1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/arm/virt.h" 35 #include "hw/devices.h" 36 #include "net/net.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/kvm.h" 41 #include "hw/boards.h" 42 #include "hw/loader.h" 43 #include "exec/address-spaces.h" 44 #include "qemu/bitops.h" 45 #include "qemu/error-report.h" 46 #include "hw/pci-host/gpex.h" 47 #include "hw/arm/virt-acpi-build.h" 48 #include "hw/arm/sysbus-fdt.h" 49 #include "hw/platform-bus.h" 50 #include "hw/arm/fdt.h" 51 #include "hw/intc/arm_gic_common.h" 52 53 /* Number of external interrupt lines to configure the GIC with */ 54 #define NUM_IRQS 256 55 56 #define PLATFORM_BUS_NUM_IRQS 64 57 58 static ARMPlatformBusSystemParams platform_bus_params; 59 60 typedef struct VirtBoardInfo { 61 struct arm_boot_info bootinfo; 62 const char *cpu_model; 63 const MemMapEntry *memmap; 64 const int *irqmap; 65 int smp_cpus; 66 void *fdt; 67 int fdt_size; 68 uint32_t clock_phandle; 69 uint32_t gic_phandle; 70 uint32_t v2m_phandle; 71 } VirtBoardInfo; 72 73 typedef struct { 74 MachineClass parent; 75 VirtBoardInfo *daughterboard; 76 } VirtMachineClass; 77 78 typedef struct { 79 MachineState parent; 80 bool secure; 81 } VirtMachineState; 82 83 #define TYPE_VIRT_MACHINE "virt" 84 #define VIRT_MACHINE(obj) \ 85 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 86 #define VIRT_MACHINE_GET_CLASS(obj) \ 87 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 88 #define VIRT_MACHINE_CLASS(klass) \ 89 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 90 91 /* Addresses and sizes of our components. 92 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 93 * 128MB..256MB is used for miscellaneous device I/O. 94 * 256MB..1GB is reserved for possible future PCI support (ie where the 95 * PCI memory window will go if we add a PCI host controller). 96 * 1GB and up is RAM (which may happily spill over into the 97 * high memory region beyond 4GB). 98 * This represents a compromise between how much RAM can be given to 99 * a 32 bit VM and leaving space for expansion and in particular for PCI. 100 * Note that devices should generally be placed at multiples of 0x10000, 101 * to accommodate guests using 64K pages. 102 */ 103 static const MemMapEntry a15memmap[] = { 104 /* Space up to 0x8000000 is reserved for a boot ROM */ 105 [VIRT_FLASH] = { 0, 0x08000000 }, 106 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 107 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 108 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 109 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 110 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 111 [VIRT_UART] = { 0x09000000, 0x00001000 }, 112 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 113 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a }, 114 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 115 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 116 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 117 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 118 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 119 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 120 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 121 }; 122 123 static const int a15irqmap[] = { 124 [VIRT_UART] = 1, 125 [VIRT_RTC] = 2, 126 [VIRT_PCIE] = 3, /* ... to 6 */ 127 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 128 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 129 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 130 }; 131 132 static VirtBoardInfo machines[] = { 133 { 134 .cpu_model = "cortex-a15", 135 .memmap = a15memmap, 136 .irqmap = a15irqmap, 137 }, 138 { 139 .cpu_model = "cortex-a53", 140 .memmap = a15memmap, 141 .irqmap = a15irqmap, 142 }, 143 { 144 .cpu_model = "cortex-a57", 145 .memmap = a15memmap, 146 .irqmap = a15irqmap, 147 }, 148 { 149 .cpu_model = "host", 150 .memmap = a15memmap, 151 .irqmap = a15irqmap, 152 }, 153 }; 154 155 static VirtBoardInfo *find_machine_info(const char *cpu) 156 { 157 int i; 158 159 for (i = 0; i < ARRAY_SIZE(machines); i++) { 160 if (strcmp(cpu, machines[i].cpu_model) == 0) { 161 return &machines[i]; 162 } 163 } 164 return NULL; 165 } 166 167 static void create_fdt(VirtBoardInfo *vbi) 168 { 169 void *fdt = create_device_tree(&vbi->fdt_size); 170 171 if (!fdt) { 172 error_report("create_device_tree() failed"); 173 exit(1); 174 } 175 176 vbi->fdt = fdt; 177 178 /* Header */ 179 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 180 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 181 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 182 183 /* 184 * /chosen and /memory nodes must exist for load_dtb 185 * to fill in necessary properties later 186 */ 187 qemu_fdt_add_subnode(fdt, "/chosen"); 188 qemu_fdt_add_subnode(fdt, "/memory"); 189 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 190 191 /* Clock node, for the benefit of the UART. The kernel device tree 192 * binding documentation claims the PL011 node clock properties are 193 * optional but in practice if you omit them the kernel refuses to 194 * probe for the device. 195 */ 196 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 197 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 198 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 199 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 200 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 201 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 202 "clk24mhz"); 203 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 204 205 } 206 207 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 208 { 209 uint32_t cpu_suspend_fn; 210 uint32_t cpu_off_fn; 211 uint32_t cpu_on_fn; 212 uint32_t migrate_fn; 213 void *fdt = vbi->fdt; 214 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 215 216 qemu_fdt_add_subnode(fdt, "/psci"); 217 if (armcpu->psci_version == 2) { 218 const char comp[] = "arm,psci-0.2\0arm,psci"; 219 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 220 221 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 222 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 223 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 224 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 225 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 226 } else { 227 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 228 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 229 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 230 } 231 } else { 232 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 233 234 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 235 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 236 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 237 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 238 } 239 240 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 241 * to the instruction that should be used to invoke PSCI functions. 242 * However, the device tree binding uses 'method' instead, so that is 243 * what we should use here. 244 */ 245 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 246 247 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 248 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 249 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 250 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 251 } 252 253 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) 254 { 255 /* Note that on A15 h/w these interrupts are level-triggered, 256 * but for the GIC implementation provided by both QEMU and KVM 257 * they are edge-triggered. 258 */ 259 ARMCPU *armcpu; 260 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 261 262 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 263 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); 264 265 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 266 267 armcpu = ARM_CPU(qemu_get_cpu(0)); 268 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 269 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 270 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 271 compat, sizeof(compat)); 272 } else { 273 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 274 "arm,armv7-timer"); 275 } 276 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 277 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 278 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 279 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 280 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 281 } 282 283 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 284 { 285 int cpu; 286 287 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 288 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); 289 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 290 291 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 292 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 293 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 294 295 qemu_fdt_add_subnode(vbi->fdt, nodename); 296 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 297 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 298 armcpu->dtb_compatible); 299 300 if (vbi->smp_cpus > 1) { 301 qemu_fdt_setprop_string(vbi->fdt, nodename, 302 "enable-method", "psci"); 303 } 304 305 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", armcpu->mp_affinity); 306 g_free(nodename); 307 } 308 } 309 310 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 311 { 312 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 313 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 314 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 315 "arm,gic-v2m-frame"); 316 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 317 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 318 2, vbi->memmap[VIRT_GIC_V2M].base, 319 2, vbi->memmap[VIRT_GIC_V2M].size); 320 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 321 } 322 323 static void fdt_add_gic_node(VirtBoardInfo *vbi) 324 { 325 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 326 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 327 328 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 329 /* 'cortex-a15-gic' means 'GIC v2' */ 330 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 331 "arm,cortex-a15-gic"); 332 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 333 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 334 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 335 2, vbi->memmap[VIRT_GIC_DIST].base, 336 2, vbi->memmap[VIRT_GIC_DIST].size, 337 2, vbi->memmap[VIRT_GIC_CPU].base, 338 2, vbi->memmap[VIRT_GIC_CPU].size); 339 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 340 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 341 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 342 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 343 } 344 345 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 346 { 347 int i; 348 int irq = vbi->irqmap[VIRT_GIC_V2M]; 349 DeviceState *dev; 350 351 dev = qdev_create(NULL, "arm-gicv2m"); 352 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 353 qdev_prop_set_uint32(dev, "base-spi", irq); 354 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 355 qdev_init_nofail(dev); 356 357 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 358 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 359 } 360 361 fdt_add_v2m_gic_node(vbi); 362 } 363 364 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic) 365 { 366 /* We create a standalone GIC v2 */ 367 DeviceState *gicdev; 368 SysBusDevice *gicbusdev; 369 const char *gictype = "arm_gic"; 370 int i; 371 372 if (kvm_irqchip_in_kernel()) { 373 gictype = "kvm-arm-gic"; 374 } 375 376 gicdev = qdev_create(NULL, gictype); 377 qdev_prop_set_uint32(gicdev, "revision", 2); 378 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 379 /* Note that the num-irq property counts both internal and external 380 * interrupts; there are always 32 of the former (mandated by GIC spec). 381 */ 382 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 383 qdev_init_nofail(gicdev); 384 gicbusdev = SYS_BUS_DEVICE(gicdev); 385 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 386 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 387 388 /* Wire the outputs from each CPU's generic timer to the 389 * appropriate GIC PPI inputs, and the GIC's IRQ output to 390 * the CPU's IRQ input. 391 */ 392 for (i = 0; i < smp_cpus; i++) { 393 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 394 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 395 /* physical timer; we wire it up to the non-secure timer's ID, 396 * since a real A15 always has TrustZone but QEMU doesn't. 397 */ 398 qdev_connect_gpio_out(cpudev, 0, 399 qdev_get_gpio_in(gicdev, 400 ppibase + ARCH_TIMER_NS_EL1_IRQ)); 401 /* virtual timer */ 402 qdev_connect_gpio_out(cpudev, 1, 403 qdev_get_gpio_in(gicdev, 404 ppibase + ARCH_TIMER_VIRT_IRQ)); 405 /* Hypervisor timer. */ 406 qdev_connect_gpio_out(cpudev, 2, 407 qdev_get_gpio_in(gicdev, 408 ppibase + ARCH_TIMER_NS_EL2_IRQ)); 409 410 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 411 sysbus_connect_irq(gicbusdev, i + smp_cpus, 412 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 413 } 414 415 for (i = 0; i < NUM_IRQS; i++) { 416 pic[i] = qdev_get_gpio_in(gicdev, i); 417 } 418 419 fdt_add_gic_node(vbi); 420 421 create_v2m(vbi, pic); 422 } 423 424 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 425 { 426 char *nodename; 427 hwaddr base = vbi->memmap[VIRT_UART].base; 428 hwaddr size = vbi->memmap[VIRT_UART].size; 429 int irq = vbi->irqmap[VIRT_UART]; 430 const char compat[] = "arm,pl011\0arm,primecell"; 431 const char clocknames[] = "uartclk\0apb_pclk"; 432 433 sysbus_create_simple("pl011", base, pic[irq]); 434 435 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 436 qemu_fdt_add_subnode(vbi->fdt, nodename); 437 /* Note that we can't use setprop_string because of the embedded NUL */ 438 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 439 compat, sizeof(compat)); 440 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 441 2, base, 2, size); 442 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 443 GIC_FDT_IRQ_TYPE_SPI, irq, 444 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 445 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 446 vbi->clock_phandle, vbi->clock_phandle); 447 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 448 clocknames, sizeof(clocknames)); 449 450 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 451 g_free(nodename); 452 } 453 454 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 455 { 456 char *nodename; 457 hwaddr base = vbi->memmap[VIRT_RTC].base; 458 hwaddr size = vbi->memmap[VIRT_RTC].size; 459 int irq = vbi->irqmap[VIRT_RTC]; 460 const char compat[] = "arm,pl031\0arm,primecell"; 461 462 sysbus_create_simple("pl031", base, pic[irq]); 463 464 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 465 qemu_fdt_add_subnode(vbi->fdt, nodename); 466 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 467 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 468 2, base, 2, size); 469 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 470 GIC_FDT_IRQ_TYPE_SPI, irq, 471 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 472 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 473 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 474 g_free(nodename); 475 } 476 477 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 478 { 479 int i; 480 hwaddr size = vbi->memmap[VIRT_MMIO].size; 481 482 /* We create the transports in forwards order. Since qbus_realize() 483 * prepends (not appends) new child buses, the incrementing loop below will 484 * create a list of virtio-mmio buses with decreasing base addresses. 485 * 486 * When a -device option is processed from the command line, 487 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 488 * order. The upshot is that -device options in increasing command line 489 * order are mapped to virtio-mmio buses with decreasing base addresses. 490 * 491 * When this code was originally written, that arrangement ensured that the 492 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 493 * the first -device on the command line. (The end-to-end order is a 494 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 495 * guest kernel's name-to-address assignment strategy.) 496 * 497 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 498 * the message, if not necessarily the code, of commit 70161ff336. 499 * Therefore the loop now establishes the inverse of the original intent. 500 * 501 * Unfortunately, we can't counteract the kernel change by reversing the 502 * loop; it would break existing command lines. 503 * 504 * In any case, the kernel makes no guarantee about the stability of 505 * enumeration order of virtio devices (as demonstrated by it changing 506 * between kernel versions). For reliable and stable identification 507 * of disks users must use UUIDs or similar mechanisms. 508 */ 509 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 510 int irq = vbi->irqmap[VIRT_MMIO] + i; 511 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 512 513 sysbus_create_simple("virtio-mmio", base, pic[irq]); 514 } 515 516 /* We add dtb nodes in reverse order so that they appear in the finished 517 * device tree lowest address first. 518 * 519 * Note that this mapping is independent of the loop above. The previous 520 * loop influences virtio device to virtio transport assignment, whereas 521 * this loop controls how virtio transports are laid out in the dtb. 522 */ 523 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 524 char *nodename; 525 int irq = vbi->irqmap[VIRT_MMIO] + i; 526 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 527 528 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 529 qemu_fdt_add_subnode(vbi->fdt, nodename); 530 qemu_fdt_setprop_string(vbi->fdt, nodename, 531 "compatible", "virtio,mmio"); 532 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 533 2, base, 2, size); 534 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 535 GIC_FDT_IRQ_TYPE_SPI, irq, 536 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 537 g_free(nodename); 538 } 539 } 540 541 static void create_one_flash(const char *name, hwaddr flashbase, 542 hwaddr flashsize) 543 { 544 /* Create and map a single flash device. We use the same 545 * parameters as the flash devices on the Versatile Express board. 546 */ 547 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 548 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 549 const uint64_t sectorlength = 256 * 1024; 550 551 if (dinfo) { 552 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 553 &error_abort); 554 } 555 556 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 557 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 558 qdev_prop_set_uint8(dev, "width", 4); 559 qdev_prop_set_uint8(dev, "device-width", 2); 560 qdev_prop_set_bit(dev, "big-endian", false); 561 qdev_prop_set_uint16(dev, "id0", 0x89); 562 qdev_prop_set_uint16(dev, "id1", 0x18); 563 qdev_prop_set_uint16(dev, "id2", 0x00); 564 qdev_prop_set_uint16(dev, "id3", 0x00); 565 qdev_prop_set_string(dev, "name", name); 566 qdev_init_nofail(dev); 567 568 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 569 } 570 571 static void create_flash(const VirtBoardInfo *vbi) 572 { 573 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 574 * Any file passed via -bios goes in the first of these. 575 */ 576 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 577 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 578 char *nodename; 579 580 if (bios_name) { 581 char *fn; 582 int image_size; 583 584 if (drive_get(IF_PFLASH, 0, 0)) { 585 error_report("The contents of the first flash device may be " 586 "specified with -bios or with -drive if=pflash... " 587 "but you cannot use both options at once"); 588 exit(1); 589 } 590 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 591 if (!fn) { 592 error_report("Could not find ROM image '%s'", bios_name); 593 exit(1); 594 } 595 image_size = load_image_targphys(fn, flashbase, flashsize); 596 g_free(fn); 597 if (image_size < 0) { 598 error_report("Could not load ROM image '%s'", bios_name); 599 exit(1); 600 } 601 } 602 603 create_one_flash("virt.flash0", flashbase, flashsize); 604 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 605 606 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 607 qemu_fdt_add_subnode(vbi->fdt, nodename); 608 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 609 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 610 2, flashbase, 2, flashsize, 611 2, flashbase + flashsize, 2, flashsize); 612 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 613 g_free(nodename); 614 } 615 616 static void create_fw_cfg(const VirtBoardInfo *vbi) 617 { 618 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 619 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 620 char *nodename; 621 622 fw_cfg_init_mem_wide(base + 8, base, 8); 623 624 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 625 qemu_fdt_add_subnode(vbi->fdt, nodename); 626 qemu_fdt_setprop_string(vbi->fdt, nodename, 627 "compatible", "qemu,fw-cfg-mmio"); 628 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 629 2, base, 2, size); 630 g_free(nodename); 631 } 632 633 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 634 int first_irq, const char *nodename) 635 { 636 int devfn, pin; 637 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 638 uint32_t *irq_map = full_irq_map; 639 640 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 641 for (pin = 0; pin < 4; pin++) { 642 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 643 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 644 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 645 int i; 646 647 uint32_t map[] = { 648 devfn << 8, 0, 0, /* devfn */ 649 pin + 1, /* PCI pin */ 650 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 651 652 /* Convert map to big endian */ 653 for (i = 0; i < 10; i++) { 654 irq_map[i] = cpu_to_be32(map[i]); 655 } 656 irq_map += 10; 657 } 658 } 659 660 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 661 full_irq_map, sizeof(full_irq_map)); 662 663 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 664 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 665 0x7 /* PCI irq */); 666 } 667 668 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic) 669 { 670 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 671 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 672 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 673 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 674 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 675 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 676 hwaddr base = base_mmio; 677 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 678 int irq = vbi->irqmap[VIRT_PCIE]; 679 MemoryRegion *mmio_alias; 680 MemoryRegion *mmio_reg; 681 MemoryRegion *ecam_alias; 682 MemoryRegion *ecam_reg; 683 DeviceState *dev; 684 char *nodename; 685 int i; 686 687 dev = qdev_create(NULL, TYPE_GPEX_HOST); 688 qdev_init_nofail(dev); 689 690 /* Map only the first size_ecam bytes of ECAM space */ 691 ecam_alias = g_new0(MemoryRegion, 1); 692 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 693 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 694 ecam_reg, 0, size_ecam); 695 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 696 697 /* Map the MMIO window into system address space so as to expose 698 * the section of PCI MMIO space which starts at the same base address 699 * (ie 1:1 mapping for that part of PCI MMIO space visible through 700 * the window). 701 */ 702 mmio_alias = g_new0(MemoryRegion, 1); 703 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 704 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 705 mmio_reg, base_mmio, size_mmio); 706 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 707 708 /* Map IO port space */ 709 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 710 711 for (i = 0; i < GPEX_NUM_IRQS; i++) { 712 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 713 } 714 715 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 716 qemu_fdt_add_subnode(vbi->fdt, nodename); 717 qemu_fdt_setprop_string(vbi->fdt, nodename, 718 "compatible", "pci-host-ecam-generic"); 719 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 720 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 721 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 722 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 723 nr_pcie_buses - 1); 724 725 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle); 726 727 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 728 2, base_ecam, 2, size_ecam); 729 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 730 1, FDT_PCI_RANGE_IOPORT, 2, 0, 731 2, base_pio, 2, size_pio, 732 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 733 2, base_mmio, 2, size_mmio); 734 735 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 736 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 737 738 g_free(nodename); 739 } 740 741 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 742 { 743 DeviceState *dev; 744 SysBusDevice *s; 745 int i; 746 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 747 MemoryRegion *sysmem = get_system_memory(); 748 749 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 750 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 751 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 752 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 753 754 fdt_params->system_params = &platform_bus_params; 755 fdt_params->binfo = &vbi->bootinfo; 756 fdt_params->intc = "/intc"; 757 /* 758 * register a machine init done notifier that creates the device tree 759 * nodes of the platform bus and its children dynamic sysbus devices 760 */ 761 arm_register_platform_bus_fdt_creator(fdt_params); 762 763 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 764 dev->id = TYPE_PLATFORM_BUS_DEVICE; 765 qdev_prop_set_uint32(dev, "num_irqs", 766 platform_bus_params.platform_bus_num_irqs); 767 qdev_prop_set_uint32(dev, "mmio_size", 768 platform_bus_params.platform_bus_size); 769 qdev_init_nofail(dev); 770 s = SYS_BUS_DEVICE(dev); 771 772 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 773 int irqn = platform_bus_params.platform_bus_first_irq + i; 774 sysbus_connect_irq(s, i, pic[irqn]); 775 } 776 777 memory_region_add_subregion(sysmem, 778 platform_bus_params.platform_bus_base, 779 sysbus_mmio_get_region(s, 0)); 780 } 781 782 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 783 { 784 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 785 786 *fdt_size = board->fdt_size; 787 return board->fdt; 788 } 789 790 static 791 void virt_guest_info_machine_done(Notifier *notifier, void *data) 792 { 793 VirtGuestInfoState *guest_info_state = container_of(notifier, 794 VirtGuestInfoState, machine_done); 795 virt_acpi_setup(&guest_info_state->info); 796 } 797 798 static void machvirt_init(MachineState *machine) 799 { 800 VirtMachineState *vms = VIRT_MACHINE(machine); 801 qemu_irq pic[NUM_IRQS]; 802 MemoryRegion *sysmem = get_system_memory(); 803 int n; 804 MemoryRegion *ram = g_new(MemoryRegion, 1); 805 const char *cpu_model = machine->cpu_model; 806 VirtBoardInfo *vbi; 807 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 808 VirtGuestInfo *guest_info = &guest_info_state->info; 809 char **cpustr; 810 811 if (!cpu_model) { 812 cpu_model = "cortex-a15"; 813 } 814 815 /* Separate the actual CPU model name from any appended features */ 816 cpustr = g_strsplit(cpu_model, ",", 2); 817 818 vbi = find_machine_info(cpustr[0]); 819 820 if (!vbi) { 821 error_report("mach-virt: CPU %s not supported", cpustr[0]); 822 exit(1); 823 } 824 825 vbi->smp_cpus = smp_cpus; 826 827 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 828 error_report("mach-virt: cannot model more than 30GB RAM"); 829 exit(1); 830 } 831 832 create_fdt(vbi); 833 834 for (n = 0; n < smp_cpus; n++) { 835 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 836 CPUClass *cc = CPU_CLASS(oc); 837 Object *cpuobj; 838 Error *err = NULL; 839 char *cpuopts = g_strdup(cpustr[1]); 840 841 if (!oc) { 842 fprintf(stderr, "Unable to find CPU definition\n"); 843 exit(1); 844 } 845 cpuobj = object_new(object_class_get_name(oc)); 846 847 /* Handle any CPU options specified by the user */ 848 cc->parse_features(CPU(cpuobj), cpuopts, &err); 849 g_free(cpuopts); 850 if (err) { 851 error_report_err(err); 852 exit(1); 853 } 854 855 if (!vms->secure) { 856 object_property_set_bool(cpuobj, false, "has_el3", NULL); 857 } 858 859 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", 860 NULL); 861 862 /* Secondary CPUs start in PSCI powered-down state */ 863 if (n > 0) { 864 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 865 } 866 867 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 868 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 869 "reset-cbar", &error_abort); 870 } 871 872 object_property_set_bool(cpuobj, true, "realized", NULL); 873 } 874 g_strfreev(cpustr); 875 fdt_add_timer_nodes(vbi); 876 fdt_add_cpu_nodes(vbi); 877 fdt_add_psci_node(vbi); 878 879 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 880 machine->ram_size); 881 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 882 883 create_flash(vbi); 884 885 create_gic(vbi, pic); 886 887 create_uart(vbi, pic); 888 889 create_rtc(vbi, pic); 890 891 create_pcie(vbi, pic); 892 893 /* Create mmio transports, so the user can create virtio backends 894 * (which will be automatically plugged in to the transports). If 895 * no backend is created the transport will just sit harmlessly idle. 896 */ 897 create_virtio_devices(vbi, pic); 898 899 create_fw_cfg(vbi); 900 rom_set_fw(fw_cfg_find()); 901 902 guest_info->smp_cpus = smp_cpus; 903 guest_info->fw_cfg = fw_cfg_find(); 904 guest_info->memmap = vbi->memmap; 905 guest_info->irqmap = vbi->irqmap; 906 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 907 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 908 909 vbi->bootinfo.ram_size = machine->ram_size; 910 vbi->bootinfo.kernel_filename = machine->kernel_filename; 911 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 912 vbi->bootinfo.initrd_filename = machine->initrd_filename; 913 vbi->bootinfo.nb_cpus = smp_cpus; 914 vbi->bootinfo.board_id = -1; 915 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 916 vbi->bootinfo.get_dtb = machvirt_dtb; 917 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 918 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 919 920 /* 921 * arm_load_kernel machine init done notifier registration must 922 * happen before the platform_bus_create call. In this latter, 923 * another notifier is registered which adds platform bus nodes. 924 * Notifiers are executed in registration reverse order. 925 */ 926 create_platform_bus(vbi, pic); 927 } 928 929 static bool virt_get_secure(Object *obj, Error **errp) 930 { 931 VirtMachineState *vms = VIRT_MACHINE(obj); 932 933 return vms->secure; 934 } 935 936 static void virt_set_secure(Object *obj, bool value, Error **errp) 937 { 938 VirtMachineState *vms = VIRT_MACHINE(obj); 939 940 vms->secure = value; 941 } 942 943 static void virt_instance_init(Object *obj) 944 { 945 VirtMachineState *vms = VIRT_MACHINE(obj); 946 947 /* EL3 is enabled by default on virt */ 948 vms->secure = true; 949 object_property_add_bool(obj, "secure", virt_get_secure, 950 virt_set_secure, NULL); 951 object_property_set_description(obj, "secure", 952 "Set on/off to enable/disable the ARM " 953 "Security Extensions (TrustZone)", 954 NULL); 955 } 956 957 static void virt_class_init(ObjectClass *oc, void *data) 958 { 959 MachineClass *mc = MACHINE_CLASS(oc); 960 961 mc->name = TYPE_VIRT_MACHINE; 962 mc->desc = "ARM Virtual Machine", 963 mc->init = machvirt_init; 964 mc->max_cpus = 8; 965 mc->has_dynamic_sysbus = true; 966 mc->block_default_type = IF_VIRTIO; 967 mc->no_cdrom = 1; 968 } 969 970 static const TypeInfo machvirt_info = { 971 .name = TYPE_VIRT_MACHINE, 972 .parent = TYPE_MACHINE, 973 .instance_size = sizeof(VirtMachineState), 974 .instance_init = virt_instance_init, 975 .class_size = sizeof(VirtMachineClass), 976 .class_init = virt_class_init, 977 }; 978 979 static void machvirt_machine_init(void) 980 { 981 type_register_static(&machvirt_info); 982 } 983 984 machine_init(machvirt_machine_init); 985