xref: /openbmc/qemu/hw/arm/virt.c (revision effd60c8)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/internals.h"
77 #include "hw/mem/pc-dimm.h"
78 #include "hw/mem/nvdimm.h"
79 #include "hw/acpi/generic_event_device.h"
80 #include "hw/virtio/virtio-md-pci.h"
81 #include "hw/virtio/virtio-iommu.h"
82 #include "hw/char/pl011.h"
83 #include "qemu/guest-random.h"
84 
85 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
86     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
87                                                     void *data) \
88     { \
89         MachineClass *mc = MACHINE_CLASS(oc); \
90         virt_machine_##major##_##minor##_options(mc); \
91         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
92         if (latest) { \
93             mc->alias = "virt"; \
94         } \
95     } \
96     static const TypeInfo machvirt_##major##_##minor##_info = { \
97         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
98         .parent = TYPE_VIRT_MACHINE, \
99         .class_init = virt_##major##_##minor##_class_init, \
100     }; \
101     static void machvirt_machine_##major##_##minor##_init(void) \
102     { \
103         type_register_static(&machvirt_##major##_##minor##_info); \
104     } \
105     type_init(machvirt_machine_##major##_##minor##_init);
106 
107 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
108     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
109 #define DEFINE_VIRT_MACHINE(major, minor) \
110     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
111 
112 
113 /* Number of external interrupt lines to configure the GIC with */
114 #define NUM_IRQS 256
115 
116 #define PLATFORM_BUS_NUM_IRQS 64
117 
118 /* Legacy RAM limit in GB (< version 4.0) */
119 #define LEGACY_RAMLIMIT_GB 255
120 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
121 
122 /* Addresses and sizes of our components.
123  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
124  * 128MB..256MB is used for miscellaneous device I/O.
125  * 256MB..1GB is reserved for possible future PCI support (ie where the
126  * PCI memory window will go if we add a PCI host controller).
127  * 1GB and up is RAM (which may happily spill over into the
128  * high memory region beyond 4GB).
129  * This represents a compromise between how much RAM can be given to
130  * a 32 bit VM and leaving space for expansion and in particular for PCI.
131  * Note that devices should generally be placed at multiples of 0x10000,
132  * to accommodate guests using 64K pages.
133  */
134 static const MemMapEntry base_memmap[] = {
135     /* Space up to 0x8000000 is reserved for a boot ROM */
136     [VIRT_FLASH] =              {          0, 0x08000000 },
137     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
138     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
139     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
140     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
141     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
142     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
143     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
144     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
145     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
146     /* This redistributor space allows up to 2*64kB*123 CPUs */
147     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
148     [VIRT_UART] =               { 0x09000000, 0x00001000 },
149     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
150     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
151     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
152     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
153     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
154     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
155     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
156     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
157     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
158     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
159     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
160     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
161     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
162     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
163     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
164     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
165     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
166     /* Actual RAM size depends on initial RAM and device memory settings */
167     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
168 };
169 
170 /*
171  * Highmem IO Regions: This memory map is floating, located after the RAM.
172  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
173  * top of the RAM, so that its base get the same alignment as the size,
174  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
175  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
176  * Note the extended_memmap is sized so that it eventually also includes the
177  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
178  * index of base_memmap).
179  *
180  * The memory map for these Highmem IO Regions can be in legacy or compact
181  * layout, depending on 'compact-highmem' property. With legacy layout, the
182  * PA space for one specific region is always reserved, even if the region
183  * has been disabled or doesn't fit into the PA space. However, the PA space
184  * for the region won't be reserved in these circumstances with compact layout.
185  */
186 static MemMapEntry extended_memmap[] = {
187     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
188     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
189     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
190     /* Second PCIe window */
191     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
192 };
193 
194 static const int a15irqmap[] = {
195     [VIRT_UART] = 1,
196     [VIRT_RTC] = 2,
197     [VIRT_PCIE] = 3, /* ... to 6 */
198     [VIRT_GPIO] = 7,
199     [VIRT_SECURE_UART] = 8,
200     [VIRT_ACPI_GED] = 9,
201     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
202     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
203     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
204     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
205 };
206 
207 static void create_randomness(MachineState *ms, const char *node)
208 {
209     struct {
210         uint64_t kaslr;
211         uint8_t rng[32];
212     } seed;
213 
214     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
215         return;
216     }
217     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
218     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
219 }
220 
221 static void create_fdt(VirtMachineState *vms)
222 {
223     MachineState *ms = MACHINE(vms);
224     int nb_numa_nodes = ms->numa_state->num_nodes;
225     void *fdt = create_device_tree(&vms->fdt_size);
226 
227     if (!fdt) {
228         error_report("create_device_tree() failed");
229         exit(1);
230     }
231 
232     ms->fdt = fdt;
233 
234     /* Header */
235     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
236     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
237     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
238     qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
239 
240     /* /chosen must exist for load_dtb to fill in necessary properties later */
241     qemu_fdt_add_subnode(fdt, "/chosen");
242     if (vms->dtb_randomness) {
243         create_randomness(ms, "/chosen");
244     }
245 
246     if (vms->secure) {
247         qemu_fdt_add_subnode(fdt, "/secure-chosen");
248         if (vms->dtb_randomness) {
249             create_randomness(ms, "/secure-chosen");
250         }
251     }
252 
253     /* Clock node, for the benefit of the UART. The kernel device tree
254      * binding documentation claims the PL011 node clock properties are
255      * optional but in practice if you omit them the kernel refuses to
256      * probe for the device.
257      */
258     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
259     qemu_fdt_add_subnode(fdt, "/apb-pclk");
260     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
261     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
262     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
263     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
264                                 "clk24mhz");
265     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
266 
267     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
268         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
269         uint32_t *matrix = g_malloc0(size);
270         int idx, i, j;
271 
272         for (i = 0; i < nb_numa_nodes; i++) {
273             for (j = 0; j < nb_numa_nodes; j++) {
274                 idx = (i * nb_numa_nodes + j) * 3;
275                 matrix[idx + 0] = cpu_to_be32(i);
276                 matrix[idx + 1] = cpu_to_be32(j);
277                 matrix[idx + 2] =
278                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
279             }
280         }
281 
282         qemu_fdt_add_subnode(fdt, "/distance-map");
283         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
284                                 "numa-distance-map-v1");
285         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
286                          matrix, size);
287         g_free(matrix);
288     }
289 }
290 
291 static void fdt_add_timer_nodes(const VirtMachineState *vms)
292 {
293     /* On real hardware these interrupts are level-triggered.
294      * On KVM they were edge-triggered before host kernel version 4.4,
295      * and level-triggered afterwards.
296      * On emulated QEMU they are level-triggered.
297      *
298      * Getting the DTB info about them wrong is awkward for some
299      * guest kernels:
300      *  pre-4.8 ignore the DT and leave the interrupt configured
301      *   with whatever the GIC reset value (or the bootloader) left it at
302      *  4.8 before rc6 honour the incorrect data by programming it back
303      *   into the GIC, causing problems
304      *  4.8rc6 and later ignore the DT and always write "level triggered"
305      *   into the GIC
306      *
307      * For backwards-compatibility, virt-2.8 and earlier will continue
308      * to say these are edge-triggered, but later machines will report
309      * the correct information.
310      */
311     ARMCPU *armcpu;
312     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
313     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
314     MachineState *ms = MACHINE(vms);
315 
316     if (vmc->claim_edge_triggered_timers) {
317         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
318     }
319 
320     if (vms->gic_version == VIRT_GIC_VERSION_2) {
321         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
322                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
323                              (1 << MACHINE(vms)->smp.cpus) - 1);
324     }
325 
326     qemu_fdt_add_subnode(ms->fdt, "/timer");
327 
328     armcpu = ARM_CPU(qemu_get_cpu(0));
329     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
330         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
331         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
332                          compat, sizeof(compat));
333     } else {
334         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
335                                 "arm,armv7-timer");
336     }
337     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
338     qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
339                            GIC_FDT_IRQ_TYPE_PPI,
340                            INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
341                            GIC_FDT_IRQ_TYPE_PPI,
342                            INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
343                            GIC_FDT_IRQ_TYPE_PPI,
344                            INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
345                            GIC_FDT_IRQ_TYPE_PPI,
346                            INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
347 }
348 
349 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
350 {
351     int cpu;
352     int addr_cells = 1;
353     const MachineState *ms = MACHINE(vms);
354     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
355     int smp_cpus = ms->smp.cpus;
356 
357     /*
358      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
359      * On ARM v8 64-bit systems value should be set to 2,
360      * that corresponds to the MPIDR_EL1 register size.
361      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
362      * in the system, #address-cells can be set to 1, since
363      * MPIDR_EL1[63:32] bits are not used for CPUs
364      * identification.
365      *
366      * Here we actually don't know whether our system is 32- or 64-bit one.
367      * The simplest way to go is to examine affinity IDs of all our CPUs. If
368      * at least one of them has Aff3 populated, we set #address-cells to 2.
369      */
370     for (cpu = 0; cpu < smp_cpus; cpu++) {
371         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
372 
373         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
374             addr_cells = 2;
375             break;
376         }
377     }
378 
379     qemu_fdt_add_subnode(ms->fdt, "/cpus");
380     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
381     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
382 
383     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
384         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
385         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
386         CPUState *cs = CPU(armcpu);
387 
388         qemu_fdt_add_subnode(ms->fdt, nodename);
389         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
390         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
391                                     armcpu->dtb_compatible);
392 
393         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
394             qemu_fdt_setprop_string(ms->fdt, nodename,
395                                         "enable-method", "psci");
396         }
397 
398         if (addr_cells == 2) {
399             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
400                                  armcpu->mp_affinity);
401         } else {
402             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
403                                   armcpu->mp_affinity);
404         }
405 
406         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
407             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
408                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
409         }
410 
411         if (!vmc->no_cpu_topology) {
412             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
413                                   qemu_fdt_alloc_phandle(ms->fdt));
414         }
415 
416         g_free(nodename);
417     }
418 
419     if (!vmc->no_cpu_topology) {
420         /*
421          * Add vCPU topology description through fdt node cpu-map.
422          *
423          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
424          * In a SMP system, the hierarchy of CPUs can be defined through
425          * four entities that are used to describe the layout of CPUs in
426          * the system: socket/cluster/core/thread.
427          *
428          * A socket node represents the boundary of system physical package
429          * and its child nodes must be one or more cluster nodes. A system
430          * can contain several layers of clustering within a single physical
431          * package and cluster nodes can be contained in parent cluster nodes.
432          *
433          * Note: currently we only support one layer of clustering within
434          * each physical package.
435          */
436         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
437 
438         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
439             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
440             char *map_path;
441 
442             if (ms->smp.threads > 1) {
443                 map_path = g_strdup_printf(
444                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
445                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
446                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
447                     (cpu / ms->smp.threads) % ms->smp.cores,
448                     cpu % ms->smp.threads);
449             } else {
450                 map_path = g_strdup_printf(
451                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
452                     cpu / (ms->smp.clusters * ms->smp.cores),
453                     (cpu / ms->smp.cores) % ms->smp.clusters,
454                     cpu % ms->smp.cores);
455             }
456             qemu_fdt_add_path(ms->fdt, map_path);
457             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
458 
459             g_free(map_path);
460             g_free(cpu_path);
461         }
462     }
463 }
464 
465 static void fdt_add_its_gic_node(VirtMachineState *vms)
466 {
467     char *nodename;
468     MachineState *ms = MACHINE(vms);
469 
470     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
471     nodename = g_strdup_printf("/intc/its@%" PRIx64,
472                                vms->memmap[VIRT_GIC_ITS].base);
473     qemu_fdt_add_subnode(ms->fdt, nodename);
474     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
475                             "arm,gic-v3-its");
476     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
477     qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
478     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
479                                  2, vms->memmap[VIRT_GIC_ITS].base,
480                                  2, vms->memmap[VIRT_GIC_ITS].size);
481     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
482     g_free(nodename);
483 }
484 
485 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
486 {
487     MachineState *ms = MACHINE(vms);
488     char *nodename;
489 
490     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
491                                vms->memmap[VIRT_GIC_V2M].base);
492     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
493     qemu_fdt_add_subnode(ms->fdt, nodename);
494     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
495                             "arm,gic-v2m-frame");
496     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
497     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
498                                  2, vms->memmap[VIRT_GIC_V2M].base,
499                                  2, vms->memmap[VIRT_GIC_V2M].size);
500     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
501     g_free(nodename);
502 }
503 
504 static void fdt_add_gic_node(VirtMachineState *vms)
505 {
506     MachineState *ms = MACHINE(vms);
507     char *nodename;
508 
509     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
510     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
511 
512     nodename = g_strdup_printf("/intc@%" PRIx64,
513                                vms->memmap[VIRT_GIC_DIST].base);
514     qemu_fdt_add_subnode(ms->fdt, nodename);
515     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
516     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
517     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
518     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
519     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
520     if (vms->gic_version != VIRT_GIC_VERSION_2) {
521         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
522 
523         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
524                                 "arm,gic-v3");
525 
526         qemu_fdt_setprop_cell(ms->fdt, nodename,
527                               "#redistributor-regions", nb_redist_regions);
528 
529         if (nb_redist_regions == 1) {
530             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
531                                          2, vms->memmap[VIRT_GIC_DIST].base,
532                                          2, vms->memmap[VIRT_GIC_DIST].size,
533                                          2, vms->memmap[VIRT_GIC_REDIST].base,
534                                          2, vms->memmap[VIRT_GIC_REDIST].size);
535         } else {
536             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
537                                  2, vms->memmap[VIRT_GIC_DIST].base,
538                                  2, vms->memmap[VIRT_GIC_DIST].size,
539                                  2, vms->memmap[VIRT_GIC_REDIST].base,
540                                  2, vms->memmap[VIRT_GIC_REDIST].size,
541                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
542                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
543         }
544 
545         if (vms->virt) {
546             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
547                                    GIC_FDT_IRQ_TYPE_PPI,
548                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
549                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
550         }
551     } else {
552         /* 'cortex-a15-gic' means 'GIC v2' */
553         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
554                                 "arm,cortex-a15-gic");
555         if (!vms->virt) {
556             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
557                                          2, vms->memmap[VIRT_GIC_DIST].base,
558                                          2, vms->memmap[VIRT_GIC_DIST].size,
559                                          2, vms->memmap[VIRT_GIC_CPU].base,
560                                          2, vms->memmap[VIRT_GIC_CPU].size);
561         } else {
562             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
563                                          2, vms->memmap[VIRT_GIC_DIST].base,
564                                          2, vms->memmap[VIRT_GIC_DIST].size,
565                                          2, vms->memmap[VIRT_GIC_CPU].base,
566                                          2, vms->memmap[VIRT_GIC_CPU].size,
567                                          2, vms->memmap[VIRT_GIC_HYP].base,
568                                          2, vms->memmap[VIRT_GIC_HYP].size,
569                                          2, vms->memmap[VIRT_GIC_VCPU].base,
570                                          2, vms->memmap[VIRT_GIC_VCPU].size);
571             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
572                                    GIC_FDT_IRQ_TYPE_PPI,
573                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
574                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
575         }
576     }
577 
578     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
579     g_free(nodename);
580 }
581 
582 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
583 {
584     ARMCPU *armcpu = ARM_CPU(first_cpu);
585     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
586     MachineState *ms = MACHINE(vms);
587 
588     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
589         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
590         return;
591     }
592 
593     if (vms->gic_version == VIRT_GIC_VERSION_2) {
594         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
595                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
596                              (1 << MACHINE(vms)->smp.cpus) - 1);
597     }
598 
599     qemu_fdt_add_subnode(ms->fdt, "/pmu");
600     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
601         const char compat[] = "arm,armv8-pmuv3";
602         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
603                          compat, sizeof(compat));
604         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
605                                GIC_FDT_IRQ_TYPE_PPI,
606                                INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
607     }
608 }
609 
610 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
611 {
612     DeviceState *dev;
613     MachineState *ms = MACHINE(vms);
614     int irq = vms->irqmap[VIRT_ACPI_GED];
615     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
616 
617     if (ms->ram_slots) {
618         event |= ACPI_GED_MEM_HOTPLUG_EVT;
619     }
620 
621     if (ms->nvdimms_state->is_enabled) {
622         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
623     }
624 
625     dev = qdev_new(TYPE_ACPI_GED);
626     qdev_prop_set_uint32(dev, "ged-event", event);
627     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
628 
629     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
630     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
631     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
632 
633     return dev;
634 }
635 
636 static void create_its(VirtMachineState *vms)
637 {
638     const char *itsclass = its_class_name();
639     DeviceState *dev;
640 
641     if (!strcmp(itsclass, "arm-gicv3-its")) {
642         if (!vms->tcg_its) {
643             itsclass = NULL;
644         }
645     }
646 
647     if (!itsclass) {
648         /* Do nothing if not supported */
649         return;
650     }
651 
652     dev = qdev_new(itsclass);
653 
654     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
655                              &error_abort);
656     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
657     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
658 
659     fdt_add_its_gic_node(vms);
660     vms->msi_controller = VIRT_MSI_CTRL_ITS;
661 }
662 
663 static void create_v2m(VirtMachineState *vms)
664 {
665     int i;
666     int irq = vms->irqmap[VIRT_GIC_V2M];
667     DeviceState *dev;
668 
669     dev = qdev_new("arm-gicv2m");
670     qdev_prop_set_uint32(dev, "base-spi", irq);
671     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
672     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
673     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
674 
675     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
676         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
677                            qdev_get_gpio_in(vms->gic, irq + i));
678     }
679 
680     fdt_add_v2m_gic_node(vms);
681     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
682 }
683 
684 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
685 {
686     MachineState *ms = MACHINE(vms);
687     /* We create a standalone GIC */
688     SysBusDevice *gicbusdev;
689     const char *gictype;
690     int i;
691     unsigned int smp_cpus = ms->smp.cpus;
692     uint32_t nb_redist_regions = 0;
693     int revision;
694 
695     if (vms->gic_version == VIRT_GIC_VERSION_2) {
696         gictype = gic_class_name();
697     } else {
698         gictype = gicv3_class_name();
699     }
700 
701     switch (vms->gic_version) {
702     case VIRT_GIC_VERSION_2:
703         revision = 2;
704         break;
705     case VIRT_GIC_VERSION_3:
706         revision = 3;
707         break;
708     case VIRT_GIC_VERSION_4:
709         revision = 4;
710         break;
711     default:
712         g_assert_not_reached();
713     }
714     vms->gic = qdev_new(gictype);
715     qdev_prop_set_uint32(vms->gic, "revision", revision);
716     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
717     /* Note that the num-irq property counts both internal and external
718      * interrupts; there are always 32 of the former (mandated by GIC spec).
719      */
720     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
721     if (!kvm_irqchip_in_kernel()) {
722         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
723     }
724 
725     if (vms->gic_version != VIRT_GIC_VERSION_2) {
726         QList *redist_region_count;
727         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
728         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
729 
730         nb_redist_regions = virt_gicv3_redist_region_count(vms);
731 
732         redist_region_count = qlist_new();
733         qlist_append_int(redist_region_count, redist0_count);
734         if (nb_redist_regions == 2) {
735             uint32_t redist1_capacity =
736                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
737 
738             qlist_append_int(redist_region_count,
739                 MIN(smp_cpus - redist0_count, redist1_capacity));
740         }
741         qdev_prop_set_array(vms->gic, "redist-region-count",
742                             redist_region_count);
743 
744         if (!kvm_irqchip_in_kernel()) {
745             if (vms->tcg_its) {
746                 object_property_set_link(OBJECT(vms->gic), "sysmem",
747                                          OBJECT(mem), &error_fatal);
748                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
749             }
750         }
751     } else {
752         if (!kvm_irqchip_in_kernel()) {
753             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
754                               vms->virt);
755         }
756     }
757     gicbusdev = SYS_BUS_DEVICE(vms->gic);
758     sysbus_realize_and_unref(gicbusdev, &error_fatal);
759     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
760     if (vms->gic_version != VIRT_GIC_VERSION_2) {
761         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
762         if (nb_redist_regions == 2) {
763             sysbus_mmio_map(gicbusdev, 2,
764                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
765         }
766     } else {
767         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
768         if (vms->virt) {
769             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
770             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
771         }
772     }
773 
774     /* Wire the outputs from each CPU's generic timer and the GICv3
775      * maintenance interrupt signal to the appropriate GIC PPI inputs,
776      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
777      */
778     for (i = 0; i < smp_cpus; i++) {
779         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
780         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
781         /* Mapping from the output timer irq lines from the CPU to the
782          * GIC PPI inputs we use for the virt board.
783          */
784         const int timer_irq[] = {
785             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
786             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
787             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
788             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
789         };
790 
791         for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
792             qdev_connect_gpio_out(cpudev, irq,
793                                   qdev_get_gpio_in(vms->gic,
794                                                    intidbase + timer_irq[irq]));
795         }
796 
797         if (vms->gic_version != VIRT_GIC_VERSION_2) {
798             qemu_irq irq = qdev_get_gpio_in(vms->gic,
799                                             intidbase + ARCH_GIC_MAINT_IRQ);
800             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
801                                         0, irq);
802         } else if (vms->virt) {
803             qemu_irq irq = qdev_get_gpio_in(vms->gic,
804                                             intidbase + ARCH_GIC_MAINT_IRQ);
805             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
806         }
807 
808         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
809                                     qdev_get_gpio_in(vms->gic, intidbase
810                                                      + VIRTUAL_PMU_IRQ));
811 
812         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
813         sysbus_connect_irq(gicbusdev, i + smp_cpus,
814                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
815         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
816                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
817         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
818                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
819     }
820 
821     fdt_add_gic_node(vms);
822 
823     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
824         create_its(vms);
825     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
826         create_v2m(vms);
827     }
828 }
829 
830 static void create_uart(const VirtMachineState *vms, int uart,
831                         MemoryRegion *mem, Chardev *chr)
832 {
833     char *nodename;
834     hwaddr base = vms->memmap[uart].base;
835     hwaddr size = vms->memmap[uart].size;
836     int irq = vms->irqmap[uart];
837     const char compat[] = "arm,pl011\0arm,primecell";
838     const char clocknames[] = "uartclk\0apb_pclk";
839     DeviceState *dev = qdev_new(TYPE_PL011);
840     SysBusDevice *s = SYS_BUS_DEVICE(dev);
841     MachineState *ms = MACHINE(vms);
842 
843     qdev_prop_set_chr(dev, "chardev", chr);
844     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
845     memory_region_add_subregion(mem, base,
846                                 sysbus_mmio_get_region(s, 0));
847     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
848 
849     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
850     qemu_fdt_add_subnode(ms->fdt, nodename);
851     /* Note that we can't use setprop_string because of the embedded NUL */
852     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
853                          compat, sizeof(compat));
854     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
855                                      2, base, 2, size);
856     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
857                                GIC_FDT_IRQ_TYPE_SPI, irq,
858                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
859     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
860                                vms->clock_phandle, vms->clock_phandle);
861     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
862                          clocknames, sizeof(clocknames));
863 
864     if (uart == VIRT_UART) {
865         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
866     } else {
867         /* Mark as not usable by the normal world */
868         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
869         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
870 
871         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
872                                 nodename);
873     }
874 
875     g_free(nodename);
876 }
877 
878 static void create_rtc(const VirtMachineState *vms)
879 {
880     char *nodename;
881     hwaddr base = vms->memmap[VIRT_RTC].base;
882     hwaddr size = vms->memmap[VIRT_RTC].size;
883     int irq = vms->irqmap[VIRT_RTC];
884     const char compat[] = "arm,pl031\0arm,primecell";
885     MachineState *ms = MACHINE(vms);
886 
887     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
888 
889     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
890     qemu_fdt_add_subnode(ms->fdt, nodename);
891     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
892     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
893                                  2, base, 2, size);
894     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
895                            GIC_FDT_IRQ_TYPE_SPI, irq,
896                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
897     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
898     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
899     g_free(nodename);
900 }
901 
902 static DeviceState *gpio_key_dev;
903 static void virt_powerdown_req(Notifier *n, void *opaque)
904 {
905     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
906 
907     if (s->acpi_dev) {
908         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
909     } else {
910         /* use gpio Pin 3 for power button event */
911         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
912     }
913 }
914 
915 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
916                              uint32_t phandle)
917 {
918     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
919                                         qdev_get_gpio_in(pl061_dev, 3));
920 
921     qemu_fdt_add_subnode(fdt, "/gpio-keys");
922     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
923 
924     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
925     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
926                             "label", "GPIO Key Poweroff");
927     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
928                           KEY_POWER);
929     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
930                            "gpios", phandle, 3, 0);
931 }
932 
933 #define SECURE_GPIO_POWEROFF 0
934 #define SECURE_GPIO_RESET    1
935 
936 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
937                                    uint32_t phandle)
938 {
939     DeviceState *gpio_pwr_dev;
940 
941     /* gpio-pwr */
942     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
943 
944     /* connect secure pl061 to gpio-pwr */
945     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
946                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
947     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
948                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
949 
950     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
951     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
952                             "gpio-poweroff");
953     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
954                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
955     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
956     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
957                             "okay");
958 
959     qemu_fdt_add_subnode(fdt, "/gpio-restart");
960     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
961                             "gpio-restart");
962     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
963                            "gpios", phandle, SECURE_GPIO_RESET, 0);
964     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
965     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
966                             "okay");
967 }
968 
969 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
970                                 MemoryRegion *mem)
971 {
972     char *nodename;
973     DeviceState *pl061_dev;
974     hwaddr base = vms->memmap[gpio].base;
975     hwaddr size = vms->memmap[gpio].size;
976     int irq = vms->irqmap[gpio];
977     const char compat[] = "arm,pl061\0arm,primecell";
978     SysBusDevice *s;
979     MachineState *ms = MACHINE(vms);
980 
981     pl061_dev = qdev_new("pl061");
982     /* Pull lines down to 0 if not driven by the PL061 */
983     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
984     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
985     s = SYS_BUS_DEVICE(pl061_dev);
986     sysbus_realize_and_unref(s, &error_fatal);
987     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
988     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
989 
990     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
991     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
992     qemu_fdt_add_subnode(ms->fdt, nodename);
993     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
994                                  2, base, 2, size);
995     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
996     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
997     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
998     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
999                            GIC_FDT_IRQ_TYPE_SPI, irq,
1000                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1001     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1002     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1003     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1004 
1005     if (gpio != VIRT_GPIO) {
1006         /* Mark as not usable by the normal world */
1007         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1008         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1009     }
1010     g_free(nodename);
1011 
1012     /* Child gpio devices */
1013     if (gpio == VIRT_GPIO) {
1014         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1015     } else {
1016         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1017     }
1018 }
1019 
1020 static void create_virtio_devices(const VirtMachineState *vms)
1021 {
1022     int i;
1023     hwaddr size = vms->memmap[VIRT_MMIO].size;
1024     MachineState *ms = MACHINE(vms);
1025 
1026     /* We create the transports in forwards order. Since qbus_realize()
1027      * prepends (not appends) new child buses, the incrementing loop below will
1028      * create a list of virtio-mmio buses with decreasing base addresses.
1029      *
1030      * When a -device option is processed from the command line,
1031      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1032      * order. The upshot is that -device options in increasing command line
1033      * order are mapped to virtio-mmio buses with decreasing base addresses.
1034      *
1035      * When this code was originally written, that arrangement ensured that the
1036      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1037      * the first -device on the command line. (The end-to-end order is a
1038      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1039      * guest kernel's name-to-address assignment strategy.)
1040      *
1041      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1042      * the message, if not necessarily the code, of commit 70161ff336.
1043      * Therefore the loop now establishes the inverse of the original intent.
1044      *
1045      * Unfortunately, we can't counteract the kernel change by reversing the
1046      * loop; it would break existing command lines.
1047      *
1048      * In any case, the kernel makes no guarantee about the stability of
1049      * enumeration order of virtio devices (as demonstrated by it changing
1050      * between kernel versions). For reliable and stable identification
1051      * of disks users must use UUIDs or similar mechanisms.
1052      */
1053     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1054         int irq = vms->irqmap[VIRT_MMIO] + i;
1055         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1056 
1057         sysbus_create_simple("virtio-mmio", base,
1058                              qdev_get_gpio_in(vms->gic, irq));
1059     }
1060 
1061     /* We add dtb nodes in reverse order so that they appear in the finished
1062      * device tree lowest address first.
1063      *
1064      * Note that this mapping is independent of the loop above. The previous
1065      * loop influences virtio device to virtio transport assignment, whereas
1066      * this loop controls how virtio transports are laid out in the dtb.
1067      */
1068     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1069         char *nodename;
1070         int irq = vms->irqmap[VIRT_MMIO] + i;
1071         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1072 
1073         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1074         qemu_fdt_add_subnode(ms->fdt, nodename);
1075         qemu_fdt_setprop_string(ms->fdt, nodename,
1076                                 "compatible", "virtio,mmio");
1077         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1078                                      2, base, 2, size);
1079         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1080                                GIC_FDT_IRQ_TYPE_SPI, irq,
1081                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1082         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1083         g_free(nodename);
1084     }
1085 }
1086 
1087 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1088 
1089 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1090                                         const char *name,
1091                                         const char *alias_prop_name)
1092 {
1093     /*
1094      * Create a single flash device.  We use the same parameters as
1095      * the flash devices on the Versatile Express board.
1096      */
1097     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1098 
1099     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1100     qdev_prop_set_uint8(dev, "width", 4);
1101     qdev_prop_set_uint8(dev, "device-width", 2);
1102     qdev_prop_set_bit(dev, "big-endian", false);
1103     qdev_prop_set_uint16(dev, "id0", 0x89);
1104     qdev_prop_set_uint16(dev, "id1", 0x18);
1105     qdev_prop_set_uint16(dev, "id2", 0x00);
1106     qdev_prop_set_uint16(dev, "id3", 0x00);
1107     qdev_prop_set_string(dev, "name", name);
1108     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1109     object_property_add_alias(OBJECT(vms), alias_prop_name,
1110                               OBJECT(dev), "drive");
1111     return PFLASH_CFI01(dev);
1112 }
1113 
1114 static void virt_flash_create(VirtMachineState *vms)
1115 {
1116     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1117     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1118 }
1119 
1120 static void virt_flash_map1(PFlashCFI01 *flash,
1121                             hwaddr base, hwaddr size,
1122                             MemoryRegion *sysmem)
1123 {
1124     DeviceState *dev = DEVICE(flash);
1125 
1126     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1127     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1128     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1129     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1130 
1131     memory_region_add_subregion(sysmem, base,
1132                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1133                                                        0));
1134 }
1135 
1136 static void virt_flash_map(VirtMachineState *vms,
1137                            MemoryRegion *sysmem,
1138                            MemoryRegion *secure_sysmem)
1139 {
1140     /*
1141      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1142      * sysmem is the system memory space. secure_sysmem is the secure view
1143      * of the system, and the first flash device should be made visible only
1144      * there. The second flash device is visible to both secure and nonsecure.
1145      * If sysmem == secure_sysmem this means there is no separate Secure
1146      * address space and both flash devices are generally visible.
1147      */
1148     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1149     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1150 
1151     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1152                     secure_sysmem);
1153     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1154                     sysmem);
1155 }
1156 
1157 static void virt_flash_fdt(VirtMachineState *vms,
1158                            MemoryRegion *sysmem,
1159                            MemoryRegion *secure_sysmem)
1160 {
1161     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1162     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1163     MachineState *ms = MACHINE(vms);
1164     char *nodename;
1165 
1166     if (sysmem == secure_sysmem) {
1167         /* Report both flash devices as a single node in the DT */
1168         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1169         qemu_fdt_add_subnode(ms->fdt, nodename);
1170         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1171         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1172                                      2, flashbase, 2, flashsize,
1173                                      2, flashbase + flashsize, 2, flashsize);
1174         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1175         g_free(nodename);
1176     } else {
1177         /*
1178          * Report the devices as separate nodes so we can mark one as
1179          * only visible to the secure world.
1180          */
1181         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1182         qemu_fdt_add_subnode(ms->fdt, nodename);
1183         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1184         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1185                                      2, flashbase, 2, flashsize);
1186         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1187         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1188         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1189         g_free(nodename);
1190 
1191         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1192         qemu_fdt_add_subnode(ms->fdt, nodename);
1193         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1194         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1195                                      2, flashbase + flashsize, 2, flashsize);
1196         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1197         g_free(nodename);
1198     }
1199 }
1200 
1201 static bool virt_firmware_init(VirtMachineState *vms,
1202                                MemoryRegion *sysmem,
1203                                MemoryRegion *secure_sysmem)
1204 {
1205     int i;
1206     const char *bios_name;
1207     BlockBackend *pflash_blk0;
1208 
1209     /* Map legacy -drive if=pflash to machine properties */
1210     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1211         pflash_cfi01_legacy_drive(vms->flash[i],
1212                                   drive_get(IF_PFLASH, 0, i));
1213     }
1214 
1215     virt_flash_map(vms, sysmem, secure_sysmem);
1216 
1217     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1218 
1219     bios_name = MACHINE(vms)->firmware;
1220     if (bios_name) {
1221         char *fname;
1222         MemoryRegion *mr;
1223         int image_size;
1224 
1225         if (pflash_blk0) {
1226             error_report("The contents of the first flash device may be "
1227                          "specified with -bios or with -drive if=pflash... "
1228                          "but you cannot use both options at once");
1229             exit(1);
1230         }
1231 
1232         /* Fall back to -bios */
1233 
1234         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1235         if (!fname) {
1236             error_report("Could not find ROM image '%s'", bios_name);
1237             exit(1);
1238         }
1239         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1240         image_size = load_image_mr(fname, mr);
1241         g_free(fname);
1242         if (image_size < 0) {
1243             error_report("Could not load ROM image '%s'", bios_name);
1244             exit(1);
1245         }
1246     }
1247 
1248     return pflash_blk0 || bios_name;
1249 }
1250 
1251 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1252 {
1253     MachineState *ms = MACHINE(vms);
1254     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1255     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1256     FWCfgState *fw_cfg;
1257     char *nodename;
1258 
1259     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1260     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1261 
1262     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1263     qemu_fdt_add_subnode(ms->fdt, nodename);
1264     qemu_fdt_setprop_string(ms->fdt, nodename,
1265                             "compatible", "qemu,fw-cfg-mmio");
1266     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1267                                  2, base, 2, size);
1268     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1269     g_free(nodename);
1270     return fw_cfg;
1271 }
1272 
1273 static void create_pcie_irq_map(const MachineState *ms,
1274                                 uint32_t gic_phandle,
1275                                 int first_irq, const char *nodename)
1276 {
1277     int devfn, pin;
1278     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1279     uint32_t *irq_map = full_irq_map;
1280 
1281     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1282         for (pin = 0; pin < 4; pin++) {
1283             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1284             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1285             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1286             int i;
1287 
1288             uint32_t map[] = {
1289                 devfn << 8, 0, 0,                           /* devfn */
1290                 pin + 1,                                    /* PCI pin */
1291                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1292 
1293             /* Convert map to big endian */
1294             for (i = 0; i < 10; i++) {
1295                 irq_map[i] = cpu_to_be32(map[i]);
1296             }
1297             irq_map += 10;
1298         }
1299     }
1300 
1301     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1302                      full_irq_map, sizeof(full_irq_map));
1303 
1304     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1305                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1306                            0, 0,
1307                            0x7           /* PCI irq */);
1308 }
1309 
1310 static void create_smmu(const VirtMachineState *vms,
1311                         PCIBus *bus)
1312 {
1313     char *node;
1314     const char compat[] = "arm,smmu-v3";
1315     int irq =  vms->irqmap[VIRT_SMMU];
1316     int i;
1317     hwaddr base = vms->memmap[VIRT_SMMU].base;
1318     hwaddr size = vms->memmap[VIRT_SMMU].size;
1319     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1320     DeviceState *dev;
1321     MachineState *ms = MACHINE(vms);
1322 
1323     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1324         return;
1325     }
1326 
1327     dev = qdev_new(TYPE_ARM_SMMUV3);
1328 
1329     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1330                              &error_abort);
1331     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1332     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1333     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1334         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1335                            qdev_get_gpio_in(vms->gic, irq + i));
1336     }
1337 
1338     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1339     qemu_fdt_add_subnode(ms->fdt, node);
1340     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1341     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1342 
1343     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1344             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1345             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1346             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1347             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1348 
1349     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1350                      sizeof(irq_names));
1351 
1352     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1353 
1354     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1355 
1356     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1357     g_free(node);
1358 }
1359 
1360 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1361 {
1362     const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1363     uint16_t bdf = vms->virtio_iommu_bdf;
1364     MachineState *ms = MACHINE(vms);
1365     char *node;
1366 
1367     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1368 
1369     node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1370                            PCI_SLOT(bdf), PCI_FUNC(bdf));
1371     qemu_fdt_add_subnode(ms->fdt, node);
1372     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1373     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1374                                  1, bdf << 8, 1, 0, 1, 0,
1375                                  1, 0, 1, 0);
1376 
1377     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1378     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1379     g_free(node);
1380 
1381     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1382                            0x0, vms->iommu_phandle, 0x0, bdf,
1383                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1384 }
1385 
1386 static void create_pcie(VirtMachineState *vms)
1387 {
1388     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1389     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1390     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1391     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1392     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1393     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1394     hwaddr base_ecam, size_ecam;
1395     hwaddr base = base_mmio;
1396     int nr_pcie_buses;
1397     int irq = vms->irqmap[VIRT_PCIE];
1398     MemoryRegion *mmio_alias;
1399     MemoryRegion *mmio_reg;
1400     MemoryRegion *ecam_alias;
1401     MemoryRegion *ecam_reg;
1402     DeviceState *dev;
1403     char *nodename;
1404     int i, ecam_id;
1405     PCIHostState *pci;
1406     MachineState *ms = MACHINE(vms);
1407     MachineClass *mc = MACHINE_GET_CLASS(ms);
1408 
1409     dev = qdev_new(TYPE_GPEX_HOST);
1410     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1411 
1412     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1413     base_ecam = vms->memmap[ecam_id].base;
1414     size_ecam = vms->memmap[ecam_id].size;
1415     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1416     /* Map only the first size_ecam bytes of ECAM space */
1417     ecam_alias = g_new0(MemoryRegion, 1);
1418     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1419     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1420                              ecam_reg, 0, size_ecam);
1421     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1422 
1423     /* Map the MMIO window into system address space so as to expose
1424      * the section of PCI MMIO space which starts at the same base address
1425      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1426      * the window).
1427      */
1428     mmio_alias = g_new0(MemoryRegion, 1);
1429     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1430     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1431                              mmio_reg, base_mmio, size_mmio);
1432     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1433 
1434     if (vms->highmem_mmio) {
1435         /* Map high MMIO space */
1436         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1437 
1438         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1439                                  mmio_reg, base_mmio_high, size_mmio_high);
1440         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1441                                     high_mmio_alias);
1442     }
1443 
1444     /* Map IO port space */
1445     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1446 
1447     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1448         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1449                            qdev_get_gpio_in(vms->gic, irq + i));
1450         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1451     }
1452 
1453     pci = PCI_HOST_BRIDGE(dev);
1454     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1455     vms->bus = pci->bus;
1456     if (vms->bus) {
1457         for (i = 0; i < nb_nics; i++) {
1458             pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
1459         }
1460     }
1461 
1462     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1463     qemu_fdt_add_subnode(ms->fdt, nodename);
1464     qemu_fdt_setprop_string(ms->fdt, nodename,
1465                             "compatible", "pci-host-ecam-generic");
1466     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1467     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1468     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1469     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1470     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1471                            nr_pcie_buses - 1);
1472     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1473 
1474     if (vms->msi_phandle) {
1475         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1476                                0, vms->msi_phandle, 0, 0x10000);
1477     }
1478 
1479     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1480                                  2, base_ecam, 2, size_ecam);
1481 
1482     if (vms->highmem_mmio) {
1483         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1484                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1485                                      2, base_pio, 2, size_pio,
1486                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1487                                      2, base_mmio, 2, size_mmio,
1488                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1489                                      2, base_mmio_high,
1490                                      2, base_mmio_high, 2, size_mmio_high);
1491     } else {
1492         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1493                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1494                                      2, base_pio, 2, size_pio,
1495                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1496                                      2, base_mmio, 2, size_mmio);
1497     }
1498 
1499     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1500     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1501 
1502     if (vms->iommu) {
1503         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1504 
1505         switch (vms->iommu) {
1506         case VIRT_IOMMU_SMMUV3:
1507             create_smmu(vms, vms->bus);
1508             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1509                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1510             break;
1511         default:
1512             g_assert_not_reached();
1513         }
1514     }
1515 }
1516 
1517 static void create_platform_bus(VirtMachineState *vms)
1518 {
1519     DeviceState *dev;
1520     SysBusDevice *s;
1521     int i;
1522     MemoryRegion *sysmem = get_system_memory();
1523 
1524     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1525     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1526     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1527     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1528     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1529     vms->platform_bus_dev = dev;
1530 
1531     s = SYS_BUS_DEVICE(dev);
1532     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1533         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1534         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1535     }
1536 
1537     memory_region_add_subregion(sysmem,
1538                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1539                                 sysbus_mmio_get_region(s, 0));
1540 }
1541 
1542 static void create_tag_ram(MemoryRegion *tag_sysmem,
1543                            hwaddr base, hwaddr size,
1544                            const char *name)
1545 {
1546     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1547 
1548     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1549     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1550 }
1551 
1552 static void create_secure_ram(VirtMachineState *vms,
1553                               MemoryRegion *secure_sysmem,
1554                               MemoryRegion *secure_tag_sysmem)
1555 {
1556     MemoryRegion *secram = g_new(MemoryRegion, 1);
1557     char *nodename;
1558     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1559     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1560     MachineState *ms = MACHINE(vms);
1561 
1562     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1563                            &error_fatal);
1564     memory_region_add_subregion(secure_sysmem, base, secram);
1565 
1566     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1567     qemu_fdt_add_subnode(ms->fdt, nodename);
1568     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1569     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1570     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1571     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1572 
1573     if (secure_tag_sysmem) {
1574         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1575     }
1576 
1577     g_free(nodename);
1578 }
1579 
1580 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1581 {
1582     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1583                                                  bootinfo);
1584     MachineState *ms = MACHINE(board);
1585 
1586 
1587     *fdt_size = board->fdt_size;
1588     return ms->fdt;
1589 }
1590 
1591 static void virt_build_smbios(VirtMachineState *vms)
1592 {
1593     MachineClass *mc = MACHINE_GET_CLASS(vms);
1594     MachineState *ms = MACHINE(vms);
1595     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1596     uint8_t *smbios_tables, *smbios_anchor;
1597     size_t smbios_tables_len, smbios_anchor_len;
1598     struct smbios_phys_mem_area mem_array;
1599     const char *product = "QEMU Virtual Machine";
1600 
1601     if (kvm_enabled()) {
1602         product = "KVM Virtual Machine";
1603     }
1604 
1605     smbios_set_defaults("QEMU", product,
1606                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1607                         true, SMBIOS_ENTRY_POINT_TYPE_64);
1608 
1609     /* build the array of physical mem area from base_memmap */
1610     mem_array.address = vms->memmap[VIRT_MEM].base;
1611     mem_array.length = ms->ram_size;
1612 
1613     smbios_get_tables(ms, &mem_array, 1,
1614                       &smbios_tables, &smbios_tables_len,
1615                       &smbios_anchor, &smbios_anchor_len,
1616                       &error_fatal);
1617 
1618     if (smbios_anchor) {
1619         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1620                         smbios_tables, smbios_tables_len);
1621         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1622                         smbios_anchor, smbios_anchor_len);
1623     }
1624 }
1625 
1626 static
1627 void virt_machine_done(Notifier *notifier, void *data)
1628 {
1629     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1630                                          machine_done);
1631     MachineState *ms = MACHINE(vms);
1632     ARMCPU *cpu = ARM_CPU(first_cpu);
1633     struct arm_boot_info *info = &vms->bootinfo;
1634     AddressSpace *as = arm_boot_address_space(cpu, info);
1635 
1636     /*
1637      * If the user provided a dtb, we assume the dynamic sysbus nodes
1638      * already are integrated there. This corresponds to a use case where
1639      * the dynamic sysbus nodes are complex and their generation is not yet
1640      * supported. In that case the user can take charge of the guest dt
1641      * while qemu takes charge of the qom stuff.
1642      */
1643     if (info->dtb_filename == NULL) {
1644         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1645                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1646                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1647                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1648     }
1649     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1650         exit(1);
1651     }
1652 
1653     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1654 
1655     virt_acpi_setup(vms);
1656     virt_build_smbios(vms);
1657 }
1658 
1659 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1660 {
1661     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1662     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1663 
1664     if (!vmc->disallow_affinity_adjustment) {
1665         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1666          * GIC's target-list limitations. 32-bit KVM hosts currently
1667          * always create clusters of 4 CPUs, but that is expected to
1668          * change when they gain support for gicv3. When KVM is enabled
1669          * it will override the changes we make here, therefore our
1670          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1671          * and to improve SGI efficiency.
1672          */
1673         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1674             clustersz = GIC_TARGETLIST_BITS;
1675         } else {
1676             clustersz = GICV3_TARGETLIST_BITS;
1677         }
1678     }
1679     return arm_cpu_mp_affinity(idx, clustersz);
1680 }
1681 
1682 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1683                                                  int index)
1684 {
1685     bool *enabled_array[] = {
1686         &vms->highmem_redists,
1687         &vms->highmem_ecam,
1688         &vms->highmem_mmio,
1689     };
1690 
1691     assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1692            ARRAY_SIZE(enabled_array));
1693     assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1694 
1695     return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1696 }
1697 
1698 static void virt_set_high_memmap(VirtMachineState *vms,
1699                                  hwaddr base, int pa_bits)
1700 {
1701     hwaddr region_base, region_size;
1702     bool *region_enabled, fits;
1703     int i;
1704 
1705     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1706         region_enabled = virt_get_high_memmap_enabled(vms, i);
1707         region_base = ROUND_UP(base, extended_memmap[i].size);
1708         region_size = extended_memmap[i].size;
1709 
1710         vms->memmap[i].base = region_base;
1711         vms->memmap[i].size = region_size;
1712 
1713         /*
1714          * Check each device to see if it fits in the PA space,
1715          * moving highest_gpa as we go. For compatibility, move
1716          * highest_gpa for disabled fitting devices as well, if
1717          * the compact layout has been disabled.
1718          *
1719          * For each device that doesn't fit, disable it.
1720          */
1721         fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1722         *region_enabled &= fits;
1723         if (vms->highmem_compact && !*region_enabled) {
1724             continue;
1725         }
1726 
1727         base = region_base + region_size;
1728         if (fits) {
1729             vms->highest_gpa = base - 1;
1730         }
1731     }
1732 }
1733 
1734 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1735 {
1736     MachineState *ms = MACHINE(vms);
1737     hwaddr base, device_memory_base, device_memory_size, memtop;
1738     int i;
1739 
1740     vms->memmap = extended_memmap;
1741 
1742     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1743         vms->memmap[i] = base_memmap[i];
1744     }
1745 
1746     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1747         error_report("unsupported number of memory slots: %"PRIu64,
1748                      ms->ram_slots);
1749         exit(EXIT_FAILURE);
1750     }
1751 
1752     /*
1753      * !highmem is exactly the same as limiting the PA space to 32bit,
1754      * irrespective of the underlying capabilities of the HW.
1755      */
1756     if (!vms->highmem) {
1757         pa_bits = 32;
1758     }
1759 
1760     /*
1761      * We compute the base of the high IO region depending on the
1762      * amount of initial and device memory. The device memory start/size
1763      * is aligned on 1GiB. We never put the high IO region below 256GiB
1764      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1765      * The device region size assumes 1GiB page max alignment per slot.
1766      */
1767     device_memory_base =
1768         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1769     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1770 
1771     /* Base address of the high IO region */
1772     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1773     if (memtop > BIT_ULL(pa_bits)) {
1774 	    error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1775 			 pa_bits, memtop - BIT_ULL(pa_bits));
1776         exit(EXIT_FAILURE);
1777     }
1778     if (base < device_memory_base) {
1779         error_report("maxmem/slots too huge");
1780         exit(EXIT_FAILURE);
1781     }
1782     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1783         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1784     }
1785 
1786     /* We know for sure that at least the memory fits in the PA space */
1787     vms->highest_gpa = memtop - 1;
1788 
1789     virt_set_high_memmap(vms, base, pa_bits);
1790 
1791     if (device_memory_size > 0) {
1792         machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1793     }
1794 }
1795 
1796 static VirtGICType finalize_gic_version_do(const char *accel_name,
1797                                            VirtGICType gic_version,
1798                                            int gics_supported,
1799                                            unsigned int max_cpus)
1800 {
1801     /* Convert host/max/nosel to GIC version number */
1802     switch (gic_version) {
1803     case VIRT_GIC_VERSION_HOST:
1804         if (!kvm_enabled()) {
1805             error_report("gic-version=host requires KVM");
1806             exit(1);
1807         }
1808 
1809         /* For KVM, gic-version=host means gic-version=max */
1810         return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1811                                        gics_supported, max_cpus);
1812     case VIRT_GIC_VERSION_MAX:
1813         if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1814             gic_version = VIRT_GIC_VERSION_4;
1815         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1816             gic_version = VIRT_GIC_VERSION_3;
1817         } else {
1818             gic_version = VIRT_GIC_VERSION_2;
1819         }
1820         break;
1821     case VIRT_GIC_VERSION_NOSEL:
1822         if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1823             max_cpus <= GIC_NCPU) {
1824             gic_version = VIRT_GIC_VERSION_2;
1825         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1826             /*
1827              * in case the host does not support v2 emulation or
1828              * the end-user requested more than 8 VCPUs we now default
1829              * to v3. In any case defaulting to v2 would be broken.
1830              */
1831             gic_version = VIRT_GIC_VERSION_3;
1832         } else if (max_cpus > GIC_NCPU) {
1833             error_report("%s only supports GICv2 emulation but more than 8 "
1834                          "vcpus are requested", accel_name);
1835             exit(1);
1836         }
1837         break;
1838     case VIRT_GIC_VERSION_2:
1839     case VIRT_GIC_VERSION_3:
1840     case VIRT_GIC_VERSION_4:
1841         break;
1842     }
1843 
1844     /* Check chosen version is effectively supported */
1845     switch (gic_version) {
1846     case VIRT_GIC_VERSION_2:
1847         if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1848             error_report("%s does not support GICv2 emulation", accel_name);
1849             exit(1);
1850         }
1851         break;
1852     case VIRT_GIC_VERSION_3:
1853         if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1854             error_report("%s does not support GICv3 emulation", accel_name);
1855             exit(1);
1856         }
1857         break;
1858     case VIRT_GIC_VERSION_4:
1859         if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1860             error_report("%s does not support GICv4 emulation, is virtualization=on?",
1861                          accel_name);
1862             exit(1);
1863         }
1864         break;
1865     default:
1866         error_report("logic error in finalize_gic_version");
1867         exit(1);
1868         break;
1869     }
1870 
1871     return gic_version;
1872 }
1873 
1874 /*
1875  * finalize_gic_version - Determines the final gic_version
1876  * according to the gic-version property
1877  *
1878  * Default GIC type is v2
1879  */
1880 static void finalize_gic_version(VirtMachineState *vms)
1881 {
1882     const char *accel_name = current_accel_name();
1883     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1884     int gics_supported = 0;
1885 
1886     /* Determine which GIC versions the current environment supports */
1887     if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1888         int probe_bitmap = kvm_arm_vgic_probe();
1889 
1890         if (!probe_bitmap) {
1891             error_report("Unable to determine GIC version supported by host");
1892             exit(1);
1893         }
1894 
1895         if (probe_bitmap & KVM_ARM_VGIC_V2) {
1896             gics_supported |= VIRT_GIC_VERSION_2_MASK;
1897         }
1898         if (probe_bitmap & KVM_ARM_VGIC_V3) {
1899             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1900         }
1901     } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1902         /* KVM w/o kernel irqchip can only deal with GICv2 */
1903         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1904         accel_name = "KVM with kernel-irqchip=off";
1905     } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
1906         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1907         if (module_object_class_by_name("arm-gicv3")) {
1908             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1909             if (vms->virt) {
1910                 /* GICv4 only makes sense if CPU has EL2 */
1911                 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1912             }
1913         }
1914     } else {
1915         error_report("Unsupported accelerator, can not determine GIC support");
1916         exit(1);
1917     }
1918 
1919     /*
1920      * Then convert helpers like host/max to concrete GIC versions and ensure
1921      * the desired version is supported
1922      */
1923     vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1924                                                gics_supported, max_cpus);
1925 }
1926 
1927 /*
1928  * virt_cpu_post_init() must be called after the CPUs have
1929  * been realized and the GIC has been created.
1930  */
1931 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1932 {
1933     int max_cpus = MACHINE(vms)->smp.max_cpus;
1934     bool aarch64, pmu, steal_time;
1935     CPUState *cpu;
1936 
1937     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1938     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1939     steal_time = object_property_get_bool(OBJECT(first_cpu),
1940                                           "kvm-steal-time", NULL);
1941 
1942     if (kvm_enabled()) {
1943         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1944         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1945 
1946         if (steal_time) {
1947             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1948             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1949 
1950             /* The memory region size must be a multiple of host page size. */
1951             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1952 
1953             if (pvtime_size > pvtime_reg_size) {
1954                 error_report("pvtime requires a %" HWADDR_PRId
1955                              " byte memory region for %d CPUs,"
1956                              " but only %" HWADDR_PRId " has been reserved",
1957                              pvtime_size, max_cpus, pvtime_reg_size);
1958                 exit(1);
1959             }
1960 
1961             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1962             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1963         }
1964 
1965         CPU_FOREACH(cpu) {
1966             if (pmu) {
1967                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1968                 if (kvm_irqchip_in_kernel()) {
1969                     kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
1970                 }
1971                 kvm_arm_pmu_init(ARM_CPU(cpu));
1972             }
1973             if (steal_time) {
1974                 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
1975                                                   + cpu->cpu_index
1976                                                     * PVTIME_SIZE_PER_CPU);
1977             }
1978         }
1979     } else {
1980         if (aarch64 && vms->highmem) {
1981             int requested_pa_size = 64 - clz64(vms->highest_gpa);
1982             int pamax = arm_pamax(ARM_CPU(first_cpu));
1983 
1984             if (pamax < requested_pa_size) {
1985                 error_report("VCPU supports less PA bits (%d) than "
1986                              "requested by the memory map (%d)",
1987                              pamax, requested_pa_size);
1988                 exit(1);
1989             }
1990         }
1991     }
1992 }
1993 
1994 static void machvirt_init(MachineState *machine)
1995 {
1996     VirtMachineState *vms = VIRT_MACHINE(machine);
1997     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1998     MachineClass *mc = MACHINE_GET_CLASS(machine);
1999     const CPUArchIdList *possible_cpus;
2000     MemoryRegion *sysmem = get_system_memory();
2001     MemoryRegion *secure_sysmem = NULL;
2002     MemoryRegion *tag_sysmem = NULL;
2003     MemoryRegion *secure_tag_sysmem = NULL;
2004     int n, virt_max_cpus;
2005     bool firmware_loaded;
2006     bool aarch64 = true;
2007     bool has_ged = !vmc->no_ged;
2008     unsigned int smp_cpus = machine->smp.cpus;
2009     unsigned int max_cpus = machine->smp.max_cpus;
2010 
2011     possible_cpus = mc->possible_cpu_arch_ids(machine);
2012 
2013     /*
2014      * In accelerated mode, the memory map is computed earlier in kvm_type()
2015      * to create a VM with the right number of IPA bits.
2016      */
2017     if (!vms->memmap) {
2018         Object *cpuobj;
2019         ARMCPU *armcpu;
2020         int pa_bits;
2021 
2022         /*
2023          * Instantiate a temporary CPU object to find out about what
2024          * we are about to deal with. Once this is done, get rid of
2025          * the object.
2026          */
2027         cpuobj = object_new(possible_cpus->cpus[0].type);
2028         armcpu = ARM_CPU(cpuobj);
2029 
2030         pa_bits = arm_pamax(armcpu);
2031 
2032         object_unref(cpuobj);
2033 
2034         virt_set_memmap(vms, pa_bits);
2035     }
2036 
2037     /* We can probe only here because during property set
2038      * KVM is not available yet
2039      */
2040     finalize_gic_version(vms);
2041 
2042     if (vms->secure) {
2043         /*
2044          * The Secure view of the world is the same as the NonSecure,
2045          * but with a few extra devices. Create it as a container region
2046          * containing the system memory at low priority; any secure-only
2047          * devices go in at higher priority and take precedence.
2048          */
2049         secure_sysmem = g_new(MemoryRegion, 1);
2050         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2051                            UINT64_MAX);
2052         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2053     }
2054 
2055     firmware_loaded = virt_firmware_init(vms, sysmem,
2056                                          secure_sysmem ?: sysmem);
2057 
2058     /* If we have an EL3 boot ROM then the assumption is that it will
2059      * implement PSCI itself, so disable QEMU's internal implementation
2060      * so it doesn't get in the way. Instead of starting secondary
2061      * CPUs in PSCI powerdown state we will start them all running and
2062      * let the boot ROM sort them out.
2063      * The usual case is that we do use QEMU's PSCI implementation;
2064      * if the guest has EL2 then we will use SMC as the conduit,
2065      * and otherwise we will use HVC (for backwards compatibility and
2066      * because if we're using KVM then we must use HVC).
2067      */
2068     if (vms->secure && firmware_loaded) {
2069         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2070     } else if (vms->virt) {
2071         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2072     } else {
2073         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2074     }
2075 
2076     /*
2077      * The maximum number of CPUs depends on the GIC version, or on how
2078      * many redistributors we can fit into the memory map (which in turn
2079      * depends on whether this is a GICv3 or v4).
2080      */
2081     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2082         virt_max_cpus = GIC_NCPU;
2083     } else {
2084         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2085         if (vms->highmem_redists) {
2086             virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2087         }
2088     }
2089 
2090     if (max_cpus > virt_max_cpus) {
2091         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2092                      "supported by machine 'mach-virt' (%d)",
2093                      max_cpus, virt_max_cpus);
2094         if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2095             error_printf("Try 'highmem-redists=on' for more CPUs\n");
2096         }
2097 
2098         exit(1);
2099     }
2100 
2101     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2102         error_report("mach-virt: %s does not support providing "
2103                      "Security extensions (TrustZone) to the guest CPU",
2104                      current_accel_name());
2105         exit(1);
2106     }
2107 
2108     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2109         error_report("mach-virt: %s does not support providing "
2110                      "Virtualization extensions to the guest CPU",
2111                      current_accel_name());
2112         exit(1);
2113     }
2114 
2115     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2116         error_report("mach-virt: %s does not support providing "
2117                      "MTE to the guest CPU",
2118                      current_accel_name());
2119         exit(1);
2120     }
2121 
2122     create_fdt(vms);
2123 
2124     assert(possible_cpus->len == max_cpus);
2125     for (n = 0; n < possible_cpus->len; n++) {
2126         Object *cpuobj;
2127         CPUState *cs;
2128 
2129         if (n >= smp_cpus) {
2130             break;
2131         }
2132 
2133         cpuobj = object_new(possible_cpus->cpus[n].type);
2134         object_property_set_int(cpuobj, "mp-affinity",
2135                                 possible_cpus->cpus[n].arch_id, NULL);
2136 
2137         cs = CPU(cpuobj);
2138         cs->cpu_index = n;
2139 
2140         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2141                           &error_fatal);
2142 
2143         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2144 
2145         if (!vms->secure) {
2146             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2147         }
2148 
2149         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2150             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2151         }
2152 
2153         if (vmc->kvm_no_adjvtime &&
2154             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2155             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2156         }
2157 
2158         if (vmc->no_kvm_steal_time &&
2159             object_property_find(cpuobj, "kvm-steal-time")) {
2160             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2161         }
2162 
2163         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2164             object_property_set_bool(cpuobj, "pmu", false, NULL);
2165         }
2166 
2167         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2168             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2169         }
2170 
2171         if (object_property_find(cpuobj, "reset-cbar")) {
2172             object_property_set_int(cpuobj, "reset-cbar",
2173                                     vms->memmap[VIRT_CPUPERIPHS].base,
2174                                     &error_abort);
2175         }
2176 
2177         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2178                                  &error_abort);
2179         if (vms->secure) {
2180             object_property_set_link(cpuobj, "secure-memory",
2181                                      OBJECT(secure_sysmem), &error_abort);
2182         }
2183 
2184         if (vms->mte) {
2185             /* Create the memory region only once, but link to all cpus. */
2186             if (!tag_sysmem) {
2187                 /*
2188                  * The property exists only if MemTag is supported.
2189                  * If it is, we must allocate the ram to back that up.
2190                  */
2191                 if (!object_property_find(cpuobj, "tag-memory")) {
2192                     error_report("MTE requested, but not supported "
2193                                  "by the guest CPU");
2194                     exit(1);
2195                 }
2196 
2197                 tag_sysmem = g_new(MemoryRegion, 1);
2198                 memory_region_init(tag_sysmem, OBJECT(machine),
2199                                    "tag-memory", UINT64_MAX / 32);
2200 
2201                 if (vms->secure) {
2202                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2203                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2204                                        "secure-tag-memory", UINT64_MAX / 32);
2205 
2206                     /* As with ram, secure-tag takes precedence over tag.  */
2207                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2208                                                         tag_sysmem, -1);
2209                 }
2210             }
2211 
2212             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2213                                      &error_abort);
2214             if (vms->secure) {
2215                 object_property_set_link(cpuobj, "secure-tag-memory",
2216                                          OBJECT(secure_tag_sysmem),
2217                                          &error_abort);
2218             }
2219         }
2220 
2221         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2222         object_unref(cpuobj);
2223     }
2224     fdt_add_timer_nodes(vms);
2225     fdt_add_cpu_nodes(vms);
2226 
2227     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2228                                 machine->ram);
2229 
2230     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2231 
2232     create_gic(vms, sysmem);
2233 
2234     virt_cpu_post_init(vms, sysmem);
2235 
2236     fdt_add_pmu_nodes(vms);
2237 
2238     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2239 
2240     if (vms->secure) {
2241         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2242         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2243     }
2244 
2245     if (tag_sysmem) {
2246         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2247                        machine->ram_size, "mach-virt.tag");
2248     }
2249 
2250     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2251 
2252     create_rtc(vms);
2253 
2254     create_pcie(vms);
2255 
2256     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2257         vms->acpi_dev = create_acpi_ged(vms);
2258     } else {
2259         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2260     }
2261 
2262     if (vms->secure && !vmc->no_secure_gpio) {
2263         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2264     }
2265 
2266      /* connect powerdown request */
2267      vms->powerdown_notifier.notify = virt_powerdown_req;
2268      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2269 
2270     /* Create mmio transports, so the user can create virtio backends
2271      * (which will be automatically plugged in to the transports). If
2272      * no backend is created the transport will just sit harmlessly idle.
2273      */
2274     create_virtio_devices(vms);
2275 
2276     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2277     rom_set_fw(vms->fw_cfg);
2278 
2279     create_platform_bus(vms);
2280 
2281     if (machine->nvdimms_state->is_enabled) {
2282         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2283             .space_id = AML_AS_SYSTEM_MEMORY,
2284             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2285             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2286         };
2287 
2288         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2289                                arm_virt_nvdimm_acpi_dsmio,
2290                                vms->fw_cfg, OBJECT(vms));
2291     }
2292 
2293     vms->bootinfo.ram_size = machine->ram_size;
2294     vms->bootinfo.board_id = -1;
2295     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2296     vms->bootinfo.get_dtb = machvirt_dtb;
2297     vms->bootinfo.skip_dtb_autoload = true;
2298     vms->bootinfo.firmware_loaded = firmware_loaded;
2299     vms->bootinfo.psci_conduit = vms->psci_conduit;
2300     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2301 
2302     vms->machine_done.notify = virt_machine_done;
2303     qemu_add_machine_init_done_notifier(&vms->machine_done);
2304 }
2305 
2306 static bool virt_get_secure(Object *obj, Error **errp)
2307 {
2308     VirtMachineState *vms = VIRT_MACHINE(obj);
2309 
2310     return vms->secure;
2311 }
2312 
2313 static void virt_set_secure(Object *obj, bool value, Error **errp)
2314 {
2315     VirtMachineState *vms = VIRT_MACHINE(obj);
2316 
2317     vms->secure = value;
2318 }
2319 
2320 static bool virt_get_virt(Object *obj, Error **errp)
2321 {
2322     VirtMachineState *vms = VIRT_MACHINE(obj);
2323 
2324     return vms->virt;
2325 }
2326 
2327 static void virt_set_virt(Object *obj, bool value, Error **errp)
2328 {
2329     VirtMachineState *vms = VIRT_MACHINE(obj);
2330 
2331     vms->virt = value;
2332 }
2333 
2334 static bool virt_get_highmem(Object *obj, Error **errp)
2335 {
2336     VirtMachineState *vms = VIRT_MACHINE(obj);
2337 
2338     return vms->highmem;
2339 }
2340 
2341 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2342 {
2343     VirtMachineState *vms = VIRT_MACHINE(obj);
2344 
2345     vms->highmem = value;
2346 }
2347 
2348 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2349 {
2350     VirtMachineState *vms = VIRT_MACHINE(obj);
2351 
2352     return vms->highmem_compact;
2353 }
2354 
2355 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2356 {
2357     VirtMachineState *vms = VIRT_MACHINE(obj);
2358 
2359     vms->highmem_compact = value;
2360 }
2361 
2362 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2363 {
2364     VirtMachineState *vms = VIRT_MACHINE(obj);
2365 
2366     return vms->highmem_redists;
2367 }
2368 
2369 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2370 {
2371     VirtMachineState *vms = VIRT_MACHINE(obj);
2372 
2373     vms->highmem_redists = value;
2374 }
2375 
2376 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2377 {
2378     VirtMachineState *vms = VIRT_MACHINE(obj);
2379 
2380     return vms->highmem_ecam;
2381 }
2382 
2383 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2384 {
2385     VirtMachineState *vms = VIRT_MACHINE(obj);
2386 
2387     vms->highmem_ecam = value;
2388 }
2389 
2390 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2391 {
2392     VirtMachineState *vms = VIRT_MACHINE(obj);
2393 
2394     return vms->highmem_mmio;
2395 }
2396 
2397 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2398 {
2399     VirtMachineState *vms = VIRT_MACHINE(obj);
2400 
2401     vms->highmem_mmio = value;
2402 }
2403 
2404 
2405 static bool virt_get_its(Object *obj, Error **errp)
2406 {
2407     VirtMachineState *vms = VIRT_MACHINE(obj);
2408 
2409     return vms->its;
2410 }
2411 
2412 static void virt_set_its(Object *obj, bool value, Error **errp)
2413 {
2414     VirtMachineState *vms = VIRT_MACHINE(obj);
2415 
2416     vms->its = value;
2417 }
2418 
2419 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2420 {
2421     VirtMachineState *vms = VIRT_MACHINE(obj);
2422 
2423     return vms->dtb_randomness;
2424 }
2425 
2426 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2427 {
2428     VirtMachineState *vms = VIRT_MACHINE(obj);
2429 
2430     vms->dtb_randomness = value;
2431 }
2432 
2433 static char *virt_get_oem_id(Object *obj, Error **errp)
2434 {
2435     VirtMachineState *vms = VIRT_MACHINE(obj);
2436 
2437     return g_strdup(vms->oem_id);
2438 }
2439 
2440 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2441 {
2442     VirtMachineState *vms = VIRT_MACHINE(obj);
2443     size_t len = strlen(value);
2444 
2445     if (len > 6) {
2446         error_setg(errp,
2447                    "User specified oem-id value is bigger than 6 bytes in size");
2448         return;
2449     }
2450 
2451     strncpy(vms->oem_id, value, 6);
2452 }
2453 
2454 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2455 {
2456     VirtMachineState *vms = VIRT_MACHINE(obj);
2457 
2458     return g_strdup(vms->oem_table_id);
2459 }
2460 
2461 static void virt_set_oem_table_id(Object *obj, const char *value,
2462                                   Error **errp)
2463 {
2464     VirtMachineState *vms = VIRT_MACHINE(obj);
2465     size_t len = strlen(value);
2466 
2467     if (len > 8) {
2468         error_setg(errp,
2469                    "User specified oem-table-id value is bigger than 8 bytes in size");
2470         return;
2471     }
2472     strncpy(vms->oem_table_id, value, 8);
2473 }
2474 
2475 
2476 bool virt_is_acpi_enabled(VirtMachineState *vms)
2477 {
2478     if (vms->acpi == ON_OFF_AUTO_OFF) {
2479         return false;
2480     }
2481     return true;
2482 }
2483 
2484 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2485                           void *opaque, Error **errp)
2486 {
2487     VirtMachineState *vms = VIRT_MACHINE(obj);
2488     OnOffAuto acpi = vms->acpi;
2489 
2490     visit_type_OnOffAuto(v, name, &acpi, errp);
2491 }
2492 
2493 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2494                           void *opaque, Error **errp)
2495 {
2496     VirtMachineState *vms = VIRT_MACHINE(obj);
2497 
2498     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2499 }
2500 
2501 static bool virt_get_ras(Object *obj, Error **errp)
2502 {
2503     VirtMachineState *vms = VIRT_MACHINE(obj);
2504 
2505     return vms->ras;
2506 }
2507 
2508 static void virt_set_ras(Object *obj, bool value, Error **errp)
2509 {
2510     VirtMachineState *vms = VIRT_MACHINE(obj);
2511 
2512     vms->ras = value;
2513 }
2514 
2515 static bool virt_get_mte(Object *obj, Error **errp)
2516 {
2517     VirtMachineState *vms = VIRT_MACHINE(obj);
2518 
2519     return vms->mte;
2520 }
2521 
2522 static void virt_set_mte(Object *obj, bool value, Error **errp)
2523 {
2524     VirtMachineState *vms = VIRT_MACHINE(obj);
2525 
2526     vms->mte = value;
2527 }
2528 
2529 static char *virt_get_gic_version(Object *obj, Error **errp)
2530 {
2531     VirtMachineState *vms = VIRT_MACHINE(obj);
2532     const char *val;
2533 
2534     switch (vms->gic_version) {
2535     case VIRT_GIC_VERSION_4:
2536         val = "4";
2537         break;
2538     case VIRT_GIC_VERSION_3:
2539         val = "3";
2540         break;
2541     default:
2542         val = "2";
2543         break;
2544     }
2545     return g_strdup(val);
2546 }
2547 
2548 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2549 {
2550     VirtMachineState *vms = VIRT_MACHINE(obj);
2551 
2552     if (!strcmp(value, "4")) {
2553         vms->gic_version = VIRT_GIC_VERSION_4;
2554     } else if (!strcmp(value, "3")) {
2555         vms->gic_version = VIRT_GIC_VERSION_3;
2556     } else if (!strcmp(value, "2")) {
2557         vms->gic_version = VIRT_GIC_VERSION_2;
2558     } else if (!strcmp(value, "host")) {
2559         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2560     } else if (!strcmp(value, "max")) {
2561         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2562     } else {
2563         error_setg(errp, "Invalid gic-version value");
2564         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2565     }
2566 }
2567 
2568 static char *virt_get_iommu(Object *obj, Error **errp)
2569 {
2570     VirtMachineState *vms = VIRT_MACHINE(obj);
2571 
2572     switch (vms->iommu) {
2573     case VIRT_IOMMU_NONE:
2574         return g_strdup("none");
2575     case VIRT_IOMMU_SMMUV3:
2576         return g_strdup("smmuv3");
2577     default:
2578         g_assert_not_reached();
2579     }
2580 }
2581 
2582 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2583 {
2584     VirtMachineState *vms = VIRT_MACHINE(obj);
2585 
2586     if (!strcmp(value, "smmuv3")) {
2587         vms->iommu = VIRT_IOMMU_SMMUV3;
2588     } else if (!strcmp(value, "none")) {
2589         vms->iommu = VIRT_IOMMU_NONE;
2590     } else {
2591         error_setg(errp, "Invalid iommu value");
2592         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2593     }
2594 }
2595 
2596 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2597 {
2598     VirtMachineState *vms = VIRT_MACHINE(obj);
2599 
2600     return vms->default_bus_bypass_iommu;
2601 }
2602 
2603 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2604                                               Error **errp)
2605 {
2606     VirtMachineState *vms = VIRT_MACHINE(obj);
2607 
2608     vms->default_bus_bypass_iommu = value;
2609 }
2610 
2611 static CpuInstanceProperties
2612 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2613 {
2614     MachineClass *mc = MACHINE_GET_CLASS(ms);
2615     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2616 
2617     assert(cpu_index < possible_cpus->len);
2618     return possible_cpus->cpus[cpu_index].props;
2619 }
2620 
2621 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2622 {
2623     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2624 
2625     return socket_id % ms->numa_state->num_nodes;
2626 }
2627 
2628 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2629 {
2630     int n;
2631     unsigned int max_cpus = ms->smp.max_cpus;
2632     VirtMachineState *vms = VIRT_MACHINE(ms);
2633     MachineClass *mc = MACHINE_GET_CLASS(vms);
2634 
2635     if (ms->possible_cpus) {
2636         assert(ms->possible_cpus->len == max_cpus);
2637         return ms->possible_cpus;
2638     }
2639 
2640     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2641                                   sizeof(CPUArchId) * max_cpus);
2642     ms->possible_cpus->len = max_cpus;
2643     for (n = 0; n < ms->possible_cpus->len; n++) {
2644         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2645         ms->possible_cpus->cpus[n].arch_id =
2646             virt_cpu_mp_affinity(vms, n);
2647 
2648         assert(!mc->smp_props.dies_supported);
2649         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2650         ms->possible_cpus->cpus[n].props.socket_id =
2651             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2652         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2653         ms->possible_cpus->cpus[n].props.cluster_id =
2654             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2655         ms->possible_cpus->cpus[n].props.has_core_id = true;
2656         ms->possible_cpus->cpus[n].props.core_id =
2657             (n / ms->smp.threads) % ms->smp.cores;
2658         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2659         ms->possible_cpus->cpus[n].props.thread_id =
2660             n % ms->smp.threads;
2661     }
2662     return ms->possible_cpus;
2663 }
2664 
2665 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2666                                  Error **errp)
2667 {
2668     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2669     const MachineState *ms = MACHINE(hotplug_dev);
2670     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2671 
2672     if (!vms->acpi_dev) {
2673         error_setg(errp,
2674                    "memory hotplug is not enabled: missing acpi-ged device");
2675         return;
2676     }
2677 
2678     if (vms->mte) {
2679         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2680         return;
2681     }
2682 
2683     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2684         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2685         return;
2686     }
2687 
2688     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2689 }
2690 
2691 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2692                              DeviceState *dev, Error **errp)
2693 {
2694     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2695     MachineState *ms = MACHINE(hotplug_dev);
2696     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2697 
2698     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2699 
2700     if (is_nvdimm) {
2701         nvdimm_plug(ms->nvdimms_state);
2702     }
2703 
2704     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2705                          dev, &error_abort);
2706 }
2707 
2708 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2709                                             DeviceState *dev, Error **errp)
2710 {
2711     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2712 
2713     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2714         virt_memory_pre_plug(hotplug_dev, dev, errp);
2715     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2716         virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2717     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2718         hwaddr db_start = 0, db_end = 0;
2719         QList *reserved_regions;
2720         char *resv_prop_str;
2721 
2722         if (vms->iommu != VIRT_IOMMU_NONE) {
2723             error_setg(errp, "virt machine does not support multiple IOMMUs");
2724             return;
2725         }
2726 
2727         switch (vms->msi_controller) {
2728         case VIRT_MSI_CTRL_NONE:
2729             return;
2730         case VIRT_MSI_CTRL_ITS:
2731             /* GITS_TRANSLATER page */
2732             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2733             db_end = base_memmap[VIRT_GIC_ITS].base +
2734                      base_memmap[VIRT_GIC_ITS].size - 1;
2735             break;
2736         case VIRT_MSI_CTRL_GICV2M:
2737             /* MSI_SETSPI_NS page */
2738             db_start = base_memmap[VIRT_GIC_V2M].base;
2739             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2740             break;
2741         }
2742         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2743                                         db_start, db_end,
2744                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2745 
2746         reserved_regions = qlist_new();
2747         qlist_append_str(reserved_regions, resv_prop_str);
2748         qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2749         g_free(resv_prop_str);
2750     }
2751 }
2752 
2753 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2754                                         DeviceState *dev, Error **errp)
2755 {
2756     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2757 
2758     if (vms->platform_bus_dev) {
2759         MachineClass *mc = MACHINE_GET_CLASS(vms);
2760 
2761         if (device_is_dynamic_sysbus(mc, dev)) {
2762             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2763                                      SYS_BUS_DEVICE(dev));
2764         }
2765     }
2766 
2767     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2768         virt_memory_plug(hotplug_dev, dev, errp);
2769     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2770         virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2771     }
2772 
2773     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2774         PCIDevice *pdev = PCI_DEVICE(dev);
2775 
2776         vms->iommu = VIRT_IOMMU_VIRTIO;
2777         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2778         create_virtio_iommu_dt_bindings(vms);
2779     }
2780 }
2781 
2782 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2783                                      DeviceState *dev, Error **errp)
2784 {
2785     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2786 
2787     if (!vms->acpi_dev) {
2788         error_setg(errp,
2789                    "memory hotplug is not enabled: missing acpi-ged device");
2790         return;
2791     }
2792 
2793     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2794         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2795         return;
2796     }
2797 
2798     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2799                                    errp);
2800 }
2801 
2802 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2803                              DeviceState *dev, Error **errp)
2804 {
2805     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2806     Error *local_err = NULL;
2807 
2808     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2809     if (local_err) {
2810         goto out;
2811     }
2812 
2813     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2814     qdev_unrealize(dev);
2815 
2816 out:
2817     error_propagate(errp, local_err);
2818 }
2819 
2820 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2821                                           DeviceState *dev, Error **errp)
2822 {
2823     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2824         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2825     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2826         virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2827                                      errp);
2828     } else {
2829         error_setg(errp, "device unplug request for unsupported device"
2830                    " type: %s", object_get_typename(OBJECT(dev)));
2831     }
2832 }
2833 
2834 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2835                                           DeviceState *dev, Error **errp)
2836 {
2837     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2838         virt_dimm_unplug(hotplug_dev, dev, errp);
2839     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2840         virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2841     } else {
2842         error_setg(errp, "virt: device unplug for unsupported device"
2843                    " type: %s", object_get_typename(OBJECT(dev)));
2844     }
2845 }
2846 
2847 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2848                                                         DeviceState *dev)
2849 {
2850     MachineClass *mc = MACHINE_GET_CLASS(machine);
2851 
2852     if (device_is_dynamic_sysbus(mc, dev) ||
2853         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2854         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2855         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2856         return HOTPLUG_HANDLER(machine);
2857     }
2858     return NULL;
2859 }
2860 
2861 /*
2862  * for arm64 kvm_type [7-0] encodes the requested number of bits
2863  * in the IPA address space
2864  */
2865 static int virt_kvm_type(MachineState *ms, const char *type_str)
2866 {
2867     VirtMachineState *vms = VIRT_MACHINE(ms);
2868     int max_vm_pa_size, requested_pa_size;
2869     bool fixed_ipa;
2870 
2871     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2872 
2873     /* we freeze the memory map to compute the highest gpa */
2874     virt_set_memmap(vms, max_vm_pa_size);
2875 
2876     requested_pa_size = 64 - clz64(vms->highest_gpa);
2877 
2878     /*
2879      * KVM requires the IPA size to be at least 32 bits.
2880      */
2881     if (requested_pa_size < 32) {
2882         requested_pa_size = 32;
2883     }
2884 
2885     if (requested_pa_size > max_vm_pa_size) {
2886         error_report("-m and ,maxmem option values "
2887                      "require an IPA range (%d bits) larger than "
2888                      "the one supported by the host (%d bits)",
2889                      requested_pa_size, max_vm_pa_size);
2890         return -1;
2891     }
2892     /*
2893      * We return the requested PA log size, unless KVM only supports
2894      * the implicit legacy 40b IPA setting, in which case the kvm_type
2895      * must be 0.
2896      */
2897     return fixed_ipa ? 0 : requested_pa_size;
2898 }
2899 
2900 static void virt_machine_class_init(ObjectClass *oc, void *data)
2901 {
2902     MachineClass *mc = MACHINE_CLASS(oc);
2903     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2904     static const char * const valid_cpu_types[] = {
2905 #ifdef CONFIG_TCG
2906         ARM_CPU_TYPE_NAME("cortex-a7"),
2907         ARM_CPU_TYPE_NAME("cortex-a15"),
2908 #ifdef TARGET_AARCH64
2909         ARM_CPU_TYPE_NAME("cortex-a35"),
2910         ARM_CPU_TYPE_NAME("cortex-a55"),
2911         ARM_CPU_TYPE_NAME("cortex-a72"),
2912         ARM_CPU_TYPE_NAME("cortex-a76"),
2913         ARM_CPU_TYPE_NAME("cortex-a710"),
2914         ARM_CPU_TYPE_NAME("a64fx"),
2915         ARM_CPU_TYPE_NAME("neoverse-n1"),
2916         ARM_CPU_TYPE_NAME("neoverse-v1"),
2917         ARM_CPU_TYPE_NAME("neoverse-n2"),
2918 #endif /* TARGET_AARCH64 */
2919 #endif /* CONFIG_TCG */
2920 #ifdef TARGET_AARCH64
2921         ARM_CPU_TYPE_NAME("cortex-a53"),
2922         ARM_CPU_TYPE_NAME("cortex-a57"),
2923 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2924         ARM_CPU_TYPE_NAME("host"),
2925 #endif /* CONFIG_KVM || CONFIG_HVF */
2926 #endif /* TARGET_AARCH64 */
2927         ARM_CPU_TYPE_NAME("max"),
2928         NULL
2929     };
2930 
2931     mc->init = machvirt_init;
2932     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2933      * The value may be reduced later when we have more information about the
2934      * configuration of the particular instance.
2935      */
2936     mc->max_cpus = 512;
2937     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2938     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2939     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2940     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2941 #ifdef CONFIG_TPM
2942     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2943 #endif
2944     mc->block_default_type = IF_VIRTIO;
2945     mc->no_cdrom = 1;
2946     mc->pci_allow_0_address = true;
2947     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2948     mc->minimum_page_bits = 12;
2949     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2950     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2951 #ifdef CONFIG_TCG
2952     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2953 #else
2954     mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2955 #endif
2956     mc->valid_cpu_types = valid_cpu_types;
2957     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2958     mc->kvm_type = virt_kvm_type;
2959     assert(!mc->get_hotplug_handler);
2960     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2961     hc->pre_plug = virt_machine_device_pre_plug_cb;
2962     hc->plug = virt_machine_device_plug_cb;
2963     hc->unplug_request = virt_machine_device_unplug_request_cb;
2964     hc->unplug = virt_machine_device_unplug_cb;
2965     mc->nvdimm_supported = true;
2966     mc->smp_props.clusters_supported = true;
2967     mc->auto_enable_numa_with_memhp = true;
2968     mc->auto_enable_numa_with_memdev = true;
2969     /* platform instead of architectural choice */
2970     mc->cpu_cluster_has_numa_boundary = true;
2971     mc->default_ram_id = "mach-virt.ram";
2972     mc->default_nic = "virtio-net-pci";
2973 
2974     object_class_property_add(oc, "acpi", "OnOffAuto",
2975         virt_get_acpi, virt_set_acpi,
2976         NULL, NULL);
2977     object_class_property_set_description(oc, "acpi",
2978         "Enable ACPI");
2979     object_class_property_add_bool(oc, "secure", virt_get_secure,
2980                                    virt_set_secure);
2981     object_class_property_set_description(oc, "secure",
2982                                                 "Set on/off to enable/disable the ARM "
2983                                                 "Security Extensions (TrustZone)");
2984 
2985     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2986                                    virt_set_virt);
2987     object_class_property_set_description(oc, "virtualization",
2988                                           "Set on/off to enable/disable emulating a "
2989                                           "guest CPU which implements the ARM "
2990                                           "Virtualization Extensions");
2991 
2992     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2993                                    virt_set_highmem);
2994     object_class_property_set_description(oc, "highmem",
2995                                           "Set on/off to enable/disable using "
2996                                           "physical address space above 32 bits");
2997 
2998     object_class_property_add_bool(oc, "compact-highmem",
2999                                    virt_get_compact_highmem,
3000                                    virt_set_compact_highmem);
3001     object_class_property_set_description(oc, "compact-highmem",
3002                                           "Set on/off to enable/disable compact "
3003                                           "layout for high memory regions");
3004 
3005     object_class_property_add_bool(oc, "highmem-redists",
3006                                    virt_get_highmem_redists,
3007                                    virt_set_highmem_redists);
3008     object_class_property_set_description(oc, "highmem-redists",
3009                                           "Set on/off to enable/disable high "
3010                                           "memory region for GICv3 or GICv4 "
3011                                           "redistributor");
3012 
3013     object_class_property_add_bool(oc, "highmem-ecam",
3014                                    virt_get_highmem_ecam,
3015                                    virt_set_highmem_ecam);
3016     object_class_property_set_description(oc, "highmem-ecam",
3017                                           "Set on/off to enable/disable high "
3018                                           "memory region for PCI ECAM");
3019 
3020     object_class_property_add_bool(oc, "highmem-mmio",
3021                                    virt_get_highmem_mmio,
3022                                    virt_set_highmem_mmio);
3023     object_class_property_set_description(oc, "highmem-mmio",
3024                                           "Set on/off to enable/disable high "
3025                                           "memory region for PCI MMIO");
3026 
3027     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3028                                   virt_set_gic_version);
3029     object_class_property_set_description(oc, "gic-version",
3030                                           "Set GIC version. "
3031                                           "Valid values are 2, 3, 4, host and max");
3032 
3033     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3034     object_class_property_set_description(oc, "iommu",
3035                                           "Set the IOMMU type. "
3036                                           "Valid values are none and smmuv3");
3037 
3038     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3039                                    virt_get_default_bus_bypass_iommu,
3040                                    virt_set_default_bus_bypass_iommu);
3041     object_class_property_set_description(oc, "default-bus-bypass-iommu",
3042                                           "Set on/off to enable/disable "
3043                                           "bypass_iommu for default root bus");
3044 
3045     object_class_property_add_bool(oc, "ras", virt_get_ras,
3046                                    virt_set_ras);
3047     object_class_property_set_description(oc, "ras",
3048                                           "Set on/off to enable/disable reporting host memory errors "
3049                                           "to a KVM guest using ACPI and guest external abort exceptions");
3050 
3051     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3052     object_class_property_set_description(oc, "mte",
3053                                           "Set on/off to enable/disable emulating a "
3054                                           "guest CPU which implements the ARM "
3055                                           "Memory Tagging Extension");
3056 
3057     object_class_property_add_bool(oc, "its", virt_get_its,
3058                                    virt_set_its);
3059     object_class_property_set_description(oc, "its",
3060                                           "Set on/off to enable/disable "
3061                                           "ITS instantiation");
3062 
3063     object_class_property_add_bool(oc, "dtb-randomness",
3064                                    virt_get_dtb_randomness,
3065                                    virt_set_dtb_randomness);
3066     object_class_property_set_description(oc, "dtb-randomness",
3067                                           "Set off to disable passing random or "
3068                                           "non-deterministic dtb nodes to guest");
3069 
3070     object_class_property_add_bool(oc, "dtb-kaslr-seed",
3071                                    virt_get_dtb_randomness,
3072                                    virt_set_dtb_randomness);
3073     object_class_property_set_description(oc, "dtb-kaslr-seed",
3074                                           "Deprecated synonym of dtb-randomness");
3075 
3076     object_class_property_add_str(oc, "x-oem-id",
3077                                   virt_get_oem_id,
3078                                   virt_set_oem_id);
3079     object_class_property_set_description(oc, "x-oem-id",
3080                                           "Override the default value of field OEMID "
3081                                           "in ACPI table header."
3082                                           "The string may be up to 6 bytes in size");
3083 
3084 
3085     object_class_property_add_str(oc, "x-oem-table-id",
3086                                   virt_get_oem_table_id,
3087                                   virt_set_oem_table_id);
3088     object_class_property_set_description(oc, "x-oem-table-id",
3089                                           "Override the default value of field OEM Table ID "
3090                                           "in ACPI table header."
3091                                           "The string may be up to 8 bytes in size");
3092 
3093 }
3094 
3095 static void virt_instance_init(Object *obj)
3096 {
3097     VirtMachineState *vms = VIRT_MACHINE(obj);
3098     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3099 
3100     /* EL3 is disabled by default on virt: this makes us consistent
3101      * between KVM and TCG for this board, and it also allows us to
3102      * boot UEFI blobs which assume no TrustZone support.
3103      */
3104     vms->secure = false;
3105 
3106     /* EL2 is also disabled by default, for similar reasons */
3107     vms->virt = false;
3108 
3109     /* High memory is enabled by default */
3110     vms->highmem = true;
3111     vms->highmem_compact = !vmc->no_highmem_compact;
3112     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3113 
3114     vms->highmem_ecam = !vmc->no_highmem_ecam;
3115     vms->highmem_mmio = true;
3116     vms->highmem_redists = true;
3117 
3118     if (vmc->no_its) {
3119         vms->its = false;
3120     } else {
3121         /* Default allows ITS instantiation */
3122         vms->its = true;
3123 
3124         if (vmc->no_tcg_its) {
3125             vms->tcg_its = false;
3126         } else {
3127             vms->tcg_its = true;
3128         }
3129     }
3130 
3131     /* Default disallows iommu instantiation */
3132     vms->iommu = VIRT_IOMMU_NONE;
3133 
3134     /* The default root bus is attached to iommu by default */
3135     vms->default_bus_bypass_iommu = false;
3136 
3137     /* Default disallows RAS instantiation */
3138     vms->ras = false;
3139 
3140     /* MTE is disabled by default.  */
3141     vms->mte = false;
3142 
3143     /* Supply kaslr-seed and rng-seed by default */
3144     vms->dtb_randomness = true;
3145 
3146     vms->irqmap = a15irqmap;
3147 
3148     virt_flash_create(vms);
3149 
3150     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3151     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3152 }
3153 
3154 static const TypeInfo virt_machine_info = {
3155     .name          = TYPE_VIRT_MACHINE,
3156     .parent        = TYPE_MACHINE,
3157     .abstract      = true,
3158     .instance_size = sizeof(VirtMachineState),
3159     .class_size    = sizeof(VirtMachineClass),
3160     .class_init    = virt_machine_class_init,
3161     .instance_init = virt_instance_init,
3162     .interfaces = (InterfaceInfo[]) {
3163          { TYPE_HOTPLUG_HANDLER },
3164          { }
3165     },
3166 };
3167 
3168 static void machvirt_machine_init(void)
3169 {
3170     type_register_static(&virt_machine_info);
3171 }
3172 type_init(machvirt_machine_init);
3173 
3174 static void virt_machine_9_0_options(MachineClass *mc)
3175 {
3176 }
3177 DEFINE_VIRT_MACHINE_AS_LATEST(9, 0)
3178 
3179 static void virt_machine_8_2_options(MachineClass *mc)
3180 {
3181     virt_machine_9_0_options(mc);
3182     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3183 }
3184 DEFINE_VIRT_MACHINE(8, 2)
3185 
3186 static void virt_machine_8_1_options(MachineClass *mc)
3187 {
3188     virt_machine_8_2_options(mc);
3189     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3190 }
3191 DEFINE_VIRT_MACHINE(8, 1)
3192 
3193 static void virt_machine_8_0_options(MachineClass *mc)
3194 {
3195     virt_machine_8_1_options(mc);
3196     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3197 }
3198 DEFINE_VIRT_MACHINE(8, 0)
3199 
3200 static void virt_machine_7_2_options(MachineClass *mc)
3201 {
3202     virt_machine_8_0_options(mc);
3203     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3204 }
3205 DEFINE_VIRT_MACHINE(7, 2)
3206 
3207 static void virt_machine_7_1_options(MachineClass *mc)
3208 {
3209     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3210 
3211     virt_machine_7_2_options(mc);
3212     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3213     /* Compact layout for high memory regions was introduced with 7.2 */
3214     vmc->no_highmem_compact = true;
3215 }
3216 DEFINE_VIRT_MACHINE(7, 1)
3217 
3218 static void virt_machine_7_0_options(MachineClass *mc)
3219 {
3220     virt_machine_7_1_options(mc);
3221     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3222 }
3223 DEFINE_VIRT_MACHINE(7, 0)
3224 
3225 static void virt_machine_6_2_options(MachineClass *mc)
3226 {
3227     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3228 
3229     virt_machine_7_0_options(mc);
3230     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3231     vmc->no_tcg_lpa2 = true;
3232 }
3233 DEFINE_VIRT_MACHINE(6, 2)
3234 
3235 static void virt_machine_6_1_options(MachineClass *mc)
3236 {
3237     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3238 
3239     virt_machine_6_2_options(mc);
3240     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3241     mc->smp_props.prefer_sockets = true;
3242     vmc->no_cpu_topology = true;
3243 
3244     /* qemu ITS was introduced with 6.2 */
3245     vmc->no_tcg_its = true;
3246 }
3247 DEFINE_VIRT_MACHINE(6, 1)
3248 
3249 static void virt_machine_6_0_options(MachineClass *mc)
3250 {
3251     virt_machine_6_1_options(mc);
3252     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3253 }
3254 DEFINE_VIRT_MACHINE(6, 0)
3255 
3256 static void virt_machine_5_2_options(MachineClass *mc)
3257 {
3258     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3259 
3260     virt_machine_6_0_options(mc);
3261     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3262     vmc->no_secure_gpio = true;
3263 }
3264 DEFINE_VIRT_MACHINE(5, 2)
3265 
3266 static void virt_machine_5_1_options(MachineClass *mc)
3267 {
3268     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3269 
3270     virt_machine_5_2_options(mc);
3271     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3272     vmc->no_kvm_steal_time = true;
3273 }
3274 DEFINE_VIRT_MACHINE(5, 1)
3275 
3276 static void virt_machine_5_0_options(MachineClass *mc)
3277 {
3278     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3279 
3280     virt_machine_5_1_options(mc);
3281     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3282     mc->numa_mem_supported = true;
3283     vmc->acpi_expose_flash = true;
3284     mc->auto_enable_numa_with_memdev = false;
3285 }
3286 DEFINE_VIRT_MACHINE(5, 0)
3287 
3288 static void virt_machine_4_2_options(MachineClass *mc)
3289 {
3290     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3291 
3292     virt_machine_5_0_options(mc);
3293     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3294     vmc->kvm_no_adjvtime = true;
3295 }
3296 DEFINE_VIRT_MACHINE(4, 2)
3297 
3298 static void virt_machine_4_1_options(MachineClass *mc)
3299 {
3300     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3301 
3302     virt_machine_4_2_options(mc);
3303     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3304     vmc->no_ged = true;
3305     mc->auto_enable_numa_with_memhp = false;
3306 }
3307 DEFINE_VIRT_MACHINE(4, 1)
3308 
3309 static void virt_machine_4_0_options(MachineClass *mc)
3310 {
3311     virt_machine_4_1_options(mc);
3312     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3313 }
3314 DEFINE_VIRT_MACHINE(4, 0)
3315 
3316 static void virt_machine_3_1_options(MachineClass *mc)
3317 {
3318     virt_machine_4_0_options(mc);
3319     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3320 }
3321 DEFINE_VIRT_MACHINE(3, 1)
3322 
3323 static void virt_machine_3_0_options(MachineClass *mc)
3324 {
3325     virt_machine_3_1_options(mc);
3326     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3327 }
3328 DEFINE_VIRT_MACHINE(3, 0)
3329 
3330 static void virt_machine_2_12_options(MachineClass *mc)
3331 {
3332     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3333 
3334     virt_machine_3_0_options(mc);
3335     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3336     vmc->no_highmem_ecam = true;
3337     mc->max_cpus = 255;
3338 }
3339 DEFINE_VIRT_MACHINE(2, 12)
3340 
3341 static void virt_machine_2_11_options(MachineClass *mc)
3342 {
3343     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3344 
3345     virt_machine_2_12_options(mc);
3346     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3347     vmc->smbios_old_sys_ver = true;
3348 }
3349 DEFINE_VIRT_MACHINE(2, 11)
3350 
3351 static void virt_machine_2_10_options(MachineClass *mc)
3352 {
3353     virt_machine_2_11_options(mc);
3354     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3355     /* before 2.11 we never faulted accesses to bad addresses */
3356     mc->ignore_memory_transaction_failures = true;
3357 }
3358 DEFINE_VIRT_MACHINE(2, 10)
3359 
3360 static void virt_machine_2_9_options(MachineClass *mc)
3361 {
3362     virt_machine_2_10_options(mc);
3363     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3364 }
3365 DEFINE_VIRT_MACHINE(2, 9)
3366 
3367 static void virt_machine_2_8_options(MachineClass *mc)
3368 {
3369     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3370 
3371     virt_machine_2_9_options(mc);
3372     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3373     /* For 2.8 and earlier we falsely claimed in the DT that
3374      * our timers were edge-triggered, not level-triggered.
3375      */
3376     vmc->claim_edge_triggered_timers = true;
3377 }
3378 DEFINE_VIRT_MACHINE(2, 8)
3379 
3380 static void virt_machine_2_7_options(MachineClass *mc)
3381 {
3382     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3383 
3384     virt_machine_2_8_options(mc);
3385     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3386     /* ITS was introduced with 2.8 */
3387     vmc->no_its = true;
3388     /* Stick with 1K pages for migration compatibility */
3389     mc->minimum_page_bits = 0;
3390 }
3391 DEFINE_VIRT_MACHINE(2, 7)
3392 
3393 static void virt_machine_2_6_options(MachineClass *mc)
3394 {
3395     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3396 
3397     virt_machine_2_7_options(mc);
3398     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3399     vmc->disallow_affinity_adjustment = true;
3400     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3401     vmc->no_pmu = true;
3402 }
3403 DEFINE_VIRT_MACHINE(2, 6)
3404