_cpu); 1403 struct arm_boot_info *info = &vms->bootinfo; 1404 AddressSpace *as = arm_boot_address_space(cpu, info); 1405 1406 /* 1407 * If the user provided a dtb, we assume the dynamic sysbus nodes 1408 * already are integrated there. This corresponds to a use case where 1409 * the dynamic sysbus nodes are complex and their generation is not yet 1410 * supported. In that case the user can take charge of the guest dt 1411 * while qemu takes charge of the qom stuff. 1412 */ 1413 if (info->dtb_filename == NULL) { 1414 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1415 vms->memmap[VIRT_PLATFORM_BUS].base, 1416 vms->memmap[VIRT_PLATFORM_BUS].size, 1417 vms->irqmap[VIRT_PLATFORM_BUS]); 1418 } 1419 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1420 exit(1); 1421 } 1422 1423 virt_acpi_setup(vms); 1424 virt_build_smbios(vms); 1425 } 1426 1427 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1428 { 1429 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1430 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1431 1432 if (!vmc->disallow_affinity_adjustment) { 1433 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1434 * GIC's target-list limitations. 32-bit KVM hosts currently 1435 * always create clusters of 4 CPUs, but that is expected to 1436 * change when they gain support for gicv3. When KVM is enabled 1437 * it will override the changes we make here, therefore our 1438 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1439 * and to improve SGI efficiency. 1440 */ 1441 if (vms->gic_version == 3) { 1442 clustersz = GICV3_TARGETLIST_BITS; 1443 } else { 1444 clustersz = GIC_TARGETLIST_BITS; 1445 } 1446 } 1447 return arm_cpu_mp_affinity(idx, clustersz); 1448 } 1449 1450 static void virt_set_memmap(VirtMachineState *vms) 1451 { 1452 MachineState *ms = MACHINE(vms); 1453 hwaddr base, device_memory_base, device_memory_size; 1454 int i; 1455 1456 vms->memmap = extended_memmap; 1457 1458 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1459 vms->memmap[i] = base_memmap[i]; 1460 } 1461 1462 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1463 error_report("unsupported number of memory slots: %"PRIu64, 1464 ms->ram_slots); 1465 exit(EXIT_FAILURE); 1466 } 1467 1468 /* 1469 * We compute the base of the high IO region depending on the 1470 * amount of initial and device memory. The device memory start/size 1471 * is aligned on 1GiB. We never put the high IO region below 256GiB 1472 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1473 * The device region size assumes 1GiB page max alignment per slot. 1474 */ 1475 device_memory_base = 1476 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1477 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1478 1479 /* Base address of the high IO region */ 1480 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1481 if (base < device_memory_base) { 1482 error_report("maxmem/slots too huge"); 1483 exit(EXIT_FAILURE); 1484 } 1485 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1486 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1487 } 1488 1489 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1490 hwaddr size = extended_memmap[i].size; 1491 1492 base = ROUND_UP(base, size); 1493 vms->memmap[i].base = base; 1494 vms->memmap[i].size = size; 1495 base += size; 1496 } 1497 vms->highest_gpa = base - 1; 1498 if (device_memory_size > 0) { 1499 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1500 ms->device_memory->base = device_memory_base; 1501 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1502 "device-memory", device_memory_size); 1503 } 1504 } 1505 1506 static void machvirt_init(MachineState *machine) 1507 { 1508 VirtMachineState *vms = VIRT_MACHINE(machine); 1509 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1510 MachineClass *mc = MACHINE_GET_CLASS(machine); 1511 const CPUArchIdList *possible_cpus; 1512 qemu_irq pic[NUM_IRQS]; 1513 MemoryRegion *sysmem = get_system_memory(); 1514 MemoryRegion *secure_sysmem = NULL; 1515 int n, virt_max_cpus; 1516 MemoryRegion *ram = g_new(MemoryRegion, 1); 1517 bool firmware_loaded; 1518 bool aarch64 = true; 1519 bool has_ged = !vmc->no_ged; 1520 unsigned int smp_cpus = machine->smp.cpus; 1521 unsigned int max_cpus = machine->smp.max_cpus; 1522 1523 /* 1524 * In accelerated mode, the memory map is computed earlier in kvm_type() 1525 * to create a VM with the right number of IPA bits. 1526 */ 1527 if (!vms->memmap) { 1528 virt_set_memmap(vms); 1529 } 1530 1531 /* We can probe only here because during property set 1532 * KVM is not available yet 1533 */ 1534 if (vms->gic_version <= 0) { 1535 /* "host" or "max" */ 1536 if (!kvm_enabled()) { 1537 if (vms->gic_version == 0) { 1538 error_report("gic-version=host requires KVM"); 1539 exit(1); 1540 } else { 1541 /* "max": currently means 3 for TCG */ 1542 vms->gic_version = 3; 1543 } 1544 } else { 1545 vms->gic_version = kvm_arm_vgic_probe(); 1546 if (!vms->gic_version) { 1547 error_report( 1548 "Unable to determine GIC version supported by host"); 1549 exit(1); 1550 } 1551 } 1552 } 1553 1554 if (!cpu_type_valid(machine->cpu_type)) { 1555 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1556 exit(1); 1557 } 1558 1559 if (vms->secure) { 1560 if (kvm_enabled()) { 1561 error_report("mach-virt: KVM does not support Security extensions"); 1562 exit(1); 1563 } 1564 1565 /* 1566 * The Secure view of the world is the same as the NonSecure, 1567 * but with a few extra devices. Create it as a container region 1568 * containing the system memory at low priority; any secure-only 1569 * devices go in at higher priority and take precedence. 1570 */ 1571 secure_sysmem = g_new(MemoryRegion, 1); 1572 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1573 UINT64_MAX); 1574 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1575 } 1576 1577 firmware_loaded = virt_firmware_init(vms, sysmem, 1578 secure_sysmem ?: sysmem); 1579 1580 /* If we have an EL3 boot ROM then the assumption is that it will 1581 * implement PSCI itself, so disable QEMU's internal implementation 1582 * so it doesn't get in the way. Instead of starting secondary 1583 * CPUs in PSCI powerdown state we will start them all running and 1584 * let the boot ROM sort them out. 1585 * The usual case is that we do use QEMU's PSCI implementation; 1586 * if the guest has EL2 then we will use SMC as the conduit, 1587 * and otherwise we will use HVC (for backwards compatibility and 1588 * because if we're using KVM then we must use HVC). 1589 */ 1590 if (vms->secure && firmware_loaded) { 1591 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1592 } else if (vms->virt) { 1593 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1594 } else { 1595 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1596 } 1597 1598 /* The maximum number of CPUs depends on the GIC version, or on how 1599 * many redistributors we can fit into the memory map. 1600 */ 1601 if (vms->gic_version == 3) { 1602 virt_max_cpus = 1603 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1604 virt_max_cpus += 1605 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1606 } else { 1607 virt_max_cpus = GIC_NCPU; 1608 } 1609 1610 if (max_cpus > virt_max_cpus) { 1611 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1612 "supported by machine 'mach-virt' (%d)", 1613 max_cpus, virt_max_cpus); 1614 exit(1); 1615 } 1616 1617 vms->smp_cpus = smp_cpus; 1618 1619 if (vms->virt && kvm_enabled()) { 1620 error_report("mach-virt: KVM does not support providing " 1621 "Virtualization extensions to the guest CPU"); 1622 exit(1); 1623 } 1624 1625 create_fdt(vms); 1626 1627 possible_cpus = mc->possible_cpu_arch_ids(machine); 1628 for (n = 0; n < possible_cpus->len; n++) { 1629 Object *cpuobj; 1630 CPUState *cs; 1631 1632 if (n >= smp_cpus) { 1633 break; 1634 } 1635 1636 cpuobj = object_new(possible_cpus->cpus[n].type); 1637 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, 1638 "mp-affinity", NULL); 1639 1640 cs = CPU(cpuobj); 1641 cs->cpu_index = n; 1642 1643 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1644 &error_fatal); 1645 1646 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1647 1648 if (!vms->secure) { 1649 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1650 } 1651 1652 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { 1653 object_property_set_bool(cpuobj, false, "has_el2", NULL); 1654 } 1655 1656 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1657 object_property_set_int(cpuobj, vms->psci_conduit, 1658 "psci-conduit", NULL); 1659 1660 /* Secondary CPUs start in PSCI powered-down state */ 1661 if (n > 0) { 1662 object_property_set_bool(cpuobj, true, 1663 "start-powered-off", NULL); 1664 } 1665 } 1666 1667 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1668 object_property_set_bool(cpuobj, false, "pmu", NULL); 1669 } 1670 1671 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1672 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, 1673 "reset-cbar", &error_abort); 1674 } 1675 1676 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1677 &error_abort); 1678 if (vms->secure) { 1679 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1680 "secure-memory", &error_abort); 1681 } 1682 1683 object_property_set_bool(cpuobj, true, "realized", &error_fatal); 1684 object_unref(cpuobj); 1685 } 1686 fdt_add_timer_nodes(vms); 1687 fdt_add_cpu_nodes(vms); 1688 1689 if (!kvm_enabled()) { 1690 ARMCPU *cpu = ARM_CPU(first_cpu); 1691 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL); 1692 1693 if (aarch64 && vms->highmem) { 1694 int requested_pa_size, pamax = arm_pamax(cpu); 1695 1696 requested_pa_size = 64 - clz64(vms->highest_gpa); 1697 if (pamax < requested_pa_size) { 1698 error_report("VCPU supports less PA bits (%d) than requested " 1699 "by the memory map (%d)", pamax, requested_pa_size); 1700 exit(1); 1701 } 1702 } 1703 } 1704 1705 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1706 machine->ram_size); 1707 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram); 1708 if (machine->device_memory) { 1709 memory_region_add_subregion(sysmem, machine->device_memory->base, 1710 &machine->device_memory->mr); 1711 } 1712 1713 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 1714 1715 create_gic(vms, pic); 1716 1717 fdt_add_pmu_nodes(vms); 1718 1719 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0)); 1720 1721 if (vms->secure) { 1722 create_secure_ram(vms, secure_sysmem); 1723 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1724 } 1725 1726 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 1727 1728 create_rtc(vms, pic); 1729 1730 create_pcie(vms, pic); 1731 1732 if (has_ged && aarch64 && firmware_loaded && acpi_enabled) { 1733 vms->acpi_dev = create_acpi_ged(vms, pic); 1734 } else { 1735 create_gpio(vms, pic); 1736 } 1737 1738 /* connect powerdown request */ 1739 vms->powerdown_notifier.notify = virt_powerdown_req; 1740 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 1741 1742 /* Create mmio transports, so the user can create virtio backends 1743 * (which will be automatically plugged in to the transports). If 1744 * no backend is created the transport will just sit harmlessly idle. 1745 */ 1746 create_virtio_devices(vms, pic); 1747 1748 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 1749 rom_set_fw(vms->fw_cfg); 1750 1751 create_platform_bus(vms, pic); 1752 1753 vms->bootinfo.ram_size = machine->ram_size; 1754 vms->bootinfo.nb_cpus = smp_cpus; 1755 vms->bootinfo.board_id = -1; 1756 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 1757 vms->bootinfo.get_dtb = machvirt_dtb; 1758 vms->bootinfo.skip_dtb_autoload = true; 1759 vms->bootinfo.firmware_loaded = firmware_loaded; 1760 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 1761 1762 vms->machine_done.notify = virt_machine_done; 1763 qemu_add_machine_init_done_notifier(&vms->machine_done); 1764 } 1765 1766 static bool virt_get_secure(Object *obj, Error **errp) 1767 { 1768 VirtMachineState *vms = VIRT_MACHINE(obj); 1769 1770 return vms->secure; 1771 } 1772 1773 static void virt_set_secure(Object *obj, bool value, Error **errp) 1774 { 1775 VirtMachineState *vms = VIRT_MACHINE(obj); 1776 1777 vms->secure = value; 1778 } 1779 1780 static bool virt_get_virt(Object *obj, Error **errp) 1781 { 1782 VirtMachineState *vms = VIRT_MACHINE(obj); 1783 1784 return vms->virt; 1785 } 1786 1787 static void virt_set_virt(Object *obj, bool value, Error **errp) 1788 { 1789 VirtMachineState *vms = VIRT_MACHINE(obj); 1790 1791 vms->virt = value; 1792 } 1793 1794 static bool virt_get_highmem(Object *obj, Error **errp) 1795 { 1796 VirtMachineState *vms = VIRT_MACHINE(obj); 1797 1798 return vms->highmem; 1799 } 1800 1801 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1802 { 1803 VirtMachineState *vms = VIRT_MACHINE(obj); 1804 1805 vms->highmem = value; 1806 } 1807 1808 static bool virt_get_its(Object *obj, Error **errp) 1809 { 1810 VirtMachineState *vms = VIRT_MACHINE(obj); 1811 1812 return vms->its; 1813 } 1814 1815 static void virt_set_its(Object *obj, bool value, Error **errp) 1816 { 1817 VirtMachineState *vms = VIRT_MACHINE(obj); 1818 1819 vms->its = value; 1820 } 1821 1822 static char *virt_get_gic_version(Object *obj, Error **errp) 1823 { 1824 VirtMachineState *vms = VIRT_MACHINE(obj); 1825 const char *val = vms->gic_version == 3 ? "3" : "2"; 1826 1827 return g_strdup(val); 1828 } 1829 1830 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1831 { 1832 VirtMachineState *vms = VIRT_MACHINE(obj); 1833 1834 if (!strcmp(value, "3")) { 1835 vms->gic_version = 3; 1836 } else if (!strcmp(value, "2")) { 1837 vms->gic_version = 2; 1838 } else if (!strcmp(value, "host")) { 1839 vms->gic_version = 0; /* Will probe later */ 1840 } else if (!strcmp(value, "max")) { 1841 vms->gic_version = -1; /* Will probe later */ 1842 } else { 1843 error_setg(errp, "Invalid gic-version value"); 1844 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 1845 } 1846 } 1847 1848 static char *virt_get_iommu(Object *obj, Error **errp) 1849 { 1850 VirtMachineState *vms = VIRT_MACHINE(obj); 1851 1852 switch (vms->iommu) { 1853 case VIRT_IOMMU_NONE: 1854 return g_strdup("none"); 1855 case VIRT_IOMMU_SMMUV3: 1856 return g_strdup("smmuv3"); 1857 default: 1858 g_assert_not_reached(); 1859 } 1860 } 1861 1862 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 1863 { 1864 VirtMachineState *vms = VIRT_MACHINE(obj); 1865 1866 if (!strcmp(value, "smmuv3")) { 1867 vms->iommu = VIRT_IOMMU_SMMUV3; 1868 } else if (!strcmp(value, "none")) { 1869 vms->iommu = VIRT_IOMMU_NONE; 1870 } else { 1871 error_setg(errp, "Invalid iommu value"); 1872 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 1873 } 1874 } 1875 1876 static CpuInstanceProperties 1877 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 1878 { 1879 MachineClass *mc = MACHINE_GET_CLASS(ms); 1880 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 1881 1882 assert(cpu_index < possible_cpus->len); 1883 return possible_cpus->cpus[cpu_index].props; 1884 } 1885 1886 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 1887 { 1888 return idx % ms->numa_state->num_nodes; 1889 } 1890 1891 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 1892 { 1893 int n; 1894 unsigned int max_cpus = ms->smp.max_cpus; 1895 VirtMachineState *vms = VIRT_MACHINE(ms); 1896 1897 if (ms->possible_cpus) { 1898 assert(ms->possible_cpus->len == max_cpus); 1899 return ms->possible_cpus; 1900 } 1901 1902 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1903 sizeof(CPUArchId) * max_cpus); 1904 ms->possible_cpus->len = max_cpus; 1905 for (n = 0; n < ms->possible_cpus->len; n++) { 1906 ms->possible_cpus->cpus[n].type = ms->cpu_type; 1907 ms->possible_cpus->cpus[n].arch_id = 1908 virt_cpu_mp_affinity(vms, n); 1909 ms->possible_cpus->cpus[n].props.has_thread_id = true; 1910 ms->possible_cpus->cpus[n].props.thread_id = n; 1911 } 1912 return ms->possible_cpus; 1913 } 1914 1915 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 1916 Error **errp) 1917 { 1918 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1919 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 1920 1921 if (is_nvdimm) { 1922 error_setg(errp, "nvdimm is not yet supported"); 1923 return; 1924 } 1925 1926 if (!vms->acpi_dev) { 1927 error_setg(errp, 1928 "memory hotplug is not enabled: missing acpi-ged device"); 1929 return; 1930 } 1931 1932 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 1933 } 1934 1935 static void virt_memory_plug(HotplugHandler *hotplug_dev, 1936 DeviceState *dev, Error **errp) 1937 { 1938 HotplugHandlerClass *hhc; 1939 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1940 Error *local_err = NULL; 1941 1942 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err); 1943 if (local_err) { 1944 goto out; 1945 } 1946 1947 hhc = HOTPLUG_HANDLER_GET_CLASS(vms->acpi_dev); 1948 hhc->plug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &error_abort); 1949 out: 1950 error_propagate(errp, local_err); 1951 } 1952 1953 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 1954 DeviceState *dev, Error **errp) 1955 { 1956 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1957 virt_memory_pre_plug(hotplug_dev, dev, errp); 1958 } 1959 } 1960 1961 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1962 DeviceState *dev, Error **errp) 1963 { 1964 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1965 1966 if (vms->platform_bus_dev) { 1967 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1968 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 1969 SYS_BUS_DEVICE(dev)); 1970 } 1971 } 1972 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1973 virt_memory_plug(hotplug_dev, dev, errp); 1974 } 1975 } 1976 1977 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 1978 DeviceState *dev, Error **errp) 1979 { 1980 error_setg(errp, "device unplug request for unsupported device" 1981 " type: %s", object_get_typename(OBJECT(dev))); 1982 } 1983 1984 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 1985 DeviceState *dev) 1986 { 1987 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) || 1988 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { 1989 return HOTPLUG_HANDLER(machine); 1990 } 1991 1992 return NULL; 1993 } 1994 1995 /* 1996 * for arm64 kvm_type [7-0] encodes the requested number of bits 1997 * in the IPA address space 1998 */ 1999 static int virt_kvm_type(MachineState *ms, const char *type_str) 2000 { 2001 VirtMachineState *vms = VIRT_MACHINE(ms); 2002 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms); 2003 int requested_pa_size; 2004 2005 /* we freeze the memory map to compute the highest gpa */ 2006 virt_set_memmap(vms); 2007 2008 requested_pa_size = 64 - clz64(vms->highest_gpa); 2009 2010 if (requested_pa_size > max_vm_pa_size) { 2011 error_report("-m and ,maxmem option values " 2012 "require an IPA range (%d bits) larger than " 2013 "the one supported by the host (%d bits)", 2014 requested_pa_size, max_vm_pa_size); 2015 exit(1); 2016 } 2017 /* 2018 * By default we return 0 which corresponds to an implicit legacy 2019 * 40b IPA setting. Otherwise we return the actual requested PA 2020 * logsize 2021 */ 2022 return requested_pa_size > 40 ? requested_pa_size : 0; 2023 } 2024 2025 static void virt_machine_class_init(ObjectClass *oc, void *data) 2026 { 2027 MachineClass *mc = MACHINE_CLASS(oc); 2028 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2029 2030 mc->init = machvirt_init; 2031 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2032 * The value may be reduced later when we have more information about the 2033 * configuration of the particular instance. 2034 */ 2035 mc->max_cpus = 512; 2036 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2037 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2038 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2039 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2040 mc->block_default_type = IF_VIRTIO; 2041 mc->no_cdrom = 1; 2042 mc->pci_allow_0_address = true; 2043 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2044 mc->minimum_page_bits = 12; 2045 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2046 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2047 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2048 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2049 mc->kvm_type = virt_kvm_type; 2050 assert(!mc->get_hotplug_handler); 2051 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2052 hc->pre_plug = virt_machine_device_pre_plug_cb; 2053 hc->plug = virt_machine_device_plug_cb; 2054 hc->unplug_request = virt_machine_device_unplug_request_cb; 2055 mc->numa_mem_supported = true; 2056 mc->auto_enable_numa_with_memhp = true; 2057 } 2058 2059 static void virt_instance_init(Object *obj) 2060 { 2061 VirtMachineState *vms = VIRT_MACHINE(obj); 2062 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 2063 2064 /* EL3 is disabled by default on virt: this makes us consistent 2065 * between KVM and TCG for this board, and it also allows us to 2066 * boot UEFI blobs which assume no TrustZone support. 2067 */ 2068 vms->secure = false; 2069 object_property_add_bool(obj, "secure", virt_get_secure, 2070 virt_set_secure, NULL); 2071 object_property_set_description(obj, "secure", 2072 "Set on/off to enable/disable the ARM " 2073 "Security Extensions (TrustZone)", 2074 NULL); 2075 2076 /* EL2 is also disabled by default, for similar reasons */ 2077 vms->virt = false; 2078 object_property_add_bool(obj, "virtualization", virt_get_virt, 2079 virt_set_virt, NULL); 2080 object_property_set_description(obj, "virtualization", 2081 "Set on/off to enable/disable emulating a " 2082 "guest CPU which implements the ARM " 2083 "Virtualization Extensions", 2084 NULL); 2085 2086 /* High memory is enabled by default */ 2087 vms->highmem = true; 2088 object_property_add_bool(obj, "highmem", virt_get_highmem, 2089 virt_set_highmem, NULL); 2090 object_property_set_description(obj, "highmem", 2091 "Set on/off to enable/disable using " 2092 "physical address space above 32 bits", 2093 NULL); 2094 /* Default GIC type is v2 */ 2095 vms->gic_version = 2; 2096 object_property_add_str(obj, "gic-version", virt_get_gic_version, 2097 virt_set_gic_version, NULL); 2098 object_property_set_description(obj, "gic-version", 2099 "Set GIC version. " 2100 "Valid values are 2, 3 and host", NULL); 2101 2102 vms->highmem_ecam = !vmc->no_highmem_ecam; 2103 2104 if (vmc->no_its) { 2105 vms->its = false; 2106 } else { 2107 /* Default allows ITS instantiation */ 2108 vms->its = true; 2109 object_property_add_bool(obj, "its", virt_get_its, 2110 virt_set_its, NULL); 2111 object_property_set_description(obj, "its", 2112 "Set on/off to enable/disable " 2113 "ITS instantiation", 2114 NULL); 2115 } 2116 2117 /* Default disallows iommu instantiation */ 2118 vms->iommu = VIRT_IOMMU_NONE; 2119 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL); 2120 object_property_set_description(obj, "iommu", 2121 "Set the IOMMU type. " 2122 "Valid values are none and smmuv3", 2123 NULL); 2124 2125 vms->irqmap = a15irqmap; 2126 2127 virt_flash_create(vms); 2128 } 2129 2130 static const TypeInfo virt_machine_info = { 2131 .name = TYPE_VIRT_MACHINE, 2132 .parent = TYPE_MACHINE, 2133 .abstract = true, 2134 .instance_size = sizeof(VirtMachineState), 2135 .class_size = sizeof(VirtMachineClass), 2136 .class_init = virt_machine_class_init, 2137 .instance_init = virt_instance_init, 2138 .interfaces = (InterfaceInfo[]) { 2139 { TYPE_HOTPLUG_HANDLER }, 2140 { } 2141 }, 2142 }; 2143 2144 static void machvirt_machine_init(void) 2145 { 2146 type_register_static(&virt_machine_info); 2147 } 2148 type_init(machvirt_machine_init); 2149 2150 static void virt_machine_4_2_options(MachineClass *mc) 2151 { 2152 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 2153 } 2154 DEFINE_VIRT_MACHINE_AS_LATEST(4, 2) 2155 2156 static void virt_machine_4_1_options(MachineClass *mc) 2157 { 2158 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2159 2160 virt_machine_4_2_options(mc); 2161 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2162 vmc->no_ged = true; 2163 mc->auto_enable_numa_with_memhp = false; 2164 } 2165 DEFINE_VIRT_MACHINE(4, 1) 2166 2167 static void virt_machine_4_0_options(MachineClass *mc) 2168 { 2169 virt_machine_4_1_options(mc); 2170 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2171 } 2172 DEFINE_VIRT_MACHINE(4, 0) 2173 2174 static void virt_machine_3_1_options(MachineClass *mc) 2175 { 2176 virt_machine_4_0_options(mc); 2177 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2178 } 2179 DEFINE_VIRT_MACHINE(3, 1) 2180 2181 static void virt_machine_3_0_options(MachineClass *mc) 2182 { 2183 virt_machine_3_1_options(mc); 2184 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2185 } 2186 DEFINE_VIRT_MACHINE(3, 0) 2187 2188 static void virt_machine_2_12_options(MachineClass *mc) 2189 { 2190 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2191 2192 virt_machine_3_0_options(mc); 2193 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2194 vmc->no_highmem_ecam = true; 2195 mc->max_cpus = 255; 2196 } 2197 DEFINE_VIRT_MACHINE(2, 12) 2198 2199 static void virt_machine_2_11_options(MachineClass *mc) 2200 { 2201 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2202 2203 virt_machine_2_12_options(mc); 2204 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2205 vmc->smbios_old_sys_ver = true; 2206 } 2207 DEFINE_VIRT_MACHINE(2, 11) 2208 2209 static void virt_machine_2_10_options(MachineClass *mc) 2210 { 2211 virt_machine_2_11_options(mc); 2212 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2213 /* before 2.11 we never faulted accesses to bad addresses */ 2214 mc->ignore_memory_transaction_failures = true; 2215 } 2216 DEFINE_VIRT_MACHINE(2, 10) 2217 2218 static void virt_machine_2_9_options(MachineClass *mc) 2219 { 2220 virt_machine_2_10_options(mc); 2221 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2222 } 2223 DEFINE_VIRT_MACHINE(2, 9) 2224 2225 static void virt_machine_2_8_options(MachineClass *mc) 2226 { 2227 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2228 2229 virt_machine_2_9_options(mc); 2230 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2231 /* For 2.8 and earlier we falsely claimed in the DT that 2232 * our timers were edge-triggered, not level-triggered. 2233 */ 2234 vmc->claim_edge_triggered_timers = true; 2235 } 2236 DEFINE_VIRT_MACHINE(2, 8) 2237 2238 static void virt_machine_2_7_options(MachineClass *mc) 2239 { 2240 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2241 2242 virt_machine_2_8_options(mc); 2243 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2244 /* ITS was introduced with 2.8 */ 2245 vmc->no_its = true; 2246 /* Stick with 1K pages for migration compatibility */ 2247 mc->minimum_page_bits = 0; 2248 } 2249 DEFINE_VIRT_MACHINE(2, 7) 2250 2251 static void virt_machine_2_6_options(MachineClass *mc) 2252 { 2253 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2254 2255 virt_machine_2_7_options(mc); 2256 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2257 vmc->disallow_affinity_adjustment = true; 2258 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2259 vmc->no_pmu = true; 2260 } 2261 DEFINE_VIRT_MACHINE(2, 6) 2262