xref: /openbmc/qemu/hw/arm/virt.c (revision f250c6a7510e0069fdc7fd1fb76700db4daa9ddd)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 #include "hw/arm/fdt.h"
51 #include "hw/intc/arm_gic_common.h"
52 
53 /* Number of external interrupt lines to configure the GIC with */
54 #define NUM_IRQS 256
55 
56 #define PLATFORM_BUS_NUM_IRQS 64
57 
58 static ARMPlatformBusSystemParams platform_bus_params;
59 
60 typedef struct VirtBoardInfo {
61     struct arm_boot_info bootinfo;
62     const char *cpu_model;
63     const MemMapEntry *memmap;
64     const int *irqmap;
65     int smp_cpus;
66     void *fdt;
67     int fdt_size;
68     uint32_t clock_phandle;
69     uint32_t gic_phandle;
70     uint32_t v2m_phandle;
71 } VirtBoardInfo;
72 
73 typedef struct {
74     MachineClass parent;
75     VirtBoardInfo *daughterboard;
76 } VirtMachineClass;
77 
78 typedef struct {
79     MachineState parent;
80     bool secure;
81 } VirtMachineState;
82 
83 #define TYPE_VIRT_MACHINE   "virt"
84 #define VIRT_MACHINE(obj) \
85     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
86 #define VIRT_MACHINE_GET_CLASS(obj) \
87     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
88 #define VIRT_MACHINE_CLASS(klass) \
89     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
90 
91 /* Addresses and sizes of our components.
92  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
93  * 128MB..256MB is used for miscellaneous device I/O.
94  * 256MB..1GB is reserved for possible future PCI support (ie where the
95  * PCI memory window will go if we add a PCI host controller).
96  * 1GB and up is RAM (which may happily spill over into the
97  * high memory region beyond 4GB).
98  * This represents a compromise between how much RAM can be given to
99  * a 32 bit VM and leaving space for expansion and in particular for PCI.
100  * Note that devices should generally be placed at multiples of 0x10000,
101  * to accommodate guests using 64K pages.
102  */
103 static const MemMapEntry a15memmap[] = {
104     /* Space up to 0x8000000 is reserved for a boot ROM */
105     [VIRT_FLASH] =              {          0, 0x08000000 },
106     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
107     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
108     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
109     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
110     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
111     [VIRT_UART] =               { 0x09000000, 0x00001000 },
112     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
113     [VIRT_FW_CFG] =             { 0x09020000, 0x0000000a },
114     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
115     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
116     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
117     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
118     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
119     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
120     [VIRT_MEM] =                { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
121 };
122 
123 static const int a15irqmap[] = {
124     [VIRT_UART] = 1,
125     [VIRT_RTC] = 2,
126     [VIRT_PCIE] = 3, /* ... to 6 */
127     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
128     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
129     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
130 };
131 
132 static VirtBoardInfo machines[] = {
133     {
134         .cpu_model = "cortex-a15",
135         .memmap = a15memmap,
136         .irqmap = a15irqmap,
137     },
138     {
139         .cpu_model = "cortex-a53",
140         .memmap = a15memmap,
141         .irqmap = a15irqmap,
142     },
143     {
144         .cpu_model = "cortex-a57",
145         .memmap = a15memmap,
146         .irqmap = a15irqmap,
147     },
148     {
149         .cpu_model = "host",
150         .memmap = a15memmap,
151         .irqmap = a15irqmap,
152     },
153 };
154 
155 static VirtBoardInfo *find_machine_info(const char *cpu)
156 {
157     int i;
158 
159     for (i = 0; i < ARRAY_SIZE(machines); i++) {
160         if (strcmp(cpu, machines[i].cpu_model) == 0) {
161             return &machines[i];
162         }
163     }
164     return NULL;
165 }
166 
167 static void create_fdt(VirtBoardInfo *vbi)
168 {
169     void *fdt = create_device_tree(&vbi->fdt_size);
170 
171     if (!fdt) {
172         error_report("create_device_tree() failed");
173         exit(1);
174     }
175 
176     vbi->fdt = fdt;
177 
178     /* Header */
179     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
180     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
181     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
182 
183     /*
184      * /chosen and /memory nodes must exist for load_dtb
185      * to fill in necessary properties later
186      */
187     qemu_fdt_add_subnode(fdt, "/chosen");
188     qemu_fdt_add_subnode(fdt, "/memory");
189     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
190 
191     /* Clock node, for the benefit of the UART. The kernel device tree
192      * binding documentation claims the PL011 node clock properties are
193      * optional but in practice if you omit them the kernel refuses to
194      * probe for the device.
195      */
196     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
197     qemu_fdt_add_subnode(fdt, "/apb-pclk");
198     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
199     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
200     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
201     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
202                                 "clk24mhz");
203     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
204 
205 }
206 
207 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
208 {
209     uint32_t cpu_suspend_fn;
210     uint32_t cpu_off_fn;
211     uint32_t cpu_on_fn;
212     uint32_t migrate_fn;
213     void *fdt = vbi->fdt;
214     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
215 
216     qemu_fdt_add_subnode(fdt, "/psci");
217     if (armcpu->psci_version == 2) {
218         const char comp[] = "arm,psci-0.2\0arm,psci";
219         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
220 
221         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
222         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
223             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
224             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
225             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
226         } else {
227             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
228             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
229             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
230         }
231     } else {
232         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
233 
234         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
235         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
236         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
237         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
238     }
239 
240     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
241      * to the instruction that should be used to invoke PSCI functions.
242      * However, the device tree binding uses 'method' instead, so that is
243      * what we should use here.
244      */
245     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
246 
247     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
248     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
249     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
250     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
251 }
252 
253 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
254 {
255     /* Note that on A15 h/w these interrupts are level-triggered,
256      * but for the GIC implementation provided by both QEMU and KVM
257      * they are edge-triggered.
258      */
259     ARMCPU *armcpu;
260     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
261 
262     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
263                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
264 
265     qemu_fdt_add_subnode(vbi->fdt, "/timer");
266 
267     armcpu = ARM_CPU(qemu_get_cpu(0));
268     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
269         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
270         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
271                          compat, sizeof(compat));
272     } else {
273         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
274                                 "arm,armv7-timer");
275     }
276     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
277                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
278                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
279                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
280                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
281 }
282 
283 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
284 {
285     int cpu;
286 
287     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
288     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
289     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
290 
291     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
292         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
293         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
294 
295         qemu_fdt_add_subnode(vbi->fdt, nodename);
296         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
297         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
298                                     armcpu->dtb_compatible);
299 
300         if (vbi->smp_cpus > 1) {
301             qemu_fdt_setprop_string(vbi->fdt, nodename,
302                                         "enable-method", "psci");
303         }
304 
305         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", armcpu->mp_affinity);
306         g_free(nodename);
307     }
308 }
309 
310 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
311 {
312     vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
313     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
314     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
315                             "arm,gic-v2m-frame");
316     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
317     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
318                                  2, vbi->memmap[VIRT_GIC_V2M].base,
319                                  2, vbi->memmap[VIRT_GIC_V2M].size);
320     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
321 }
322 
323 static void fdt_add_gic_node(VirtBoardInfo *vbi)
324 {
325     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
326     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
327 
328     qemu_fdt_add_subnode(vbi->fdt, "/intc");
329     /* 'cortex-a15-gic' means 'GIC v2' */
330     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
331                             "arm,cortex-a15-gic");
332     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
333     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
334     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
335                                      2, vbi->memmap[VIRT_GIC_DIST].base,
336                                      2, vbi->memmap[VIRT_GIC_DIST].size,
337                                      2, vbi->memmap[VIRT_GIC_CPU].base,
338                                      2, vbi->memmap[VIRT_GIC_CPU].size);
339     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
340     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
341     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
342     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
343 }
344 
345 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
346 {
347     int i;
348     int irq = vbi->irqmap[VIRT_GIC_V2M];
349     DeviceState *dev;
350 
351     dev = qdev_create(NULL, "arm-gicv2m");
352     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
353     qdev_prop_set_uint32(dev, "base-spi", irq);
354     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
355     qdev_init_nofail(dev);
356 
357     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
358         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
359     }
360 
361     fdt_add_v2m_gic_node(vbi);
362 }
363 
364 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic)
365 {
366     /* We create a standalone GIC v2 */
367     DeviceState *gicdev;
368     SysBusDevice *gicbusdev;
369     const char *gictype = "arm_gic";
370     int i;
371 
372     if (kvm_irqchip_in_kernel()) {
373         gictype = "kvm-arm-gic";
374     }
375 
376     gicdev = qdev_create(NULL, gictype);
377     qdev_prop_set_uint32(gicdev, "revision", 2);
378     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
379     /* Note that the num-irq property counts both internal and external
380      * interrupts; there are always 32 of the former (mandated by GIC spec).
381      */
382     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
383     qdev_init_nofail(gicdev);
384     gicbusdev = SYS_BUS_DEVICE(gicdev);
385     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
386     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
387 
388     /* Wire the outputs from each CPU's generic timer to the
389      * appropriate GIC PPI inputs, and the GIC's IRQ output to
390      * the CPU's IRQ input.
391      */
392     for (i = 0; i < smp_cpus; i++) {
393         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
394         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
395         /* physical timer; we wire it up to the non-secure timer's ID,
396          * since a real A15 always has TrustZone but QEMU doesn't.
397          */
398         qdev_connect_gpio_out(cpudev, 0,
399                               qdev_get_gpio_in(gicdev,
400                                              ppibase + ARCH_TIMER_NS_EL1_IRQ));
401         /* virtual timer */
402         qdev_connect_gpio_out(cpudev, 1,
403                               qdev_get_gpio_in(gicdev,
404                                                ppibase + ARCH_TIMER_VIRT_IRQ));
405         /* Hypervisor timer.  */
406         qdev_connect_gpio_out(cpudev, 2,
407                               qdev_get_gpio_in(gicdev,
408                                              ppibase + ARCH_TIMER_NS_EL2_IRQ));
409 
410         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
411         sysbus_connect_irq(gicbusdev, i + smp_cpus,
412                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
413     }
414 
415     for (i = 0; i < NUM_IRQS; i++) {
416         pic[i] = qdev_get_gpio_in(gicdev, i);
417     }
418 
419     fdt_add_gic_node(vbi);
420 
421     create_v2m(vbi, pic);
422 }
423 
424 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
425 {
426     char *nodename;
427     hwaddr base = vbi->memmap[VIRT_UART].base;
428     hwaddr size = vbi->memmap[VIRT_UART].size;
429     int irq = vbi->irqmap[VIRT_UART];
430     const char compat[] = "arm,pl011\0arm,primecell";
431     const char clocknames[] = "uartclk\0apb_pclk";
432 
433     sysbus_create_simple("pl011", base, pic[irq]);
434 
435     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
436     qemu_fdt_add_subnode(vbi->fdt, nodename);
437     /* Note that we can't use setprop_string because of the embedded NUL */
438     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
439                          compat, sizeof(compat));
440     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
441                                      2, base, 2, size);
442     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
443                                GIC_FDT_IRQ_TYPE_SPI, irq,
444                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
445     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
446                                vbi->clock_phandle, vbi->clock_phandle);
447     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
448                          clocknames, sizeof(clocknames));
449 
450     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
451     g_free(nodename);
452 }
453 
454 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
455 {
456     char *nodename;
457     hwaddr base = vbi->memmap[VIRT_RTC].base;
458     hwaddr size = vbi->memmap[VIRT_RTC].size;
459     int irq = vbi->irqmap[VIRT_RTC];
460     const char compat[] = "arm,pl031\0arm,primecell";
461 
462     sysbus_create_simple("pl031", base, pic[irq]);
463 
464     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
465     qemu_fdt_add_subnode(vbi->fdt, nodename);
466     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
467     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
468                                  2, base, 2, size);
469     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
470                            GIC_FDT_IRQ_TYPE_SPI, irq,
471                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
472     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
473     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
474     g_free(nodename);
475 }
476 
477 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
478 {
479     int i;
480     hwaddr size = vbi->memmap[VIRT_MMIO].size;
481 
482     /* We create the transports in forwards order. Since qbus_realize()
483      * prepends (not appends) new child buses, the incrementing loop below will
484      * create a list of virtio-mmio buses with decreasing base addresses.
485      *
486      * When a -device option is processed from the command line,
487      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
488      * order. The upshot is that -device options in increasing command line
489      * order are mapped to virtio-mmio buses with decreasing base addresses.
490      *
491      * When this code was originally written, that arrangement ensured that the
492      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
493      * the first -device on the command line. (The end-to-end order is a
494      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
495      * guest kernel's name-to-address assignment strategy.)
496      *
497      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
498      * the message, if not necessarily the code, of commit 70161ff336.
499      * Therefore the loop now establishes the inverse of the original intent.
500      *
501      * Unfortunately, we can't counteract the kernel change by reversing the
502      * loop; it would break existing command lines.
503      *
504      * In any case, the kernel makes no guarantee about the stability of
505      * enumeration order of virtio devices (as demonstrated by it changing
506      * between kernel versions). For reliable and stable identification
507      * of disks users must use UUIDs or similar mechanisms.
508      */
509     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
510         int irq = vbi->irqmap[VIRT_MMIO] + i;
511         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
512 
513         sysbus_create_simple("virtio-mmio", base, pic[irq]);
514     }
515 
516     /* We add dtb nodes in reverse order so that they appear in the finished
517      * device tree lowest address first.
518      *
519      * Note that this mapping is independent of the loop above. The previous
520      * loop influences virtio device to virtio transport assignment, whereas
521      * this loop controls how virtio transports are laid out in the dtb.
522      */
523     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
524         char *nodename;
525         int irq = vbi->irqmap[VIRT_MMIO] + i;
526         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
527 
528         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
529         qemu_fdt_add_subnode(vbi->fdt, nodename);
530         qemu_fdt_setprop_string(vbi->fdt, nodename,
531                                 "compatible", "virtio,mmio");
532         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
533                                      2, base, 2, size);
534         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
535                                GIC_FDT_IRQ_TYPE_SPI, irq,
536                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
537         g_free(nodename);
538     }
539 }
540 
541 static void create_one_flash(const char *name, hwaddr flashbase,
542                              hwaddr flashsize)
543 {
544     /* Create and map a single flash device. We use the same
545      * parameters as the flash devices on the Versatile Express board.
546      */
547     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
548     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
549     const uint64_t sectorlength = 256 * 1024;
550 
551     if (dinfo) {
552         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
553                             &error_abort);
554     }
555 
556     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
557     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
558     qdev_prop_set_uint8(dev, "width", 4);
559     qdev_prop_set_uint8(dev, "device-width", 2);
560     qdev_prop_set_bit(dev, "big-endian", false);
561     qdev_prop_set_uint16(dev, "id0", 0x89);
562     qdev_prop_set_uint16(dev, "id1", 0x18);
563     qdev_prop_set_uint16(dev, "id2", 0x00);
564     qdev_prop_set_uint16(dev, "id3", 0x00);
565     qdev_prop_set_string(dev, "name", name);
566     qdev_init_nofail(dev);
567 
568     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
569 }
570 
571 static void create_flash(const VirtBoardInfo *vbi)
572 {
573     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
574      * Any file passed via -bios goes in the first of these.
575      */
576     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
577     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
578     char *nodename;
579 
580     if (bios_name) {
581         char *fn;
582         int image_size;
583 
584         if (drive_get(IF_PFLASH, 0, 0)) {
585             error_report("The contents of the first flash device may be "
586                          "specified with -bios or with -drive if=pflash... "
587                          "but you cannot use both options at once");
588             exit(1);
589         }
590         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
591         if (!fn) {
592             error_report("Could not find ROM image '%s'", bios_name);
593             exit(1);
594         }
595         image_size = load_image_targphys(fn, flashbase, flashsize);
596         g_free(fn);
597         if (image_size < 0) {
598             error_report("Could not load ROM image '%s'", bios_name);
599             exit(1);
600         }
601     }
602 
603     create_one_flash("virt.flash0", flashbase, flashsize);
604     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
605 
606     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
607     qemu_fdt_add_subnode(vbi->fdt, nodename);
608     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
609     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
610                                  2, flashbase, 2, flashsize,
611                                  2, flashbase + flashsize, 2, flashsize);
612     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
613     g_free(nodename);
614 }
615 
616 static void create_fw_cfg(const VirtBoardInfo *vbi)
617 {
618     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
619     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
620     char *nodename;
621 
622     fw_cfg_init_mem_wide(base + 8, base, 8);
623 
624     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
625     qemu_fdt_add_subnode(vbi->fdt, nodename);
626     qemu_fdt_setprop_string(vbi->fdt, nodename,
627                             "compatible", "qemu,fw-cfg-mmio");
628     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
629                                  2, base, 2, size);
630     g_free(nodename);
631 }
632 
633 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
634                                 int first_irq, const char *nodename)
635 {
636     int devfn, pin;
637     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
638     uint32_t *irq_map = full_irq_map;
639 
640     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
641         for (pin = 0; pin < 4; pin++) {
642             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
643             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
644             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
645             int i;
646 
647             uint32_t map[] = {
648                 devfn << 8, 0, 0,                           /* devfn */
649                 pin + 1,                                    /* PCI pin */
650                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
651 
652             /* Convert map to big endian */
653             for (i = 0; i < 10; i++) {
654                 irq_map[i] = cpu_to_be32(map[i]);
655             }
656             irq_map += 10;
657         }
658     }
659 
660     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
661                      full_irq_map, sizeof(full_irq_map));
662 
663     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
664                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
665                            0x7           /* PCI irq */);
666 }
667 
668 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic)
669 {
670     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
671     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
672     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
673     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
674     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
675     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
676     hwaddr base = base_mmio;
677     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
678     int irq = vbi->irqmap[VIRT_PCIE];
679     MemoryRegion *mmio_alias;
680     MemoryRegion *mmio_reg;
681     MemoryRegion *ecam_alias;
682     MemoryRegion *ecam_reg;
683     DeviceState *dev;
684     char *nodename;
685     int i;
686 
687     dev = qdev_create(NULL, TYPE_GPEX_HOST);
688     qdev_init_nofail(dev);
689 
690     /* Map only the first size_ecam bytes of ECAM space */
691     ecam_alias = g_new0(MemoryRegion, 1);
692     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
693     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
694                              ecam_reg, 0, size_ecam);
695     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
696 
697     /* Map the MMIO window into system address space so as to expose
698      * the section of PCI MMIO space which starts at the same base address
699      * (ie 1:1 mapping for that part of PCI MMIO space visible through
700      * the window).
701      */
702     mmio_alias = g_new0(MemoryRegion, 1);
703     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
704     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
705                              mmio_reg, base_mmio, size_mmio);
706     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
707 
708     /* Map IO port space */
709     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
710 
711     for (i = 0; i < GPEX_NUM_IRQS; i++) {
712         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
713     }
714 
715     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
716     qemu_fdt_add_subnode(vbi->fdt, nodename);
717     qemu_fdt_setprop_string(vbi->fdt, nodename,
718                             "compatible", "pci-host-ecam-generic");
719     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
720     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
721     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
722     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
723                            nr_pcie_buses - 1);
724 
725     qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle);
726 
727     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
728                                  2, base_ecam, 2, size_ecam);
729     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
730                                  1, FDT_PCI_RANGE_IOPORT, 2, 0,
731                                  2, base_pio, 2, size_pio,
732                                  1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
733                                  2, base_mmio, 2, size_mmio);
734 
735     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
736     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
737 
738     g_free(nodename);
739 }
740 
741 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
742 {
743     DeviceState *dev;
744     SysBusDevice *s;
745     int i;
746     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
747     MemoryRegion *sysmem = get_system_memory();
748 
749     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
750     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
751     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
752     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
753 
754     fdt_params->system_params = &platform_bus_params;
755     fdt_params->binfo = &vbi->bootinfo;
756     fdt_params->intc = "/intc";
757     /*
758      * register a machine init done notifier that creates the device tree
759      * nodes of the platform bus and its children dynamic sysbus devices
760      */
761     arm_register_platform_bus_fdt_creator(fdt_params);
762 
763     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
764     dev->id = TYPE_PLATFORM_BUS_DEVICE;
765     qdev_prop_set_uint32(dev, "num_irqs",
766         platform_bus_params.platform_bus_num_irqs);
767     qdev_prop_set_uint32(dev, "mmio_size",
768         platform_bus_params.platform_bus_size);
769     qdev_init_nofail(dev);
770     s = SYS_BUS_DEVICE(dev);
771 
772     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
773         int irqn = platform_bus_params.platform_bus_first_irq + i;
774         sysbus_connect_irq(s, i, pic[irqn]);
775     }
776 
777     memory_region_add_subregion(sysmem,
778                                 platform_bus_params.platform_bus_base,
779                                 sysbus_mmio_get_region(s, 0));
780 }
781 
782 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
783 {
784     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
785 
786     *fdt_size = board->fdt_size;
787     return board->fdt;
788 }
789 
790 static
791 void virt_guest_info_machine_done(Notifier *notifier, void *data)
792 {
793     VirtGuestInfoState *guest_info_state = container_of(notifier,
794                                               VirtGuestInfoState, machine_done);
795     virt_acpi_setup(&guest_info_state->info);
796 }
797 
798 static void machvirt_init(MachineState *machine)
799 {
800     VirtMachineState *vms = VIRT_MACHINE(machine);
801     qemu_irq pic[NUM_IRQS];
802     MemoryRegion *sysmem = get_system_memory();
803     int n;
804     MemoryRegion *ram = g_new(MemoryRegion, 1);
805     const char *cpu_model = machine->cpu_model;
806     VirtBoardInfo *vbi;
807     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
808     VirtGuestInfo *guest_info = &guest_info_state->info;
809     char **cpustr;
810 
811     if (!cpu_model) {
812         cpu_model = "cortex-a15";
813     }
814 
815     /* Separate the actual CPU model name from any appended features */
816     cpustr = g_strsplit(cpu_model, ",", 2);
817 
818     vbi = find_machine_info(cpustr[0]);
819 
820     if (!vbi) {
821         error_report("mach-virt: CPU %s not supported", cpustr[0]);
822         exit(1);
823     }
824 
825     vbi->smp_cpus = smp_cpus;
826 
827     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
828         error_report("mach-virt: cannot model more than 30GB RAM");
829         exit(1);
830     }
831 
832     create_fdt(vbi);
833 
834     for (n = 0; n < smp_cpus; n++) {
835         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
836         CPUClass *cc = CPU_CLASS(oc);
837         Object *cpuobj;
838         Error *err = NULL;
839         char *cpuopts = g_strdup(cpustr[1]);
840 
841         if (!oc) {
842             fprintf(stderr, "Unable to find CPU definition\n");
843             exit(1);
844         }
845         cpuobj = object_new(object_class_get_name(oc));
846 
847         /* Handle any CPU options specified by the user */
848         cc->parse_features(CPU(cpuobj), cpuopts, &err);
849         g_free(cpuopts);
850         if (err) {
851             error_report_err(err);
852             exit(1);
853         }
854 
855         if (!vms->secure) {
856             object_property_set_bool(cpuobj, false, "has_el3", NULL);
857         }
858 
859         object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
860                                 NULL);
861 
862         /* Secondary CPUs start in PSCI powered-down state */
863         if (n > 0) {
864             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
865         }
866 
867         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
868             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
869                                     "reset-cbar", &error_abort);
870         }
871 
872         object_property_set_bool(cpuobj, true, "realized", NULL);
873     }
874     g_strfreev(cpustr);
875     fdt_add_timer_nodes(vbi);
876     fdt_add_cpu_nodes(vbi);
877     fdt_add_psci_node(vbi);
878 
879     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
880                                          machine->ram_size);
881     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
882 
883     create_flash(vbi);
884 
885     create_gic(vbi, pic);
886 
887     create_uart(vbi, pic);
888 
889     create_rtc(vbi, pic);
890 
891     create_pcie(vbi, pic);
892 
893     /* Create mmio transports, so the user can create virtio backends
894      * (which will be automatically plugged in to the transports). If
895      * no backend is created the transport will just sit harmlessly idle.
896      */
897     create_virtio_devices(vbi, pic);
898 
899     create_fw_cfg(vbi);
900     rom_set_fw(fw_cfg_find());
901 
902     guest_info->smp_cpus = smp_cpus;
903     guest_info->fw_cfg = fw_cfg_find();
904     guest_info->memmap = vbi->memmap;
905     guest_info->irqmap = vbi->irqmap;
906     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
907     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
908 
909     vbi->bootinfo.ram_size = machine->ram_size;
910     vbi->bootinfo.kernel_filename = machine->kernel_filename;
911     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
912     vbi->bootinfo.initrd_filename = machine->initrd_filename;
913     vbi->bootinfo.nb_cpus = smp_cpus;
914     vbi->bootinfo.board_id = -1;
915     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
916     vbi->bootinfo.get_dtb = machvirt_dtb;
917     vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
918     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
919 
920     /*
921      * arm_load_kernel machine init done notifier registration must
922      * happen before the platform_bus_create call. In this latter,
923      * another notifier is registered which adds platform bus nodes.
924      * Notifiers are executed in registration reverse order.
925      */
926     create_platform_bus(vbi, pic);
927 }
928 
929 static bool virt_get_secure(Object *obj, Error **errp)
930 {
931     VirtMachineState *vms = VIRT_MACHINE(obj);
932 
933     return vms->secure;
934 }
935 
936 static void virt_set_secure(Object *obj, bool value, Error **errp)
937 {
938     VirtMachineState *vms = VIRT_MACHINE(obj);
939 
940     vms->secure = value;
941 }
942 
943 static void virt_instance_init(Object *obj)
944 {
945     VirtMachineState *vms = VIRT_MACHINE(obj);
946 
947     /* EL3 is enabled by default on virt */
948     vms->secure = true;
949     object_property_add_bool(obj, "secure", virt_get_secure,
950                              virt_set_secure, NULL);
951     object_property_set_description(obj, "secure",
952                                     "Set on/off to enable/disable the ARM "
953                                     "Security Extensions (TrustZone)",
954                                     NULL);
955 }
956 
957 static void virt_class_init(ObjectClass *oc, void *data)
958 {
959     MachineClass *mc = MACHINE_CLASS(oc);
960 
961     mc->name = TYPE_VIRT_MACHINE;
962     mc->desc = "ARM Virtual Machine",
963     mc->init = machvirt_init;
964     mc->max_cpus = 8;
965     mc->has_dynamic_sysbus = true;
966     mc->block_default_type = IF_VIRTIO;
967     mc->no_cdrom = 1;
968 }
969 
970 static const TypeInfo machvirt_info = {
971     .name = TYPE_VIRT_MACHINE,
972     .parent = TYPE_MACHINE,
973     .instance_size = sizeof(VirtMachineState),
974     .instance_init = virt_instance_init,
975     .class_size = sizeof(VirtMachineClass),
976     .class_init = virt_class_init,
977 };
978 
979 static void machvirt_machine_init(void)
980 {
981     type_register_static(&machvirt_info);
982 }
983 
984 machine_init(machvirt_machine_init);
985