1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/datadir.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/runstate.h" 48 #include "sysemu/tpm.h" 49 #include "sysemu/tcg.h" 50 #include "sysemu/kvm.h" 51 #include "sysemu/hvf.h" 52 #include "sysemu/qtest.h" 53 #include "hw/loader.h" 54 #include "qapi/error.h" 55 #include "qemu/bitops.h" 56 #include "qemu/error-report.h" 57 #include "qemu/module.h" 58 #include "hw/pci-host/gpex.h" 59 #include "hw/virtio/virtio-pci.h" 60 #include "hw/core/sysbus-fdt.h" 61 #include "hw/platform-bus.h" 62 #include "hw/qdev-properties.h" 63 #include "hw/arm/fdt.h" 64 #include "hw/intc/arm_gic.h" 65 #include "hw/intc/arm_gicv3_common.h" 66 #include "hw/intc/arm_gicv3_its_common.h" 67 #include "hw/irq.h" 68 #include "kvm_arm.h" 69 #include "hw/firmware/smbios.h" 70 #include "qapi/visitor.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/qmp/qlist.h" 73 #include "standard-headers/linux/input.h" 74 #include "hw/arm/smmuv3.h" 75 #include "hw/acpi/acpi.h" 76 #include "target/arm/internals.h" 77 #include "hw/mem/pc-dimm.h" 78 #include "hw/mem/nvdimm.h" 79 #include "hw/acpi/generic_event_device.h" 80 #include "hw/virtio/virtio-md-pci.h" 81 #include "hw/virtio/virtio-iommu.h" 82 #include "hw/char/pl011.h" 83 #include "qemu/guest-random.h" 84 85 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 86 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 87 void *data) \ 88 { \ 89 MachineClass *mc = MACHINE_CLASS(oc); \ 90 virt_machine_##major##_##minor##_options(mc); \ 91 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 92 if (latest) { \ 93 mc->alias = "virt"; \ 94 } \ 95 } \ 96 static const TypeInfo machvirt_##major##_##minor##_info = { \ 97 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 98 .parent = TYPE_VIRT_MACHINE, \ 99 .class_init = virt_##major##_##minor##_class_init, \ 100 }; \ 101 static void machvirt_machine_##major##_##minor##_init(void) \ 102 { \ 103 type_register_static(&machvirt_##major##_##minor##_info); \ 104 } \ 105 type_init(machvirt_machine_##major##_##minor##_init); 106 107 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 108 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 109 #define DEFINE_VIRT_MACHINE(major, minor) \ 110 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 111 112 113 /* Number of external interrupt lines to configure the GIC with */ 114 #define NUM_IRQS 256 115 116 #define PLATFORM_BUS_NUM_IRQS 64 117 118 /* Legacy RAM limit in GB (< version 4.0) */ 119 #define LEGACY_RAMLIMIT_GB 255 120 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 121 122 /* Addresses and sizes of our components. 123 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 124 * 128MB..256MB is used for miscellaneous device I/O. 125 * 256MB..1GB is reserved for possible future PCI support (ie where the 126 * PCI memory window will go if we add a PCI host controller). 127 * 1GB and up is RAM (which may happily spill over into the 128 * high memory region beyond 4GB). 129 * This represents a compromise between how much RAM can be given to 130 * a 32 bit VM and leaving space for expansion and in particular for PCI. 131 * Note that devices should generally be placed at multiples of 0x10000, 132 * to accommodate guests using 64K pages. 133 */ 134 static const MemMapEntry base_memmap[] = { 135 /* Space up to 0x8000000 is reserved for a boot ROM */ 136 [VIRT_FLASH] = { 0, 0x08000000 }, 137 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 138 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 139 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 140 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 141 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 142 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 143 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 144 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 145 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 146 /* This redistributor space allows up to 2*64kB*123 CPUs */ 147 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 148 [VIRT_UART] = { 0x09000000, 0x00001000 }, 149 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 150 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 151 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 152 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 153 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 154 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 155 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 156 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 157 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 158 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 159 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 160 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 161 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 162 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 163 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 164 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 165 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 166 /* Actual RAM size depends on initial RAM and device memory settings */ 167 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 168 }; 169 170 /* 171 * Highmem IO Regions: This memory map is floating, located after the RAM. 172 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 173 * top of the RAM, so that its base get the same alignment as the size, 174 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 175 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 176 * Note the extended_memmap is sized so that it eventually also includes the 177 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 178 * index of base_memmap). 179 * 180 * The memory map for these Highmem IO Regions can be in legacy or compact 181 * layout, depending on 'compact-highmem' property. With legacy layout, the 182 * PA space for one specific region is always reserved, even if the region 183 * has been disabled or doesn't fit into the PA space. However, the PA space 184 * for the region won't be reserved in these circumstances with compact layout. 185 */ 186 static MemMapEntry extended_memmap[] = { 187 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 188 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 189 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 190 /* Second PCIe window */ 191 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 192 }; 193 194 static const int a15irqmap[] = { 195 [VIRT_UART] = 1, 196 [VIRT_RTC] = 2, 197 [VIRT_PCIE] = 3, /* ... to 6 */ 198 [VIRT_GPIO] = 7, 199 [VIRT_SECURE_UART] = 8, 200 [VIRT_ACPI_GED] = 9, 201 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 202 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 203 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 204 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 205 }; 206 207 static void create_randomness(MachineState *ms, const char *node) 208 { 209 struct { 210 uint64_t kaslr; 211 uint8_t rng[32]; 212 } seed; 213 214 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 215 return; 216 } 217 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); 218 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); 219 } 220 221 static void create_fdt(VirtMachineState *vms) 222 { 223 MachineState *ms = MACHINE(vms); 224 int nb_numa_nodes = ms->numa_state->num_nodes; 225 void *fdt = create_device_tree(&vms->fdt_size); 226 227 if (!fdt) { 228 error_report("create_device_tree() failed"); 229 exit(1); 230 } 231 232 ms->fdt = fdt; 233 234 /* Header */ 235 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 236 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 237 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 238 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); 239 240 /* /chosen must exist for load_dtb to fill in necessary properties later */ 241 qemu_fdt_add_subnode(fdt, "/chosen"); 242 if (vms->dtb_randomness) { 243 create_randomness(ms, "/chosen"); 244 } 245 246 if (vms->secure) { 247 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 248 if (vms->dtb_randomness) { 249 create_randomness(ms, "/secure-chosen"); 250 } 251 } 252 253 /* Clock node, for the benefit of the UART. The kernel device tree 254 * binding documentation claims the PL011 node clock properties are 255 * optional but in practice if you omit them the kernel refuses to 256 * probe for the device. 257 */ 258 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 259 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 260 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 261 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 262 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 263 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 264 "clk24mhz"); 265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 266 267 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 268 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 269 uint32_t *matrix = g_malloc0(size); 270 int idx, i, j; 271 272 for (i = 0; i < nb_numa_nodes; i++) { 273 for (j = 0; j < nb_numa_nodes; j++) { 274 idx = (i * nb_numa_nodes + j) * 3; 275 matrix[idx + 0] = cpu_to_be32(i); 276 matrix[idx + 1] = cpu_to_be32(j); 277 matrix[idx + 2] = 278 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 279 } 280 } 281 282 qemu_fdt_add_subnode(fdt, "/distance-map"); 283 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 284 "numa-distance-map-v1"); 285 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 286 matrix, size); 287 g_free(matrix); 288 } 289 } 290 291 static void fdt_add_timer_nodes(const VirtMachineState *vms) 292 { 293 /* On real hardware these interrupts are level-triggered. 294 * On KVM they were edge-triggered before host kernel version 4.4, 295 * and level-triggered afterwards. 296 * On emulated QEMU they are level-triggered. 297 * 298 * Getting the DTB info about them wrong is awkward for some 299 * guest kernels: 300 * pre-4.8 ignore the DT and leave the interrupt configured 301 * with whatever the GIC reset value (or the bootloader) left it at 302 * 4.8 before rc6 honour the incorrect data by programming it back 303 * into the GIC, causing problems 304 * 4.8rc6 and later ignore the DT and always write "level triggered" 305 * into the GIC 306 * 307 * For backwards-compatibility, virt-2.8 and earlier will continue 308 * to say these are edge-triggered, but later machines will report 309 * the correct information. 310 */ 311 ARMCPU *armcpu; 312 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 313 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 314 MachineState *ms = MACHINE(vms); 315 316 if (vmc->claim_edge_triggered_timers) { 317 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 318 } 319 320 if (vms->gic_version == VIRT_GIC_VERSION_2) { 321 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 322 GIC_FDT_IRQ_PPI_CPU_WIDTH, 323 (1 << MACHINE(vms)->smp.cpus) - 1); 324 } 325 326 qemu_fdt_add_subnode(ms->fdt, "/timer"); 327 328 armcpu = ARM_CPU(qemu_get_cpu(0)); 329 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 330 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 331 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 332 compat, sizeof(compat)); 333 } else { 334 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 335 "arm,armv7-timer"); 336 } 337 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 338 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 339 GIC_FDT_IRQ_TYPE_PPI, 340 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 341 GIC_FDT_IRQ_TYPE_PPI, 342 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 343 GIC_FDT_IRQ_TYPE_PPI, 344 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 345 GIC_FDT_IRQ_TYPE_PPI, 346 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); 347 } 348 349 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 350 { 351 int cpu; 352 int addr_cells = 1; 353 const MachineState *ms = MACHINE(vms); 354 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 355 int smp_cpus = ms->smp.cpus; 356 357 /* 358 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 359 * On ARM v8 64-bit systems value should be set to 2, 360 * that corresponds to the MPIDR_EL1 register size. 361 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 362 * in the system, #address-cells can be set to 1, since 363 * MPIDR_EL1[63:32] bits are not used for CPUs 364 * identification. 365 * 366 * Here we actually don't know whether our system is 32- or 64-bit one. 367 * The simplest way to go is to examine affinity IDs of all our CPUs. If 368 * at least one of them has Aff3 populated, we set #address-cells to 2. 369 */ 370 for (cpu = 0; cpu < smp_cpus; cpu++) { 371 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 372 373 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 374 addr_cells = 2; 375 break; 376 } 377 } 378 379 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 380 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 381 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 382 383 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 384 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 385 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 386 CPUState *cs = CPU(armcpu); 387 388 qemu_fdt_add_subnode(ms->fdt, nodename); 389 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 390 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 391 armcpu->dtb_compatible); 392 393 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 394 qemu_fdt_setprop_string(ms->fdt, nodename, 395 "enable-method", "psci"); 396 } 397 398 if (addr_cells == 2) { 399 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 400 armcpu->mp_affinity); 401 } else { 402 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 403 armcpu->mp_affinity); 404 } 405 406 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 407 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 408 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 409 } 410 411 if (!vmc->no_cpu_topology) { 412 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 413 qemu_fdt_alloc_phandle(ms->fdt)); 414 } 415 416 g_free(nodename); 417 } 418 419 if (!vmc->no_cpu_topology) { 420 /* 421 * Add vCPU topology description through fdt node cpu-map. 422 * 423 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 424 * In a SMP system, the hierarchy of CPUs can be defined through 425 * four entities that are used to describe the layout of CPUs in 426 * the system: socket/cluster/core/thread. 427 * 428 * A socket node represents the boundary of system physical package 429 * and its child nodes must be one or more cluster nodes. A system 430 * can contain several layers of clustering within a single physical 431 * package and cluster nodes can be contained in parent cluster nodes. 432 * 433 * Note: currently we only support one layer of clustering within 434 * each physical package. 435 */ 436 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 437 438 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 439 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 440 char *map_path; 441 442 if (ms->smp.threads > 1) { 443 map_path = g_strdup_printf( 444 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", 445 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), 446 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, 447 (cpu / ms->smp.threads) % ms->smp.cores, 448 cpu % ms->smp.threads); 449 } else { 450 map_path = g_strdup_printf( 451 "/cpus/cpu-map/socket%d/cluster%d/core%d", 452 cpu / (ms->smp.clusters * ms->smp.cores), 453 (cpu / ms->smp.cores) % ms->smp.clusters, 454 cpu % ms->smp.cores); 455 } 456 qemu_fdt_add_path(ms->fdt, map_path); 457 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 458 459 g_free(map_path); 460 g_free(cpu_path); 461 } 462 } 463 } 464 465 static void fdt_add_its_gic_node(VirtMachineState *vms) 466 { 467 char *nodename; 468 MachineState *ms = MACHINE(vms); 469 470 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 471 nodename = g_strdup_printf("/intc/its@%" PRIx64, 472 vms->memmap[VIRT_GIC_ITS].base); 473 qemu_fdt_add_subnode(ms->fdt, nodename); 474 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 475 "arm,gic-v3-its"); 476 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 477 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); 478 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 479 2, vms->memmap[VIRT_GIC_ITS].base, 480 2, vms->memmap[VIRT_GIC_ITS].size); 481 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 482 g_free(nodename); 483 } 484 485 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 486 { 487 MachineState *ms = MACHINE(vms); 488 char *nodename; 489 490 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 491 vms->memmap[VIRT_GIC_V2M].base); 492 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 493 qemu_fdt_add_subnode(ms->fdt, nodename); 494 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 495 "arm,gic-v2m-frame"); 496 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 497 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 498 2, vms->memmap[VIRT_GIC_V2M].base, 499 2, vms->memmap[VIRT_GIC_V2M].size); 500 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 501 g_free(nodename); 502 } 503 504 static void fdt_add_gic_node(VirtMachineState *vms) 505 { 506 MachineState *ms = MACHINE(vms); 507 char *nodename; 508 509 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 510 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 511 512 nodename = g_strdup_printf("/intc@%" PRIx64, 513 vms->memmap[VIRT_GIC_DIST].base); 514 qemu_fdt_add_subnode(ms->fdt, nodename); 515 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 516 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 517 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 518 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 519 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 520 if (vms->gic_version != VIRT_GIC_VERSION_2) { 521 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 522 523 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 524 "arm,gic-v3"); 525 526 qemu_fdt_setprop_cell(ms->fdt, nodename, 527 "#redistributor-regions", nb_redist_regions); 528 529 if (nb_redist_regions == 1) { 530 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 531 2, vms->memmap[VIRT_GIC_DIST].base, 532 2, vms->memmap[VIRT_GIC_DIST].size, 533 2, vms->memmap[VIRT_GIC_REDIST].base, 534 2, vms->memmap[VIRT_GIC_REDIST].size); 535 } else { 536 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 537 2, vms->memmap[VIRT_GIC_DIST].base, 538 2, vms->memmap[VIRT_GIC_DIST].size, 539 2, vms->memmap[VIRT_GIC_REDIST].base, 540 2, vms->memmap[VIRT_GIC_REDIST].size, 541 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 542 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 543 } 544 545 if (vms->virt) { 546 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 547 GIC_FDT_IRQ_TYPE_PPI, 548 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 549 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 550 } 551 } else { 552 /* 'cortex-a15-gic' means 'GIC v2' */ 553 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 554 "arm,cortex-a15-gic"); 555 if (!vms->virt) { 556 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 557 2, vms->memmap[VIRT_GIC_DIST].base, 558 2, vms->memmap[VIRT_GIC_DIST].size, 559 2, vms->memmap[VIRT_GIC_CPU].base, 560 2, vms->memmap[VIRT_GIC_CPU].size); 561 } else { 562 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 563 2, vms->memmap[VIRT_GIC_DIST].base, 564 2, vms->memmap[VIRT_GIC_DIST].size, 565 2, vms->memmap[VIRT_GIC_CPU].base, 566 2, vms->memmap[VIRT_GIC_CPU].size, 567 2, vms->memmap[VIRT_GIC_HYP].base, 568 2, vms->memmap[VIRT_GIC_HYP].size, 569 2, vms->memmap[VIRT_GIC_VCPU].base, 570 2, vms->memmap[VIRT_GIC_VCPU].size); 571 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 572 GIC_FDT_IRQ_TYPE_PPI, 573 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 574 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 575 } 576 } 577 578 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 579 g_free(nodename); 580 } 581 582 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 583 { 584 ARMCPU *armcpu = ARM_CPU(first_cpu); 585 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 586 MachineState *ms = MACHINE(vms); 587 588 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 589 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 590 return; 591 } 592 593 if (vms->gic_version == VIRT_GIC_VERSION_2) { 594 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 595 GIC_FDT_IRQ_PPI_CPU_WIDTH, 596 (1 << MACHINE(vms)->smp.cpus) - 1); 597 } 598 599 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 600 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 601 const char compat[] = "arm,armv8-pmuv3"; 602 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 603 compat, sizeof(compat)); 604 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 605 GIC_FDT_IRQ_TYPE_PPI, 606 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); 607 } 608 } 609 610 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 611 { 612 DeviceState *dev; 613 MachineState *ms = MACHINE(vms); 614 int irq = vms->irqmap[VIRT_ACPI_GED]; 615 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 616 617 if (ms->ram_slots) { 618 event |= ACPI_GED_MEM_HOTPLUG_EVT; 619 } 620 621 if (ms->nvdimms_state->is_enabled) { 622 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 623 } 624 625 dev = qdev_new(TYPE_ACPI_GED); 626 qdev_prop_set_uint32(dev, "ged-event", event); 627 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 628 629 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 630 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 631 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 632 633 return dev; 634 } 635 636 static void create_its(VirtMachineState *vms) 637 { 638 const char *itsclass = its_class_name(); 639 DeviceState *dev; 640 641 if (!strcmp(itsclass, "arm-gicv3-its")) { 642 if (!vms->tcg_its) { 643 itsclass = NULL; 644 } 645 } 646 647 if (!itsclass) { 648 /* Do nothing if not supported */ 649 return; 650 } 651 652 dev = qdev_new(itsclass); 653 654 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 655 &error_abort); 656 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 657 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 658 659 fdt_add_its_gic_node(vms); 660 vms->msi_controller = VIRT_MSI_CTRL_ITS; 661 } 662 663 static void create_v2m(VirtMachineState *vms) 664 { 665 int i; 666 int irq = vms->irqmap[VIRT_GIC_V2M]; 667 DeviceState *dev; 668 669 dev = qdev_new("arm-gicv2m"); 670 qdev_prop_set_uint32(dev, "base-spi", irq); 671 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 672 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 673 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 674 675 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 676 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 677 qdev_get_gpio_in(vms->gic, irq + i)); 678 } 679 680 fdt_add_v2m_gic_node(vms); 681 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 682 } 683 684 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 685 { 686 MachineState *ms = MACHINE(vms); 687 /* We create a standalone GIC */ 688 SysBusDevice *gicbusdev; 689 const char *gictype; 690 int i; 691 unsigned int smp_cpus = ms->smp.cpus; 692 uint32_t nb_redist_regions = 0; 693 int revision; 694 695 if (vms->gic_version == VIRT_GIC_VERSION_2) { 696 gictype = gic_class_name(); 697 } else { 698 gictype = gicv3_class_name(); 699 } 700 701 switch (vms->gic_version) { 702 case VIRT_GIC_VERSION_2: 703 revision = 2; 704 break; 705 case VIRT_GIC_VERSION_3: 706 revision = 3; 707 break; 708 case VIRT_GIC_VERSION_4: 709 revision = 4; 710 break; 711 default: 712 g_assert_not_reached(); 713 } 714 vms->gic = qdev_new(gictype); 715 qdev_prop_set_uint32(vms->gic, "revision", revision); 716 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 717 /* Note that the num-irq property counts both internal and external 718 * interrupts; there are always 32 of the former (mandated by GIC spec). 719 */ 720 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 721 if (!kvm_irqchip_in_kernel()) { 722 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 723 } 724 725 if (vms->gic_version != VIRT_GIC_VERSION_2) { 726 QList *redist_region_count; 727 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); 728 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 729 730 nb_redist_regions = virt_gicv3_redist_region_count(vms); 731 732 redist_region_count = qlist_new(); 733 qlist_append_int(redist_region_count, redist0_count); 734 if (nb_redist_regions == 2) { 735 uint32_t redist1_capacity = 736 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 737 738 qlist_append_int(redist_region_count, 739 MIN(smp_cpus - redist0_count, redist1_capacity)); 740 } 741 qdev_prop_set_array(vms->gic, "redist-region-count", 742 redist_region_count); 743 744 if (!kvm_irqchip_in_kernel()) { 745 if (vms->tcg_its) { 746 object_property_set_link(OBJECT(vms->gic), "sysmem", 747 OBJECT(mem), &error_fatal); 748 qdev_prop_set_bit(vms->gic, "has-lpi", true); 749 } 750 } 751 } else { 752 if (!kvm_irqchip_in_kernel()) { 753 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 754 vms->virt); 755 } 756 } 757 gicbusdev = SYS_BUS_DEVICE(vms->gic); 758 sysbus_realize_and_unref(gicbusdev, &error_fatal); 759 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 760 if (vms->gic_version != VIRT_GIC_VERSION_2) { 761 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 762 if (nb_redist_regions == 2) { 763 sysbus_mmio_map(gicbusdev, 2, 764 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 765 } 766 } else { 767 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 768 if (vms->virt) { 769 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 770 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 771 } 772 } 773 774 /* Wire the outputs from each CPU's generic timer and the GICv3 775 * maintenance interrupt signal to the appropriate GIC PPI inputs, 776 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 777 */ 778 for (i = 0; i < smp_cpus; i++) { 779 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 780 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 781 /* Mapping from the output timer irq lines from the CPU to the 782 * GIC PPI inputs we use for the virt board. 783 */ 784 const int timer_irq[] = { 785 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 786 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 787 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 788 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 789 }; 790 791 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 792 qdev_connect_gpio_out(cpudev, irq, 793 qdev_get_gpio_in(vms->gic, 794 intidbase + timer_irq[irq])); 795 } 796 797 if (vms->gic_version != VIRT_GIC_VERSION_2) { 798 qemu_irq irq = qdev_get_gpio_in(vms->gic, 799 intidbase + ARCH_GIC_MAINT_IRQ); 800 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 801 0, irq); 802 } else if (vms->virt) { 803 qemu_irq irq = qdev_get_gpio_in(vms->gic, 804 intidbase + ARCH_GIC_MAINT_IRQ); 805 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 806 } 807 808 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 809 qdev_get_gpio_in(vms->gic, intidbase 810 + VIRTUAL_PMU_IRQ)); 811 812 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 813 sysbus_connect_irq(gicbusdev, i + smp_cpus, 814 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 815 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 816 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 817 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 818 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 819 } 820 821 fdt_add_gic_node(vms); 822 823 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { 824 create_its(vms); 825 } else if (vms->gic_version == VIRT_GIC_VERSION_2) { 826 create_v2m(vms); 827 } 828 } 829 830 static void create_uart(const VirtMachineState *vms, int uart, 831 MemoryRegion *mem, Chardev *chr) 832 { 833 char *nodename; 834 hwaddr base = vms->memmap[uart].base; 835 hwaddr size = vms->memmap[uart].size; 836 int irq = vms->irqmap[uart]; 837 const char compat[] = "arm,pl011\0arm,primecell"; 838 const char clocknames[] = "uartclk\0apb_pclk"; 839 DeviceState *dev = qdev_new(TYPE_PL011); 840 SysBusDevice *s = SYS_BUS_DEVICE(dev); 841 MachineState *ms = MACHINE(vms); 842 843 qdev_prop_set_chr(dev, "chardev", chr); 844 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 845 memory_region_add_subregion(mem, base, 846 sysbus_mmio_get_region(s, 0)); 847 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 848 849 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 850 qemu_fdt_add_subnode(ms->fdt, nodename); 851 /* Note that we can't use setprop_string because of the embedded NUL */ 852 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 853 compat, sizeof(compat)); 854 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 855 2, base, 2, size); 856 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 857 GIC_FDT_IRQ_TYPE_SPI, irq, 858 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 859 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 860 vms->clock_phandle, vms->clock_phandle); 861 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 862 clocknames, sizeof(clocknames)); 863 864 if (uart == VIRT_UART) { 865 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 866 } else { 867 /* Mark as not usable by the normal world */ 868 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 869 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 870 871 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 872 nodename); 873 } 874 875 g_free(nodename); 876 } 877 878 static void create_rtc(const VirtMachineState *vms) 879 { 880 char *nodename; 881 hwaddr base = vms->memmap[VIRT_RTC].base; 882 hwaddr size = vms->memmap[VIRT_RTC].size; 883 int irq = vms->irqmap[VIRT_RTC]; 884 const char compat[] = "arm,pl031\0arm,primecell"; 885 MachineState *ms = MACHINE(vms); 886 887 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 888 889 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 890 qemu_fdt_add_subnode(ms->fdt, nodename); 891 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 892 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 893 2, base, 2, size); 894 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 895 GIC_FDT_IRQ_TYPE_SPI, irq, 896 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 897 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 898 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 899 g_free(nodename); 900 } 901 902 static DeviceState *gpio_key_dev; 903 static void virt_powerdown_req(Notifier *n, void *opaque) 904 { 905 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 906 907 if (s->acpi_dev) { 908 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 909 } else { 910 /* use gpio Pin 3 for power button event */ 911 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 912 } 913 } 914 915 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 916 uint32_t phandle) 917 { 918 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 919 qdev_get_gpio_in(pl061_dev, 3)); 920 921 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 922 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 923 924 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 925 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 926 "label", "GPIO Key Poweroff"); 927 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 928 KEY_POWER); 929 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 930 "gpios", phandle, 3, 0); 931 } 932 933 #define SECURE_GPIO_POWEROFF 0 934 #define SECURE_GPIO_RESET 1 935 936 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 937 uint32_t phandle) 938 { 939 DeviceState *gpio_pwr_dev; 940 941 /* gpio-pwr */ 942 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 943 944 /* connect secure pl061 to gpio-pwr */ 945 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 946 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 947 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 948 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 949 950 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 951 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 952 "gpio-poweroff"); 953 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 954 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 955 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 956 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 957 "okay"); 958 959 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 960 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 961 "gpio-restart"); 962 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 963 "gpios", phandle, SECURE_GPIO_RESET, 0); 964 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 965 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 966 "okay"); 967 } 968 969 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 970 MemoryRegion *mem) 971 { 972 char *nodename; 973 DeviceState *pl061_dev; 974 hwaddr base = vms->memmap[gpio].base; 975 hwaddr size = vms->memmap[gpio].size; 976 int irq = vms->irqmap[gpio]; 977 const char compat[] = "arm,pl061\0arm,primecell"; 978 SysBusDevice *s; 979 MachineState *ms = MACHINE(vms); 980 981 pl061_dev = qdev_new("pl061"); 982 /* Pull lines down to 0 if not driven by the PL061 */ 983 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 984 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 985 s = SYS_BUS_DEVICE(pl061_dev); 986 sysbus_realize_and_unref(s, &error_fatal); 987 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 988 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 989 990 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 991 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 992 qemu_fdt_add_subnode(ms->fdt, nodename); 993 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 994 2, base, 2, size); 995 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 996 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 997 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 998 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 999 GIC_FDT_IRQ_TYPE_SPI, irq, 1000 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1001 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1002 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1003 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 1004 1005 if (gpio != VIRT_GPIO) { 1006 /* Mark as not usable by the normal world */ 1007 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1008 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1009 } 1010 g_free(nodename); 1011 1012 /* Child gpio devices */ 1013 if (gpio == VIRT_GPIO) { 1014 create_gpio_keys(ms->fdt, pl061_dev, phandle); 1015 } else { 1016 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 1017 } 1018 } 1019 1020 static void create_virtio_devices(const VirtMachineState *vms) 1021 { 1022 int i; 1023 hwaddr size = vms->memmap[VIRT_MMIO].size; 1024 MachineState *ms = MACHINE(vms); 1025 1026 /* We create the transports in forwards order. Since qbus_realize() 1027 * prepends (not appends) new child buses, the incrementing loop below will 1028 * create a list of virtio-mmio buses with decreasing base addresses. 1029 * 1030 * When a -device option is processed from the command line, 1031 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1032 * order. The upshot is that -device options in increasing command line 1033 * order are mapped to virtio-mmio buses with decreasing base addresses. 1034 * 1035 * When this code was originally written, that arrangement ensured that the 1036 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1037 * the first -device on the command line. (The end-to-end order is a 1038 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1039 * guest kernel's name-to-address assignment strategy.) 1040 * 1041 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1042 * the message, if not necessarily the code, of commit 70161ff336. 1043 * Therefore the loop now establishes the inverse of the original intent. 1044 * 1045 * Unfortunately, we can't counteract the kernel change by reversing the 1046 * loop; it would break existing command lines. 1047 * 1048 * In any case, the kernel makes no guarantee about the stability of 1049 * enumeration order of virtio devices (as demonstrated by it changing 1050 * between kernel versions). For reliable and stable identification 1051 * of disks users must use UUIDs or similar mechanisms. 1052 */ 1053 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1054 int irq = vms->irqmap[VIRT_MMIO] + i; 1055 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1056 1057 sysbus_create_simple("virtio-mmio", base, 1058 qdev_get_gpio_in(vms->gic, irq)); 1059 } 1060 1061 /* We add dtb nodes in reverse order so that they appear in the finished 1062 * device tree lowest address first. 1063 * 1064 * Note that this mapping is independent of the loop above. The previous 1065 * loop influences virtio device to virtio transport assignment, whereas 1066 * this loop controls how virtio transports are laid out in the dtb. 1067 */ 1068 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1069 char *nodename; 1070 int irq = vms->irqmap[VIRT_MMIO] + i; 1071 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1072 1073 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1074 qemu_fdt_add_subnode(ms->fdt, nodename); 1075 qemu_fdt_setprop_string(ms->fdt, nodename, 1076 "compatible", "virtio,mmio"); 1077 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1078 2, base, 2, size); 1079 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1080 GIC_FDT_IRQ_TYPE_SPI, irq, 1081 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1082 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1083 g_free(nodename); 1084 } 1085 } 1086 1087 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1088 1089 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1090 const char *name, 1091 const char *alias_prop_name) 1092 { 1093 /* 1094 * Create a single flash device. We use the same parameters as 1095 * the flash devices on the Versatile Express board. 1096 */ 1097 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1098 1099 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1100 qdev_prop_set_uint8(dev, "width", 4); 1101 qdev_prop_set_uint8(dev, "device-width", 2); 1102 qdev_prop_set_bit(dev, "big-endian", false); 1103 qdev_prop_set_uint16(dev, "id0", 0x89); 1104 qdev_prop_set_uint16(dev, "id1", 0x18); 1105 qdev_prop_set_uint16(dev, "id2", 0x00); 1106 qdev_prop_set_uint16(dev, "id3", 0x00); 1107 qdev_prop_set_string(dev, "name", name); 1108 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1109 object_property_add_alias(OBJECT(vms), alias_prop_name, 1110 OBJECT(dev), "drive"); 1111 return PFLASH_CFI01(dev); 1112 } 1113 1114 static void virt_flash_create(VirtMachineState *vms) 1115 { 1116 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1117 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1118 } 1119 1120 static void virt_flash_map1(PFlashCFI01 *flash, 1121 hwaddr base, hwaddr size, 1122 MemoryRegion *sysmem) 1123 { 1124 DeviceState *dev = DEVICE(flash); 1125 1126 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1127 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1128 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1129 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1130 1131 memory_region_add_subregion(sysmem, base, 1132 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1133 0)); 1134 } 1135 1136 static void virt_flash_map(VirtMachineState *vms, 1137 MemoryRegion *sysmem, 1138 MemoryRegion *secure_sysmem) 1139 { 1140 /* 1141 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1142 * sysmem is the system memory space. secure_sysmem is the secure view 1143 * of the system, and the first flash device should be made visible only 1144 * there. The second flash device is visible to both secure and nonsecure. 1145 * If sysmem == secure_sysmem this means there is no separate Secure 1146 * address space and both flash devices are generally visible. 1147 */ 1148 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1149 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1150 1151 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1152 secure_sysmem); 1153 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1154 sysmem); 1155 } 1156 1157 static void virt_flash_fdt(VirtMachineState *vms, 1158 MemoryRegion *sysmem, 1159 MemoryRegion *secure_sysmem) 1160 { 1161 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1162 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1163 MachineState *ms = MACHINE(vms); 1164 char *nodename; 1165 1166 if (sysmem == secure_sysmem) { 1167 /* Report both flash devices as a single node in the DT */ 1168 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1169 qemu_fdt_add_subnode(ms->fdt, nodename); 1170 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1171 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1172 2, flashbase, 2, flashsize, 1173 2, flashbase + flashsize, 2, flashsize); 1174 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1175 g_free(nodename); 1176 } else { 1177 /* 1178 * Report the devices as separate nodes so we can mark one as 1179 * only visible to the secure world. 1180 */ 1181 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1182 qemu_fdt_add_subnode(ms->fdt, nodename); 1183 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1184 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1185 2, flashbase, 2, flashsize); 1186 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1187 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1188 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1189 g_free(nodename); 1190 1191 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); 1192 qemu_fdt_add_subnode(ms->fdt, nodename); 1193 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1194 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1195 2, flashbase + flashsize, 2, flashsize); 1196 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1197 g_free(nodename); 1198 } 1199 } 1200 1201 static bool virt_firmware_init(VirtMachineState *vms, 1202 MemoryRegion *sysmem, 1203 MemoryRegion *secure_sysmem) 1204 { 1205 int i; 1206 const char *bios_name; 1207 BlockBackend *pflash_blk0; 1208 1209 /* Map legacy -drive if=pflash to machine properties */ 1210 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1211 pflash_cfi01_legacy_drive(vms->flash[i], 1212 drive_get(IF_PFLASH, 0, i)); 1213 } 1214 1215 virt_flash_map(vms, sysmem, secure_sysmem); 1216 1217 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1218 1219 bios_name = MACHINE(vms)->firmware; 1220 if (bios_name) { 1221 char *fname; 1222 MemoryRegion *mr; 1223 int image_size; 1224 1225 if (pflash_blk0) { 1226 error_report("The contents of the first flash device may be " 1227 "specified with -bios or with -drive if=pflash... " 1228 "but you cannot use both options at once"); 1229 exit(1); 1230 } 1231 1232 /* Fall back to -bios */ 1233 1234 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1235 if (!fname) { 1236 error_report("Could not find ROM image '%s'", bios_name); 1237 exit(1); 1238 } 1239 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1240 image_size = load_image_mr(fname, mr); 1241 g_free(fname); 1242 if (image_size < 0) { 1243 error_report("Could not load ROM image '%s'", bios_name); 1244 exit(1); 1245 } 1246 } 1247 1248 return pflash_blk0 || bios_name; 1249 } 1250 1251 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1252 { 1253 MachineState *ms = MACHINE(vms); 1254 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1255 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1256 FWCfgState *fw_cfg; 1257 char *nodename; 1258 1259 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1260 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1261 1262 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1263 qemu_fdt_add_subnode(ms->fdt, nodename); 1264 qemu_fdt_setprop_string(ms->fdt, nodename, 1265 "compatible", "qemu,fw-cfg-mmio"); 1266 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1267 2, base, 2, size); 1268 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1269 g_free(nodename); 1270 return fw_cfg; 1271 } 1272 1273 static void create_pcie_irq_map(const MachineState *ms, 1274 uint32_t gic_phandle, 1275 int first_irq, const char *nodename) 1276 { 1277 int devfn, pin; 1278 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1279 uint32_t *irq_map = full_irq_map; 1280 1281 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1282 for (pin = 0; pin < 4; pin++) { 1283 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1284 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1285 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1286 int i; 1287 1288 uint32_t map[] = { 1289 devfn << 8, 0, 0, /* devfn */ 1290 pin + 1, /* PCI pin */ 1291 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1292 1293 /* Convert map to big endian */ 1294 for (i = 0; i < 10; i++) { 1295 irq_map[i] = cpu_to_be32(map[i]); 1296 } 1297 irq_map += 10; 1298 } 1299 } 1300 1301 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1302 full_irq_map, sizeof(full_irq_map)); 1303 1304 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1305 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1306 0, 0, 1307 0x7 /* PCI irq */); 1308 } 1309 1310 static void create_smmu(const VirtMachineState *vms, 1311 PCIBus *bus) 1312 { 1313 char *node; 1314 const char compat[] = "arm,smmu-v3"; 1315 int irq = vms->irqmap[VIRT_SMMU]; 1316 int i; 1317 hwaddr base = vms->memmap[VIRT_SMMU].base; 1318 hwaddr size = vms->memmap[VIRT_SMMU].size; 1319 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1320 DeviceState *dev; 1321 MachineState *ms = MACHINE(vms); 1322 1323 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1324 return; 1325 } 1326 1327 dev = qdev_new(TYPE_ARM_SMMUV3); 1328 1329 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1330 &error_abort); 1331 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1332 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1333 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1334 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1335 qdev_get_gpio_in(vms->gic, irq + i)); 1336 } 1337 1338 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1339 qemu_fdt_add_subnode(ms->fdt, node); 1340 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1341 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1342 1343 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1344 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1345 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1346 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1347 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1348 1349 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1350 sizeof(irq_names)); 1351 1352 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1353 1354 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1355 1356 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1357 g_free(node); 1358 } 1359 1360 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1361 { 1362 const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; 1363 uint16_t bdf = vms->virtio_iommu_bdf; 1364 MachineState *ms = MACHINE(vms); 1365 char *node; 1366 1367 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1368 1369 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, 1370 PCI_SLOT(bdf), PCI_FUNC(bdf)); 1371 qemu_fdt_add_subnode(ms->fdt, node); 1372 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1373 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1374 1, bdf << 8, 1, 0, 1, 0, 1375 1, 0, 1, 0); 1376 1377 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1378 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1379 g_free(node); 1380 1381 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1382 0x0, vms->iommu_phandle, 0x0, bdf, 1383 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1384 } 1385 1386 static void create_pcie(VirtMachineState *vms) 1387 { 1388 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1389 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1390 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1391 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1392 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1393 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1394 hwaddr base_ecam, size_ecam; 1395 hwaddr base = base_mmio; 1396 int nr_pcie_buses; 1397 int irq = vms->irqmap[VIRT_PCIE]; 1398 MemoryRegion *mmio_alias; 1399 MemoryRegion *mmio_reg; 1400 MemoryRegion *ecam_alias; 1401 MemoryRegion *ecam_reg; 1402 DeviceState *dev; 1403 char *nodename; 1404 int i, ecam_id; 1405 PCIHostState *pci; 1406 MachineState *ms = MACHINE(vms); 1407 MachineClass *mc = MACHINE_GET_CLASS(ms); 1408 1409 dev = qdev_new(TYPE_GPEX_HOST); 1410 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1411 1412 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1413 base_ecam = vms->memmap[ecam_id].base; 1414 size_ecam = vms->memmap[ecam_id].size; 1415 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1416 /* Map only the first size_ecam bytes of ECAM space */ 1417 ecam_alias = g_new0(MemoryRegion, 1); 1418 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1419 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1420 ecam_reg, 0, size_ecam); 1421 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1422 1423 /* Map the MMIO window into system address space so as to expose 1424 * the section of PCI MMIO space which starts at the same base address 1425 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1426 * the window). 1427 */ 1428 mmio_alias = g_new0(MemoryRegion, 1); 1429 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1430 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1431 mmio_reg, base_mmio, size_mmio); 1432 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1433 1434 if (vms->highmem_mmio) { 1435 /* Map high MMIO space */ 1436 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1437 1438 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1439 mmio_reg, base_mmio_high, size_mmio_high); 1440 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1441 high_mmio_alias); 1442 } 1443 1444 /* Map IO port space */ 1445 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1446 1447 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1448 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1449 qdev_get_gpio_in(vms->gic, irq + i)); 1450 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1451 } 1452 1453 pci = PCI_HOST_BRIDGE(dev); 1454 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1455 vms->bus = pci->bus; 1456 if (vms->bus) { 1457 for (i = 0; i < nb_nics; i++) { 1458 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL); 1459 } 1460 } 1461 1462 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1463 qemu_fdt_add_subnode(ms->fdt, nodename); 1464 qemu_fdt_setprop_string(ms->fdt, nodename, 1465 "compatible", "pci-host-ecam-generic"); 1466 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1467 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1468 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1469 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1470 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1471 nr_pcie_buses - 1); 1472 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1473 1474 if (vms->msi_phandle) { 1475 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 1476 0, vms->msi_phandle, 0, 0x10000); 1477 } 1478 1479 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1480 2, base_ecam, 2, size_ecam); 1481 1482 if (vms->highmem_mmio) { 1483 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1484 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1485 2, base_pio, 2, size_pio, 1486 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1487 2, base_mmio, 2, size_mmio, 1488 1, FDT_PCI_RANGE_MMIO_64BIT, 1489 2, base_mmio_high, 1490 2, base_mmio_high, 2, size_mmio_high); 1491 } else { 1492 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1493 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1494 2, base_pio, 2, size_pio, 1495 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1496 2, base_mmio, 2, size_mmio); 1497 } 1498 1499 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1500 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1501 1502 if (vms->iommu) { 1503 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1504 1505 switch (vms->iommu) { 1506 case VIRT_IOMMU_SMMUV3: 1507 create_smmu(vms, vms->bus); 1508 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1509 0x0, vms->iommu_phandle, 0x0, 0x10000); 1510 break; 1511 default: 1512 g_assert_not_reached(); 1513 } 1514 } 1515 } 1516 1517 static void create_platform_bus(VirtMachineState *vms) 1518 { 1519 DeviceState *dev; 1520 SysBusDevice *s; 1521 int i; 1522 MemoryRegion *sysmem = get_system_memory(); 1523 1524 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1525 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1526 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1527 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1528 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1529 vms->platform_bus_dev = dev; 1530 1531 s = SYS_BUS_DEVICE(dev); 1532 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1533 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1534 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1535 } 1536 1537 memory_region_add_subregion(sysmem, 1538 vms->memmap[VIRT_PLATFORM_BUS].base, 1539 sysbus_mmio_get_region(s, 0)); 1540 } 1541 1542 static void create_tag_ram(MemoryRegion *tag_sysmem, 1543 hwaddr base, hwaddr size, 1544 const char *name) 1545 { 1546 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1547 1548 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1549 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1550 } 1551 1552 static void create_secure_ram(VirtMachineState *vms, 1553 MemoryRegion *secure_sysmem, 1554 MemoryRegion *secure_tag_sysmem) 1555 { 1556 MemoryRegion *secram = g_new(MemoryRegion, 1); 1557 char *nodename; 1558 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1559 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1560 MachineState *ms = MACHINE(vms); 1561 1562 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1563 &error_fatal); 1564 memory_region_add_subregion(secure_sysmem, base, secram); 1565 1566 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1567 qemu_fdt_add_subnode(ms->fdt, nodename); 1568 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1569 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1570 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1571 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1572 1573 if (secure_tag_sysmem) { 1574 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1575 } 1576 1577 g_free(nodename); 1578 } 1579 1580 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1581 { 1582 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1583 bootinfo); 1584 MachineState *ms = MACHINE(board); 1585 1586 1587 *fdt_size = board->fdt_size; 1588 return ms->fdt; 1589 } 1590 1591 static void virt_build_smbios(VirtMachineState *vms) 1592 { 1593 MachineClass *mc = MACHINE_GET_CLASS(vms); 1594 MachineState *ms = MACHINE(vms); 1595 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1596 uint8_t *smbios_tables, *smbios_anchor; 1597 size_t smbios_tables_len, smbios_anchor_len; 1598 struct smbios_phys_mem_area mem_array; 1599 const char *product = "QEMU Virtual Machine"; 1600 1601 if (kvm_enabled()) { 1602 product = "KVM Virtual Machine"; 1603 } 1604 1605 smbios_set_defaults("QEMU", product, 1606 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1607 true, SMBIOS_ENTRY_POINT_TYPE_64); 1608 1609 /* build the array of physical mem area from base_memmap */ 1610 mem_array.address = vms->memmap[VIRT_MEM].base; 1611 mem_array.length = ms->ram_size; 1612 1613 smbios_get_tables(ms, &mem_array, 1, 1614 &smbios_tables, &smbios_tables_len, 1615 &smbios_anchor, &smbios_anchor_len, 1616 &error_fatal); 1617 1618 if (smbios_anchor) { 1619 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1620 smbios_tables, smbios_tables_len); 1621 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1622 smbios_anchor, smbios_anchor_len); 1623 } 1624 } 1625 1626 static 1627 void virt_machine_done(Notifier *notifier, void *data) 1628 { 1629 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1630 machine_done); 1631 MachineState *ms = MACHINE(vms); 1632 ARMCPU *cpu = ARM_CPU(first_cpu); 1633 struct arm_boot_info *info = &vms->bootinfo; 1634 AddressSpace *as = arm_boot_address_space(cpu, info); 1635 1636 /* 1637 * If the user provided a dtb, we assume the dynamic sysbus nodes 1638 * already are integrated there. This corresponds to a use case where 1639 * the dynamic sysbus nodes are complex and their generation is not yet 1640 * supported. In that case the user can take charge of the guest dt 1641 * while qemu takes charge of the qom stuff. 1642 */ 1643 if (info->dtb_filename == NULL) { 1644 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1645 vms->memmap[VIRT_PLATFORM_BUS].base, 1646 vms->memmap[VIRT_PLATFORM_BUS].size, 1647 vms->irqmap[VIRT_PLATFORM_BUS]); 1648 } 1649 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1650 exit(1); 1651 } 1652 1653 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1654 1655 virt_acpi_setup(vms); 1656 virt_build_smbios(vms); 1657 } 1658 1659 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1660 { 1661 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1662 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1663 1664 if (!vmc->disallow_affinity_adjustment) { 1665 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1666 * GIC's target-list limitations. 32-bit KVM hosts currently 1667 * always create clusters of 4 CPUs, but that is expected to 1668 * change when they gain support for gicv3. When KVM is enabled 1669 * it will override the changes we make here, therefore our 1670 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1671 * and to improve SGI efficiency. 1672 */ 1673 if (vms->gic_version == VIRT_GIC_VERSION_2) { 1674 clustersz = GIC_TARGETLIST_BITS; 1675 } else { 1676 clustersz = GICV3_TARGETLIST_BITS; 1677 } 1678 } 1679 return arm_cpu_mp_affinity(idx, clustersz); 1680 } 1681 1682 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, 1683 int index) 1684 { 1685 bool *enabled_array[] = { 1686 &vms->highmem_redists, 1687 &vms->highmem_ecam, 1688 &vms->highmem_mmio, 1689 }; 1690 1691 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == 1692 ARRAY_SIZE(enabled_array)); 1693 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); 1694 1695 return enabled_array[index - VIRT_LOWMEMMAP_LAST]; 1696 } 1697 1698 static void virt_set_high_memmap(VirtMachineState *vms, 1699 hwaddr base, int pa_bits) 1700 { 1701 hwaddr region_base, region_size; 1702 bool *region_enabled, fits; 1703 int i; 1704 1705 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1706 region_enabled = virt_get_high_memmap_enabled(vms, i); 1707 region_base = ROUND_UP(base, extended_memmap[i].size); 1708 region_size = extended_memmap[i].size; 1709 1710 vms->memmap[i].base = region_base; 1711 vms->memmap[i].size = region_size; 1712 1713 /* 1714 * Check each device to see if it fits in the PA space, 1715 * moving highest_gpa as we go. For compatibility, move 1716 * highest_gpa for disabled fitting devices as well, if 1717 * the compact layout has been disabled. 1718 * 1719 * For each device that doesn't fit, disable it. 1720 */ 1721 fits = (region_base + region_size) <= BIT_ULL(pa_bits); 1722 *region_enabled &= fits; 1723 if (vms->highmem_compact && !*region_enabled) { 1724 continue; 1725 } 1726 1727 base = region_base + region_size; 1728 if (fits) { 1729 vms->highest_gpa = base - 1; 1730 } 1731 } 1732 } 1733 1734 static void virt_set_memmap(VirtMachineState *vms, int pa_bits) 1735 { 1736 MachineState *ms = MACHINE(vms); 1737 hwaddr base, device_memory_base, device_memory_size, memtop; 1738 int i; 1739 1740 vms->memmap = extended_memmap; 1741 1742 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1743 vms->memmap[i] = base_memmap[i]; 1744 } 1745 1746 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1747 error_report("unsupported number of memory slots: %"PRIu64, 1748 ms->ram_slots); 1749 exit(EXIT_FAILURE); 1750 } 1751 1752 /* 1753 * !highmem is exactly the same as limiting the PA space to 32bit, 1754 * irrespective of the underlying capabilities of the HW. 1755 */ 1756 if (!vms->highmem) { 1757 pa_bits = 32; 1758 } 1759 1760 /* 1761 * We compute the base of the high IO region depending on the 1762 * amount of initial and device memory. The device memory start/size 1763 * is aligned on 1GiB. We never put the high IO region below 256GiB 1764 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1765 * The device region size assumes 1GiB page max alignment per slot. 1766 */ 1767 device_memory_base = 1768 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1769 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1770 1771 /* Base address of the high IO region */ 1772 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1773 if (memtop > BIT_ULL(pa_bits)) { 1774 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n", 1775 pa_bits, memtop - BIT_ULL(pa_bits)); 1776 exit(EXIT_FAILURE); 1777 } 1778 if (base < device_memory_base) { 1779 error_report("maxmem/slots too huge"); 1780 exit(EXIT_FAILURE); 1781 } 1782 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1783 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1784 } 1785 1786 /* We know for sure that at least the memory fits in the PA space */ 1787 vms->highest_gpa = memtop - 1; 1788 1789 virt_set_high_memmap(vms, base, pa_bits); 1790 1791 if (device_memory_size > 0) { 1792 machine_memory_devices_init(ms, device_memory_base, device_memory_size); 1793 } 1794 } 1795 1796 static VirtGICType finalize_gic_version_do(const char *accel_name, 1797 VirtGICType gic_version, 1798 int gics_supported, 1799 unsigned int max_cpus) 1800 { 1801 /* Convert host/max/nosel to GIC version number */ 1802 switch (gic_version) { 1803 case VIRT_GIC_VERSION_HOST: 1804 if (!kvm_enabled()) { 1805 error_report("gic-version=host requires KVM"); 1806 exit(1); 1807 } 1808 1809 /* For KVM, gic-version=host means gic-version=max */ 1810 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, 1811 gics_supported, max_cpus); 1812 case VIRT_GIC_VERSION_MAX: 1813 if (gics_supported & VIRT_GIC_VERSION_4_MASK) { 1814 gic_version = VIRT_GIC_VERSION_4; 1815 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1816 gic_version = VIRT_GIC_VERSION_3; 1817 } else { 1818 gic_version = VIRT_GIC_VERSION_2; 1819 } 1820 break; 1821 case VIRT_GIC_VERSION_NOSEL: 1822 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && 1823 max_cpus <= GIC_NCPU) { 1824 gic_version = VIRT_GIC_VERSION_2; 1825 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1826 /* 1827 * in case the host does not support v2 emulation or 1828 * the end-user requested more than 8 VCPUs we now default 1829 * to v3. In any case defaulting to v2 would be broken. 1830 */ 1831 gic_version = VIRT_GIC_VERSION_3; 1832 } else if (max_cpus > GIC_NCPU) { 1833 error_report("%s only supports GICv2 emulation but more than 8 " 1834 "vcpus are requested", accel_name); 1835 exit(1); 1836 } 1837 break; 1838 case VIRT_GIC_VERSION_2: 1839 case VIRT_GIC_VERSION_3: 1840 case VIRT_GIC_VERSION_4: 1841 break; 1842 } 1843 1844 /* Check chosen version is effectively supported */ 1845 switch (gic_version) { 1846 case VIRT_GIC_VERSION_2: 1847 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { 1848 error_report("%s does not support GICv2 emulation", accel_name); 1849 exit(1); 1850 } 1851 break; 1852 case VIRT_GIC_VERSION_3: 1853 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { 1854 error_report("%s does not support GICv3 emulation", accel_name); 1855 exit(1); 1856 } 1857 break; 1858 case VIRT_GIC_VERSION_4: 1859 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { 1860 error_report("%s does not support GICv4 emulation, is virtualization=on?", 1861 accel_name); 1862 exit(1); 1863 } 1864 break; 1865 default: 1866 error_report("logic error in finalize_gic_version"); 1867 exit(1); 1868 break; 1869 } 1870 1871 return gic_version; 1872 } 1873 1874 /* 1875 * finalize_gic_version - Determines the final gic_version 1876 * according to the gic-version property 1877 * 1878 * Default GIC type is v2 1879 */ 1880 static void finalize_gic_version(VirtMachineState *vms) 1881 { 1882 const char *accel_name = current_accel_name(); 1883 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1884 int gics_supported = 0; 1885 1886 /* Determine which GIC versions the current environment supports */ 1887 if (kvm_enabled() && kvm_irqchip_in_kernel()) { 1888 int probe_bitmap = kvm_arm_vgic_probe(); 1889 1890 if (!probe_bitmap) { 1891 error_report("Unable to determine GIC version supported by host"); 1892 exit(1); 1893 } 1894 1895 if (probe_bitmap & KVM_ARM_VGIC_V2) { 1896 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1897 } 1898 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1899 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1900 } 1901 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 1902 /* KVM w/o kernel irqchip can only deal with GICv2 */ 1903 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1904 accel_name = "KVM with kernel-irqchip=off"; 1905 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { 1906 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1907 if (module_object_class_by_name("arm-gicv3")) { 1908 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1909 if (vms->virt) { 1910 /* GICv4 only makes sense if CPU has EL2 */ 1911 gics_supported |= VIRT_GIC_VERSION_4_MASK; 1912 } 1913 } 1914 } else { 1915 error_report("Unsupported accelerator, can not determine GIC support"); 1916 exit(1); 1917 } 1918 1919 /* 1920 * Then convert helpers like host/max to concrete GIC versions and ensure 1921 * the desired version is supported 1922 */ 1923 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, 1924 gics_supported, max_cpus); 1925 } 1926 1927 /* 1928 * virt_cpu_post_init() must be called after the CPUs have 1929 * been realized and the GIC has been created. 1930 */ 1931 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 1932 { 1933 int max_cpus = MACHINE(vms)->smp.max_cpus; 1934 bool aarch64, pmu, steal_time; 1935 CPUState *cpu; 1936 1937 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 1938 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 1939 steal_time = object_property_get_bool(OBJECT(first_cpu), 1940 "kvm-steal-time", NULL); 1941 1942 if (kvm_enabled()) { 1943 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 1944 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 1945 1946 if (steal_time) { 1947 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 1948 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 1949 1950 /* The memory region size must be a multiple of host page size. */ 1951 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 1952 1953 if (pvtime_size > pvtime_reg_size) { 1954 error_report("pvtime requires a %" HWADDR_PRId 1955 " byte memory region for %d CPUs," 1956 " but only %" HWADDR_PRId " has been reserved", 1957 pvtime_size, max_cpus, pvtime_reg_size); 1958 exit(1); 1959 } 1960 1961 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 1962 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 1963 } 1964 1965 CPU_FOREACH(cpu) { 1966 if (pmu) { 1967 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 1968 if (kvm_irqchip_in_kernel()) { 1969 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ); 1970 } 1971 kvm_arm_pmu_init(ARM_CPU(cpu)); 1972 } 1973 if (steal_time) { 1974 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base 1975 + cpu->cpu_index 1976 * PVTIME_SIZE_PER_CPU); 1977 } 1978 } 1979 } else { 1980 if (aarch64 && vms->highmem) { 1981 int requested_pa_size = 64 - clz64(vms->highest_gpa); 1982 int pamax = arm_pamax(ARM_CPU(first_cpu)); 1983 1984 if (pamax < requested_pa_size) { 1985 error_report("VCPU supports less PA bits (%d) than " 1986 "requested by the memory map (%d)", 1987 pamax, requested_pa_size); 1988 exit(1); 1989 } 1990 } 1991 } 1992 } 1993 1994 static void machvirt_init(MachineState *machine) 1995 { 1996 VirtMachineState *vms = VIRT_MACHINE(machine); 1997 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1998 MachineClass *mc = MACHINE_GET_CLASS(machine); 1999 const CPUArchIdList *possible_cpus; 2000 MemoryRegion *sysmem = get_system_memory(); 2001 MemoryRegion *secure_sysmem = NULL; 2002 MemoryRegion *tag_sysmem = NULL; 2003 MemoryRegion *secure_tag_sysmem = NULL; 2004 int n, virt_max_cpus; 2005 bool firmware_loaded; 2006 bool aarch64 = true; 2007 bool has_ged = !vmc->no_ged; 2008 unsigned int smp_cpus = machine->smp.cpus; 2009 unsigned int max_cpus = machine->smp.max_cpus; 2010 2011 possible_cpus = mc->possible_cpu_arch_ids(machine); 2012 2013 /* 2014 * In accelerated mode, the memory map is computed earlier in kvm_type() 2015 * to create a VM with the right number of IPA bits. 2016 */ 2017 if (!vms->memmap) { 2018 Object *cpuobj; 2019 ARMCPU *armcpu; 2020 int pa_bits; 2021 2022 /* 2023 * Instantiate a temporary CPU object to find out about what 2024 * we are about to deal with. Once this is done, get rid of 2025 * the object. 2026 */ 2027 cpuobj = object_new(possible_cpus->cpus[0].type); 2028 armcpu = ARM_CPU(cpuobj); 2029 2030 pa_bits = arm_pamax(armcpu); 2031 2032 object_unref(cpuobj); 2033 2034 virt_set_memmap(vms, pa_bits); 2035 } 2036 2037 /* We can probe only here because during property set 2038 * KVM is not available yet 2039 */ 2040 finalize_gic_version(vms); 2041 2042 if (vms->secure) { 2043 /* 2044 * The Secure view of the world is the same as the NonSecure, 2045 * but with a few extra devices. Create it as a container region 2046 * containing the system memory at low priority; any secure-only 2047 * devices go in at higher priority and take precedence. 2048 */ 2049 secure_sysmem = g_new(MemoryRegion, 1); 2050 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 2051 UINT64_MAX); 2052 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 2053 } 2054 2055 firmware_loaded = virt_firmware_init(vms, sysmem, 2056 secure_sysmem ?: sysmem); 2057 2058 /* If we have an EL3 boot ROM then the assumption is that it will 2059 * implement PSCI itself, so disable QEMU's internal implementation 2060 * so it doesn't get in the way. Instead of starting secondary 2061 * CPUs in PSCI powerdown state we will start them all running and 2062 * let the boot ROM sort them out. 2063 * The usual case is that we do use QEMU's PSCI implementation; 2064 * if the guest has EL2 then we will use SMC as the conduit, 2065 * and otherwise we will use HVC (for backwards compatibility and 2066 * because if we're using KVM then we must use HVC). 2067 */ 2068 if (vms->secure && firmware_loaded) { 2069 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 2070 } else if (vms->virt) { 2071 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 2072 } else { 2073 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 2074 } 2075 2076 /* 2077 * The maximum number of CPUs depends on the GIC version, or on how 2078 * many redistributors we can fit into the memory map (which in turn 2079 * depends on whether this is a GICv3 or v4). 2080 */ 2081 if (vms->gic_version == VIRT_GIC_VERSION_2) { 2082 virt_max_cpus = GIC_NCPU; 2083 } else { 2084 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); 2085 if (vms->highmem_redists) { 2086 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 2087 } 2088 } 2089 2090 if (max_cpus > virt_max_cpus) { 2091 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 2092 "supported by machine 'mach-virt' (%d)", 2093 max_cpus, virt_max_cpus); 2094 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { 2095 error_printf("Try 'highmem-redists=on' for more CPUs\n"); 2096 } 2097 2098 exit(1); 2099 } 2100 2101 if (vms->secure && (kvm_enabled() || hvf_enabled())) { 2102 error_report("mach-virt: %s does not support providing " 2103 "Security extensions (TrustZone) to the guest CPU", 2104 current_accel_name()); 2105 exit(1); 2106 } 2107 2108 if (vms->virt && (kvm_enabled() || hvf_enabled())) { 2109 error_report("mach-virt: %s does not support providing " 2110 "Virtualization extensions to the guest CPU", 2111 current_accel_name()); 2112 exit(1); 2113 } 2114 2115 if (vms->mte && (kvm_enabled() || hvf_enabled())) { 2116 error_report("mach-virt: %s does not support providing " 2117 "MTE to the guest CPU", 2118 current_accel_name()); 2119 exit(1); 2120 } 2121 2122 create_fdt(vms); 2123 2124 assert(possible_cpus->len == max_cpus); 2125 for (n = 0; n < possible_cpus->len; n++) { 2126 Object *cpuobj; 2127 CPUState *cs; 2128 2129 if (n >= smp_cpus) { 2130 break; 2131 } 2132 2133 cpuobj = object_new(possible_cpus->cpus[n].type); 2134 object_property_set_int(cpuobj, "mp-affinity", 2135 possible_cpus->cpus[n].arch_id, NULL); 2136 2137 cs = CPU(cpuobj); 2138 cs->cpu_index = n; 2139 2140 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2141 &error_fatal); 2142 2143 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2144 2145 if (!vms->secure) { 2146 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2147 } 2148 2149 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2150 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2151 } 2152 2153 if (vmc->kvm_no_adjvtime && 2154 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2155 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2156 } 2157 2158 if (vmc->no_kvm_steal_time && 2159 object_property_find(cpuobj, "kvm-steal-time")) { 2160 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2161 } 2162 2163 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 2164 object_property_set_bool(cpuobj, "pmu", false, NULL); 2165 } 2166 2167 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { 2168 object_property_set_bool(cpuobj, "lpa2", false, NULL); 2169 } 2170 2171 if (object_property_find(cpuobj, "reset-cbar")) { 2172 object_property_set_int(cpuobj, "reset-cbar", 2173 vms->memmap[VIRT_CPUPERIPHS].base, 2174 &error_abort); 2175 } 2176 2177 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2178 &error_abort); 2179 if (vms->secure) { 2180 object_property_set_link(cpuobj, "secure-memory", 2181 OBJECT(secure_sysmem), &error_abort); 2182 } 2183 2184 if (vms->mte) { 2185 /* Create the memory region only once, but link to all cpus. */ 2186 if (!tag_sysmem) { 2187 /* 2188 * The property exists only if MemTag is supported. 2189 * If it is, we must allocate the ram to back that up. 2190 */ 2191 if (!object_property_find(cpuobj, "tag-memory")) { 2192 error_report("MTE requested, but not supported " 2193 "by the guest CPU"); 2194 exit(1); 2195 } 2196 2197 tag_sysmem = g_new(MemoryRegion, 1); 2198 memory_region_init(tag_sysmem, OBJECT(machine), 2199 "tag-memory", UINT64_MAX / 32); 2200 2201 if (vms->secure) { 2202 secure_tag_sysmem = g_new(MemoryRegion, 1); 2203 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2204 "secure-tag-memory", UINT64_MAX / 32); 2205 2206 /* As with ram, secure-tag takes precedence over tag. */ 2207 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2208 tag_sysmem, -1); 2209 } 2210 } 2211 2212 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2213 &error_abort); 2214 if (vms->secure) { 2215 object_property_set_link(cpuobj, "secure-tag-memory", 2216 OBJECT(secure_tag_sysmem), 2217 &error_abort); 2218 } 2219 } 2220 2221 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2222 object_unref(cpuobj); 2223 } 2224 fdt_add_timer_nodes(vms); 2225 fdt_add_cpu_nodes(vms); 2226 2227 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2228 machine->ram); 2229 2230 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2231 2232 create_gic(vms, sysmem); 2233 2234 virt_cpu_post_init(vms, sysmem); 2235 2236 fdt_add_pmu_nodes(vms); 2237 2238 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 2239 2240 if (vms->secure) { 2241 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2242 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 2243 } 2244 2245 if (tag_sysmem) { 2246 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2247 machine->ram_size, "mach-virt.tag"); 2248 } 2249 2250 vms->highmem_ecam &= (!firmware_loaded || aarch64); 2251 2252 create_rtc(vms); 2253 2254 create_pcie(vms); 2255 2256 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2257 vms->acpi_dev = create_acpi_ged(vms); 2258 } else { 2259 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2260 } 2261 2262 if (vms->secure && !vmc->no_secure_gpio) { 2263 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2264 } 2265 2266 /* connect powerdown request */ 2267 vms->powerdown_notifier.notify = virt_powerdown_req; 2268 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2269 2270 /* Create mmio transports, so the user can create virtio backends 2271 * (which will be automatically plugged in to the transports). If 2272 * no backend is created the transport will just sit harmlessly idle. 2273 */ 2274 create_virtio_devices(vms); 2275 2276 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2277 rom_set_fw(vms->fw_cfg); 2278 2279 create_platform_bus(vms); 2280 2281 if (machine->nvdimms_state->is_enabled) { 2282 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2283 .space_id = AML_AS_SYSTEM_MEMORY, 2284 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2285 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2286 }; 2287 2288 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2289 arm_virt_nvdimm_acpi_dsmio, 2290 vms->fw_cfg, OBJECT(vms)); 2291 } 2292 2293 vms->bootinfo.ram_size = machine->ram_size; 2294 vms->bootinfo.board_id = -1; 2295 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2296 vms->bootinfo.get_dtb = machvirt_dtb; 2297 vms->bootinfo.skip_dtb_autoload = true; 2298 vms->bootinfo.firmware_loaded = firmware_loaded; 2299 vms->bootinfo.psci_conduit = vms->psci_conduit; 2300 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2301 2302 vms->machine_done.notify = virt_machine_done; 2303 qemu_add_machine_init_done_notifier(&vms->machine_done); 2304 } 2305 2306 static bool virt_get_secure(Object *obj, Error **errp) 2307 { 2308 VirtMachineState *vms = VIRT_MACHINE(obj); 2309 2310 return vms->secure; 2311 } 2312 2313 static void virt_set_secure(Object *obj, bool value, Error **errp) 2314 { 2315 VirtMachineState *vms = VIRT_MACHINE(obj); 2316 2317 vms->secure = value; 2318 } 2319 2320 static bool virt_get_virt(Object *obj, Error **errp) 2321 { 2322 VirtMachineState *vms = VIRT_MACHINE(obj); 2323 2324 return vms->virt; 2325 } 2326 2327 static void virt_set_virt(Object *obj, bool value, Error **errp) 2328 { 2329 VirtMachineState *vms = VIRT_MACHINE(obj); 2330 2331 vms->virt = value; 2332 } 2333 2334 static bool virt_get_highmem(Object *obj, Error **errp) 2335 { 2336 VirtMachineState *vms = VIRT_MACHINE(obj); 2337 2338 return vms->highmem; 2339 } 2340 2341 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2342 { 2343 VirtMachineState *vms = VIRT_MACHINE(obj); 2344 2345 vms->highmem = value; 2346 } 2347 2348 static bool virt_get_compact_highmem(Object *obj, Error **errp) 2349 { 2350 VirtMachineState *vms = VIRT_MACHINE(obj); 2351 2352 return vms->highmem_compact; 2353 } 2354 2355 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) 2356 { 2357 VirtMachineState *vms = VIRT_MACHINE(obj); 2358 2359 vms->highmem_compact = value; 2360 } 2361 2362 static bool virt_get_highmem_redists(Object *obj, Error **errp) 2363 { 2364 VirtMachineState *vms = VIRT_MACHINE(obj); 2365 2366 return vms->highmem_redists; 2367 } 2368 2369 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) 2370 { 2371 VirtMachineState *vms = VIRT_MACHINE(obj); 2372 2373 vms->highmem_redists = value; 2374 } 2375 2376 static bool virt_get_highmem_ecam(Object *obj, Error **errp) 2377 { 2378 VirtMachineState *vms = VIRT_MACHINE(obj); 2379 2380 return vms->highmem_ecam; 2381 } 2382 2383 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) 2384 { 2385 VirtMachineState *vms = VIRT_MACHINE(obj); 2386 2387 vms->highmem_ecam = value; 2388 } 2389 2390 static bool virt_get_highmem_mmio(Object *obj, Error **errp) 2391 { 2392 VirtMachineState *vms = VIRT_MACHINE(obj); 2393 2394 return vms->highmem_mmio; 2395 } 2396 2397 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) 2398 { 2399 VirtMachineState *vms = VIRT_MACHINE(obj); 2400 2401 vms->highmem_mmio = value; 2402 } 2403 2404 2405 static bool virt_get_its(Object *obj, Error **errp) 2406 { 2407 VirtMachineState *vms = VIRT_MACHINE(obj); 2408 2409 return vms->its; 2410 } 2411 2412 static void virt_set_its(Object *obj, bool value, Error **errp) 2413 { 2414 VirtMachineState *vms = VIRT_MACHINE(obj); 2415 2416 vms->its = value; 2417 } 2418 2419 static bool virt_get_dtb_randomness(Object *obj, Error **errp) 2420 { 2421 VirtMachineState *vms = VIRT_MACHINE(obj); 2422 2423 return vms->dtb_randomness; 2424 } 2425 2426 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) 2427 { 2428 VirtMachineState *vms = VIRT_MACHINE(obj); 2429 2430 vms->dtb_randomness = value; 2431 } 2432 2433 static char *virt_get_oem_id(Object *obj, Error **errp) 2434 { 2435 VirtMachineState *vms = VIRT_MACHINE(obj); 2436 2437 return g_strdup(vms->oem_id); 2438 } 2439 2440 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2441 { 2442 VirtMachineState *vms = VIRT_MACHINE(obj); 2443 size_t len = strlen(value); 2444 2445 if (len > 6) { 2446 error_setg(errp, 2447 "User specified oem-id value is bigger than 6 bytes in size"); 2448 return; 2449 } 2450 2451 strncpy(vms->oem_id, value, 6); 2452 } 2453 2454 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2455 { 2456 VirtMachineState *vms = VIRT_MACHINE(obj); 2457 2458 return g_strdup(vms->oem_table_id); 2459 } 2460 2461 static void virt_set_oem_table_id(Object *obj, const char *value, 2462 Error **errp) 2463 { 2464 VirtMachineState *vms = VIRT_MACHINE(obj); 2465 size_t len = strlen(value); 2466 2467 if (len > 8) { 2468 error_setg(errp, 2469 "User specified oem-table-id value is bigger than 8 bytes in size"); 2470 return; 2471 } 2472 strncpy(vms->oem_table_id, value, 8); 2473 } 2474 2475 2476 bool virt_is_acpi_enabled(VirtMachineState *vms) 2477 { 2478 if (vms->acpi == ON_OFF_AUTO_OFF) { 2479 return false; 2480 } 2481 return true; 2482 } 2483 2484 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2485 void *opaque, Error **errp) 2486 { 2487 VirtMachineState *vms = VIRT_MACHINE(obj); 2488 OnOffAuto acpi = vms->acpi; 2489 2490 visit_type_OnOffAuto(v, name, &acpi, errp); 2491 } 2492 2493 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2494 void *opaque, Error **errp) 2495 { 2496 VirtMachineState *vms = VIRT_MACHINE(obj); 2497 2498 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2499 } 2500 2501 static bool virt_get_ras(Object *obj, Error **errp) 2502 { 2503 VirtMachineState *vms = VIRT_MACHINE(obj); 2504 2505 return vms->ras; 2506 } 2507 2508 static void virt_set_ras(Object *obj, bool value, Error **errp) 2509 { 2510 VirtMachineState *vms = VIRT_MACHINE(obj); 2511 2512 vms->ras = value; 2513 } 2514 2515 static bool virt_get_mte(Object *obj, Error **errp) 2516 { 2517 VirtMachineState *vms = VIRT_MACHINE(obj); 2518 2519 return vms->mte; 2520 } 2521 2522 static void virt_set_mte(Object *obj, bool value, Error **errp) 2523 { 2524 VirtMachineState *vms = VIRT_MACHINE(obj); 2525 2526 vms->mte = value; 2527 } 2528 2529 static char *virt_get_gic_version(Object *obj, Error **errp) 2530 { 2531 VirtMachineState *vms = VIRT_MACHINE(obj); 2532 const char *val; 2533 2534 switch (vms->gic_version) { 2535 case VIRT_GIC_VERSION_4: 2536 val = "4"; 2537 break; 2538 case VIRT_GIC_VERSION_3: 2539 val = "3"; 2540 break; 2541 default: 2542 val = "2"; 2543 break; 2544 } 2545 return g_strdup(val); 2546 } 2547 2548 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2549 { 2550 VirtMachineState *vms = VIRT_MACHINE(obj); 2551 2552 if (!strcmp(value, "4")) { 2553 vms->gic_version = VIRT_GIC_VERSION_4; 2554 } else if (!strcmp(value, "3")) { 2555 vms->gic_version = VIRT_GIC_VERSION_3; 2556 } else if (!strcmp(value, "2")) { 2557 vms->gic_version = VIRT_GIC_VERSION_2; 2558 } else if (!strcmp(value, "host")) { 2559 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2560 } else if (!strcmp(value, "max")) { 2561 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2562 } else { 2563 error_setg(errp, "Invalid gic-version value"); 2564 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2565 } 2566 } 2567 2568 static char *virt_get_iommu(Object *obj, Error **errp) 2569 { 2570 VirtMachineState *vms = VIRT_MACHINE(obj); 2571 2572 switch (vms->iommu) { 2573 case VIRT_IOMMU_NONE: 2574 return g_strdup("none"); 2575 case VIRT_IOMMU_SMMUV3: 2576 return g_strdup("smmuv3"); 2577 default: 2578 g_assert_not_reached(); 2579 } 2580 } 2581 2582 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2583 { 2584 VirtMachineState *vms = VIRT_MACHINE(obj); 2585 2586 if (!strcmp(value, "smmuv3")) { 2587 vms->iommu = VIRT_IOMMU_SMMUV3; 2588 } else if (!strcmp(value, "none")) { 2589 vms->iommu = VIRT_IOMMU_NONE; 2590 } else { 2591 error_setg(errp, "Invalid iommu value"); 2592 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2593 } 2594 } 2595 2596 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2597 { 2598 VirtMachineState *vms = VIRT_MACHINE(obj); 2599 2600 return vms->default_bus_bypass_iommu; 2601 } 2602 2603 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2604 Error **errp) 2605 { 2606 VirtMachineState *vms = VIRT_MACHINE(obj); 2607 2608 vms->default_bus_bypass_iommu = value; 2609 } 2610 2611 static CpuInstanceProperties 2612 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2613 { 2614 MachineClass *mc = MACHINE_GET_CLASS(ms); 2615 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2616 2617 assert(cpu_index < possible_cpus->len); 2618 return possible_cpus->cpus[cpu_index].props; 2619 } 2620 2621 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2622 { 2623 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; 2624 2625 return socket_id % ms->numa_state->num_nodes; 2626 } 2627 2628 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2629 { 2630 int n; 2631 unsigned int max_cpus = ms->smp.max_cpus; 2632 VirtMachineState *vms = VIRT_MACHINE(ms); 2633 MachineClass *mc = MACHINE_GET_CLASS(vms); 2634 2635 if (ms->possible_cpus) { 2636 assert(ms->possible_cpus->len == max_cpus); 2637 return ms->possible_cpus; 2638 } 2639 2640 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2641 sizeof(CPUArchId) * max_cpus); 2642 ms->possible_cpus->len = max_cpus; 2643 for (n = 0; n < ms->possible_cpus->len; n++) { 2644 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2645 ms->possible_cpus->cpus[n].arch_id = 2646 virt_cpu_mp_affinity(vms, n); 2647 2648 assert(!mc->smp_props.dies_supported); 2649 ms->possible_cpus->cpus[n].props.has_socket_id = true; 2650 ms->possible_cpus->cpus[n].props.socket_id = 2651 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); 2652 ms->possible_cpus->cpus[n].props.has_cluster_id = true; 2653 ms->possible_cpus->cpus[n].props.cluster_id = 2654 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; 2655 ms->possible_cpus->cpus[n].props.has_core_id = true; 2656 ms->possible_cpus->cpus[n].props.core_id = 2657 (n / ms->smp.threads) % ms->smp.cores; 2658 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2659 ms->possible_cpus->cpus[n].props.thread_id = 2660 n % ms->smp.threads; 2661 } 2662 return ms->possible_cpus; 2663 } 2664 2665 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2666 Error **errp) 2667 { 2668 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2669 const MachineState *ms = MACHINE(hotplug_dev); 2670 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2671 2672 if (!vms->acpi_dev) { 2673 error_setg(errp, 2674 "memory hotplug is not enabled: missing acpi-ged device"); 2675 return; 2676 } 2677 2678 if (vms->mte) { 2679 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2680 return; 2681 } 2682 2683 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2684 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2685 return; 2686 } 2687 2688 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2689 } 2690 2691 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2692 DeviceState *dev, Error **errp) 2693 { 2694 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2695 MachineState *ms = MACHINE(hotplug_dev); 2696 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2697 2698 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2699 2700 if (is_nvdimm) { 2701 nvdimm_plug(ms->nvdimms_state); 2702 } 2703 2704 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2705 dev, &error_abort); 2706 } 2707 2708 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2709 DeviceState *dev, Error **errp) 2710 { 2711 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2712 2713 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2714 virt_memory_pre_plug(hotplug_dev, dev, errp); 2715 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2716 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2717 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2718 hwaddr db_start = 0, db_end = 0; 2719 QList *reserved_regions; 2720 char *resv_prop_str; 2721 2722 if (vms->iommu != VIRT_IOMMU_NONE) { 2723 error_setg(errp, "virt machine does not support multiple IOMMUs"); 2724 return; 2725 } 2726 2727 switch (vms->msi_controller) { 2728 case VIRT_MSI_CTRL_NONE: 2729 return; 2730 case VIRT_MSI_CTRL_ITS: 2731 /* GITS_TRANSLATER page */ 2732 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2733 db_end = base_memmap[VIRT_GIC_ITS].base + 2734 base_memmap[VIRT_GIC_ITS].size - 1; 2735 break; 2736 case VIRT_MSI_CTRL_GICV2M: 2737 /* MSI_SETSPI_NS page */ 2738 db_start = base_memmap[VIRT_GIC_V2M].base; 2739 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2740 break; 2741 } 2742 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2743 db_start, db_end, 2744 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2745 2746 reserved_regions = qlist_new(); 2747 qlist_append_str(reserved_regions, resv_prop_str); 2748 qdev_prop_set_array(dev, "reserved-regions", reserved_regions); 2749 g_free(resv_prop_str); 2750 } 2751 } 2752 2753 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2754 DeviceState *dev, Error **errp) 2755 { 2756 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2757 2758 if (vms->platform_bus_dev) { 2759 MachineClass *mc = MACHINE_GET_CLASS(vms); 2760 2761 if (device_is_dynamic_sysbus(mc, dev)) { 2762 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2763 SYS_BUS_DEVICE(dev)); 2764 } 2765 } 2766 2767 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2768 virt_memory_plug(hotplug_dev, dev, errp); 2769 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2770 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2771 } 2772 2773 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2774 PCIDevice *pdev = PCI_DEVICE(dev); 2775 2776 vms->iommu = VIRT_IOMMU_VIRTIO; 2777 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2778 create_virtio_iommu_dt_bindings(vms); 2779 } 2780 } 2781 2782 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2783 DeviceState *dev, Error **errp) 2784 { 2785 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2786 2787 if (!vms->acpi_dev) { 2788 error_setg(errp, 2789 "memory hotplug is not enabled: missing acpi-ged device"); 2790 return; 2791 } 2792 2793 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2794 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 2795 return; 2796 } 2797 2798 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2799 errp); 2800 } 2801 2802 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2803 DeviceState *dev, Error **errp) 2804 { 2805 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2806 Error *local_err = NULL; 2807 2808 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2809 if (local_err) { 2810 goto out; 2811 } 2812 2813 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2814 qdev_unrealize(dev); 2815 2816 out: 2817 error_propagate(errp, local_err); 2818 } 2819 2820 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2821 DeviceState *dev, Error **errp) 2822 { 2823 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2824 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2825 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2826 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), 2827 errp); 2828 } else { 2829 error_setg(errp, "device unplug request for unsupported device" 2830 " type: %s", object_get_typename(OBJECT(dev))); 2831 } 2832 } 2833 2834 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2835 DeviceState *dev, Error **errp) 2836 { 2837 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2838 virt_dimm_unplug(hotplug_dev, dev, errp); 2839 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2840 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2841 } else { 2842 error_setg(errp, "virt: device unplug for unsupported device" 2843 " type: %s", object_get_typename(OBJECT(dev))); 2844 } 2845 } 2846 2847 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2848 DeviceState *dev) 2849 { 2850 MachineClass *mc = MACHINE_GET_CLASS(machine); 2851 2852 if (device_is_dynamic_sysbus(mc, dev) || 2853 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2854 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || 2855 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2856 return HOTPLUG_HANDLER(machine); 2857 } 2858 return NULL; 2859 } 2860 2861 /* 2862 * for arm64 kvm_type [7-0] encodes the requested number of bits 2863 * in the IPA address space 2864 */ 2865 static int virt_kvm_type(MachineState *ms, const char *type_str) 2866 { 2867 VirtMachineState *vms = VIRT_MACHINE(ms); 2868 int max_vm_pa_size, requested_pa_size; 2869 bool fixed_ipa; 2870 2871 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 2872 2873 /* we freeze the memory map to compute the highest gpa */ 2874 virt_set_memmap(vms, max_vm_pa_size); 2875 2876 requested_pa_size = 64 - clz64(vms->highest_gpa); 2877 2878 /* 2879 * KVM requires the IPA size to be at least 32 bits. 2880 */ 2881 if (requested_pa_size < 32) { 2882 requested_pa_size = 32; 2883 } 2884 2885 if (requested_pa_size > max_vm_pa_size) { 2886 error_report("-m and ,maxmem option values " 2887 "require an IPA range (%d bits) larger than " 2888 "the one supported by the host (%d bits)", 2889 requested_pa_size, max_vm_pa_size); 2890 return -1; 2891 } 2892 /* 2893 * We return the requested PA log size, unless KVM only supports 2894 * the implicit legacy 40b IPA setting, in which case the kvm_type 2895 * must be 0. 2896 */ 2897 return fixed_ipa ? 0 : requested_pa_size; 2898 } 2899 2900 static void virt_machine_class_init(ObjectClass *oc, void *data) 2901 { 2902 MachineClass *mc = MACHINE_CLASS(oc); 2903 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2904 static const char * const valid_cpu_types[] = { 2905 #ifdef CONFIG_TCG 2906 ARM_CPU_TYPE_NAME("cortex-a7"), 2907 ARM_CPU_TYPE_NAME("cortex-a15"), 2908 #ifdef TARGET_AARCH64 2909 ARM_CPU_TYPE_NAME("cortex-a35"), 2910 ARM_CPU_TYPE_NAME("cortex-a55"), 2911 ARM_CPU_TYPE_NAME("cortex-a72"), 2912 ARM_CPU_TYPE_NAME("cortex-a76"), 2913 ARM_CPU_TYPE_NAME("cortex-a710"), 2914 ARM_CPU_TYPE_NAME("a64fx"), 2915 ARM_CPU_TYPE_NAME("neoverse-n1"), 2916 ARM_CPU_TYPE_NAME("neoverse-v1"), 2917 ARM_CPU_TYPE_NAME("neoverse-n2"), 2918 #endif /* TARGET_AARCH64 */ 2919 #endif /* CONFIG_TCG */ 2920 #ifdef TARGET_AARCH64 2921 ARM_CPU_TYPE_NAME("cortex-a53"), 2922 ARM_CPU_TYPE_NAME("cortex-a57"), 2923 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 2924 ARM_CPU_TYPE_NAME("host"), 2925 #endif /* CONFIG_KVM || CONFIG_HVF */ 2926 #endif /* TARGET_AARCH64 */ 2927 ARM_CPU_TYPE_NAME("max"), 2928 NULL 2929 }; 2930 2931 mc->init = machvirt_init; 2932 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2933 * The value may be reduced later when we have more information about the 2934 * configuration of the particular instance. 2935 */ 2936 mc->max_cpus = 512; 2937 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2938 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2939 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2940 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2941 #ifdef CONFIG_TPM 2942 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2943 #endif 2944 mc->block_default_type = IF_VIRTIO; 2945 mc->no_cdrom = 1; 2946 mc->pci_allow_0_address = true; 2947 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2948 mc->minimum_page_bits = 12; 2949 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2950 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2951 #ifdef CONFIG_TCG 2952 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2953 #else 2954 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); 2955 #endif 2956 mc->valid_cpu_types = valid_cpu_types; 2957 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2958 mc->kvm_type = virt_kvm_type; 2959 assert(!mc->get_hotplug_handler); 2960 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2961 hc->pre_plug = virt_machine_device_pre_plug_cb; 2962 hc->plug = virt_machine_device_plug_cb; 2963 hc->unplug_request = virt_machine_device_unplug_request_cb; 2964 hc->unplug = virt_machine_device_unplug_cb; 2965 mc->nvdimm_supported = true; 2966 mc->smp_props.clusters_supported = true; 2967 mc->auto_enable_numa_with_memhp = true; 2968 mc->auto_enable_numa_with_memdev = true; 2969 /* platform instead of architectural choice */ 2970 mc->cpu_cluster_has_numa_boundary = true; 2971 mc->default_ram_id = "mach-virt.ram"; 2972 mc->default_nic = "virtio-net-pci"; 2973 2974 object_class_property_add(oc, "acpi", "OnOffAuto", 2975 virt_get_acpi, virt_set_acpi, 2976 NULL, NULL); 2977 object_class_property_set_description(oc, "acpi", 2978 "Enable ACPI"); 2979 object_class_property_add_bool(oc, "secure", virt_get_secure, 2980 virt_set_secure); 2981 object_class_property_set_description(oc, "secure", 2982 "Set on/off to enable/disable the ARM " 2983 "Security Extensions (TrustZone)"); 2984 2985 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 2986 virt_set_virt); 2987 object_class_property_set_description(oc, "virtualization", 2988 "Set on/off to enable/disable emulating a " 2989 "guest CPU which implements the ARM " 2990 "Virtualization Extensions"); 2991 2992 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 2993 virt_set_highmem); 2994 object_class_property_set_description(oc, "highmem", 2995 "Set on/off to enable/disable using " 2996 "physical address space above 32 bits"); 2997 2998 object_class_property_add_bool(oc, "compact-highmem", 2999 virt_get_compact_highmem, 3000 virt_set_compact_highmem); 3001 object_class_property_set_description(oc, "compact-highmem", 3002 "Set on/off to enable/disable compact " 3003 "layout for high memory regions"); 3004 3005 object_class_property_add_bool(oc, "highmem-redists", 3006 virt_get_highmem_redists, 3007 virt_set_highmem_redists); 3008 object_class_property_set_description(oc, "highmem-redists", 3009 "Set on/off to enable/disable high " 3010 "memory region for GICv3 or GICv4 " 3011 "redistributor"); 3012 3013 object_class_property_add_bool(oc, "highmem-ecam", 3014 virt_get_highmem_ecam, 3015 virt_set_highmem_ecam); 3016 object_class_property_set_description(oc, "highmem-ecam", 3017 "Set on/off to enable/disable high " 3018 "memory region for PCI ECAM"); 3019 3020 object_class_property_add_bool(oc, "highmem-mmio", 3021 virt_get_highmem_mmio, 3022 virt_set_highmem_mmio); 3023 object_class_property_set_description(oc, "highmem-mmio", 3024 "Set on/off to enable/disable high " 3025 "memory region for PCI MMIO"); 3026 3027 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 3028 virt_set_gic_version); 3029 object_class_property_set_description(oc, "gic-version", 3030 "Set GIC version. " 3031 "Valid values are 2, 3, 4, host and max"); 3032 3033 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 3034 object_class_property_set_description(oc, "iommu", 3035 "Set the IOMMU type. " 3036 "Valid values are none and smmuv3"); 3037 3038 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 3039 virt_get_default_bus_bypass_iommu, 3040 virt_set_default_bus_bypass_iommu); 3041 object_class_property_set_description(oc, "default-bus-bypass-iommu", 3042 "Set on/off to enable/disable " 3043 "bypass_iommu for default root bus"); 3044 3045 object_class_property_add_bool(oc, "ras", virt_get_ras, 3046 virt_set_ras); 3047 object_class_property_set_description(oc, "ras", 3048 "Set on/off to enable/disable reporting host memory errors " 3049 "to a KVM guest using ACPI and guest external abort exceptions"); 3050 3051 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 3052 object_class_property_set_description(oc, "mte", 3053 "Set on/off to enable/disable emulating a " 3054 "guest CPU which implements the ARM " 3055 "Memory Tagging Extension"); 3056 3057 object_class_property_add_bool(oc, "its", virt_get_its, 3058 virt_set_its); 3059 object_class_property_set_description(oc, "its", 3060 "Set on/off to enable/disable " 3061 "ITS instantiation"); 3062 3063 object_class_property_add_bool(oc, "dtb-randomness", 3064 virt_get_dtb_randomness, 3065 virt_set_dtb_randomness); 3066 object_class_property_set_description(oc, "dtb-randomness", 3067 "Set off to disable passing random or " 3068 "non-deterministic dtb nodes to guest"); 3069 3070 object_class_property_add_bool(oc, "dtb-kaslr-seed", 3071 virt_get_dtb_randomness, 3072 virt_set_dtb_randomness); 3073 object_class_property_set_description(oc, "dtb-kaslr-seed", 3074 "Deprecated synonym of dtb-randomness"); 3075 3076 object_class_property_add_str(oc, "x-oem-id", 3077 virt_get_oem_id, 3078 virt_set_oem_id); 3079 object_class_property_set_description(oc, "x-oem-id", 3080 "Override the default value of field OEMID " 3081 "in ACPI table header." 3082 "The string may be up to 6 bytes in size"); 3083 3084 3085 object_class_property_add_str(oc, "x-oem-table-id", 3086 virt_get_oem_table_id, 3087 virt_set_oem_table_id); 3088 object_class_property_set_description(oc, "x-oem-table-id", 3089 "Override the default value of field OEM Table ID " 3090 "in ACPI table header." 3091 "The string may be up to 8 bytes in size"); 3092 3093 } 3094 3095 static void virt_instance_init(Object *obj) 3096 { 3097 VirtMachineState *vms = VIRT_MACHINE(obj); 3098 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 3099 3100 /* EL3 is disabled by default on virt: this makes us consistent 3101 * between KVM and TCG for this board, and it also allows us to 3102 * boot UEFI blobs which assume no TrustZone support. 3103 */ 3104 vms->secure = false; 3105 3106 /* EL2 is also disabled by default, for similar reasons */ 3107 vms->virt = false; 3108 3109 /* High memory is enabled by default */ 3110 vms->highmem = true; 3111 vms->highmem_compact = !vmc->no_highmem_compact; 3112 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 3113 3114 vms->highmem_ecam = !vmc->no_highmem_ecam; 3115 vms->highmem_mmio = true; 3116 vms->highmem_redists = true; 3117 3118 if (vmc->no_its) { 3119 vms->its = false; 3120 } else { 3121 /* Default allows ITS instantiation */ 3122 vms->its = true; 3123 3124 if (vmc->no_tcg_its) { 3125 vms->tcg_its = false; 3126 } else { 3127 vms->tcg_its = true; 3128 } 3129 } 3130 3131 /* Default disallows iommu instantiation */ 3132 vms->iommu = VIRT_IOMMU_NONE; 3133 3134 /* The default root bus is attached to iommu by default */ 3135 vms->default_bus_bypass_iommu = false; 3136 3137 /* Default disallows RAS instantiation */ 3138 vms->ras = false; 3139 3140 /* MTE is disabled by default. */ 3141 vms->mte = false; 3142 3143 /* Supply kaslr-seed and rng-seed by default */ 3144 vms->dtb_randomness = true; 3145 3146 vms->irqmap = a15irqmap; 3147 3148 virt_flash_create(vms); 3149 3150 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 3151 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 3152 } 3153 3154 static const TypeInfo virt_machine_info = { 3155 .name = TYPE_VIRT_MACHINE, 3156 .parent = TYPE_MACHINE, 3157 .abstract = true, 3158 .instance_size = sizeof(VirtMachineState), 3159 .class_size = sizeof(VirtMachineClass), 3160 .class_init = virt_machine_class_init, 3161 .instance_init = virt_instance_init, 3162 .interfaces = (InterfaceInfo[]) { 3163 { TYPE_HOTPLUG_HANDLER }, 3164 { } 3165 }, 3166 }; 3167 3168 static void machvirt_machine_init(void) 3169 { 3170 type_register_static(&virt_machine_info); 3171 } 3172 type_init(machvirt_machine_init); 3173 3174 static void virt_machine_9_0_options(MachineClass *mc) 3175 { 3176 } 3177 DEFINE_VIRT_MACHINE_AS_LATEST(9, 0) 3178 3179 static void virt_machine_8_2_options(MachineClass *mc) 3180 { 3181 virt_machine_9_0_options(mc); 3182 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 3183 } 3184 DEFINE_VIRT_MACHINE(8, 2) 3185 3186 static void virt_machine_8_1_options(MachineClass *mc) 3187 { 3188 virt_machine_8_2_options(mc); 3189 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 3190 } 3191 DEFINE_VIRT_MACHINE(8, 1) 3192 3193 static void virt_machine_8_0_options(MachineClass *mc) 3194 { 3195 virt_machine_8_1_options(mc); 3196 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 3197 } 3198 DEFINE_VIRT_MACHINE(8, 0) 3199 3200 static void virt_machine_7_2_options(MachineClass *mc) 3201 { 3202 virt_machine_8_0_options(mc); 3203 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 3204 } 3205 DEFINE_VIRT_MACHINE(7, 2) 3206 3207 static void virt_machine_7_1_options(MachineClass *mc) 3208 { 3209 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3210 3211 virt_machine_7_2_options(mc); 3212 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 3213 /* Compact layout for high memory regions was introduced with 7.2 */ 3214 vmc->no_highmem_compact = true; 3215 } 3216 DEFINE_VIRT_MACHINE(7, 1) 3217 3218 static void virt_machine_7_0_options(MachineClass *mc) 3219 { 3220 virt_machine_7_1_options(mc); 3221 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 3222 } 3223 DEFINE_VIRT_MACHINE(7, 0) 3224 3225 static void virt_machine_6_2_options(MachineClass *mc) 3226 { 3227 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3228 3229 virt_machine_7_0_options(mc); 3230 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 3231 vmc->no_tcg_lpa2 = true; 3232 } 3233 DEFINE_VIRT_MACHINE(6, 2) 3234 3235 static void virt_machine_6_1_options(MachineClass *mc) 3236 { 3237 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3238 3239 virt_machine_6_2_options(mc); 3240 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 3241 mc->smp_props.prefer_sockets = true; 3242 vmc->no_cpu_topology = true; 3243 3244 /* qemu ITS was introduced with 6.2 */ 3245 vmc->no_tcg_its = true; 3246 } 3247 DEFINE_VIRT_MACHINE(6, 1) 3248 3249 static void virt_machine_6_0_options(MachineClass *mc) 3250 { 3251 virt_machine_6_1_options(mc); 3252 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 3253 } 3254 DEFINE_VIRT_MACHINE(6, 0) 3255 3256 static void virt_machine_5_2_options(MachineClass *mc) 3257 { 3258 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3259 3260 virt_machine_6_0_options(mc); 3261 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 3262 vmc->no_secure_gpio = true; 3263 } 3264 DEFINE_VIRT_MACHINE(5, 2) 3265 3266 static void virt_machine_5_1_options(MachineClass *mc) 3267 { 3268 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3269 3270 virt_machine_5_2_options(mc); 3271 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 3272 vmc->no_kvm_steal_time = true; 3273 } 3274 DEFINE_VIRT_MACHINE(5, 1) 3275 3276 static void virt_machine_5_0_options(MachineClass *mc) 3277 { 3278 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3279 3280 virt_machine_5_1_options(mc); 3281 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 3282 mc->numa_mem_supported = true; 3283 vmc->acpi_expose_flash = true; 3284 mc->auto_enable_numa_with_memdev = false; 3285 } 3286 DEFINE_VIRT_MACHINE(5, 0) 3287 3288 static void virt_machine_4_2_options(MachineClass *mc) 3289 { 3290 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3291 3292 virt_machine_5_0_options(mc); 3293 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 3294 vmc->kvm_no_adjvtime = true; 3295 } 3296 DEFINE_VIRT_MACHINE(4, 2) 3297 3298 static void virt_machine_4_1_options(MachineClass *mc) 3299 { 3300 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3301 3302 virt_machine_4_2_options(mc); 3303 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 3304 vmc->no_ged = true; 3305 mc->auto_enable_numa_with_memhp = false; 3306 } 3307 DEFINE_VIRT_MACHINE(4, 1) 3308 3309 static void virt_machine_4_0_options(MachineClass *mc) 3310 { 3311 virt_machine_4_1_options(mc); 3312 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 3313 } 3314 DEFINE_VIRT_MACHINE(4, 0) 3315 3316 static void virt_machine_3_1_options(MachineClass *mc) 3317 { 3318 virt_machine_4_0_options(mc); 3319 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 3320 } 3321 DEFINE_VIRT_MACHINE(3, 1) 3322 3323 static void virt_machine_3_0_options(MachineClass *mc) 3324 { 3325 virt_machine_3_1_options(mc); 3326 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 3327 } 3328 DEFINE_VIRT_MACHINE(3, 0) 3329 3330 static void virt_machine_2_12_options(MachineClass *mc) 3331 { 3332 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3333 3334 virt_machine_3_0_options(mc); 3335 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 3336 vmc->no_highmem_ecam = true; 3337 mc->max_cpus = 255; 3338 } 3339 DEFINE_VIRT_MACHINE(2, 12) 3340 3341 static void virt_machine_2_11_options(MachineClass *mc) 3342 { 3343 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3344 3345 virt_machine_2_12_options(mc); 3346 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 3347 vmc->smbios_old_sys_ver = true; 3348 } 3349 DEFINE_VIRT_MACHINE(2, 11) 3350 3351 static void virt_machine_2_10_options(MachineClass *mc) 3352 { 3353 virt_machine_2_11_options(mc); 3354 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 3355 /* before 2.11 we never faulted accesses to bad addresses */ 3356 mc->ignore_memory_transaction_failures = true; 3357 } 3358 DEFINE_VIRT_MACHINE(2, 10) 3359 3360 static void virt_machine_2_9_options(MachineClass *mc) 3361 { 3362 virt_machine_2_10_options(mc); 3363 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 3364 } 3365 DEFINE_VIRT_MACHINE(2, 9) 3366 3367 static void virt_machine_2_8_options(MachineClass *mc) 3368 { 3369 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3370 3371 virt_machine_2_9_options(mc); 3372 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 3373 /* For 2.8 and earlier we falsely claimed in the DT that 3374 * our timers were edge-triggered, not level-triggered. 3375 */ 3376 vmc->claim_edge_triggered_timers = true; 3377 } 3378 DEFINE_VIRT_MACHINE(2, 8) 3379 3380 static void virt_machine_2_7_options(MachineClass *mc) 3381 { 3382 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3383 3384 virt_machine_2_8_options(mc); 3385 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 3386 /* ITS was introduced with 2.8 */ 3387 vmc->no_its = true; 3388 /* Stick with 1K pages for migration compatibility */ 3389 mc->minimum_page_bits = 0; 3390 } 3391 DEFINE_VIRT_MACHINE(2, 7) 3392 3393 static void virt_machine_2_6_options(MachineClass *mc) 3394 { 3395 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3396 3397 virt_machine_2_7_options(mc); 3398 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 3399 vmc->disallow_affinity_adjustment = true; 3400 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 3401 vmc->no_pmu = true; 3402 } 3403 DEFINE_VIRT_MACHINE(2, 6) 3404