1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "qapi/error.h" 37 #include "hw/sysbus.h" 38 #include "hw/boards.h" 39 #include "hw/arm/boot.h" 40 #include "hw/arm/primecell.h" 41 #include "hw/arm/virt.h" 42 #include "hw/block/flash.h" 43 #include "hw/vfio/vfio-calxeda-xgmac.h" 44 #include "hw/vfio/vfio-amd-xgbe.h" 45 #include "hw/display/ramfb.h" 46 #include "net/net.h" 47 #include "sysemu/device_tree.h" 48 #include "sysemu/numa.h" 49 #include "sysemu/runstate.h" 50 #include "sysemu/sysemu.h" 51 #include "sysemu/tpm.h" 52 #include "sysemu/kvm.h" 53 #include "hw/loader.h" 54 #include "exec/address-spaces.h" 55 #include "qemu/bitops.h" 56 #include "qemu/error-report.h" 57 #include "qemu/module.h" 58 #include "hw/pci-host/gpex.h" 59 #include "hw/virtio/virtio-pci.h" 60 #include "hw/arm/sysbus-fdt.h" 61 #include "hw/platform-bus.h" 62 #include "hw/qdev-properties.h" 63 #include "hw/arm/fdt.h" 64 #include "hw/intc/arm_gic.h" 65 #include "hw/intc/arm_gicv3_common.h" 66 #include "hw/irq.h" 67 #include "kvm_arm.h" 68 #include "hw/firmware/smbios.h" 69 #include "qapi/visitor.h" 70 #include "qapi/qapi-visit-common.h" 71 #include "standard-headers/linux/input.h" 72 #include "hw/arm/smmuv3.h" 73 #include "hw/acpi/acpi.h" 74 #include "target/arm/internals.h" 75 #include "hw/mem/pc-dimm.h" 76 #include "hw/mem/nvdimm.h" 77 #include "hw/acpi/generic_event_device.h" 78 #include "hw/virtio/virtio-iommu.h" 79 #include "hw/char/pl011.h" 80 #include "qemu/guest-random.h" 81 82 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 83 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 84 void *data) \ 85 { \ 86 MachineClass *mc = MACHINE_CLASS(oc); \ 87 virt_machine_##major##_##minor##_options(mc); \ 88 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 89 if (latest) { \ 90 mc->alias = "virt"; \ 91 } \ 92 } \ 93 static const TypeInfo machvirt_##major##_##minor##_info = { \ 94 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 95 .parent = TYPE_VIRT_MACHINE, \ 96 .class_init = virt_##major##_##minor##_class_init, \ 97 }; \ 98 static void machvirt_machine_##major##_##minor##_init(void) \ 99 { \ 100 type_register_static(&machvirt_##major##_##minor##_info); \ 101 } \ 102 type_init(machvirt_machine_##major##_##minor##_init); 103 104 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 105 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 106 #define DEFINE_VIRT_MACHINE(major, minor) \ 107 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 108 109 110 /* Number of external interrupt lines to configure the GIC with */ 111 #define NUM_IRQS 256 112 113 #define PLATFORM_BUS_NUM_IRQS 64 114 115 /* Legacy RAM limit in GB (< version 4.0) */ 116 #define LEGACY_RAMLIMIT_GB 255 117 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 118 119 /* Addresses and sizes of our components. 120 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 121 * 128MB..256MB is used for miscellaneous device I/O. 122 * 256MB..1GB is reserved for possible future PCI support (ie where the 123 * PCI memory window will go if we add a PCI host controller). 124 * 1GB and up is RAM (which may happily spill over into the 125 * high memory region beyond 4GB). 126 * This represents a compromise between how much RAM can be given to 127 * a 32 bit VM and leaving space for expansion and in particular for PCI. 128 * Note that devices should generally be placed at multiples of 0x10000, 129 * to accommodate guests using 64K pages. 130 */ 131 static const MemMapEntry base_memmap[] = { 132 /* Space up to 0x8000000 is reserved for a boot ROM */ 133 [VIRT_FLASH] = { 0, 0x08000000 }, 134 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 135 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 136 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 137 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 138 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 139 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 140 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 141 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 142 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 143 /* This redistributor space allows up to 2*64kB*123 CPUs */ 144 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 145 [VIRT_UART] = { 0x09000000, 0x00001000 }, 146 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 147 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 148 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 149 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 150 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 151 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 152 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 153 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 154 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 155 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 156 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 157 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 158 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 159 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 160 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 161 /* Actual RAM size depends on initial RAM and device memory settings */ 162 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 163 }; 164 165 /* 166 * Highmem IO Regions: This memory map is floating, located after the RAM. 167 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 168 * top of the RAM, so that its base get the same alignment as the size, 169 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 170 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 171 * Note the extended_memmap is sized so that it eventually also includes the 172 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 173 * index of base_memmap). 174 */ 175 static MemMapEntry extended_memmap[] = { 176 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 177 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 178 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 179 /* Second PCIe window */ 180 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 181 }; 182 183 static const int a15irqmap[] = { 184 [VIRT_UART] = 1, 185 [VIRT_RTC] = 2, 186 [VIRT_PCIE] = 3, /* ... to 6 */ 187 [VIRT_GPIO] = 7, 188 [VIRT_SECURE_UART] = 8, 189 [VIRT_ACPI_GED] = 9, 190 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 191 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 192 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 193 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 194 }; 195 196 static const char *valid_cpus[] = { 197 ARM_CPU_TYPE_NAME("cortex-a7"), 198 ARM_CPU_TYPE_NAME("cortex-a15"), 199 ARM_CPU_TYPE_NAME("cortex-a53"), 200 ARM_CPU_TYPE_NAME("cortex-a57"), 201 ARM_CPU_TYPE_NAME("cortex-a72"), 202 ARM_CPU_TYPE_NAME("host"), 203 ARM_CPU_TYPE_NAME("max"), 204 }; 205 206 static bool cpu_type_valid(const char *cpu) 207 { 208 int i; 209 210 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 211 if (strcmp(cpu, valid_cpus[i]) == 0) { 212 return true; 213 } 214 } 215 return false; 216 } 217 218 static void create_kaslr_seed(VirtMachineState *vms, const char *node) 219 { 220 uint64_t seed; 221 222 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 223 return; 224 } 225 qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed); 226 } 227 228 static void create_fdt(VirtMachineState *vms) 229 { 230 MachineState *ms = MACHINE(vms); 231 int nb_numa_nodes = ms->numa_state->num_nodes; 232 void *fdt = create_device_tree(&vms->fdt_size); 233 234 if (!fdt) { 235 error_report("create_device_tree() failed"); 236 exit(1); 237 } 238 239 vms->fdt = fdt; 240 241 /* Header */ 242 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 243 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 244 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 245 246 /* /chosen must exist for load_dtb to fill in necessary properties later */ 247 qemu_fdt_add_subnode(fdt, "/chosen"); 248 create_kaslr_seed(vms, "/chosen"); 249 250 if (vms->secure) { 251 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 252 create_kaslr_seed(vms, "/secure-chosen"); 253 } 254 255 /* Clock node, for the benefit of the UART. The kernel device tree 256 * binding documentation claims the PL011 node clock properties are 257 * optional but in practice if you omit them the kernel refuses to 258 * probe for the device. 259 */ 260 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 261 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 262 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 263 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 264 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 265 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 266 "clk24mhz"); 267 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 268 269 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 270 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 271 uint32_t *matrix = g_malloc0(size); 272 int idx, i, j; 273 274 for (i = 0; i < nb_numa_nodes; i++) { 275 for (j = 0; j < nb_numa_nodes; j++) { 276 idx = (i * nb_numa_nodes + j) * 3; 277 matrix[idx + 0] = cpu_to_be32(i); 278 matrix[idx + 1] = cpu_to_be32(j); 279 matrix[idx + 2] = 280 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 281 } 282 } 283 284 qemu_fdt_add_subnode(fdt, "/distance-map"); 285 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 286 "numa-distance-map-v1"); 287 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 288 matrix, size); 289 g_free(matrix); 290 } 291 } 292 293 static void fdt_add_timer_nodes(const VirtMachineState *vms) 294 { 295 /* On real hardware these interrupts are level-triggered. 296 * On KVM they were edge-triggered before host kernel version 4.4, 297 * and level-triggered afterwards. 298 * On emulated QEMU they are level-triggered. 299 * 300 * Getting the DTB info about them wrong is awkward for some 301 * guest kernels: 302 * pre-4.8 ignore the DT and leave the interrupt configured 303 * with whatever the GIC reset value (or the bootloader) left it at 304 * 4.8 before rc6 honour the incorrect data by programming it back 305 * into the GIC, causing problems 306 * 4.8rc6 and later ignore the DT and always write "level triggered" 307 * into the GIC 308 * 309 * For backwards-compatibility, virt-2.8 and earlier will continue 310 * to say these are edge-triggered, but later machines will report 311 * the correct information. 312 */ 313 ARMCPU *armcpu; 314 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 315 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 316 317 if (vmc->claim_edge_triggered_timers) { 318 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 319 } 320 321 if (vms->gic_version == VIRT_GIC_VERSION_2) { 322 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 323 GIC_FDT_IRQ_PPI_CPU_WIDTH, 324 (1 << vms->smp_cpus) - 1); 325 } 326 327 qemu_fdt_add_subnode(vms->fdt, "/timer"); 328 329 armcpu = ARM_CPU(qemu_get_cpu(0)); 330 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 331 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 332 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 333 compat, sizeof(compat)); 334 } else { 335 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 336 "arm,armv7-timer"); 337 } 338 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 339 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 340 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 341 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 342 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 344 } 345 346 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 347 { 348 int cpu; 349 int addr_cells = 1; 350 const MachineState *ms = MACHINE(vms); 351 352 /* 353 * From Documentation/devicetree/bindings/arm/cpus.txt 354 * On ARM v8 64-bit systems value should be set to 2, 355 * that corresponds to the MPIDR_EL1 register size. 356 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 357 * in the system, #address-cells can be set to 1, since 358 * MPIDR_EL1[63:32] bits are not used for CPUs 359 * identification. 360 * 361 * Here we actually don't know whether our system is 32- or 64-bit one. 362 * The simplest way to go is to examine affinity IDs of all our CPUs. If 363 * at least one of them has Aff3 populated, we set #address-cells to 2. 364 */ 365 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 366 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 367 368 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 369 addr_cells = 2; 370 break; 371 } 372 } 373 374 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 375 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 376 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 377 378 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 379 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 380 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 381 CPUState *cs = CPU(armcpu); 382 383 qemu_fdt_add_subnode(vms->fdt, nodename); 384 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 385 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 386 armcpu->dtb_compatible); 387 388 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 389 && vms->smp_cpus > 1) { 390 qemu_fdt_setprop_string(vms->fdt, nodename, 391 "enable-method", "psci"); 392 } 393 394 if (addr_cells == 2) { 395 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 396 armcpu->mp_affinity); 397 } else { 398 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 399 armcpu->mp_affinity); 400 } 401 402 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 403 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 404 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 405 } 406 407 g_free(nodename); 408 } 409 } 410 411 static void fdt_add_its_gic_node(VirtMachineState *vms) 412 { 413 char *nodename; 414 415 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 416 nodename = g_strdup_printf("/intc/its@%" PRIx64, 417 vms->memmap[VIRT_GIC_ITS].base); 418 qemu_fdt_add_subnode(vms->fdt, nodename); 419 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 420 "arm,gic-v3-its"); 421 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 422 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 423 2, vms->memmap[VIRT_GIC_ITS].base, 424 2, vms->memmap[VIRT_GIC_ITS].size); 425 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 426 g_free(nodename); 427 } 428 429 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 430 { 431 char *nodename; 432 433 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 434 vms->memmap[VIRT_GIC_V2M].base); 435 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 436 qemu_fdt_add_subnode(vms->fdt, nodename); 437 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 438 "arm,gic-v2m-frame"); 439 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 440 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 441 2, vms->memmap[VIRT_GIC_V2M].base, 442 2, vms->memmap[VIRT_GIC_V2M].size); 443 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 444 g_free(nodename); 445 } 446 447 static void fdt_add_gic_node(VirtMachineState *vms) 448 { 449 char *nodename; 450 451 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 452 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 453 454 nodename = g_strdup_printf("/intc@%" PRIx64, 455 vms->memmap[VIRT_GIC_DIST].base); 456 qemu_fdt_add_subnode(vms->fdt, nodename); 457 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 458 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 459 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 460 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 461 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 462 if (vms->gic_version == VIRT_GIC_VERSION_3) { 463 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 464 465 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 466 "arm,gic-v3"); 467 468 qemu_fdt_setprop_cell(vms->fdt, nodename, 469 "#redistributor-regions", nb_redist_regions); 470 471 if (nb_redist_regions == 1) { 472 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 473 2, vms->memmap[VIRT_GIC_DIST].base, 474 2, vms->memmap[VIRT_GIC_DIST].size, 475 2, vms->memmap[VIRT_GIC_REDIST].base, 476 2, vms->memmap[VIRT_GIC_REDIST].size); 477 } else { 478 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 479 2, vms->memmap[VIRT_GIC_DIST].base, 480 2, vms->memmap[VIRT_GIC_DIST].size, 481 2, vms->memmap[VIRT_GIC_REDIST].base, 482 2, vms->memmap[VIRT_GIC_REDIST].size, 483 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 484 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 485 } 486 487 if (vms->virt) { 488 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 489 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 490 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 491 } 492 } else { 493 /* 'cortex-a15-gic' means 'GIC v2' */ 494 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 495 "arm,cortex-a15-gic"); 496 if (!vms->virt) { 497 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 498 2, vms->memmap[VIRT_GIC_DIST].base, 499 2, vms->memmap[VIRT_GIC_DIST].size, 500 2, vms->memmap[VIRT_GIC_CPU].base, 501 2, vms->memmap[VIRT_GIC_CPU].size); 502 } else { 503 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 504 2, vms->memmap[VIRT_GIC_DIST].base, 505 2, vms->memmap[VIRT_GIC_DIST].size, 506 2, vms->memmap[VIRT_GIC_CPU].base, 507 2, vms->memmap[VIRT_GIC_CPU].size, 508 2, vms->memmap[VIRT_GIC_HYP].base, 509 2, vms->memmap[VIRT_GIC_HYP].size, 510 2, vms->memmap[VIRT_GIC_VCPU].base, 511 2, vms->memmap[VIRT_GIC_VCPU].size); 512 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 513 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 514 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 515 } 516 } 517 518 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 519 g_free(nodename); 520 } 521 522 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 523 { 524 CPUState *cpu; 525 ARMCPU *armcpu; 526 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 527 528 CPU_FOREACH(cpu) { 529 armcpu = ARM_CPU(cpu); 530 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 531 return; 532 } 533 if (kvm_enabled()) { 534 if (kvm_irqchip_in_kernel()) { 535 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 536 } 537 kvm_arm_pmu_init(cpu); 538 } 539 } 540 541 if (vms->gic_version == VIRT_GIC_VERSION_2) { 542 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 543 GIC_FDT_IRQ_PPI_CPU_WIDTH, 544 (1 << vms->smp_cpus) - 1); 545 } 546 547 armcpu = ARM_CPU(qemu_get_cpu(0)); 548 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 549 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 550 const char compat[] = "arm,armv8-pmuv3"; 551 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 552 compat, sizeof(compat)); 553 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 554 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 555 } 556 } 557 558 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 559 { 560 DeviceState *dev; 561 MachineState *ms = MACHINE(vms); 562 int irq = vms->irqmap[VIRT_ACPI_GED]; 563 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 564 565 if (ms->ram_slots) { 566 event |= ACPI_GED_MEM_HOTPLUG_EVT; 567 } 568 569 if (ms->nvdimms_state->is_enabled) { 570 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 571 } 572 573 dev = qdev_new(TYPE_ACPI_GED); 574 qdev_prop_set_uint32(dev, "ged-event", event); 575 576 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 577 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 578 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 579 580 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 581 582 return dev; 583 } 584 585 static void create_its(VirtMachineState *vms) 586 { 587 const char *itsclass = its_class_name(); 588 DeviceState *dev; 589 590 if (!itsclass) { 591 /* Do nothing if not supported */ 592 return; 593 } 594 595 dev = qdev_new(itsclass); 596 597 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 598 &error_abort); 599 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 600 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 601 602 fdt_add_its_gic_node(vms); 603 vms->msi_controller = VIRT_MSI_CTRL_ITS; 604 } 605 606 static void create_v2m(VirtMachineState *vms) 607 { 608 int i; 609 int irq = vms->irqmap[VIRT_GIC_V2M]; 610 DeviceState *dev; 611 612 dev = qdev_new("arm-gicv2m"); 613 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 614 qdev_prop_set_uint32(dev, "base-spi", irq); 615 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 616 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 617 618 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 619 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 620 qdev_get_gpio_in(vms->gic, irq + i)); 621 } 622 623 fdt_add_v2m_gic_node(vms); 624 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 625 } 626 627 static void create_gic(VirtMachineState *vms) 628 { 629 MachineState *ms = MACHINE(vms); 630 /* We create a standalone GIC */ 631 SysBusDevice *gicbusdev; 632 const char *gictype; 633 int type = vms->gic_version, i; 634 unsigned int smp_cpus = ms->smp.cpus; 635 uint32_t nb_redist_regions = 0; 636 637 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 638 639 vms->gic = qdev_new(gictype); 640 qdev_prop_set_uint32(vms->gic, "revision", type); 641 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 642 /* Note that the num-irq property counts both internal and external 643 * interrupts; there are always 32 of the former (mandated by GIC spec). 644 */ 645 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 646 if (!kvm_irqchip_in_kernel()) { 647 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 648 } 649 650 if (type == 3) { 651 uint32_t redist0_capacity = 652 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 653 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 654 655 nb_redist_regions = virt_gicv3_redist_region_count(vms); 656 657 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 658 nb_redist_regions); 659 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 660 661 if (nb_redist_regions == 2) { 662 uint32_t redist1_capacity = 663 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 664 665 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 666 MIN(smp_cpus - redist0_count, redist1_capacity)); 667 } 668 } else { 669 if (!kvm_irqchip_in_kernel()) { 670 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 671 vms->virt); 672 } 673 } 674 gicbusdev = SYS_BUS_DEVICE(vms->gic); 675 sysbus_realize_and_unref(gicbusdev, &error_fatal); 676 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 677 if (type == 3) { 678 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 679 if (nb_redist_regions == 2) { 680 sysbus_mmio_map(gicbusdev, 2, 681 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 682 } 683 } else { 684 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 685 if (vms->virt) { 686 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 687 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 688 } 689 } 690 691 /* Wire the outputs from each CPU's generic timer and the GICv3 692 * maintenance interrupt signal to the appropriate GIC PPI inputs, 693 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 694 */ 695 for (i = 0; i < smp_cpus; i++) { 696 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 697 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 698 int irq; 699 /* Mapping from the output timer irq lines from the CPU to the 700 * GIC PPI inputs we use for the virt board. 701 */ 702 const int timer_irq[] = { 703 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 704 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 705 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 706 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 707 }; 708 709 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 710 qdev_connect_gpio_out(cpudev, irq, 711 qdev_get_gpio_in(vms->gic, 712 ppibase + timer_irq[irq])); 713 } 714 715 if (type == 3) { 716 qemu_irq irq = qdev_get_gpio_in(vms->gic, 717 ppibase + ARCH_GIC_MAINT_IRQ); 718 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 719 0, irq); 720 } else if (vms->virt) { 721 qemu_irq irq = qdev_get_gpio_in(vms->gic, 722 ppibase + ARCH_GIC_MAINT_IRQ); 723 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 724 } 725 726 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 727 qdev_get_gpio_in(vms->gic, ppibase 728 + VIRTUAL_PMU_IRQ)); 729 730 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 731 sysbus_connect_irq(gicbusdev, i + smp_cpus, 732 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 733 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 734 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 735 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 736 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 737 } 738 739 fdt_add_gic_node(vms); 740 741 if (type == 3 && vms->its) { 742 create_its(vms); 743 } else if (type == 2) { 744 create_v2m(vms); 745 } 746 } 747 748 static void create_uart(const VirtMachineState *vms, int uart, 749 MemoryRegion *mem, Chardev *chr) 750 { 751 char *nodename; 752 hwaddr base = vms->memmap[uart].base; 753 hwaddr size = vms->memmap[uart].size; 754 int irq = vms->irqmap[uart]; 755 const char compat[] = "arm,pl011\0arm,primecell"; 756 const char clocknames[] = "uartclk\0apb_pclk"; 757 DeviceState *dev = qdev_new(TYPE_PL011); 758 SysBusDevice *s = SYS_BUS_DEVICE(dev); 759 760 qdev_prop_set_chr(dev, "chardev", chr); 761 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 762 memory_region_add_subregion(mem, base, 763 sysbus_mmio_get_region(s, 0)); 764 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 765 766 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 767 qemu_fdt_add_subnode(vms->fdt, nodename); 768 /* Note that we can't use setprop_string because of the embedded NUL */ 769 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 770 compat, sizeof(compat)); 771 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 772 2, base, 2, size); 773 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 774 GIC_FDT_IRQ_TYPE_SPI, irq, 775 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 776 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 777 vms->clock_phandle, vms->clock_phandle); 778 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 779 clocknames, sizeof(clocknames)); 780 781 if (uart == VIRT_UART) { 782 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 783 } else { 784 /* Mark as not usable by the normal world */ 785 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 786 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 787 788 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", 789 nodename); 790 } 791 792 g_free(nodename); 793 } 794 795 static void create_rtc(const VirtMachineState *vms) 796 { 797 char *nodename; 798 hwaddr base = vms->memmap[VIRT_RTC].base; 799 hwaddr size = vms->memmap[VIRT_RTC].size; 800 int irq = vms->irqmap[VIRT_RTC]; 801 const char compat[] = "arm,pl031\0arm,primecell"; 802 803 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 804 805 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 806 qemu_fdt_add_subnode(vms->fdt, nodename); 807 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 808 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 809 2, base, 2, size); 810 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 811 GIC_FDT_IRQ_TYPE_SPI, irq, 812 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 813 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 814 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 815 g_free(nodename); 816 } 817 818 static DeviceState *gpio_key_dev; 819 static void virt_powerdown_req(Notifier *n, void *opaque) 820 { 821 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 822 823 if (s->acpi_dev) { 824 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 825 } else { 826 /* use gpio Pin 3 for power button event */ 827 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 828 } 829 } 830 831 static void create_gpio(const VirtMachineState *vms) 832 { 833 char *nodename; 834 DeviceState *pl061_dev; 835 hwaddr base = vms->memmap[VIRT_GPIO].base; 836 hwaddr size = vms->memmap[VIRT_GPIO].size; 837 int irq = vms->irqmap[VIRT_GPIO]; 838 const char compat[] = "arm,pl061\0arm,primecell"; 839 840 pl061_dev = sysbus_create_simple("pl061", base, 841 qdev_get_gpio_in(vms->gic, irq)); 842 843 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 844 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 845 qemu_fdt_add_subnode(vms->fdt, nodename); 846 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 847 2, base, 2, size); 848 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 849 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 850 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 851 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 852 GIC_FDT_IRQ_TYPE_SPI, irq, 853 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 854 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 855 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 856 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 857 858 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 859 qdev_get_gpio_in(pl061_dev, 3)); 860 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 861 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 862 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 863 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 864 865 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 866 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 867 "label", "GPIO Key Poweroff"); 868 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 869 KEY_POWER); 870 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 871 "gpios", phandle, 3, 0); 872 g_free(nodename); 873 } 874 875 static void create_virtio_devices(const VirtMachineState *vms) 876 { 877 int i; 878 hwaddr size = vms->memmap[VIRT_MMIO].size; 879 880 /* We create the transports in forwards order. Since qbus_realize() 881 * prepends (not appends) new child buses, the incrementing loop below will 882 * create a list of virtio-mmio buses with decreasing base addresses. 883 * 884 * When a -device option is processed from the command line, 885 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 886 * order. The upshot is that -device options in increasing command line 887 * order are mapped to virtio-mmio buses with decreasing base addresses. 888 * 889 * When this code was originally written, that arrangement ensured that the 890 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 891 * the first -device on the command line. (The end-to-end order is a 892 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 893 * guest kernel's name-to-address assignment strategy.) 894 * 895 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 896 * the message, if not necessarily the code, of commit 70161ff336. 897 * Therefore the loop now establishes the inverse of the original intent. 898 * 899 * Unfortunately, we can't counteract the kernel change by reversing the 900 * loop; it would break existing command lines. 901 * 902 * In any case, the kernel makes no guarantee about the stability of 903 * enumeration order of virtio devices (as demonstrated by it changing 904 * between kernel versions). For reliable and stable identification 905 * of disks users must use UUIDs or similar mechanisms. 906 */ 907 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 908 int irq = vms->irqmap[VIRT_MMIO] + i; 909 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 910 911 sysbus_create_simple("virtio-mmio", base, 912 qdev_get_gpio_in(vms->gic, irq)); 913 } 914 915 /* We add dtb nodes in reverse order so that they appear in the finished 916 * device tree lowest address first. 917 * 918 * Note that this mapping is independent of the loop above. The previous 919 * loop influences virtio device to virtio transport assignment, whereas 920 * this loop controls how virtio transports are laid out in the dtb. 921 */ 922 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 923 char *nodename; 924 int irq = vms->irqmap[VIRT_MMIO] + i; 925 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 926 927 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 928 qemu_fdt_add_subnode(vms->fdt, nodename); 929 qemu_fdt_setprop_string(vms->fdt, nodename, 930 "compatible", "virtio,mmio"); 931 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 932 2, base, 2, size); 933 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 934 GIC_FDT_IRQ_TYPE_SPI, irq, 935 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 936 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 937 g_free(nodename); 938 } 939 } 940 941 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 942 943 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 944 const char *name, 945 const char *alias_prop_name) 946 { 947 /* 948 * Create a single flash device. We use the same parameters as 949 * the flash devices on the Versatile Express board. 950 */ 951 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 952 953 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 954 qdev_prop_set_uint8(dev, "width", 4); 955 qdev_prop_set_uint8(dev, "device-width", 2); 956 qdev_prop_set_bit(dev, "big-endian", false); 957 qdev_prop_set_uint16(dev, "id0", 0x89); 958 qdev_prop_set_uint16(dev, "id1", 0x18); 959 qdev_prop_set_uint16(dev, "id2", 0x00); 960 qdev_prop_set_uint16(dev, "id3", 0x00); 961 qdev_prop_set_string(dev, "name", name); 962 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 963 object_property_add_alias(OBJECT(vms), alias_prop_name, 964 OBJECT(dev), "drive"); 965 return PFLASH_CFI01(dev); 966 } 967 968 static void virt_flash_create(VirtMachineState *vms) 969 { 970 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 971 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 972 } 973 974 static void virt_flash_map1(PFlashCFI01 *flash, 975 hwaddr base, hwaddr size, 976 MemoryRegion *sysmem) 977 { 978 DeviceState *dev = DEVICE(flash); 979 980 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 981 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 982 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 983 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 984 985 memory_region_add_subregion(sysmem, base, 986 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 987 0)); 988 } 989 990 static void virt_flash_map(VirtMachineState *vms, 991 MemoryRegion *sysmem, 992 MemoryRegion *secure_sysmem) 993 { 994 /* 995 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 996 * sysmem is the system memory space. secure_sysmem is the secure view 997 * of the system, and the first flash device should be made visible only 998 * there. The second flash device is visible to both secure and nonsecure. 999 * If sysmem == secure_sysmem this means there is no separate Secure 1000 * address space and both flash devices are generally visible. 1001 */ 1002 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1003 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1004 1005 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1006 secure_sysmem); 1007 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1008 sysmem); 1009 } 1010 1011 static void virt_flash_fdt(VirtMachineState *vms, 1012 MemoryRegion *sysmem, 1013 MemoryRegion *secure_sysmem) 1014 { 1015 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1016 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1017 char *nodename; 1018 1019 if (sysmem == secure_sysmem) { 1020 /* Report both flash devices as a single node in the DT */ 1021 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1022 qemu_fdt_add_subnode(vms->fdt, nodename); 1023 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1024 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1025 2, flashbase, 2, flashsize, 1026 2, flashbase + flashsize, 2, flashsize); 1027 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1028 g_free(nodename); 1029 } else { 1030 /* 1031 * Report the devices as separate nodes so we can mark one as 1032 * only visible to the secure world. 1033 */ 1034 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1035 qemu_fdt_add_subnode(vms->fdt, nodename); 1036 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1037 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1038 2, flashbase, 2, flashsize); 1039 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1040 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1041 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1042 g_free(nodename); 1043 1044 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1045 qemu_fdt_add_subnode(vms->fdt, nodename); 1046 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1047 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1048 2, flashbase + flashsize, 2, flashsize); 1049 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1050 g_free(nodename); 1051 } 1052 } 1053 1054 static bool virt_firmware_init(VirtMachineState *vms, 1055 MemoryRegion *sysmem, 1056 MemoryRegion *secure_sysmem) 1057 { 1058 int i; 1059 BlockBackend *pflash_blk0; 1060 1061 /* Map legacy -drive if=pflash to machine properties */ 1062 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1063 pflash_cfi01_legacy_drive(vms->flash[i], 1064 drive_get(IF_PFLASH, 0, i)); 1065 } 1066 1067 virt_flash_map(vms, sysmem, secure_sysmem); 1068 1069 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1070 1071 if (bios_name) { 1072 char *fname; 1073 MemoryRegion *mr; 1074 int image_size; 1075 1076 if (pflash_blk0) { 1077 error_report("The contents of the first flash device may be " 1078 "specified with -bios or with -drive if=pflash... " 1079 "but you cannot use both options at once"); 1080 exit(1); 1081 } 1082 1083 /* Fall back to -bios */ 1084 1085 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1086 if (!fname) { 1087 error_report("Could not find ROM image '%s'", bios_name); 1088 exit(1); 1089 } 1090 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1091 image_size = load_image_mr(fname, mr); 1092 g_free(fname); 1093 if (image_size < 0) { 1094 error_report("Could not load ROM image '%s'", bios_name); 1095 exit(1); 1096 } 1097 } 1098 1099 return pflash_blk0 || bios_name; 1100 } 1101 1102 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1103 { 1104 MachineState *ms = MACHINE(vms); 1105 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1106 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1107 FWCfgState *fw_cfg; 1108 char *nodename; 1109 1110 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1111 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1112 1113 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1114 qemu_fdt_add_subnode(vms->fdt, nodename); 1115 qemu_fdt_setprop_string(vms->fdt, nodename, 1116 "compatible", "qemu,fw-cfg-mmio"); 1117 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1118 2, base, 2, size); 1119 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1120 g_free(nodename); 1121 return fw_cfg; 1122 } 1123 1124 static void create_pcie_irq_map(const VirtMachineState *vms, 1125 uint32_t gic_phandle, 1126 int first_irq, const char *nodename) 1127 { 1128 int devfn, pin; 1129 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1130 uint32_t *irq_map = full_irq_map; 1131 1132 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1133 for (pin = 0; pin < 4; pin++) { 1134 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1135 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1136 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1137 int i; 1138 1139 uint32_t map[] = { 1140 devfn << 8, 0, 0, /* devfn */ 1141 pin + 1, /* PCI pin */ 1142 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1143 1144 /* Convert map to big endian */ 1145 for (i = 0; i < 10; i++) { 1146 irq_map[i] = cpu_to_be32(map[i]); 1147 } 1148 irq_map += 10; 1149 } 1150 } 1151 1152 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1153 full_irq_map, sizeof(full_irq_map)); 1154 1155 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1156 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 1157 0x7 /* PCI irq */); 1158 } 1159 1160 static void create_smmu(const VirtMachineState *vms, 1161 PCIBus *bus) 1162 { 1163 char *node; 1164 const char compat[] = "arm,smmu-v3"; 1165 int irq = vms->irqmap[VIRT_SMMU]; 1166 int i; 1167 hwaddr base = vms->memmap[VIRT_SMMU].base; 1168 hwaddr size = vms->memmap[VIRT_SMMU].size; 1169 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1170 DeviceState *dev; 1171 1172 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1173 return; 1174 } 1175 1176 dev = qdev_new("arm-smmuv3"); 1177 1178 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1179 &error_abort); 1180 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1181 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1182 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1183 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1184 qdev_get_gpio_in(vms->gic, irq + i)); 1185 } 1186 1187 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1188 qemu_fdt_add_subnode(vms->fdt, node); 1189 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1190 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1191 1192 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1193 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1194 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1195 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1196 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1197 1198 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1199 sizeof(irq_names)); 1200 1201 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1202 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1203 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1204 1205 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1206 1207 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1208 g_free(node); 1209 } 1210 1211 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1212 { 1213 const char compat[] = "virtio,pci-iommu"; 1214 uint16_t bdf = vms->virtio_iommu_bdf; 1215 char *node; 1216 1217 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1218 1219 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf); 1220 qemu_fdt_add_subnode(vms->fdt, node); 1221 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1222 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 1223 1, bdf << 8, 1, 0, 1, 0, 1224 1, 0, 1, 0); 1225 1226 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1227 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1228 g_free(node); 1229 1230 qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map", 1231 0x0, vms->iommu_phandle, 0x0, bdf, 1232 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1233 } 1234 1235 static void create_pcie(VirtMachineState *vms) 1236 { 1237 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1238 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1239 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1240 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1241 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1242 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1243 hwaddr base_ecam, size_ecam; 1244 hwaddr base = base_mmio; 1245 int nr_pcie_buses; 1246 int irq = vms->irqmap[VIRT_PCIE]; 1247 MemoryRegion *mmio_alias; 1248 MemoryRegion *mmio_reg; 1249 MemoryRegion *ecam_alias; 1250 MemoryRegion *ecam_reg; 1251 DeviceState *dev; 1252 char *nodename; 1253 int i, ecam_id; 1254 PCIHostState *pci; 1255 1256 dev = qdev_new(TYPE_GPEX_HOST); 1257 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1258 1259 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1260 base_ecam = vms->memmap[ecam_id].base; 1261 size_ecam = vms->memmap[ecam_id].size; 1262 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1263 /* Map only the first size_ecam bytes of ECAM space */ 1264 ecam_alias = g_new0(MemoryRegion, 1); 1265 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1266 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1267 ecam_reg, 0, size_ecam); 1268 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1269 1270 /* Map the MMIO window into system address space so as to expose 1271 * the section of PCI MMIO space which starts at the same base address 1272 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1273 * the window). 1274 */ 1275 mmio_alias = g_new0(MemoryRegion, 1); 1276 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1277 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1278 mmio_reg, base_mmio, size_mmio); 1279 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1280 1281 if (vms->highmem) { 1282 /* Map high MMIO space */ 1283 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1284 1285 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1286 mmio_reg, base_mmio_high, size_mmio_high); 1287 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1288 high_mmio_alias); 1289 } 1290 1291 /* Map IO port space */ 1292 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1293 1294 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1295 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1296 qdev_get_gpio_in(vms->gic, irq + i)); 1297 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1298 } 1299 1300 pci = PCI_HOST_BRIDGE(dev); 1301 if (pci->bus) { 1302 for (i = 0; i < nb_nics; i++) { 1303 NICInfo *nd = &nd_table[i]; 1304 1305 if (!nd->model) { 1306 nd->model = g_strdup("virtio"); 1307 } 1308 1309 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1310 } 1311 } 1312 1313 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1314 qemu_fdt_add_subnode(vms->fdt, nodename); 1315 qemu_fdt_setprop_string(vms->fdt, nodename, 1316 "compatible", "pci-host-ecam-generic"); 1317 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1318 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1319 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1320 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1321 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1322 nr_pcie_buses - 1); 1323 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1324 1325 if (vms->msi_phandle) { 1326 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1327 vms->msi_phandle); 1328 } 1329 1330 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1331 2, base_ecam, 2, size_ecam); 1332 1333 if (vms->highmem) { 1334 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1335 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1336 2, base_pio, 2, size_pio, 1337 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1338 2, base_mmio, 2, size_mmio, 1339 1, FDT_PCI_RANGE_MMIO_64BIT, 1340 2, base_mmio_high, 1341 2, base_mmio_high, 2, size_mmio_high); 1342 } else { 1343 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1344 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1345 2, base_pio, 2, size_pio, 1346 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1347 2, base_mmio, 2, size_mmio); 1348 } 1349 1350 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1351 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1352 1353 if (vms->iommu) { 1354 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1355 1356 switch (vms->iommu) { 1357 case VIRT_IOMMU_SMMUV3: 1358 create_smmu(vms, pci->bus); 1359 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1360 0x0, vms->iommu_phandle, 0x0, 0x10000); 1361 break; 1362 default: 1363 g_assert_not_reached(); 1364 } 1365 } 1366 } 1367 1368 static void create_platform_bus(VirtMachineState *vms) 1369 { 1370 DeviceState *dev; 1371 SysBusDevice *s; 1372 int i; 1373 MemoryRegion *sysmem = get_system_memory(); 1374 1375 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1376 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1377 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1378 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1379 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1380 vms->platform_bus_dev = dev; 1381 1382 s = SYS_BUS_DEVICE(dev); 1383 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1384 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1385 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1386 } 1387 1388 memory_region_add_subregion(sysmem, 1389 vms->memmap[VIRT_PLATFORM_BUS].base, 1390 sysbus_mmio_get_region(s, 0)); 1391 } 1392 1393 static void create_tag_ram(MemoryRegion *tag_sysmem, 1394 hwaddr base, hwaddr size, 1395 const char *name) 1396 { 1397 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1398 1399 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1400 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1401 } 1402 1403 static void create_secure_ram(VirtMachineState *vms, 1404 MemoryRegion *secure_sysmem, 1405 MemoryRegion *secure_tag_sysmem) 1406 { 1407 MemoryRegion *secram = g_new(MemoryRegion, 1); 1408 char *nodename; 1409 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1410 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1411 1412 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1413 &error_fatal); 1414 memory_region_add_subregion(secure_sysmem, base, secram); 1415 1416 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1417 qemu_fdt_add_subnode(vms->fdt, nodename); 1418 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1419 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1420 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1421 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1422 1423 if (secure_tag_sysmem) { 1424 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1425 } 1426 1427 g_free(nodename); 1428 } 1429 1430 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1431 { 1432 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1433 bootinfo); 1434 1435 *fdt_size = board->fdt_size; 1436 return board->fdt; 1437 } 1438 1439 static void virt_build_smbios(VirtMachineState *vms) 1440 { 1441 MachineClass *mc = MACHINE_GET_CLASS(vms); 1442 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1443 uint8_t *smbios_tables, *smbios_anchor; 1444 size_t smbios_tables_len, smbios_anchor_len; 1445 const char *product = "QEMU Virtual Machine"; 1446 1447 if (kvm_enabled()) { 1448 product = "KVM Virtual Machine"; 1449 } 1450 1451 smbios_set_defaults("QEMU", product, 1452 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1453 true, SMBIOS_ENTRY_POINT_30); 1454 1455 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, 1456 &smbios_anchor, &smbios_anchor_len); 1457 1458 if (smbios_anchor) { 1459 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1460 smbios_tables, smbios_tables_len); 1461 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1462 smbios_anchor, smbios_anchor_len); 1463 } 1464 } 1465 1466 static 1467 void virt_machine_done(Notifier *notifier, void *data) 1468 { 1469 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1470 machine_done); 1471 MachineState *ms = MACHINE(vms); 1472 ARMCPU *cpu = ARM_CPU(first_cpu); 1473 struct arm_boot_info *info = &vms->bootinfo; 1474 AddressSpace *as = arm_boot_address_space(cpu, info); 1475 1476 /* 1477 * If the user provided a dtb, we assume the dynamic sysbus nodes 1478 * already are integrated there. This corresponds to a use case where 1479 * the dynamic sysbus nodes are complex and their generation is not yet 1480 * supported. In that case the user can take charge of the guest dt 1481 * while qemu takes charge of the qom stuff. 1482 */ 1483 if (info->dtb_filename == NULL) { 1484 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1485 vms->memmap[VIRT_PLATFORM_BUS].base, 1486 vms->memmap[VIRT_PLATFORM_BUS].size, 1487 vms->irqmap[VIRT_PLATFORM_BUS]); 1488 } 1489 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1490 exit(1); 1491 } 1492 1493 virt_acpi_setup(vms); 1494 virt_build_smbios(vms); 1495 } 1496 1497 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1498 { 1499 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1500 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1501 1502 if (!vmc->disallow_affinity_adjustment) { 1503 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1504 * GIC's target-list limitations. 32-bit KVM hosts currently 1505 * always create clusters of 4 CPUs, but that is expected to 1506 * change when they gain support for gicv3. When KVM is enabled 1507 * it will override the changes we make here, therefore our 1508 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1509 * and to improve SGI efficiency. 1510 */ 1511 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1512 clustersz = GICV3_TARGETLIST_BITS; 1513 } else { 1514 clustersz = GIC_TARGETLIST_BITS; 1515 } 1516 } 1517 return arm_cpu_mp_affinity(idx, clustersz); 1518 } 1519 1520 static void virt_set_memmap(VirtMachineState *vms) 1521 { 1522 MachineState *ms = MACHINE(vms); 1523 hwaddr base, device_memory_base, device_memory_size; 1524 int i; 1525 1526 vms->memmap = extended_memmap; 1527 1528 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1529 vms->memmap[i] = base_memmap[i]; 1530 } 1531 1532 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1533 error_report("unsupported number of memory slots: %"PRIu64, 1534 ms->ram_slots); 1535 exit(EXIT_FAILURE); 1536 } 1537 1538 /* 1539 * We compute the base of the high IO region depending on the 1540 * amount of initial and device memory. The device memory start/size 1541 * is aligned on 1GiB. We never put the high IO region below 256GiB 1542 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1543 * The device region size assumes 1GiB page max alignment per slot. 1544 */ 1545 device_memory_base = 1546 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1547 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1548 1549 /* Base address of the high IO region */ 1550 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1551 if (base < device_memory_base) { 1552 error_report("maxmem/slots too huge"); 1553 exit(EXIT_FAILURE); 1554 } 1555 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1556 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1557 } 1558 1559 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1560 hwaddr size = extended_memmap[i].size; 1561 1562 base = ROUND_UP(base, size); 1563 vms->memmap[i].base = base; 1564 vms->memmap[i].size = size; 1565 base += size; 1566 } 1567 vms->highest_gpa = base - 1; 1568 if (device_memory_size > 0) { 1569 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1570 ms->device_memory->base = device_memory_base; 1571 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1572 "device-memory", device_memory_size); 1573 } 1574 } 1575 1576 /* 1577 * finalize_gic_version - Determines the final gic_version 1578 * according to the gic-version property 1579 * 1580 * Default GIC type is v2 1581 */ 1582 static void finalize_gic_version(VirtMachineState *vms) 1583 { 1584 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1585 1586 if (kvm_enabled()) { 1587 int probe_bitmap; 1588 1589 if (!kvm_irqchip_in_kernel()) { 1590 switch (vms->gic_version) { 1591 case VIRT_GIC_VERSION_HOST: 1592 warn_report( 1593 "gic-version=host not relevant with kernel-irqchip=off " 1594 "as only userspace GICv2 is supported. Using v2 ..."); 1595 return; 1596 case VIRT_GIC_VERSION_MAX: 1597 case VIRT_GIC_VERSION_NOSEL: 1598 vms->gic_version = VIRT_GIC_VERSION_2; 1599 return; 1600 case VIRT_GIC_VERSION_2: 1601 return; 1602 case VIRT_GIC_VERSION_3: 1603 error_report( 1604 "gic-version=3 is not supported with kernel-irqchip=off"); 1605 exit(1); 1606 } 1607 } 1608 1609 probe_bitmap = kvm_arm_vgic_probe(); 1610 if (!probe_bitmap) { 1611 error_report("Unable to determine GIC version supported by host"); 1612 exit(1); 1613 } 1614 1615 switch (vms->gic_version) { 1616 case VIRT_GIC_VERSION_HOST: 1617 case VIRT_GIC_VERSION_MAX: 1618 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1619 vms->gic_version = VIRT_GIC_VERSION_3; 1620 } else { 1621 vms->gic_version = VIRT_GIC_VERSION_2; 1622 } 1623 return; 1624 case VIRT_GIC_VERSION_NOSEL: 1625 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) { 1626 vms->gic_version = VIRT_GIC_VERSION_2; 1627 } else if (probe_bitmap & KVM_ARM_VGIC_V3) { 1628 /* 1629 * in case the host does not support v2 in-kernel emulation or 1630 * the end-user requested more than 8 VCPUs we now default 1631 * to v3. In any case defaulting to v2 would be broken. 1632 */ 1633 vms->gic_version = VIRT_GIC_VERSION_3; 1634 } else if (max_cpus > GIC_NCPU) { 1635 error_report("host only supports in-kernel GICv2 emulation " 1636 "but more than 8 vcpus are requested"); 1637 exit(1); 1638 } 1639 break; 1640 case VIRT_GIC_VERSION_2: 1641 case VIRT_GIC_VERSION_3: 1642 break; 1643 } 1644 1645 /* Check chosen version is effectively supported by the host */ 1646 if (vms->gic_version == VIRT_GIC_VERSION_2 && 1647 !(probe_bitmap & KVM_ARM_VGIC_V2)) { 1648 error_report("host does not support in-kernel GICv2 emulation"); 1649 exit(1); 1650 } else if (vms->gic_version == VIRT_GIC_VERSION_3 && 1651 !(probe_bitmap & KVM_ARM_VGIC_V3)) { 1652 error_report("host does not support in-kernel GICv3 emulation"); 1653 exit(1); 1654 } 1655 return; 1656 } 1657 1658 /* TCG mode */ 1659 switch (vms->gic_version) { 1660 case VIRT_GIC_VERSION_NOSEL: 1661 vms->gic_version = VIRT_GIC_VERSION_2; 1662 break; 1663 case VIRT_GIC_VERSION_MAX: 1664 vms->gic_version = VIRT_GIC_VERSION_3; 1665 break; 1666 case VIRT_GIC_VERSION_HOST: 1667 error_report("gic-version=host requires KVM"); 1668 exit(1); 1669 case VIRT_GIC_VERSION_2: 1670 case VIRT_GIC_VERSION_3: 1671 break; 1672 } 1673 } 1674 1675 static void machvirt_init(MachineState *machine) 1676 { 1677 VirtMachineState *vms = VIRT_MACHINE(machine); 1678 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1679 MachineClass *mc = MACHINE_GET_CLASS(machine); 1680 const CPUArchIdList *possible_cpus; 1681 MemoryRegion *sysmem = get_system_memory(); 1682 MemoryRegion *secure_sysmem = NULL; 1683 MemoryRegion *tag_sysmem = NULL; 1684 MemoryRegion *secure_tag_sysmem = NULL; 1685 int n, virt_max_cpus; 1686 bool firmware_loaded; 1687 bool aarch64 = true; 1688 bool has_ged = !vmc->no_ged; 1689 unsigned int smp_cpus = machine->smp.cpus; 1690 unsigned int max_cpus = machine->smp.max_cpus; 1691 1692 /* 1693 * In accelerated mode, the memory map is computed earlier in kvm_type() 1694 * to create a VM with the right number of IPA bits. 1695 */ 1696 if (!vms->memmap) { 1697 virt_set_memmap(vms); 1698 } 1699 1700 /* We can probe only here because during property set 1701 * KVM is not available yet 1702 */ 1703 finalize_gic_version(vms); 1704 1705 if (!cpu_type_valid(machine->cpu_type)) { 1706 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1707 exit(1); 1708 } 1709 1710 if (vms->secure) { 1711 if (kvm_enabled()) { 1712 error_report("mach-virt: KVM does not support Security extensions"); 1713 exit(1); 1714 } 1715 1716 /* 1717 * The Secure view of the world is the same as the NonSecure, 1718 * but with a few extra devices. Create it as a container region 1719 * containing the system memory at low priority; any secure-only 1720 * devices go in at higher priority and take precedence. 1721 */ 1722 secure_sysmem = g_new(MemoryRegion, 1); 1723 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1724 UINT64_MAX); 1725 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1726 } 1727 1728 firmware_loaded = virt_firmware_init(vms, sysmem, 1729 secure_sysmem ?: sysmem); 1730 1731 /* If we have an EL3 boot ROM then the assumption is that it will 1732 * implement PSCI itself, so disable QEMU's internal implementation 1733 * so it doesn't get in the way. Instead of starting secondary 1734 * CPUs in PSCI powerdown state we will start them all running and 1735 * let the boot ROM sort them out. 1736 * The usual case is that we do use QEMU's PSCI implementation; 1737 * if the guest has EL2 then we will use SMC as the conduit, 1738 * and otherwise we will use HVC (for backwards compatibility and 1739 * because if we're using KVM then we must use HVC). 1740 */ 1741 if (vms->secure && firmware_loaded) { 1742 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1743 } else if (vms->virt) { 1744 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1745 } else { 1746 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1747 } 1748 1749 /* The maximum number of CPUs depends on the GIC version, or on how 1750 * many redistributors we can fit into the memory map. 1751 */ 1752 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1753 virt_max_cpus = 1754 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1755 virt_max_cpus += 1756 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1757 } else { 1758 virt_max_cpus = GIC_NCPU; 1759 } 1760 1761 if (max_cpus > virt_max_cpus) { 1762 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1763 "supported by machine 'mach-virt' (%d)", 1764 max_cpus, virt_max_cpus); 1765 exit(1); 1766 } 1767 1768 vms->smp_cpus = smp_cpus; 1769 1770 if (vms->virt && kvm_enabled()) { 1771 error_report("mach-virt: KVM does not support providing " 1772 "Virtualization extensions to the guest CPU"); 1773 exit(1); 1774 } 1775 1776 if (vms->mte && kvm_enabled()) { 1777 error_report("mach-virt: KVM does not support providing " 1778 "MTE to the guest CPU"); 1779 exit(1); 1780 } 1781 1782 create_fdt(vms); 1783 1784 possible_cpus = mc->possible_cpu_arch_ids(machine); 1785 for (n = 0; n < possible_cpus->len; n++) { 1786 Object *cpuobj; 1787 CPUState *cs; 1788 1789 if (n >= smp_cpus) { 1790 break; 1791 } 1792 1793 cpuobj = object_new(possible_cpus->cpus[n].type); 1794 object_property_set_int(cpuobj, "mp-affinity", 1795 possible_cpus->cpus[n].arch_id, NULL); 1796 1797 cs = CPU(cpuobj); 1798 cs->cpu_index = n; 1799 1800 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1801 &error_fatal); 1802 1803 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1804 1805 if (!vms->secure) { 1806 object_property_set_bool(cpuobj, "has_el3", false, NULL); 1807 } 1808 1809 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { 1810 object_property_set_bool(cpuobj, "has_el2", false, NULL); 1811 } 1812 1813 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1814 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit, 1815 NULL); 1816 1817 /* Secondary CPUs start in PSCI powered-down state */ 1818 if (n > 0) { 1819 object_property_set_bool(cpuobj, "start-powered-off", true, 1820 NULL); 1821 } 1822 } 1823 1824 if (vmc->kvm_no_adjvtime && 1825 object_property_find(cpuobj, "kvm-no-adjvtime", NULL)) { 1826 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 1827 } 1828 1829 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1830 object_property_set_bool(cpuobj, "pmu", false, NULL); 1831 } 1832 1833 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1834 object_property_set_int(cpuobj, "reset-cbar", 1835 vms->memmap[VIRT_CPUPERIPHS].base, 1836 &error_abort); 1837 } 1838 1839 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 1840 &error_abort); 1841 if (vms->secure) { 1842 object_property_set_link(cpuobj, "secure-memory", 1843 OBJECT(secure_sysmem), &error_abort); 1844 } 1845 1846 if (vms->mte) { 1847 /* Create the memory region only once, but link to all cpus. */ 1848 if (!tag_sysmem) { 1849 /* 1850 * The property exists only if MemTag is supported. 1851 * If it is, we must allocate the ram to back that up. 1852 */ 1853 if (!object_property_find(cpuobj, "tag-memory", NULL)) { 1854 error_report("MTE requested, but not supported " 1855 "by the guest CPU"); 1856 exit(1); 1857 } 1858 1859 tag_sysmem = g_new(MemoryRegion, 1); 1860 memory_region_init(tag_sysmem, OBJECT(machine), 1861 "tag-memory", UINT64_MAX / 32); 1862 1863 if (vms->secure) { 1864 secure_tag_sysmem = g_new(MemoryRegion, 1); 1865 memory_region_init(secure_tag_sysmem, OBJECT(machine), 1866 "secure-tag-memory", UINT64_MAX / 32); 1867 1868 /* As with ram, secure-tag takes precedence over tag. */ 1869 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 1870 tag_sysmem, -1); 1871 } 1872 } 1873 1874 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 1875 &error_abort); 1876 if (vms->secure) { 1877 object_property_set_link(cpuobj, "secure-tag-memory", 1878 OBJECT(secure_tag_sysmem), 1879 &error_abort); 1880 } 1881 } 1882 1883 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 1884 object_unref(cpuobj); 1885 } 1886 fdt_add_timer_nodes(vms); 1887 fdt_add_cpu_nodes(vms); 1888 1889 if (!kvm_enabled()) { 1890 ARMCPU *cpu = ARM_CPU(first_cpu); 1891 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL); 1892 1893 if (aarch64 && vms->highmem) { 1894 int requested_pa_size, pamax = arm_pamax(cpu); 1895 1896 requested_pa_size = 64 - clz64(vms->highest_gpa); 1897 if (pamax < requested_pa_size) { 1898 error_report("VCPU supports less PA bits (%d) than requested " 1899 "by the memory map (%d)", pamax, requested_pa_size); 1900 exit(1); 1901 } 1902 } 1903 } 1904 1905 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 1906 machine->ram); 1907 if (machine->device_memory) { 1908 memory_region_add_subregion(sysmem, machine->device_memory->base, 1909 &machine->device_memory->mr); 1910 } 1911 1912 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 1913 1914 create_gic(vms); 1915 1916 fdt_add_pmu_nodes(vms); 1917 1918 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 1919 1920 if (vms->secure) { 1921 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 1922 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1923 } 1924 1925 if (tag_sysmem) { 1926 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 1927 machine->ram_size, "mach-virt.tag"); 1928 } 1929 1930 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 1931 1932 create_rtc(vms); 1933 1934 create_pcie(vms); 1935 1936 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 1937 vms->acpi_dev = create_acpi_ged(vms); 1938 } else { 1939 create_gpio(vms); 1940 } 1941 1942 /* connect powerdown request */ 1943 vms->powerdown_notifier.notify = virt_powerdown_req; 1944 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 1945 1946 /* Create mmio transports, so the user can create virtio backends 1947 * (which will be automatically plugged in to the transports). If 1948 * no backend is created the transport will just sit harmlessly idle. 1949 */ 1950 create_virtio_devices(vms); 1951 1952 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 1953 rom_set_fw(vms->fw_cfg); 1954 1955 create_platform_bus(vms); 1956 1957 if (machine->nvdimms_state->is_enabled) { 1958 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 1959 .space_id = AML_AS_SYSTEM_MEMORY, 1960 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 1961 .bit_width = NVDIMM_ACPI_IO_LEN << 3 1962 }; 1963 1964 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 1965 arm_virt_nvdimm_acpi_dsmio, 1966 vms->fw_cfg, OBJECT(vms)); 1967 } 1968 1969 vms->bootinfo.ram_size = machine->ram_size; 1970 vms->bootinfo.nb_cpus = smp_cpus; 1971 vms->bootinfo.board_id = -1; 1972 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 1973 vms->bootinfo.get_dtb = machvirt_dtb; 1974 vms->bootinfo.skip_dtb_autoload = true; 1975 vms->bootinfo.firmware_loaded = firmware_loaded; 1976 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 1977 1978 vms->machine_done.notify = virt_machine_done; 1979 qemu_add_machine_init_done_notifier(&vms->machine_done); 1980 } 1981 1982 static bool virt_get_secure(Object *obj, Error **errp) 1983 { 1984 VirtMachineState *vms = VIRT_MACHINE(obj); 1985 1986 return vms->secure; 1987 } 1988 1989 static void virt_set_secure(Object *obj, bool value, Error **errp) 1990 { 1991 VirtMachineState *vms = VIRT_MACHINE(obj); 1992 1993 vms->secure = value; 1994 } 1995 1996 static bool virt_get_virt(Object *obj, Error **errp) 1997 { 1998 VirtMachineState *vms = VIRT_MACHINE(obj); 1999 2000 return vms->virt; 2001 } 2002 2003 static void virt_set_virt(Object *obj, bool value, Error **errp) 2004 { 2005 VirtMachineState *vms = VIRT_MACHINE(obj); 2006 2007 vms->virt = value; 2008 } 2009 2010 static bool virt_get_highmem(Object *obj, Error **errp) 2011 { 2012 VirtMachineState *vms = VIRT_MACHINE(obj); 2013 2014 return vms->highmem; 2015 } 2016 2017 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2018 { 2019 VirtMachineState *vms = VIRT_MACHINE(obj); 2020 2021 vms->highmem = value; 2022 } 2023 2024 static bool virt_get_its(Object *obj, Error **errp) 2025 { 2026 VirtMachineState *vms = VIRT_MACHINE(obj); 2027 2028 return vms->its; 2029 } 2030 2031 static void virt_set_its(Object *obj, bool value, Error **errp) 2032 { 2033 VirtMachineState *vms = VIRT_MACHINE(obj); 2034 2035 vms->its = value; 2036 } 2037 2038 bool virt_is_acpi_enabled(VirtMachineState *vms) 2039 { 2040 if (vms->acpi == ON_OFF_AUTO_OFF) { 2041 return false; 2042 } 2043 return true; 2044 } 2045 2046 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2047 void *opaque, Error **errp) 2048 { 2049 VirtMachineState *vms = VIRT_MACHINE(obj); 2050 OnOffAuto acpi = vms->acpi; 2051 2052 visit_type_OnOffAuto(v, name, &acpi, errp); 2053 } 2054 2055 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2056 void *opaque, Error **errp) 2057 { 2058 VirtMachineState *vms = VIRT_MACHINE(obj); 2059 2060 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2061 } 2062 2063 static bool virt_get_ras(Object *obj, Error **errp) 2064 { 2065 VirtMachineState *vms = VIRT_MACHINE(obj); 2066 2067 return vms->ras; 2068 } 2069 2070 static void virt_set_ras(Object *obj, bool value, Error **errp) 2071 { 2072 VirtMachineState *vms = VIRT_MACHINE(obj); 2073 2074 vms->ras = value; 2075 } 2076 2077 static bool virt_get_mte(Object *obj, Error **errp) 2078 { 2079 VirtMachineState *vms = VIRT_MACHINE(obj); 2080 2081 return vms->mte; 2082 } 2083 2084 static void virt_set_mte(Object *obj, bool value, Error **errp) 2085 { 2086 VirtMachineState *vms = VIRT_MACHINE(obj); 2087 2088 vms->mte = value; 2089 } 2090 2091 static char *virt_get_gic_version(Object *obj, Error **errp) 2092 { 2093 VirtMachineState *vms = VIRT_MACHINE(obj); 2094 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2"; 2095 2096 return g_strdup(val); 2097 } 2098 2099 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2100 { 2101 VirtMachineState *vms = VIRT_MACHINE(obj); 2102 2103 if (!strcmp(value, "3")) { 2104 vms->gic_version = VIRT_GIC_VERSION_3; 2105 } else if (!strcmp(value, "2")) { 2106 vms->gic_version = VIRT_GIC_VERSION_2; 2107 } else if (!strcmp(value, "host")) { 2108 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2109 } else if (!strcmp(value, "max")) { 2110 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2111 } else { 2112 error_setg(errp, "Invalid gic-version value"); 2113 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2114 } 2115 } 2116 2117 static char *virt_get_iommu(Object *obj, Error **errp) 2118 { 2119 VirtMachineState *vms = VIRT_MACHINE(obj); 2120 2121 switch (vms->iommu) { 2122 case VIRT_IOMMU_NONE: 2123 return g_strdup("none"); 2124 case VIRT_IOMMU_SMMUV3: 2125 return g_strdup("smmuv3"); 2126 default: 2127 g_assert_not_reached(); 2128 } 2129 } 2130 2131 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2132 { 2133 VirtMachineState *vms = VIRT_MACHINE(obj); 2134 2135 if (!strcmp(value, "smmuv3")) { 2136 vms->iommu = VIRT_IOMMU_SMMUV3; 2137 } else if (!strcmp(value, "none")) { 2138 vms->iommu = VIRT_IOMMU_NONE; 2139 } else { 2140 error_setg(errp, "Invalid iommu value"); 2141 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2142 } 2143 } 2144 2145 static CpuInstanceProperties 2146 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2147 { 2148 MachineClass *mc = MACHINE_GET_CLASS(ms); 2149 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2150 2151 assert(cpu_index < possible_cpus->len); 2152 return possible_cpus->cpus[cpu_index].props; 2153 } 2154 2155 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2156 { 2157 return idx % ms->numa_state->num_nodes; 2158 } 2159 2160 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2161 { 2162 int n; 2163 unsigned int max_cpus = ms->smp.max_cpus; 2164 VirtMachineState *vms = VIRT_MACHINE(ms); 2165 2166 if (ms->possible_cpus) { 2167 assert(ms->possible_cpus->len == max_cpus); 2168 return ms->possible_cpus; 2169 } 2170 2171 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2172 sizeof(CPUArchId) * max_cpus); 2173 ms->possible_cpus->len = max_cpus; 2174 for (n = 0; n < ms->possible_cpus->len; n++) { 2175 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2176 ms->possible_cpus->cpus[n].arch_id = 2177 virt_cpu_mp_affinity(vms, n); 2178 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2179 ms->possible_cpus->cpus[n].props.thread_id = n; 2180 } 2181 return ms->possible_cpus; 2182 } 2183 2184 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2185 Error **errp) 2186 { 2187 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2188 const MachineState *ms = MACHINE(hotplug_dev); 2189 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2190 2191 if (!vms->acpi_dev) { 2192 error_setg(errp, 2193 "memory hotplug is not enabled: missing acpi-ged device"); 2194 return; 2195 } 2196 2197 if (vms->mte) { 2198 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2199 return; 2200 } 2201 2202 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2203 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2204 return; 2205 } 2206 2207 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2208 } 2209 2210 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2211 DeviceState *dev, Error **errp) 2212 { 2213 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2214 MachineState *ms = MACHINE(hotplug_dev); 2215 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2216 Error *local_err = NULL; 2217 2218 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err); 2219 if (local_err) { 2220 goto out; 2221 } 2222 2223 if (is_nvdimm) { 2224 nvdimm_plug(ms->nvdimms_state); 2225 } 2226 2227 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2228 dev, &error_abort); 2229 2230 out: 2231 error_propagate(errp, local_err); 2232 } 2233 2234 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2235 DeviceState *dev, Error **errp) 2236 { 2237 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2238 2239 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2240 virt_memory_pre_plug(hotplug_dev, dev, errp); 2241 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2242 hwaddr db_start = 0, db_end = 0; 2243 char *resv_prop_str; 2244 2245 switch (vms->msi_controller) { 2246 case VIRT_MSI_CTRL_NONE: 2247 return; 2248 case VIRT_MSI_CTRL_ITS: 2249 /* GITS_TRANSLATER page */ 2250 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2251 db_end = base_memmap[VIRT_GIC_ITS].base + 2252 base_memmap[VIRT_GIC_ITS].size - 1; 2253 break; 2254 case VIRT_MSI_CTRL_GICV2M: 2255 /* MSI_SETSPI_NS page */ 2256 db_start = base_memmap[VIRT_GIC_V2M].base; 2257 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2258 break; 2259 } 2260 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2261 db_start, db_end, 2262 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2263 2264 qdev_prop_set_uint32(dev, "len-reserved-regions", 1); 2265 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str); 2266 g_free(resv_prop_str); 2267 } 2268 } 2269 2270 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2271 DeviceState *dev, Error **errp) 2272 { 2273 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2274 2275 if (vms->platform_bus_dev) { 2276 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 2277 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2278 SYS_BUS_DEVICE(dev)); 2279 } 2280 } 2281 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2282 virt_memory_plug(hotplug_dev, dev, errp); 2283 } 2284 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2285 PCIDevice *pdev = PCI_DEVICE(dev); 2286 2287 vms->iommu = VIRT_IOMMU_VIRTIO; 2288 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2289 create_virtio_iommu_dt_bindings(vms); 2290 } 2291 } 2292 2293 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2294 DeviceState *dev, Error **errp) 2295 { 2296 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2297 Error *local_err = NULL; 2298 2299 if (!vms->acpi_dev) { 2300 error_setg(&local_err, 2301 "memory hotplug is not enabled: missing acpi-ged device"); 2302 goto out; 2303 } 2304 2305 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2306 error_setg(&local_err, 2307 "nvdimm device hot unplug is not supported yet."); 2308 goto out; 2309 } 2310 2311 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2312 &local_err); 2313 out: 2314 error_propagate(errp, local_err); 2315 } 2316 2317 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2318 DeviceState *dev, Error **errp) 2319 { 2320 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2321 Error *local_err = NULL; 2322 2323 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2324 if (local_err) { 2325 goto out; 2326 } 2327 2328 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2329 qdev_unrealize(dev); 2330 2331 out: 2332 error_propagate(errp, local_err); 2333 } 2334 2335 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2336 DeviceState *dev, Error **errp) 2337 { 2338 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2339 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2340 } else { 2341 error_setg(errp, "device unplug request for unsupported device" 2342 " type: %s", object_get_typename(OBJECT(dev))); 2343 } 2344 } 2345 2346 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2347 DeviceState *dev, Error **errp) 2348 { 2349 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2350 virt_dimm_unplug(hotplug_dev, dev, errp); 2351 } else { 2352 error_setg(errp, "virt: device unplug for unsupported device" 2353 " type: %s", object_get_typename(OBJECT(dev))); 2354 } 2355 } 2356 2357 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2358 DeviceState *dev) 2359 { 2360 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) || 2361 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { 2362 return HOTPLUG_HANDLER(machine); 2363 } 2364 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2365 VirtMachineState *vms = VIRT_MACHINE(machine); 2366 2367 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) { 2368 return HOTPLUG_HANDLER(machine); 2369 } 2370 } 2371 return NULL; 2372 } 2373 2374 /* 2375 * for arm64 kvm_type [7-0] encodes the requested number of bits 2376 * in the IPA address space 2377 */ 2378 static int virt_kvm_type(MachineState *ms, const char *type_str) 2379 { 2380 VirtMachineState *vms = VIRT_MACHINE(ms); 2381 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms); 2382 int requested_pa_size; 2383 2384 /* we freeze the memory map to compute the highest gpa */ 2385 virt_set_memmap(vms); 2386 2387 requested_pa_size = 64 - clz64(vms->highest_gpa); 2388 2389 if (requested_pa_size > max_vm_pa_size) { 2390 error_report("-m and ,maxmem option values " 2391 "require an IPA range (%d bits) larger than " 2392 "the one supported by the host (%d bits)", 2393 requested_pa_size, max_vm_pa_size); 2394 exit(1); 2395 } 2396 /* 2397 * By default we return 0 which corresponds to an implicit legacy 2398 * 40b IPA setting. Otherwise we return the actual requested PA 2399 * logsize 2400 */ 2401 return requested_pa_size > 40 ? requested_pa_size : 0; 2402 } 2403 2404 static void virt_machine_class_init(ObjectClass *oc, void *data) 2405 { 2406 MachineClass *mc = MACHINE_CLASS(oc); 2407 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2408 2409 mc->init = machvirt_init; 2410 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2411 * The value may be reduced later when we have more information about the 2412 * configuration of the particular instance. 2413 */ 2414 mc->max_cpus = 512; 2415 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2416 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2417 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2418 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2419 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2420 mc->block_default_type = IF_VIRTIO; 2421 mc->no_cdrom = 1; 2422 mc->pci_allow_0_address = true; 2423 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2424 mc->minimum_page_bits = 12; 2425 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2426 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2427 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2428 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2429 mc->kvm_type = virt_kvm_type; 2430 assert(!mc->get_hotplug_handler); 2431 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2432 hc->pre_plug = virt_machine_device_pre_plug_cb; 2433 hc->plug = virt_machine_device_plug_cb; 2434 hc->unplug_request = virt_machine_device_unplug_request_cb; 2435 hc->unplug = virt_machine_device_unplug_cb; 2436 mc->nvdimm_supported = true; 2437 mc->auto_enable_numa_with_memhp = true; 2438 mc->auto_enable_numa_with_memdev = true; 2439 mc->default_ram_id = "mach-virt.ram"; 2440 2441 object_class_property_add(oc, "acpi", "OnOffAuto", 2442 virt_get_acpi, virt_set_acpi, 2443 NULL, NULL); 2444 object_class_property_set_description(oc, "acpi", 2445 "Enable ACPI"); 2446 } 2447 2448 static void virt_instance_init(Object *obj) 2449 { 2450 VirtMachineState *vms = VIRT_MACHINE(obj); 2451 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 2452 2453 /* EL3 is disabled by default on virt: this makes us consistent 2454 * between KVM and TCG for this board, and it also allows us to 2455 * boot UEFI blobs which assume no TrustZone support. 2456 */ 2457 vms->secure = false; 2458 object_property_add_bool(obj, "secure", virt_get_secure, 2459 virt_set_secure); 2460 object_property_set_description(obj, "secure", 2461 "Set on/off to enable/disable the ARM " 2462 "Security Extensions (TrustZone)"); 2463 2464 /* EL2 is also disabled by default, for similar reasons */ 2465 vms->virt = false; 2466 object_property_add_bool(obj, "virtualization", virt_get_virt, 2467 virt_set_virt); 2468 object_property_set_description(obj, "virtualization", 2469 "Set on/off to enable/disable emulating a " 2470 "guest CPU which implements the ARM " 2471 "Virtualization Extensions"); 2472 2473 /* High memory is enabled by default */ 2474 vms->highmem = true; 2475 object_property_add_bool(obj, "highmem", virt_get_highmem, 2476 virt_set_highmem); 2477 object_property_set_description(obj, "highmem", 2478 "Set on/off to enable/disable using " 2479 "physical address space above 32 bits"); 2480 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 2481 object_property_add_str(obj, "gic-version", virt_get_gic_version, 2482 virt_set_gic_version); 2483 object_property_set_description(obj, "gic-version", 2484 "Set GIC version. " 2485 "Valid values are 2, 3, host and max"); 2486 2487 vms->highmem_ecam = !vmc->no_highmem_ecam; 2488 2489 if (vmc->no_its) { 2490 vms->its = false; 2491 } else { 2492 /* Default allows ITS instantiation */ 2493 vms->its = true; 2494 object_property_add_bool(obj, "its", virt_get_its, 2495 virt_set_its); 2496 object_property_set_description(obj, "its", 2497 "Set on/off to enable/disable " 2498 "ITS instantiation"); 2499 } 2500 2501 /* Default disallows iommu instantiation */ 2502 vms->iommu = VIRT_IOMMU_NONE; 2503 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu); 2504 object_property_set_description(obj, "iommu", 2505 "Set the IOMMU type. " 2506 "Valid values are none and smmuv3"); 2507 2508 /* Default disallows RAS instantiation */ 2509 vms->ras = false; 2510 object_property_add_bool(obj, "ras", virt_get_ras, 2511 virt_set_ras); 2512 object_property_set_description(obj, "ras", 2513 "Set on/off to enable/disable reporting host memory errors " 2514 "to a KVM guest using ACPI and guest external abort exceptions"); 2515 2516 /* MTE is disabled by default. */ 2517 vms->mte = false; 2518 object_property_add_bool(obj, "mte", virt_get_mte, virt_set_mte); 2519 object_property_set_description(obj, "mte", 2520 "Set on/off to enable/disable emulating a " 2521 "guest CPU which implements the ARM " 2522 "Memory Tagging Extension"); 2523 2524 vms->irqmap = a15irqmap; 2525 2526 virt_flash_create(vms); 2527 } 2528 2529 static const TypeInfo virt_machine_info = { 2530 .name = TYPE_VIRT_MACHINE, 2531 .parent = TYPE_MACHINE, 2532 .abstract = true, 2533 .instance_size = sizeof(VirtMachineState), 2534 .class_size = sizeof(VirtMachineClass), 2535 .class_init = virt_machine_class_init, 2536 .instance_init = virt_instance_init, 2537 .interfaces = (InterfaceInfo[]) { 2538 { TYPE_HOTPLUG_HANDLER }, 2539 { } 2540 }, 2541 }; 2542 2543 static void machvirt_machine_init(void) 2544 { 2545 type_register_static(&virt_machine_info); 2546 } 2547 type_init(machvirt_machine_init); 2548 2549 static void virt_machine_5_1_options(MachineClass *mc) 2550 { 2551 } 2552 DEFINE_VIRT_MACHINE_AS_LATEST(5, 1) 2553 2554 static void virt_machine_5_0_options(MachineClass *mc) 2555 { 2556 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2557 2558 virt_machine_5_1_options(mc); 2559 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 2560 mc->numa_mem_supported = true; 2561 vmc->acpi_expose_flash = true; 2562 mc->auto_enable_numa_with_memdev = false; 2563 } 2564 DEFINE_VIRT_MACHINE(5, 0) 2565 2566 static void virt_machine_4_2_options(MachineClass *mc) 2567 { 2568 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2569 2570 virt_machine_5_0_options(mc); 2571 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 2572 vmc->kvm_no_adjvtime = true; 2573 } 2574 DEFINE_VIRT_MACHINE(4, 2) 2575 2576 static void virt_machine_4_1_options(MachineClass *mc) 2577 { 2578 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2579 2580 virt_machine_4_2_options(mc); 2581 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2582 vmc->no_ged = true; 2583 mc->auto_enable_numa_with_memhp = false; 2584 } 2585 DEFINE_VIRT_MACHINE(4, 1) 2586 2587 static void virt_machine_4_0_options(MachineClass *mc) 2588 { 2589 virt_machine_4_1_options(mc); 2590 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2591 } 2592 DEFINE_VIRT_MACHINE(4, 0) 2593 2594 static void virt_machine_3_1_options(MachineClass *mc) 2595 { 2596 virt_machine_4_0_options(mc); 2597 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2598 } 2599 DEFINE_VIRT_MACHINE(3, 1) 2600 2601 static void virt_machine_3_0_options(MachineClass *mc) 2602 { 2603 virt_machine_3_1_options(mc); 2604 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2605 } 2606 DEFINE_VIRT_MACHINE(3, 0) 2607 2608 static void virt_machine_2_12_options(MachineClass *mc) 2609 { 2610 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2611 2612 virt_machine_3_0_options(mc); 2613 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2614 vmc->no_highmem_ecam = true; 2615 mc->max_cpus = 255; 2616 } 2617 DEFINE_VIRT_MACHINE(2, 12) 2618 2619 static void virt_machine_2_11_options(MachineClass *mc) 2620 { 2621 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2622 2623 virt_machine_2_12_options(mc); 2624 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2625 vmc->smbios_old_sys_ver = true; 2626 } 2627 DEFINE_VIRT_MACHINE(2, 11) 2628 2629 static void virt_machine_2_10_options(MachineClass *mc) 2630 { 2631 virt_machine_2_11_options(mc); 2632 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2633 /* before 2.11 we never faulted accesses to bad addresses */ 2634 mc->ignore_memory_transaction_failures = true; 2635 } 2636 DEFINE_VIRT_MACHINE(2, 10) 2637 2638 static void virt_machine_2_9_options(MachineClass *mc) 2639 { 2640 virt_machine_2_10_options(mc); 2641 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2642 } 2643 DEFINE_VIRT_MACHINE(2, 9) 2644 2645 static void virt_machine_2_8_options(MachineClass *mc) 2646 { 2647 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2648 2649 virt_machine_2_9_options(mc); 2650 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2651 /* For 2.8 and earlier we falsely claimed in the DT that 2652 * our timers were edge-triggered, not level-triggered. 2653 */ 2654 vmc->claim_edge_triggered_timers = true; 2655 } 2656 DEFINE_VIRT_MACHINE(2, 8) 2657 2658 static void virt_machine_2_7_options(MachineClass *mc) 2659 { 2660 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2661 2662 virt_machine_2_8_options(mc); 2663 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2664 /* ITS was introduced with 2.8 */ 2665 vmc->no_its = true; 2666 /* Stick with 1K pages for migration compatibility */ 2667 mc->minimum_page_bits = 0; 2668 } 2669 DEFINE_VIRT_MACHINE(2, 7) 2670 2671 static void virt_machine_2_6_options(MachineClass *mc) 2672 { 2673 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2674 2675 virt_machine_2_7_options(mc); 2676 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2677 vmc->disallow_affinity_adjustment = true; 2678 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2679 vmc->no_pmu = true; 2680 } 2681 DEFINE_VIRT_MACHINE(2, 6) 2682