xref: /openbmc/qemu/hw/arm/virt.c (revision e7100972)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/cpu-qom.h"
77 #include "target/arm/internals.h"
78 #include "target/arm/multiprocessing.h"
79 #include "target/arm/gtimer.h"
80 #include "hw/mem/pc-dimm.h"
81 #include "hw/mem/nvdimm.h"
82 #include "hw/acpi/generic_event_device.h"
83 #include "hw/virtio/virtio-md-pci.h"
84 #include "hw/virtio/virtio-iommu.h"
85 #include "hw/char/pl011.h"
86 #include "qemu/guest-random.h"
87 
88 static GlobalProperty arm_virt_compat[] = {
89     { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" },
90 };
91 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat);
92 
93 /*
94  * This cannot be called from the virt_machine_class_init() because
95  * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new()
96  * only is called on virt non abstract class init.
97  */
98 static void arm_virt_compat_set(MachineClass *mc)
99 {
100     compat_props_add(mc->compat_props, arm_virt_compat,
101                      arm_virt_compat_len);
102 }
103 
104 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
105     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
106                                                     void *data) \
107     { \
108         MachineClass *mc = MACHINE_CLASS(oc); \
109         arm_virt_compat_set(mc); \
110         virt_machine_##major##_##minor##_options(mc); \
111         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
112         if (latest) { \
113             mc->alias = "virt"; \
114         } \
115     } \
116     static const TypeInfo machvirt_##major##_##minor##_info = { \
117         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
118         .parent = TYPE_VIRT_MACHINE, \
119         .class_init = virt_##major##_##minor##_class_init, \
120     }; \
121     static void machvirt_machine_##major##_##minor##_init(void) \
122     { \
123         type_register_static(&machvirt_##major##_##minor##_info); \
124     } \
125     type_init(machvirt_machine_##major##_##minor##_init);
126 
127 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
128     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
129 #define DEFINE_VIRT_MACHINE(major, minor) \
130     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
131 
132 
133 /* Number of external interrupt lines to configure the GIC with */
134 #define NUM_IRQS 256
135 
136 #define PLATFORM_BUS_NUM_IRQS 64
137 
138 /* Legacy RAM limit in GB (< version 4.0) */
139 #define LEGACY_RAMLIMIT_GB 255
140 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
141 
142 /* Addresses and sizes of our components.
143  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
144  * 128MB..256MB is used for miscellaneous device I/O.
145  * 256MB..1GB is reserved for possible future PCI support (ie where the
146  * PCI memory window will go if we add a PCI host controller).
147  * 1GB and up is RAM (which may happily spill over into the
148  * high memory region beyond 4GB).
149  * This represents a compromise between how much RAM can be given to
150  * a 32 bit VM and leaving space for expansion and in particular for PCI.
151  * Note that devices should generally be placed at multiples of 0x10000,
152  * to accommodate guests using 64K pages.
153  */
154 static const MemMapEntry base_memmap[] = {
155     /* Space up to 0x8000000 is reserved for a boot ROM */
156     [VIRT_FLASH] =              {          0, 0x08000000 },
157     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
158     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
159     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
160     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
161     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
162     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
163     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
164     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
165     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
166     /* This redistributor space allows up to 2*64kB*123 CPUs */
167     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
168     [VIRT_UART0] =              { 0x09000000, 0x00001000 },
169     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
170     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
171     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
172     [VIRT_UART1] =              { 0x09040000, 0x00001000 },
173     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
174     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
175     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
176     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
177     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
178     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
179     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
180     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
181     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
182     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
183     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
184     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
185     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
186     /* Actual RAM size depends on initial RAM and device memory settings */
187     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
188 };
189 
190 /*
191  * Highmem IO Regions: This memory map is floating, located after the RAM.
192  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
193  * top of the RAM, so that its base get the same alignment as the size,
194  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
195  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
196  * Note the extended_memmap is sized so that it eventually also includes the
197  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
198  * index of base_memmap).
199  *
200  * The memory map for these Highmem IO Regions can be in legacy or compact
201  * layout, depending on 'compact-highmem' property. With legacy layout, the
202  * PA space for one specific region is always reserved, even if the region
203  * has been disabled or doesn't fit into the PA space. However, the PA space
204  * for the region won't be reserved in these circumstances with compact layout.
205  */
206 static MemMapEntry extended_memmap[] = {
207     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
208     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
209     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
210     /* Second PCIe window */
211     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
212 };
213 
214 static const int a15irqmap[] = {
215     [VIRT_UART0] = 1,
216     [VIRT_RTC] = 2,
217     [VIRT_PCIE] = 3, /* ... to 6 */
218     [VIRT_GPIO] = 7,
219     [VIRT_UART1] = 8,
220     [VIRT_ACPI_GED] = 9,
221     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
222     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
223     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
224     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
225 };
226 
227 static void create_randomness(MachineState *ms, const char *node)
228 {
229     struct {
230         uint64_t kaslr;
231         uint8_t rng[32];
232     } seed;
233 
234     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
235         return;
236     }
237     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
238     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
239 }
240 
241 /*
242  * The CPU object always exposes the NS EL2 virt timer IRQ line,
243  * but we don't want to advertise it to the guest in the dtb or ACPI
244  * table unless it's really going to do something.
245  */
246 static bool ns_el2_virt_timer_present(void)
247 {
248     ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
249     CPUARMState *env = &cpu->env;
250 
251     return arm_feature(env, ARM_FEATURE_AARCH64) &&
252         arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu);
253 }
254 
255 static void create_fdt(VirtMachineState *vms)
256 {
257     MachineState *ms = MACHINE(vms);
258     int nb_numa_nodes = ms->numa_state->num_nodes;
259     void *fdt = create_device_tree(&vms->fdt_size);
260 
261     if (!fdt) {
262         error_report("create_device_tree() failed");
263         exit(1);
264     }
265 
266     ms->fdt = fdt;
267 
268     /* Header */
269     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
270     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
271     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
272     qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
273 
274     /* /chosen must exist for load_dtb to fill in necessary properties later */
275     qemu_fdt_add_subnode(fdt, "/chosen");
276     if (vms->dtb_randomness) {
277         create_randomness(ms, "/chosen");
278     }
279 
280     if (vms->secure) {
281         qemu_fdt_add_subnode(fdt, "/secure-chosen");
282         if (vms->dtb_randomness) {
283             create_randomness(ms, "/secure-chosen");
284         }
285     }
286 
287     qemu_fdt_add_subnode(fdt, "/aliases");
288 
289     /* Clock node, for the benefit of the UART. The kernel device tree
290      * binding documentation claims the PL011 node clock properties are
291      * optional but in practice if you omit them the kernel refuses to
292      * probe for the device.
293      */
294     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
295     qemu_fdt_add_subnode(fdt, "/apb-pclk");
296     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
297     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
298     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
299     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
300                                 "clk24mhz");
301     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
302 
303     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
304         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
305         uint32_t *matrix = g_malloc0(size);
306         int idx, i, j;
307 
308         for (i = 0; i < nb_numa_nodes; i++) {
309             for (j = 0; j < nb_numa_nodes; j++) {
310                 idx = (i * nb_numa_nodes + j) * 3;
311                 matrix[idx + 0] = cpu_to_be32(i);
312                 matrix[idx + 1] = cpu_to_be32(j);
313                 matrix[idx + 2] =
314                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
315             }
316         }
317 
318         qemu_fdt_add_subnode(fdt, "/distance-map");
319         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
320                                 "numa-distance-map-v1");
321         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
322                          matrix, size);
323         g_free(matrix);
324     }
325 }
326 
327 static void fdt_add_timer_nodes(const VirtMachineState *vms)
328 {
329     /* On real hardware these interrupts are level-triggered.
330      * On KVM they were edge-triggered before host kernel version 4.4,
331      * and level-triggered afterwards.
332      * On emulated QEMU they are level-triggered.
333      *
334      * Getting the DTB info about them wrong is awkward for some
335      * guest kernels:
336      *  pre-4.8 ignore the DT and leave the interrupt configured
337      *   with whatever the GIC reset value (or the bootloader) left it at
338      *  4.8 before rc6 honour the incorrect data by programming it back
339      *   into the GIC, causing problems
340      *  4.8rc6 and later ignore the DT and always write "level triggered"
341      *   into the GIC
342      *
343      * For backwards-compatibility, virt-2.8 and earlier will continue
344      * to say these are edge-triggered, but later machines will report
345      * the correct information.
346      */
347     ARMCPU *armcpu;
348     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
349     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
350     MachineState *ms = MACHINE(vms);
351 
352     if (vmc->claim_edge_triggered_timers) {
353         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
354     }
355 
356     if (vms->gic_version == VIRT_GIC_VERSION_2) {
357         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
358                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
359                              (1 << MACHINE(vms)->smp.cpus) - 1);
360     }
361 
362     qemu_fdt_add_subnode(ms->fdt, "/timer");
363 
364     armcpu = ARM_CPU(qemu_get_cpu(0));
365     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
366         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
367         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
368                          compat, sizeof(compat));
369     } else {
370         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
371                                 "arm,armv7-timer");
372     }
373     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
374     if (vms->ns_el2_virt_timer_irq) {
375         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
376                                GIC_FDT_IRQ_TYPE_PPI,
377                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
378                                GIC_FDT_IRQ_TYPE_PPI,
379                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
380                                GIC_FDT_IRQ_TYPE_PPI,
381                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
382                                GIC_FDT_IRQ_TYPE_PPI,
383                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags,
384                                GIC_FDT_IRQ_TYPE_PPI,
385                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags);
386     } else {
387         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
388                                GIC_FDT_IRQ_TYPE_PPI,
389                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
390                                GIC_FDT_IRQ_TYPE_PPI,
391                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
392                                GIC_FDT_IRQ_TYPE_PPI,
393                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
394                                GIC_FDT_IRQ_TYPE_PPI,
395                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
396     }
397 }
398 
399 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
400 {
401     int cpu;
402     int addr_cells = 1;
403     const MachineState *ms = MACHINE(vms);
404     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
405     int smp_cpus = ms->smp.cpus;
406 
407     /*
408      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
409      * On ARM v8 64-bit systems value should be set to 2,
410      * that corresponds to the MPIDR_EL1 register size.
411      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
412      * in the system, #address-cells can be set to 1, since
413      * MPIDR_EL1[63:32] bits are not used for CPUs
414      * identification.
415      *
416      * Here we actually don't know whether our system is 32- or 64-bit one.
417      * The simplest way to go is to examine affinity IDs of all our CPUs. If
418      * at least one of them has Aff3 populated, we set #address-cells to 2.
419      */
420     for (cpu = 0; cpu < smp_cpus; cpu++) {
421         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
422 
423         if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
424             addr_cells = 2;
425             break;
426         }
427     }
428 
429     qemu_fdt_add_subnode(ms->fdt, "/cpus");
430     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
431     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
432 
433     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
434         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
435         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
436         CPUState *cs = CPU(armcpu);
437 
438         qemu_fdt_add_subnode(ms->fdt, nodename);
439         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
440         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
441                                     armcpu->dtb_compatible);
442 
443         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
444             qemu_fdt_setprop_string(ms->fdt, nodename,
445                                         "enable-method", "psci");
446         }
447 
448         if (addr_cells == 2) {
449             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
450                                  arm_cpu_mp_affinity(armcpu));
451         } else {
452             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
453                                   arm_cpu_mp_affinity(armcpu));
454         }
455 
456         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
457             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
458                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
459         }
460 
461         if (!vmc->no_cpu_topology) {
462             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
463                                   qemu_fdt_alloc_phandle(ms->fdt));
464         }
465 
466         g_free(nodename);
467     }
468 
469     if (!vmc->no_cpu_topology) {
470         /*
471          * Add vCPU topology description through fdt node cpu-map.
472          *
473          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
474          * In a SMP system, the hierarchy of CPUs can be defined through
475          * four entities that are used to describe the layout of CPUs in
476          * the system: socket/cluster/core/thread.
477          *
478          * A socket node represents the boundary of system physical package
479          * and its child nodes must be one or more cluster nodes. A system
480          * can contain several layers of clustering within a single physical
481          * package and cluster nodes can be contained in parent cluster nodes.
482          *
483          * Note: currently we only support one layer of clustering within
484          * each physical package.
485          */
486         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
487 
488         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
489             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
490             char *map_path;
491 
492             if (ms->smp.threads > 1) {
493                 map_path = g_strdup_printf(
494                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
495                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
496                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
497                     (cpu / ms->smp.threads) % ms->smp.cores,
498                     cpu % ms->smp.threads);
499             } else {
500                 map_path = g_strdup_printf(
501                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
502                     cpu / (ms->smp.clusters * ms->smp.cores),
503                     (cpu / ms->smp.cores) % ms->smp.clusters,
504                     cpu % ms->smp.cores);
505             }
506             qemu_fdt_add_path(ms->fdt, map_path);
507             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
508 
509             g_free(map_path);
510             g_free(cpu_path);
511         }
512     }
513 }
514 
515 static void fdt_add_its_gic_node(VirtMachineState *vms)
516 {
517     char *nodename;
518     MachineState *ms = MACHINE(vms);
519 
520     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
521     nodename = g_strdup_printf("/intc/its@%" PRIx64,
522                                vms->memmap[VIRT_GIC_ITS].base);
523     qemu_fdt_add_subnode(ms->fdt, nodename);
524     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
525                             "arm,gic-v3-its");
526     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
527     qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
528     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
529                                  2, vms->memmap[VIRT_GIC_ITS].base,
530                                  2, vms->memmap[VIRT_GIC_ITS].size);
531     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
532     g_free(nodename);
533 }
534 
535 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
536 {
537     MachineState *ms = MACHINE(vms);
538     char *nodename;
539 
540     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
541                                vms->memmap[VIRT_GIC_V2M].base);
542     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
543     qemu_fdt_add_subnode(ms->fdt, nodename);
544     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
545                             "arm,gic-v2m-frame");
546     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
547     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
548                                  2, vms->memmap[VIRT_GIC_V2M].base,
549                                  2, vms->memmap[VIRT_GIC_V2M].size);
550     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
551     g_free(nodename);
552 }
553 
554 static void fdt_add_gic_node(VirtMachineState *vms)
555 {
556     MachineState *ms = MACHINE(vms);
557     char *nodename;
558 
559     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
560     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
561 
562     nodename = g_strdup_printf("/intc@%" PRIx64,
563                                vms->memmap[VIRT_GIC_DIST].base);
564     qemu_fdt_add_subnode(ms->fdt, nodename);
565     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
566     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
567     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
568     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
569     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
570     if (vms->gic_version != VIRT_GIC_VERSION_2) {
571         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
572 
573         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
574                                 "arm,gic-v3");
575 
576         qemu_fdt_setprop_cell(ms->fdt, nodename,
577                               "#redistributor-regions", nb_redist_regions);
578 
579         if (nb_redist_regions == 1) {
580             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
581                                          2, vms->memmap[VIRT_GIC_DIST].base,
582                                          2, vms->memmap[VIRT_GIC_DIST].size,
583                                          2, vms->memmap[VIRT_GIC_REDIST].base,
584                                          2, vms->memmap[VIRT_GIC_REDIST].size);
585         } else {
586             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
587                                  2, vms->memmap[VIRT_GIC_DIST].base,
588                                  2, vms->memmap[VIRT_GIC_DIST].size,
589                                  2, vms->memmap[VIRT_GIC_REDIST].base,
590                                  2, vms->memmap[VIRT_GIC_REDIST].size,
591                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
592                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
593         }
594 
595         if (vms->virt) {
596             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
597                                    GIC_FDT_IRQ_TYPE_PPI,
598                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
599                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
600         }
601     } else {
602         /* 'cortex-a15-gic' means 'GIC v2' */
603         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
604                                 "arm,cortex-a15-gic");
605         if (!vms->virt) {
606             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
607                                          2, vms->memmap[VIRT_GIC_DIST].base,
608                                          2, vms->memmap[VIRT_GIC_DIST].size,
609                                          2, vms->memmap[VIRT_GIC_CPU].base,
610                                          2, vms->memmap[VIRT_GIC_CPU].size);
611         } else {
612             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
613                                          2, vms->memmap[VIRT_GIC_DIST].base,
614                                          2, vms->memmap[VIRT_GIC_DIST].size,
615                                          2, vms->memmap[VIRT_GIC_CPU].base,
616                                          2, vms->memmap[VIRT_GIC_CPU].size,
617                                          2, vms->memmap[VIRT_GIC_HYP].base,
618                                          2, vms->memmap[VIRT_GIC_HYP].size,
619                                          2, vms->memmap[VIRT_GIC_VCPU].base,
620                                          2, vms->memmap[VIRT_GIC_VCPU].size);
621             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
622                                    GIC_FDT_IRQ_TYPE_PPI,
623                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
624                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
625         }
626     }
627 
628     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
629     g_free(nodename);
630 }
631 
632 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
633 {
634     ARMCPU *armcpu = ARM_CPU(first_cpu);
635     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
636     MachineState *ms = MACHINE(vms);
637 
638     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
639         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
640         return;
641     }
642 
643     if (vms->gic_version == VIRT_GIC_VERSION_2) {
644         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
645                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
646                              (1 << MACHINE(vms)->smp.cpus) - 1);
647     }
648 
649     qemu_fdt_add_subnode(ms->fdt, "/pmu");
650     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
651         const char compat[] = "arm,armv8-pmuv3";
652         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
653                          compat, sizeof(compat));
654         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
655                                GIC_FDT_IRQ_TYPE_PPI,
656                                INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
657     }
658 }
659 
660 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
661 {
662     DeviceState *dev;
663     MachineState *ms = MACHINE(vms);
664     int irq = vms->irqmap[VIRT_ACPI_GED];
665     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
666 
667     if (ms->ram_slots) {
668         event |= ACPI_GED_MEM_HOTPLUG_EVT;
669     }
670 
671     if (ms->nvdimms_state->is_enabled) {
672         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
673     }
674 
675     dev = qdev_new(TYPE_ACPI_GED);
676     qdev_prop_set_uint32(dev, "ged-event", event);
677     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
678 
679     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
680     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
681     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
682 
683     return dev;
684 }
685 
686 static void create_its(VirtMachineState *vms)
687 {
688     const char *itsclass = its_class_name();
689     DeviceState *dev;
690 
691     if (!strcmp(itsclass, "arm-gicv3-its")) {
692         if (!vms->tcg_its) {
693             itsclass = NULL;
694         }
695     }
696 
697     if (!itsclass) {
698         /* Do nothing if not supported */
699         return;
700     }
701 
702     dev = qdev_new(itsclass);
703 
704     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
705                              &error_abort);
706     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
707     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
708 
709     fdt_add_its_gic_node(vms);
710     vms->msi_controller = VIRT_MSI_CTRL_ITS;
711 }
712 
713 static void create_v2m(VirtMachineState *vms)
714 {
715     int i;
716     int irq = vms->irqmap[VIRT_GIC_V2M];
717     DeviceState *dev;
718 
719     dev = qdev_new("arm-gicv2m");
720     qdev_prop_set_uint32(dev, "base-spi", irq);
721     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
722     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
723     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
724 
725     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
726         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
727                            qdev_get_gpio_in(vms->gic, irq + i));
728     }
729 
730     fdt_add_v2m_gic_node(vms);
731     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
732 }
733 
734 /*
735  * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too.
736  * It's permitted to have a configuration with NMI in the CPU (and thus the
737  * GICv3 CPU interface) but not in the distributor/redistributors, but it's
738  * not very useful.
739  */
740 static bool gicv3_nmi_present(VirtMachineState *vms)
741 {
742     ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
743 
744     return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) &&
745            (vms->gic_version != VIRT_GIC_VERSION_2);
746 }
747 
748 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
749 {
750     MachineState *ms = MACHINE(vms);
751     /* We create a standalone GIC */
752     SysBusDevice *gicbusdev;
753     const char *gictype;
754     int i;
755     unsigned int smp_cpus = ms->smp.cpus;
756     uint32_t nb_redist_regions = 0;
757     int revision;
758 
759     if (vms->gic_version == VIRT_GIC_VERSION_2) {
760         gictype = gic_class_name();
761     } else {
762         gictype = gicv3_class_name();
763     }
764 
765     switch (vms->gic_version) {
766     case VIRT_GIC_VERSION_2:
767         revision = 2;
768         break;
769     case VIRT_GIC_VERSION_3:
770         revision = 3;
771         break;
772     case VIRT_GIC_VERSION_4:
773         revision = 4;
774         break;
775     default:
776         g_assert_not_reached();
777     }
778     vms->gic = qdev_new(gictype);
779     qdev_prop_set_uint32(vms->gic, "revision", revision);
780     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
781     /* Note that the num-irq property counts both internal and external
782      * interrupts; there are always 32 of the former (mandated by GIC spec).
783      */
784     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
785     if (!kvm_irqchip_in_kernel()) {
786         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
787     }
788 
789     if (vms->gic_version != VIRT_GIC_VERSION_2) {
790         QList *redist_region_count;
791         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
792         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
793 
794         nb_redist_regions = virt_gicv3_redist_region_count(vms);
795 
796         redist_region_count = qlist_new();
797         qlist_append_int(redist_region_count, redist0_count);
798         if (nb_redist_regions == 2) {
799             uint32_t redist1_capacity =
800                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
801 
802             qlist_append_int(redist_region_count,
803                 MIN(smp_cpus - redist0_count, redist1_capacity));
804         }
805         qdev_prop_set_array(vms->gic, "redist-region-count",
806                             redist_region_count);
807 
808         if (!kvm_irqchip_in_kernel()) {
809             if (vms->tcg_its) {
810                 object_property_set_link(OBJECT(vms->gic), "sysmem",
811                                          OBJECT(mem), &error_fatal);
812                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
813             }
814         }
815     } else {
816         if (!kvm_irqchip_in_kernel()) {
817             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
818                               vms->virt);
819         }
820     }
821 
822     if (gicv3_nmi_present(vms)) {
823         qdev_prop_set_bit(vms->gic, "has-nmi", true);
824     }
825 
826     gicbusdev = SYS_BUS_DEVICE(vms->gic);
827     sysbus_realize_and_unref(gicbusdev, &error_fatal);
828     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
829     if (vms->gic_version != VIRT_GIC_VERSION_2) {
830         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
831         if (nb_redist_regions == 2) {
832             sysbus_mmio_map(gicbusdev, 2,
833                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
834         }
835     } else {
836         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
837         if (vms->virt) {
838             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
839             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
840         }
841     }
842 
843     /* Wire the outputs from each CPU's generic timer and the GICv3
844      * maintenance interrupt signal to the appropriate GIC PPI inputs,
845      * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the
846      * CPU's inputs.
847      */
848     for (i = 0; i < smp_cpus; i++) {
849         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
850         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
851         /* Mapping from the output timer irq lines from the CPU to the
852          * GIC PPI inputs we use for the virt board.
853          */
854         const int timer_irq[] = {
855             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
856             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
857             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
858             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
859             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
860         };
861 
862         for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
863             qdev_connect_gpio_out(cpudev, irq,
864                                   qdev_get_gpio_in(vms->gic,
865                                                    intidbase + timer_irq[irq]));
866         }
867 
868         if (vms->gic_version != VIRT_GIC_VERSION_2) {
869             qemu_irq irq = qdev_get_gpio_in(vms->gic,
870                                             intidbase + ARCH_GIC_MAINT_IRQ);
871             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
872                                         0, irq);
873         } else if (vms->virt) {
874             qemu_irq irq = qdev_get_gpio_in(vms->gic,
875                                             intidbase + ARCH_GIC_MAINT_IRQ);
876             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
877         }
878 
879         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
880                                     qdev_get_gpio_in(vms->gic, intidbase
881                                                      + VIRTUAL_PMU_IRQ));
882 
883         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
884         sysbus_connect_irq(gicbusdev, i + smp_cpus,
885                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
886         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
887                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
888         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
889                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
890 
891         if (vms->gic_version != VIRT_GIC_VERSION_2) {
892             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus,
893                                qdev_get_gpio_in(cpudev, ARM_CPU_NMI));
894             sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus,
895                                qdev_get_gpio_in(cpudev, ARM_CPU_VINMI));
896         }
897     }
898 
899     fdt_add_gic_node(vms);
900 
901     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
902         create_its(vms);
903     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
904         create_v2m(vms);
905     }
906 }
907 
908 static void create_uart(const VirtMachineState *vms, int uart,
909                         MemoryRegion *mem, Chardev *chr, bool secure)
910 {
911     char *nodename;
912     hwaddr base = vms->memmap[uart].base;
913     hwaddr size = vms->memmap[uart].size;
914     int irq = vms->irqmap[uart];
915     const char compat[] = "arm,pl011\0arm,primecell";
916     const char clocknames[] = "uartclk\0apb_pclk";
917     DeviceState *dev = qdev_new(TYPE_PL011);
918     SysBusDevice *s = SYS_BUS_DEVICE(dev);
919     MachineState *ms = MACHINE(vms);
920 
921     qdev_prop_set_chr(dev, "chardev", chr);
922     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
923     memory_region_add_subregion(mem, base,
924                                 sysbus_mmio_get_region(s, 0));
925     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
926 
927     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
928     qemu_fdt_add_subnode(ms->fdt, nodename);
929     /* Note that we can't use setprop_string because of the embedded NUL */
930     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
931                          compat, sizeof(compat));
932     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
933                                      2, base, 2, size);
934     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
935                                GIC_FDT_IRQ_TYPE_SPI, irq,
936                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
937     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
938                                vms->clock_phandle, vms->clock_phandle);
939     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
940                          clocknames, sizeof(clocknames));
941 
942     if (uart == VIRT_UART0) {
943         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
944         qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename);
945     } else {
946         qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename);
947     }
948     if (secure) {
949         /* Mark as not usable by the normal world */
950         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
951         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
952 
953         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
954                                 nodename);
955     }
956 
957     g_free(nodename);
958 }
959 
960 static void create_rtc(const VirtMachineState *vms)
961 {
962     char *nodename;
963     hwaddr base = vms->memmap[VIRT_RTC].base;
964     hwaddr size = vms->memmap[VIRT_RTC].size;
965     int irq = vms->irqmap[VIRT_RTC];
966     const char compat[] = "arm,pl031\0arm,primecell";
967     MachineState *ms = MACHINE(vms);
968 
969     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
970 
971     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
972     qemu_fdt_add_subnode(ms->fdt, nodename);
973     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
974     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
975                                  2, base, 2, size);
976     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
977                            GIC_FDT_IRQ_TYPE_SPI, irq,
978                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
979     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
980     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
981     g_free(nodename);
982 }
983 
984 static DeviceState *gpio_key_dev;
985 static void virt_powerdown_req(Notifier *n, void *opaque)
986 {
987     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
988 
989     if (s->acpi_dev) {
990         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
991     } else {
992         /* use gpio Pin 3 for power button event */
993         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
994     }
995 }
996 
997 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
998                              uint32_t phandle)
999 {
1000     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
1001                                         qdev_get_gpio_in(pl061_dev, 3));
1002 
1003     qemu_fdt_add_subnode(fdt, "/gpio-keys");
1004     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
1005 
1006     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
1007     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
1008                             "label", "GPIO Key Poweroff");
1009     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
1010                           KEY_POWER);
1011     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
1012                            "gpios", phandle, 3, 0);
1013 }
1014 
1015 #define SECURE_GPIO_POWEROFF 0
1016 #define SECURE_GPIO_RESET    1
1017 
1018 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
1019                                    uint32_t phandle)
1020 {
1021     DeviceState *gpio_pwr_dev;
1022 
1023     /* gpio-pwr */
1024     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
1025 
1026     /* connect secure pl061 to gpio-pwr */
1027     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
1028                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
1029     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
1030                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
1031 
1032     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
1033     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
1034                             "gpio-poweroff");
1035     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
1036                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
1037     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
1038     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
1039                             "okay");
1040 
1041     qemu_fdt_add_subnode(fdt, "/gpio-restart");
1042     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
1043                             "gpio-restart");
1044     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
1045                            "gpios", phandle, SECURE_GPIO_RESET, 0);
1046     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
1047     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
1048                             "okay");
1049 }
1050 
1051 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
1052                                 MemoryRegion *mem)
1053 {
1054     char *nodename;
1055     DeviceState *pl061_dev;
1056     hwaddr base = vms->memmap[gpio].base;
1057     hwaddr size = vms->memmap[gpio].size;
1058     int irq = vms->irqmap[gpio];
1059     const char compat[] = "arm,pl061\0arm,primecell";
1060     SysBusDevice *s;
1061     MachineState *ms = MACHINE(vms);
1062 
1063     pl061_dev = qdev_new("pl061");
1064     /* Pull lines down to 0 if not driven by the PL061 */
1065     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1066     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1067     s = SYS_BUS_DEVICE(pl061_dev);
1068     sysbus_realize_and_unref(s, &error_fatal);
1069     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1070     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1071 
1072     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1073     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1074     qemu_fdt_add_subnode(ms->fdt, nodename);
1075     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1076                                  2, base, 2, size);
1077     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1078     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1079     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1080     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1081                            GIC_FDT_IRQ_TYPE_SPI, irq,
1082                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1083     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1084     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1085     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1086 
1087     if (gpio != VIRT_GPIO) {
1088         /* Mark as not usable by the normal world */
1089         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1090         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1091     }
1092     g_free(nodename);
1093 
1094     /* Child gpio devices */
1095     if (gpio == VIRT_GPIO) {
1096         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1097     } else {
1098         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1099     }
1100 }
1101 
1102 static void create_virtio_devices(const VirtMachineState *vms)
1103 {
1104     int i;
1105     hwaddr size = vms->memmap[VIRT_MMIO].size;
1106     MachineState *ms = MACHINE(vms);
1107 
1108     /* We create the transports in forwards order. Since qbus_realize()
1109      * prepends (not appends) new child buses, the incrementing loop below will
1110      * create a list of virtio-mmio buses with decreasing base addresses.
1111      *
1112      * When a -device option is processed from the command line,
1113      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1114      * order. The upshot is that -device options in increasing command line
1115      * order are mapped to virtio-mmio buses with decreasing base addresses.
1116      *
1117      * When this code was originally written, that arrangement ensured that the
1118      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1119      * the first -device on the command line. (The end-to-end order is a
1120      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1121      * guest kernel's name-to-address assignment strategy.)
1122      *
1123      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1124      * the message, if not necessarily the code, of commit 70161ff336.
1125      * Therefore the loop now establishes the inverse of the original intent.
1126      *
1127      * Unfortunately, we can't counteract the kernel change by reversing the
1128      * loop; it would break existing command lines.
1129      *
1130      * In any case, the kernel makes no guarantee about the stability of
1131      * enumeration order of virtio devices (as demonstrated by it changing
1132      * between kernel versions). For reliable and stable identification
1133      * of disks users must use UUIDs or similar mechanisms.
1134      */
1135     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1136         int irq = vms->irqmap[VIRT_MMIO] + i;
1137         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1138 
1139         sysbus_create_simple("virtio-mmio", base,
1140                              qdev_get_gpio_in(vms->gic, irq));
1141     }
1142 
1143     /* We add dtb nodes in reverse order so that they appear in the finished
1144      * device tree lowest address first.
1145      *
1146      * Note that this mapping is independent of the loop above. The previous
1147      * loop influences virtio device to virtio transport assignment, whereas
1148      * this loop controls how virtio transports are laid out in the dtb.
1149      */
1150     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1151         char *nodename;
1152         int irq = vms->irqmap[VIRT_MMIO] + i;
1153         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1154 
1155         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1156         qemu_fdt_add_subnode(ms->fdt, nodename);
1157         qemu_fdt_setprop_string(ms->fdt, nodename,
1158                                 "compatible", "virtio,mmio");
1159         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1160                                      2, base, 2, size);
1161         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1162                                GIC_FDT_IRQ_TYPE_SPI, irq,
1163                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1164         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1165         g_free(nodename);
1166     }
1167 }
1168 
1169 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1170 
1171 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1172                                         const char *name,
1173                                         const char *alias_prop_name)
1174 {
1175     /*
1176      * Create a single flash device.  We use the same parameters as
1177      * the flash devices on the Versatile Express board.
1178      */
1179     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1180 
1181     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1182     qdev_prop_set_uint8(dev, "width", 4);
1183     qdev_prop_set_uint8(dev, "device-width", 2);
1184     qdev_prop_set_bit(dev, "big-endian", false);
1185     qdev_prop_set_uint16(dev, "id0", 0x89);
1186     qdev_prop_set_uint16(dev, "id1", 0x18);
1187     qdev_prop_set_uint16(dev, "id2", 0x00);
1188     qdev_prop_set_uint16(dev, "id3", 0x00);
1189     qdev_prop_set_string(dev, "name", name);
1190     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1191     object_property_add_alias(OBJECT(vms), alias_prop_name,
1192                               OBJECT(dev), "drive");
1193     return PFLASH_CFI01(dev);
1194 }
1195 
1196 static void virt_flash_create(VirtMachineState *vms)
1197 {
1198     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1199     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1200 }
1201 
1202 static void virt_flash_map1(PFlashCFI01 *flash,
1203                             hwaddr base, hwaddr size,
1204                             MemoryRegion *sysmem)
1205 {
1206     DeviceState *dev = DEVICE(flash);
1207 
1208     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1209     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1210     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1211     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1212 
1213     memory_region_add_subregion(sysmem, base,
1214                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1215                                                        0));
1216 }
1217 
1218 static void virt_flash_map(VirtMachineState *vms,
1219                            MemoryRegion *sysmem,
1220                            MemoryRegion *secure_sysmem)
1221 {
1222     /*
1223      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1224      * sysmem is the system memory space. secure_sysmem is the secure view
1225      * of the system, and the first flash device should be made visible only
1226      * there. The second flash device is visible to both secure and nonsecure.
1227      * If sysmem == secure_sysmem this means there is no separate Secure
1228      * address space and both flash devices are generally visible.
1229      */
1230     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1231     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1232 
1233     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1234                     secure_sysmem);
1235     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1236                     sysmem);
1237 }
1238 
1239 static void virt_flash_fdt(VirtMachineState *vms,
1240                            MemoryRegion *sysmem,
1241                            MemoryRegion *secure_sysmem)
1242 {
1243     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1244     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1245     MachineState *ms = MACHINE(vms);
1246     char *nodename;
1247 
1248     if (sysmem == secure_sysmem) {
1249         /* Report both flash devices as a single node in the DT */
1250         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1251         qemu_fdt_add_subnode(ms->fdt, nodename);
1252         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1253         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1254                                      2, flashbase, 2, flashsize,
1255                                      2, flashbase + flashsize, 2, flashsize);
1256         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1257         g_free(nodename);
1258     } else {
1259         /*
1260          * Report the devices as separate nodes so we can mark one as
1261          * only visible to the secure world.
1262          */
1263         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1264         qemu_fdt_add_subnode(ms->fdt, nodename);
1265         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1266         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1267                                      2, flashbase, 2, flashsize);
1268         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1269         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1270         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1271         g_free(nodename);
1272 
1273         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1274         qemu_fdt_add_subnode(ms->fdt, nodename);
1275         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1276         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1277                                      2, flashbase + flashsize, 2, flashsize);
1278         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1279         g_free(nodename);
1280     }
1281 }
1282 
1283 static bool virt_firmware_init(VirtMachineState *vms,
1284                                MemoryRegion *sysmem,
1285                                MemoryRegion *secure_sysmem)
1286 {
1287     int i;
1288     const char *bios_name;
1289     BlockBackend *pflash_blk0;
1290 
1291     /* Map legacy -drive if=pflash to machine properties */
1292     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1293         pflash_cfi01_legacy_drive(vms->flash[i],
1294                                   drive_get(IF_PFLASH, 0, i));
1295     }
1296 
1297     virt_flash_map(vms, sysmem, secure_sysmem);
1298 
1299     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1300 
1301     bios_name = MACHINE(vms)->firmware;
1302     if (bios_name) {
1303         char *fname;
1304         MemoryRegion *mr;
1305         int image_size;
1306 
1307         if (pflash_blk0) {
1308             error_report("The contents of the first flash device may be "
1309                          "specified with -bios or with -drive if=pflash... "
1310                          "but you cannot use both options at once");
1311             exit(1);
1312         }
1313 
1314         /* Fall back to -bios */
1315 
1316         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1317         if (!fname) {
1318             error_report("Could not find ROM image '%s'", bios_name);
1319             exit(1);
1320         }
1321         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1322         image_size = load_image_mr(fname, mr);
1323         g_free(fname);
1324         if (image_size < 0) {
1325             error_report("Could not load ROM image '%s'", bios_name);
1326             exit(1);
1327         }
1328     }
1329 
1330     return pflash_blk0 || bios_name;
1331 }
1332 
1333 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1334 {
1335     MachineState *ms = MACHINE(vms);
1336     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1337     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1338     FWCfgState *fw_cfg;
1339     char *nodename;
1340 
1341     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1342     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1343 
1344     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1345     qemu_fdt_add_subnode(ms->fdt, nodename);
1346     qemu_fdt_setprop_string(ms->fdt, nodename,
1347                             "compatible", "qemu,fw-cfg-mmio");
1348     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1349                                  2, base, 2, size);
1350     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1351     g_free(nodename);
1352     return fw_cfg;
1353 }
1354 
1355 static void create_pcie_irq_map(const MachineState *ms,
1356                                 uint32_t gic_phandle,
1357                                 int first_irq, const char *nodename)
1358 {
1359     int devfn, pin;
1360     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1361     uint32_t *irq_map = full_irq_map;
1362 
1363     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1364         for (pin = 0; pin < 4; pin++) {
1365             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1366             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1367             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1368             int i;
1369 
1370             uint32_t map[] = {
1371                 devfn << 8, 0, 0,                           /* devfn */
1372                 pin + 1,                                    /* PCI pin */
1373                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1374 
1375             /* Convert map to big endian */
1376             for (i = 0; i < 10; i++) {
1377                 irq_map[i] = cpu_to_be32(map[i]);
1378             }
1379             irq_map += 10;
1380         }
1381     }
1382 
1383     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1384                      full_irq_map, sizeof(full_irq_map));
1385 
1386     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1387                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1388                            0, 0,
1389                            0x7           /* PCI irq */);
1390 }
1391 
1392 static void create_smmu(const VirtMachineState *vms,
1393                         PCIBus *bus)
1394 {
1395     char *node;
1396     const char compat[] = "arm,smmu-v3";
1397     int irq =  vms->irqmap[VIRT_SMMU];
1398     int i;
1399     hwaddr base = vms->memmap[VIRT_SMMU].base;
1400     hwaddr size = vms->memmap[VIRT_SMMU].size;
1401     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1402     DeviceState *dev;
1403     MachineState *ms = MACHINE(vms);
1404 
1405     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1406         return;
1407     }
1408 
1409     dev = qdev_new(TYPE_ARM_SMMUV3);
1410 
1411     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1412                              &error_abort);
1413     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1414     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1415     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1416         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1417                            qdev_get_gpio_in(vms->gic, irq + i));
1418     }
1419 
1420     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1421     qemu_fdt_add_subnode(ms->fdt, node);
1422     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1423     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1424 
1425     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1426             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1427             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1428             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1429             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1430 
1431     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1432                      sizeof(irq_names));
1433 
1434     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1435 
1436     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1437 
1438     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1439     g_free(node);
1440 }
1441 
1442 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1443 {
1444     const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1445     uint16_t bdf = vms->virtio_iommu_bdf;
1446     MachineState *ms = MACHINE(vms);
1447     char *node;
1448 
1449     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1450 
1451     node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1452                            PCI_SLOT(bdf), PCI_FUNC(bdf));
1453     qemu_fdt_add_subnode(ms->fdt, node);
1454     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1455     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1456                                  1, bdf << 8, 1, 0, 1, 0,
1457                                  1, 0, 1, 0);
1458 
1459     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1460     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1461     g_free(node);
1462 
1463     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1464                            0x0, vms->iommu_phandle, 0x0, bdf,
1465                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1466 }
1467 
1468 static void create_pcie(VirtMachineState *vms)
1469 {
1470     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1471     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1472     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1473     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1474     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1475     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1476     hwaddr base_ecam, size_ecam;
1477     hwaddr base = base_mmio;
1478     int nr_pcie_buses;
1479     int irq = vms->irqmap[VIRT_PCIE];
1480     MemoryRegion *mmio_alias;
1481     MemoryRegion *mmio_reg;
1482     MemoryRegion *ecam_alias;
1483     MemoryRegion *ecam_reg;
1484     DeviceState *dev;
1485     char *nodename;
1486     int i, ecam_id;
1487     PCIHostState *pci;
1488     MachineState *ms = MACHINE(vms);
1489     MachineClass *mc = MACHINE_GET_CLASS(ms);
1490 
1491     dev = qdev_new(TYPE_GPEX_HOST);
1492     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1493 
1494     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1495     base_ecam = vms->memmap[ecam_id].base;
1496     size_ecam = vms->memmap[ecam_id].size;
1497     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1498     /* Map only the first size_ecam bytes of ECAM space */
1499     ecam_alias = g_new0(MemoryRegion, 1);
1500     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1501     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1502                              ecam_reg, 0, size_ecam);
1503     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1504 
1505     /* Map the MMIO window into system address space so as to expose
1506      * the section of PCI MMIO space which starts at the same base address
1507      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1508      * the window).
1509      */
1510     mmio_alias = g_new0(MemoryRegion, 1);
1511     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1512     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1513                              mmio_reg, base_mmio, size_mmio);
1514     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1515 
1516     if (vms->highmem_mmio) {
1517         /* Map high MMIO space */
1518         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1519 
1520         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1521                                  mmio_reg, base_mmio_high, size_mmio_high);
1522         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1523                                     high_mmio_alias);
1524     }
1525 
1526     /* Map IO port space */
1527     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1528 
1529     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1530         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1531                            qdev_get_gpio_in(vms->gic, irq + i));
1532         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1533     }
1534 
1535     pci = PCI_HOST_BRIDGE(dev);
1536     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1537     vms->bus = pci->bus;
1538     if (vms->bus) {
1539         pci_init_nic_devices(pci->bus, mc->default_nic);
1540     }
1541 
1542     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1543     qemu_fdt_add_subnode(ms->fdt, nodename);
1544     qemu_fdt_setprop_string(ms->fdt, nodename,
1545                             "compatible", "pci-host-ecam-generic");
1546     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1547     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1548     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1549     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1550     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1551                            nr_pcie_buses - 1);
1552     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1553 
1554     if (vms->msi_phandle) {
1555         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1556                                0, vms->msi_phandle, 0, 0x10000);
1557     }
1558 
1559     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1560                                  2, base_ecam, 2, size_ecam);
1561 
1562     if (vms->highmem_mmio) {
1563         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1564                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1565                                      2, base_pio, 2, size_pio,
1566                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1567                                      2, base_mmio, 2, size_mmio,
1568                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1569                                      2, base_mmio_high,
1570                                      2, base_mmio_high, 2, size_mmio_high);
1571     } else {
1572         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1573                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1574                                      2, base_pio, 2, size_pio,
1575                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1576                                      2, base_mmio, 2, size_mmio);
1577     }
1578 
1579     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1580     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1581 
1582     if (vms->iommu) {
1583         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1584 
1585         switch (vms->iommu) {
1586         case VIRT_IOMMU_SMMUV3:
1587             create_smmu(vms, vms->bus);
1588             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1589                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1590             break;
1591         default:
1592             g_assert_not_reached();
1593         }
1594     }
1595 }
1596 
1597 static void create_platform_bus(VirtMachineState *vms)
1598 {
1599     DeviceState *dev;
1600     SysBusDevice *s;
1601     int i;
1602     MemoryRegion *sysmem = get_system_memory();
1603 
1604     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1605     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1606     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1607     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1608     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1609     vms->platform_bus_dev = dev;
1610 
1611     s = SYS_BUS_DEVICE(dev);
1612     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1613         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1614         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1615     }
1616 
1617     memory_region_add_subregion(sysmem,
1618                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1619                                 sysbus_mmio_get_region(s, 0));
1620 }
1621 
1622 static void create_tag_ram(MemoryRegion *tag_sysmem,
1623                            hwaddr base, hwaddr size,
1624                            const char *name)
1625 {
1626     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1627 
1628     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1629     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1630 }
1631 
1632 static void create_secure_ram(VirtMachineState *vms,
1633                               MemoryRegion *secure_sysmem,
1634                               MemoryRegion *secure_tag_sysmem)
1635 {
1636     MemoryRegion *secram = g_new(MemoryRegion, 1);
1637     char *nodename;
1638     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1639     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1640     MachineState *ms = MACHINE(vms);
1641 
1642     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1643                            &error_fatal);
1644     memory_region_add_subregion(secure_sysmem, base, secram);
1645 
1646     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1647     qemu_fdt_add_subnode(ms->fdt, nodename);
1648     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1649     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1650     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1651     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1652 
1653     if (secure_tag_sysmem) {
1654         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1655     }
1656 
1657     g_free(nodename);
1658 }
1659 
1660 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1661 {
1662     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1663                                                  bootinfo);
1664     MachineState *ms = MACHINE(board);
1665 
1666 
1667     *fdt_size = board->fdt_size;
1668     return ms->fdt;
1669 }
1670 
1671 static void virt_build_smbios(VirtMachineState *vms)
1672 {
1673     MachineClass *mc = MACHINE_GET_CLASS(vms);
1674     MachineState *ms = MACHINE(vms);
1675     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1676     uint8_t *smbios_tables, *smbios_anchor;
1677     size_t smbios_tables_len, smbios_anchor_len;
1678     struct smbios_phys_mem_area mem_array;
1679     const char *product = "QEMU Virtual Machine";
1680 
1681     if (kvm_enabled()) {
1682         product = "KVM Virtual Machine";
1683     }
1684 
1685     smbios_set_defaults("QEMU", product,
1686                         vmc->smbios_old_sys_ver ? "1.0" : mc->name);
1687 
1688     /* build the array of physical mem area from base_memmap */
1689     mem_array.address = vms->memmap[VIRT_MEM].base;
1690     mem_array.length = ms->ram_size;
1691 
1692     smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1,
1693                       &smbios_tables, &smbios_tables_len,
1694                       &smbios_anchor, &smbios_anchor_len,
1695                       &error_fatal);
1696 
1697     if (smbios_anchor) {
1698         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1699                         smbios_tables, smbios_tables_len);
1700         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1701                         smbios_anchor, smbios_anchor_len);
1702     }
1703 }
1704 
1705 static
1706 void virt_machine_done(Notifier *notifier, void *data)
1707 {
1708     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1709                                          machine_done);
1710     MachineState *ms = MACHINE(vms);
1711     ARMCPU *cpu = ARM_CPU(first_cpu);
1712     struct arm_boot_info *info = &vms->bootinfo;
1713     AddressSpace *as = arm_boot_address_space(cpu, info);
1714 
1715     /*
1716      * If the user provided a dtb, we assume the dynamic sysbus nodes
1717      * already are integrated there. This corresponds to a use case where
1718      * the dynamic sysbus nodes are complex and their generation is not yet
1719      * supported. In that case the user can take charge of the guest dt
1720      * while qemu takes charge of the qom stuff.
1721      */
1722     if (info->dtb_filename == NULL) {
1723         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1724                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1725                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1726                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1727     }
1728     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1729         exit(1);
1730     }
1731 
1732     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1733 
1734     virt_acpi_setup(vms);
1735     virt_build_smbios(vms);
1736 }
1737 
1738 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1739 {
1740     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1741     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1742 
1743     if (!vmc->disallow_affinity_adjustment) {
1744         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1745          * GIC's target-list limitations. 32-bit KVM hosts currently
1746          * always create clusters of 4 CPUs, but that is expected to
1747          * change when they gain support for gicv3. When KVM is enabled
1748          * it will override the changes we make here, therefore our
1749          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1750          * and to improve SGI efficiency.
1751          */
1752         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1753             clustersz = GIC_TARGETLIST_BITS;
1754         } else {
1755             clustersz = GICV3_TARGETLIST_BITS;
1756         }
1757     }
1758     return arm_build_mp_affinity(idx, clustersz);
1759 }
1760 
1761 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1762                                                  int index)
1763 {
1764     bool *enabled_array[] = {
1765         &vms->highmem_redists,
1766         &vms->highmem_ecam,
1767         &vms->highmem_mmio,
1768     };
1769 
1770     assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1771            ARRAY_SIZE(enabled_array));
1772     assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1773 
1774     return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1775 }
1776 
1777 static void virt_set_high_memmap(VirtMachineState *vms,
1778                                  hwaddr base, int pa_bits)
1779 {
1780     hwaddr region_base, region_size;
1781     bool *region_enabled, fits;
1782     int i;
1783 
1784     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1785         region_enabled = virt_get_high_memmap_enabled(vms, i);
1786         region_base = ROUND_UP(base, extended_memmap[i].size);
1787         region_size = extended_memmap[i].size;
1788 
1789         vms->memmap[i].base = region_base;
1790         vms->memmap[i].size = region_size;
1791 
1792         /*
1793          * Check each device to see if it fits in the PA space,
1794          * moving highest_gpa as we go. For compatibility, move
1795          * highest_gpa for disabled fitting devices as well, if
1796          * the compact layout has been disabled.
1797          *
1798          * For each device that doesn't fit, disable it.
1799          */
1800         fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1801         *region_enabled &= fits;
1802         if (vms->highmem_compact && !*region_enabled) {
1803             continue;
1804         }
1805 
1806         base = region_base + region_size;
1807         if (fits) {
1808             vms->highest_gpa = base - 1;
1809         }
1810     }
1811 }
1812 
1813 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1814 {
1815     MachineState *ms = MACHINE(vms);
1816     hwaddr base, device_memory_base, device_memory_size, memtop;
1817     int i;
1818 
1819     vms->memmap = extended_memmap;
1820 
1821     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1822         vms->memmap[i] = base_memmap[i];
1823     }
1824 
1825     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1826         error_report("unsupported number of memory slots: %"PRIu64,
1827                      ms->ram_slots);
1828         exit(EXIT_FAILURE);
1829     }
1830 
1831     /*
1832      * !highmem is exactly the same as limiting the PA space to 32bit,
1833      * irrespective of the underlying capabilities of the HW.
1834      */
1835     if (!vms->highmem) {
1836         pa_bits = 32;
1837     }
1838 
1839     /*
1840      * We compute the base of the high IO region depending on the
1841      * amount of initial and device memory. The device memory start/size
1842      * is aligned on 1GiB. We never put the high IO region below 256GiB
1843      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1844      * The device region size assumes 1GiB page max alignment per slot.
1845      */
1846     device_memory_base =
1847         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1848     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1849 
1850     /* Base address of the high IO region */
1851     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1852     if (memtop > BIT_ULL(pa_bits)) {
1853         error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
1854                      pa_bits, memtop - BIT_ULL(pa_bits));
1855         exit(EXIT_FAILURE);
1856     }
1857     if (base < device_memory_base) {
1858         error_report("maxmem/slots too huge");
1859         exit(EXIT_FAILURE);
1860     }
1861     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1862         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1863     }
1864 
1865     /* We know for sure that at least the memory fits in the PA space */
1866     vms->highest_gpa = memtop - 1;
1867 
1868     virt_set_high_memmap(vms, base, pa_bits);
1869 
1870     if (device_memory_size > 0) {
1871         machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1872     }
1873 }
1874 
1875 static VirtGICType finalize_gic_version_do(const char *accel_name,
1876                                            VirtGICType gic_version,
1877                                            int gics_supported,
1878                                            unsigned int max_cpus)
1879 {
1880     /* Convert host/max/nosel to GIC version number */
1881     switch (gic_version) {
1882     case VIRT_GIC_VERSION_HOST:
1883         if (!kvm_enabled()) {
1884             error_report("gic-version=host requires KVM");
1885             exit(1);
1886         }
1887 
1888         /* For KVM, gic-version=host means gic-version=max */
1889         return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1890                                        gics_supported, max_cpus);
1891     case VIRT_GIC_VERSION_MAX:
1892         if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1893             gic_version = VIRT_GIC_VERSION_4;
1894         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1895             gic_version = VIRT_GIC_VERSION_3;
1896         } else {
1897             gic_version = VIRT_GIC_VERSION_2;
1898         }
1899         break;
1900     case VIRT_GIC_VERSION_NOSEL:
1901         if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1902             max_cpus <= GIC_NCPU) {
1903             gic_version = VIRT_GIC_VERSION_2;
1904         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1905             /*
1906              * in case the host does not support v2 emulation or
1907              * the end-user requested more than 8 VCPUs we now default
1908              * to v3. In any case defaulting to v2 would be broken.
1909              */
1910             gic_version = VIRT_GIC_VERSION_3;
1911         } else if (max_cpus > GIC_NCPU) {
1912             error_report("%s only supports GICv2 emulation but more than 8 "
1913                          "vcpus are requested", accel_name);
1914             exit(1);
1915         }
1916         break;
1917     case VIRT_GIC_VERSION_2:
1918     case VIRT_GIC_VERSION_3:
1919     case VIRT_GIC_VERSION_4:
1920         break;
1921     }
1922 
1923     /* Check chosen version is effectively supported */
1924     switch (gic_version) {
1925     case VIRT_GIC_VERSION_2:
1926         if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1927             error_report("%s does not support GICv2 emulation", accel_name);
1928             exit(1);
1929         }
1930         break;
1931     case VIRT_GIC_VERSION_3:
1932         if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1933             error_report("%s does not support GICv3 emulation", accel_name);
1934             exit(1);
1935         }
1936         break;
1937     case VIRT_GIC_VERSION_4:
1938         if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1939             error_report("%s does not support GICv4 emulation, is virtualization=on?",
1940                          accel_name);
1941             exit(1);
1942         }
1943         break;
1944     default:
1945         error_report("logic error in finalize_gic_version");
1946         exit(1);
1947         break;
1948     }
1949 
1950     return gic_version;
1951 }
1952 
1953 /*
1954  * finalize_gic_version - Determines the final gic_version
1955  * according to the gic-version property
1956  *
1957  * Default GIC type is v2
1958  */
1959 static void finalize_gic_version(VirtMachineState *vms)
1960 {
1961     const char *accel_name = current_accel_name();
1962     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1963     int gics_supported = 0;
1964 
1965     /* Determine which GIC versions the current environment supports */
1966     if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1967         int probe_bitmap = kvm_arm_vgic_probe();
1968 
1969         if (!probe_bitmap) {
1970             error_report("Unable to determine GIC version supported by host");
1971             exit(1);
1972         }
1973 
1974         if (probe_bitmap & KVM_ARM_VGIC_V2) {
1975             gics_supported |= VIRT_GIC_VERSION_2_MASK;
1976         }
1977         if (probe_bitmap & KVM_ARM_VGIC_V3) {
1978             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1979         }
1980     } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1981         /* KVM w/o kernel irqchip can only deal with GICv2 */
1982         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1983         accel_name = "KVM with kernel-irqchip=off";
1984     } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
1985         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1986         if (module_object_class_by_name("arm-gicv3")) {
1987             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1988             if (vms->virt) {
1989                 /* GICv4 only makes sense if CPU has EL2 */
1990                 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1991             }
1992         }
1993     } else {
1994         error_report("Unsupported accelerator, can not determine GIC support");
1995         exit(1);
1996     }
1997 
1998     /*
1999      * Then convert helpers like host/max to concrete GIC versions and ensure
2000      * the desired version is supported
2001      */
2002     vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
2003                                                gics_supported, max_cpus);
2004 }
2005 
2006 /*
2007  * virt_cpu_post_init() must be called after the CPUs have
2008  * been realized and the GIC has been created.
2009  */
2010 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
2011 {
2012     int max_cpus = MACHINE(vms)->smp.max_cpus;
2013     bool aarch64, pmu, steal_time;
2014     CPUState *cpu;
2015 
2016     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
2017     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
2018     steal_time = object_property_get_bool(OBJECT(first_cpu),
2019                                           "kvm-steal-time", NULL);
2020 
2021     if (kvm_enabled()) {
2022         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
2023         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
2024 
2025         if (steal_time) {
2026             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
2027             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
2028 
2029             /* The memory region size must be a multiple of host page size. */
2030             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
2031 
2032             if (pvtime_size > pvtime_reg_size) {
2033                 error_report("pvtime requires a %" HWADDR_PRId
2034                              " byte memory region for %d CPUs,"
2035                              " but only %" HWADDR_PRId " has been reserved",
2036                              pvtime_size, max_cpus, pvtime_reg_size);
2037                 exit(1);
2038             }
2039 
2040             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
2041             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
2042         }
2043 
2044         CPU_FOREACH(cpu) {
2045             if (pmu) {
2046                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
2047                 if (kvm_irqchip_in_kernel()) {
2048                     kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
2049                 }
2050                 kvm_arm_pmu_init(ARM_CPU(cpu));
2051             }
2052             if (steal_time) {
2053                 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
2054                                                   + cpu->cpu_index
2055                                                     * PVTIME_SIZE_PER_CPU);
2056             }
2057         }
2058     } else {
2059         if (aarch64 && vms->highmem) {
2060             int requested_pa_size = 64 - clz64(vms->highest_gpa);
2061             int pamax = arm_pamax(ARM_CPU(first_cpu));
2062 
2063             if (pamax < requested_pa_size) {
2064                 error_report("VCPU supports less PA bits (%d) than "
2065                              "requested by the memory map (%d)",
2066                              pamax, requested_pa_size);
2067                 exit(1);
2068             }
2069         }
2070     }
2071 }
2072 
2073 static void machvirt_init(MachineState *machine)
2074 {
2075     VirtMachineState *vms = VIRT_MACHINE(machine);
2076     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2077     MachineClass *mc = MACHINE_GET_CLASS(machine);
2078     const CPUArchIdList *possible_cpus;
2079     MemoryRegion *sysmem = get_system_memory();
2080     MemoryRegion *secure_sysmem = NULL;
2081     MemoryRegion *tag_sysmem = NULL;
2082     MemoryRegion *secure_tag_sysmem = NULL;
2083     int n, virt_max_cpus;
2084     bool firmware_loaded;
2085     bool aarch64 = true;
2086     bool has_ged = !vmc->no_ged;
2087     unsigned int smp_cpus = machine->smp.cpus;
2088     unsigned int max_cpus = machine->smp.max_cpus;
2089 
2090     possible_cpus = mc->possible_cpu_arch_ids(machine);
2091 
2092     /*
2093      * In accelerated mode, the memory map is computed earlier in kvm_type()
2094      * to create a VM with the right number of IPA bits.
2095      */
2096     if (!vms->memmap) {
2097         Object *cpuobj;
2098         ARMCPU *armcpu;
2099         int pa_bits;
2100 
2101         /*
2102          * Instantiate a temporary CPU object to find out about what
2103          * we are about to deal with. Once this is done, get rid of
2104          * the object.
2105          */
2106         cpuobj = object_new(possible_cpus->cpus[0].type);
2107         armcpu = ARM_CPU(cpuobj);
2108 
2109         pa_bits = arm_pamax(armcpu);
2110 
2111         object_unref(cpuobj);
2112 
2113         virt_set_memmap(vms, pa_bits);
2114     }
2115 
2116     /* We can probe only here because during property set
2117      * KVM is not available yet
2118      */
2119     finalize_gic_version(vms);
2120 
2121     if (vms->secure) {
2122         /*
2123          * The Secure view of the world is the same as the NonSecure,
2124          * but with a few extra devices. Create it as a container region
2125          * containing the system memory at low priority; any secure-only
2126          * devices go in at higher priority and take precedence.
2127          */
2128         secure_sysmem = g_new(MemoryRegion, 1);
2129         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2130                            UINT64_MAX);
2131         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2132     }
2133 
2134     firmware_loaded = virt_firmware_init(vms, sysmem,
2135                                          secure_sysmem ?: sysmem);
2136 
2137     /* If we have an EL3 boot ROM then the assumption is that it will
2138      * implement PSCI itself, so disable QEMU's internal implementation
2139      * so it doesn't get in the way. Instead of starting secondary
2140      * CPUs in PSCI powerdown state we will start them all running and
2141      * let the boot ROM sort them out.
2142      * The usual case is that we do use QEMU's PSCI implementation;
2143      * if the guest has EL2 then we will use SMC as the conduit,
2144      * and otherwise we will use HVC (for backwards compatibility and
2145      * because if we're using KVM then we must use HVC).
2146      */
2147     if (vms->secure && firmware_loaded) {
2148         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2149     } else if (vms->virt) {
2150         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2151     } else {
2152         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2153     }
2154 
2155     /*
2156      * The maximum number of CPUs depends on the GIC version, or on how
2157      * many redistributors we can fit into the memory map (which in turn
2158      * depends on whether this is a GICv3 or v4).
2159      */
2160     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2161         virt_max_cpus = GIC_NCPU;
2162     } else {
2163         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2164         if (vms->highmem_redists) {
2165             virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2166         }
2167     }
2168 
2169     if (max_cpus > virt_max_cpus) {
2170         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2171                      "supported by machine 'mach-virt' (%d)",
2172                      max_cpus, virt_max_cpus);
2173         if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2174             error_printf("Try 'highmem-redists=on' for more CPUs\n");
2175         }
2176 
2177         exit(1);
2178     }
2179 
2180     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2181         error_report("mach-virt: %s does not support providing "
2182                      "Security extensions (TrustZone) to the guest CPU",
2183                      current_accel_name());
2184         exit(1);
2185     }
2186 
2187     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2188         error_report("mach-virt: %s does not support providing "
2189                      "Virtualization extensions to the guest CPU",
2190                      current_accel_name());
2191         exit(1);
2192     }
2193 
2194     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2195         error_report("mach-virt: %s does not support providing "
2196                      "MTE to the guest CPU",
2197                      current_accel_name());
2198         exit(1);
2199     }
2200 
2201     create_fdt(vms);
2202 
2203     assert(possible_cpus->len == max_cpus);
2204     for (n = 0; n < possible_cpus->len; n++) {
2205         Object *cpuobj;
2206         CPUState *cs;
2207 
2208         if (n >= smp_cpus) {
2209             break;
2210         }
2211 
2212         cpuobj = object_new(possible_cpus->cpus[n].type);
2213         object_property_set_int(cpuobj, "mp-affinity",
2214                                 possible_cpus->cpus[n].arch_id, NULL);
2215 
2216         cs = CPU(cpuobj);
2217         cs->cpu_index = n;
2218 
2219         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2220                           &error_fatal);
2221 
2222         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2223 
2224         if (!vms->secure) {
2225             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2226         }
2227 
2228         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2229             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2230         }
2231 
2232         if (vmc->kvm_no_adjvtime &&
2233             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2234             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2235         }
2236 
2237         if (vmc->no_kvm_steal_time &&
2238             object_property_find(cpuobj, "kvm-steal-time")) {
2239             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2240         }
2241 
2242         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2243             object_property_set_bool(cpuobj, "pmu", false, NULL);
2244         }
2245 
2246         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2247             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2248         }
2249 
2250         if (object_property_find(cpuobj, "reset-cbar")) {
2251             object_property_set_int(cpuobj, "reset-cbar",
2252                                     vms->memmap[VIRT_CPUPERIPHS].base,
2253                                     &error_abort);
2254         }
2255 
2256         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2257                                  &error_abort);
2258         if (vms->secure) {
2259             object_property_set_link(cpuobj, "secure-memory",
2260                                      OBJECT(secure_sysmem), &error_abort);
2261         }
2262 
2263         if (vms->mte) {
2264             /* Create the memory region only once, but link to all cpus. */
2265             if (!tag_sysmem) {
2266                 /*
2267                  * The property exists only if MemTag is supported.
2268                  * If it is, we must allocate the ram to back that up.
2269                  */
2270                 if (!object_property_find(cpuobj, "tag-memory")) {
2271                     error_report("MTE requested, but not supported "
2272                                  "by the guest CPU");
2273                     exit(1);
2274                 }
2275 
2276                 tag_sysmem = g_new(MemoryRegion, 1);
2277                 memory_region_init(tag_sysmem, OBJECT(machine),
2278                                    "tag-memory", UINT64_MAX / 32);
2279 
2280                 if (vms->secure) {
2281                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2282                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2283                                        "secure-tag-memory", UINT64_MAX / 32);
2284 
2285                     /* As with ram, secure-tag takes precedence over tag.  */
2286                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2287                                                         tag_sysmem, -1);
2288                 }
2289             }
2290 
2291             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2292                                      &error_abort);
2293             if (vms->secure) {
2294                 object_property_set_link(cpuobj, "secure-tag-memory",
2295                                          OBJECT(secure_tag_sysmem),
2296                                          &error_abort);
2297             }
2298         }
2299 
2300         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2301         object_unref(cpuobj);
2302     }
2303 
2304     /* Now we've created the CPUs we can see if they have the hypvirt timer */
2305     vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() &&
2306         !vmc->no_ns_el2_virt_timer_irq;
2307 
2308     fdt_add_timer_nodes(vms);
2309     fdt_add_cpu_nodes(vms);
2310 
2311     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2312                                 machine->ram);
2313 
2314     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2315 
2316     create_gic(vms, sysmem);
2317 
2318     virt_cpu_post_init(vms, sysmem);
2319 
2320     fdt_add_pmu_nodes(vms);
2321 
2322     /*
2323      * The first UART always exists. If the security extensions are
2324      * enabled, the second UART also always exists. Otherwise, it only exists
2325      * if a backend is configured explicitly via '-serial <backend>'.
2326      * This avoids potentially breaking existing user setups that expect
2327      * only one NonSecure UART to be present (for instance, older EDK2
2328      * binaries).
2329      *
2330      * The nodes end up in the DTB in reverse order of creation, so we must
2331      * create UART0 last to ensure it appears as the first node in the DTB,
2332      * for compatibility with guest software that just iterates through the
2333      * DTB to find the first UART, as older versions of EDK2 do.
2334      * DTB readers that follow the spec, as Linux does, should honour the
2335      * aliases node information and /chosen/stdout-path regardless of
2336      * the order that nodes appear in the DTB.
2337      *
2338      * For similar back-compatibility reasons, if UART1 is the secure UART
2339      * we create it second (and so it appears first in the DTB), because
2340      * that's what QEMU has always done.
2341      */
2342     if (!vms->secure) {
2343         Chardev *serial1 = serial_hd(1);
2344 
2345         if (serial1) {
2346             vms->second_ns_uart_present = true;
2347             create_uart(vms, VIRT_UART1, sysmem, serial1, false);
2348         }
2349     }
2350     create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false);
2351     if (vms->secure) {
2352         create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true);
2353     }
2354 
2355     if (vms->secure) {
2356         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2357     }
2358 
2359     if (tag_sysmem) {
2360         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2361                        machine->ram_size, "mach-virt.tag");
2362     }
2363 
2364     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2365 
2366     create_rtc(vms);
2367 
2368     create_pcie(vms);
2369 
2370     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2371         vms->acpi_dev = create_acpi_ged(vms);
2372     } else {
2373         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2374     }
2375 
2376     if (vms->secure && !vmc->no_secure_gpio) {
2377         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2378     }
2379 
2380      /* connect powerdown request */
2381      vms->powerdown_notifier.notify = virt_powerdown_req;
2382      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2383 
2384     /* Create mmio transports, so the user can create virtio backends
2385      * (which will be automatically plugged in to the transports). If
2386      * no backend is created the transport will just sit harmlessly idle.
2387      */
2388     create_virtio_devices(vms);
2389 
2390     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2391     rom_set_fw(vms->fw_cfg);
2392 
2393     create_platform_bus(vms);
2394 
2395     if (machine->nvdimms_state->is_enabled) {
2396         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2397             .space_id = AML_AS_SYSTEM_MEMORY,
2398             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2399             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2400         };
2401 
2402         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2403                                arm_virt_nvdimm_acpi_dsmio,
2404                                vms->fw_cfg, OBJECT(vms));
2405     }
2406 
2407     vms->bootinfo.ram_size = machine->ram_size;
2408     vms->bootinfo.board_id = -1;
2409     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2410     vms->bootinfo.get_dtb = machvirt_dtb;
2411     vms->bootinfo.skip_dtb_autoload = true;
2412     vms->bootinfo.firmware_loaded = firmware_loaded;
2413     vms->bootinfo.psci_conduit = vms->psci_conduit;
2414     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2415 
2416     vms->machine_done.notify = virt_machine_done;
2417     qemu_add_machine_init_done_notifier(&vms->machine_done);
2418 }
2419 
2420 static bool virt_get_secure(Object *obj, Error **errp)
2421 {
2422     VirtMachineState *vms = VIRT_MACHINE(obj);
2423 
2424     return vms->secure;
2425 }
2426 
2427 static void virt_set_secure(Object *obj, bool value, Error **errp)
2428 {
2429     VirtMachineState *vms = VIRT_MACHINE(obj);
2430 
2431     vms->secure = value;
2432 }
2433 
2434 static bool virt_get_virt(Object *obj, Error **errp)
2435 {
2436     VirtMachineState *vms = VIRT_MACHINE(obj);
2437 
2438     return vms->virt;
2439 }
2440 
2441 static void virt_set_virt(Object *obj, bool value, Error **errp)
2442 {
2443     VirtMachineState *vms = VIRT_MACHINE(obj);
2444 
2445     vms->virt = value;
2446 }
2447 
2448 static bool virt_get_highmem(Object *obj, Error **errp)
2449 {
2450     VirtMachineState *vms = VIRT_MACHINE(obj);
2451 
2452     return vms->highmem;
2453 }
2454 
2455 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2456 {
2457     VirtMachineState *vms = VIRT_MACHINE(obj);
2458 
2459     vms->highmem = value;
2460 }
2461 
2462 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2463 {
2464     VirtMachineState *vms = VIRT_MACHINE(obj);
2465 
2466     return vms->highmem_compact;
2467 }
2468 
2469 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2470 {
2471     VirtMachineState *vms = VIRT_MACHINE(obj);
2472 
2473     vms->highmem_compact = value;
2474 }
2475 
2476 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2477 {
2478     VirtMachineState *vms = VIRT_MACHINE(obj);
2479 
2480     return vms->highmem_redists;
2481 }
2482 
2483 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2484 {
2485     VirtMachineState *vms = VIRT_MACHINE(obj);
2486 
2487     vms->highmem_redists = value;
2488 }
2489 
2490 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2491 {
2492     VirtMachineState *vms = VIRT_MACHINE(obj);
2493 
2494     return vms->highmem_ecam;
2495 }
2496 
2497 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2498 {
2499     VirtMachineState *vms = VIRT_MACHINE(obj);
2500 
2501     vms->highmem_ecam = value;
2502 }
2503 
2504 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2505 {
2506     VirtMachineState *vms = VIRT_MACHINE(obj);
2507 
2508     return vms->highmem_mmio;
2509 }
2510 
2511 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2512 {
2513     VirtMachineState *vms = VIRT_MACHINE(obj);
2514 
2515     vms->highmem_mmio = value;
2516 }
2517 
2518 
2519 static bool virt_get_its(Object *obj, Error **errp)
2520 {
2521     VirtMachineState *vms = VIRT_MACHINE(obj);
2522 
2523     return vms->its;
2524 }
2525 
2526 static void virt_set_its(Object *obj, bool value, Error **errp)
2527 {
2528     VirtMachineState *vms = VIRT_MACHINE(obj);
2529 
2530     vms->its = value;
2531 }
2532 
2533 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2534 {
2535     VirtMachineState *vms = VIRT_MACHINE(obj);
2536 
2537     return vms->dtb_randomness;
2538 }
2539 
2540 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2541 {
2542     VirtMachineState *vms = VIRT_MACHINE(obj);
2543 
2544     vms->dtb_randomness = value;
2545 }
2546 
2547 static char *virt_get_oem_id(Object *obj, Error **errp)
2548 {
2549     VirtMachineState *vms = VIRT_MACHINE(obj);
2550 
2551     return g_strdup(vms->oem_id);
2552 }
2553 
2554 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2555 {
2556     VirtMachineState *vms = VIRT_MACHINE(obj);
2557     size_t len = strlen(value);
2558 
2559     if (len > 6) {
2560         error_setg(errp,
2561                    "User specified oem-id value is bigger than 6 bytes in size");
2562         return;
2563     }
2564 
2565     strncpy(vms->oem_id, value, 6);
2566 }
2567 
2568 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2569 {
2570     VirtMachineState *vms = VIRT_MACHINE(obj);
2571 
2572     return g_strdup(vms->oem_table_id);
2573 }
2574 
2575 static void virt_set_oem_table_id(Object *obj, const char *value,
2576                                   Error **errp)
2577 {
2578     VirtMachineState *vms = VIRT_MACHINE(obj);
2579     size_t len = strlen(value);
2580 
2581     if (len > 8) {
2582         error_setg(errp,
2583                    "User specified oem-table-id value is bigger than 8 bytes in size");
2584         return;
2585     }
2586     strncpy(vms->oem_table_id, value, 8);
2587 }
2588 
2589 
2590 bool virt_is_acpi_enabled(VirtMachineState *vms)
2591 {
2592     if (vms->acpi == ON_OFF_AUTO_OFF) {
2593         return false;
2594     }
2595     return true;
2596 }
2597 
2598 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2599                           void *opaque, Error **errp)
2600 {
2601     VirtMachineState *vms = VIRT_MACHINE(obj);
2602     OnOffAuto acpi = vms->acpi;
2603 
2604     visit_type_OnOffAuto(v, name, &acpi, errp);
2605 }
2606 
2607 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2608                           void *opaque, Error **errp)
2609 {
2610     VirtMachineState *vms = VIRT_MACHINE(obj);
2611 
2612     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2613 }
2614 
2615 static bool virt_get_ras(Object *obj, Error **errp)
2616 {
2617     VirtMachineState *vms = VIRT_MACHINE(obj);
2618 
2619     return vms->ras;
2620 }
2621 
2622 static void virt_set_ras(Object *obj, bool value, Error **errp)
2623 {
2624     VirtMachineState *vms = VIRT_MACHINE(obj);
2625 
2626     vms->ras = value;
2627 }
2628 
2629 static bool virt_get_mte(Object *obj, Error **errp)
2630 {
2631     VirtMachineState *vms = VIRT_MACHINE(obj);
2632 
2633     return vms->mte;
2634 }
2635 
2636 static void virt_set_mte(Object *obj, bool value, Error **errp)
2637 {
2638     VirtMachineState *vms = VIRT_MACHINE(obj);
2639 
2640     vms->mte = value;
2641 }
2642 
2643 static char *virt_get_gic_version(Object *obj, Error **errp)
2644 {
2645     VirtMachineState *vms = VIRT_MACHINE(obj);
2646     const char *val;
2647 
2648     switch (vms->gic_version) {
2649     case VIRT_GIC_VERSION_4:
2650         val = "4";
2651         break;
2652     case VIRT_GIC_VERSION_3:
2653         val = "3";
2654         break;
2655     default:
2656         val = "2";
2657         break;
2658     }
2659     return g_strdup(val);
2660 }
2661 
2662 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2663 {
2664     VirtMachineState *vms = VIRT_MACHINE(obj);
2665 
2666     if (!strcmp(value, "4")) {
2667         vms->gic_version = VIRT_GIC_VERSION_4;
2668     } else if (!strcmp(value, "3")) {
2669         vms->gic_version = VIRT_GIC_VERSION_3;
2670     } else if (!strcmp(value, "2")) {
2671         vms->gic_version = VIRT_GIC_VERSION_2;
2672     } else if (!strcmp(value, "host")) {
2673         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2674     } else if (!strcmp(value, "max")) {
2675         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2676     } else {
2677         error_setg(errp, "Invalid gic-version value");
2678         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2679     }
2680 }
2681 
2682 static char *virt_get_iommu(Object *obj, Error **errp)
2683 {
2684     VirtMachineState *vms = VIRT_MACHINE(obj);
2685 
2686     switch (vms->iommu) {
2687     case VIRT_IOMMU_NONE:
2688         return g_strdup("none");
2689     case VIRT_IOMMU_SMMUV3:
2690         return g_strdup("smmuv3");
2691     default:
2692         g_assert_not_reached();
2693     }
2694 }
2695 
2696 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2697 {
2698     VirtMachineState *vms = VIRT_MACHINE(obj);
2699 
2700     if (!strcmp(value, "smmuv3")) {
2701         vms->iommu = VIRT_IOMMU_SMMUV3;
2702     } else if (!strcmp(value, "none")) {
2703         vms->iommu = VIRT_IOMMU_NONE;
2704     } else {
2705         error_setg(errp, "Invalid iommu value");
2706         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2707     }
2708 }
2709 
2710 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2711 {
2712     VirtMachineState *vms = VIRT_MACHINE(obj);
2713 
2714     return vms->default_bus_bypass_iommu;
2715 }
2716 
2717 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2718                                               Error **errp)
2719 {
2720     VirtMachineState *vms = VIRT_MACHINE(obj);
2721 
2722     vms->default_bus_bypass_iommu = value;
2723 }
2724 
2725 static CpuInstanceProperties
2726 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2727 {
2728     MachineClass *mc = MACHINE_GET_CLASS(ms);
2729     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2730 
2731     assert(cpu_index < possible_cpus->len);
2732     return possible_cpus->cpus[cpu_index].props;
2733 }
2734 
2735 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2736 {
2737     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2738 
2739     return socket_id % ms->numa_state->num_nodes;
2740 }
2741 
2742 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2743 {
2744     int n;
2745     unsigned int max_cpus = ms->smp.max_cpus;
2746     VirtMachineState *vms = VIRT_MACHINE(ms);
2747     MachineClass *mc = MACHINE_GET_CLASS(vms);
2748 
2749     if (ms->possible_cpus) {
2750         assert(ms->possible_cpus->len == max_cpus);
2751         return ms->possible_cpus;
2752     }
2753 
2754     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2755                                   sizeof(CPUArchId) * max_cpus);
2756     ms->possible_cpus->len = max_cpus;
2757     for (n = 0; n < ms->possible_cpus->len; n++) {
2758         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2759         ms->possible_cpus->cpus[n].arch_id =
2760             virt_cpu_mp_affinity(vms, n);
2761 
2762         assert(!mc->smp_props.dies_supported);
2763         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2764         ms->possible_cpus->cpus[n].props.socket_id =
2765             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2766         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2767         ms->possible_cpus->cpus[n].props.cluster_id =
2768             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2769         ms->possible_cpus->cpus[n].props.has_core_id = true;
2770         ms->possible_cpus->cpus[n].props.core_id =
2771             (n / ms->smp.threads) % ms->smp.cores;
2772         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2773         ms->possible_cpus->cpus[n].props.thread_id =
2774             n % ms->smp.threads;
2775     }
2776     return ms->possible_cpus;
2777 }
2778 
2779 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2780                                  Error **errp)
2781 {
2782     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2783     const MachineState *ms = MACHINE(hotplug_dev);
2784     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2785 
2786     if (!vms->acpi_dev) {
2787         error_setg(errp,
2788                    "memory hotplug is not enabled: missing acpi-ged device");
2789         return;
2790     }
2791 
2792     if (vms->mte) {
2793         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2794         return;
2795     }
2796 
2797     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2798         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2799         return;
2800     }
2801 
2802     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp);
2803 }
2804 
2805 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2806                              DeviceState *dev, Error **errp)
2807 {
2808     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2809     MachineState *ms = MACHINE(hotplug_dev);
2810     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2811 
2812     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2813 
2814     if (is_nvdimm) {
2815         nvdimm_plug(ms->nvdimms_state);
2816     }
2817 
2818     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2819                          dev, &error_abort);
2820 }
2821 
2822 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2823                                             DeviceState *dev, Error **errp)
2824 {
2825     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2826 
2827     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2828         virt_memory_pre_plug(hotplug_dev, dev, errp);
2829     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2830         virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2831     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2832         hwaddr db_start = 0, db_end = 0;
2833         QList *reserved_regions;
2834         char *resv_prop_str;
2835 
2836         if (vms->iommu != VIRT_IOMMU_NONE) {
2837             error_setg(errp, "virt machine does not support multiple IOMMUs");
2838             return;
2839         }
2840 
2841         switch (vms->msi_controller) {
2842         case VIRT_MSI_CTRL_NONE:
2843             return;
2844         case VIRT_MSI_CTRL_ITS:
2845             /* GITS_TRANSLATER page */
2846             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2847             db_end = base_memmap[VIRT_GIC_ITS].base +
2848                      base_memmap[VIRT_GIC_ITS].size - 1;
2849             break;
2850         case VIRT_MSI_CTRL_GICV2M:
2851             /* MSI_SETSPI_NS page */
2852             db_start = base_memmap[VIRT_GIC_V2M].base;
2853             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2854             break;
2855         }
2856         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2857                                         db_start, db_end,
2858                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2859 
2860         reserved_regions = qlist_new();
2861         qlist_append_str(reserved_regions, resv_prop_str);
2862         qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2863         g_free(resv_prop_str);
2864     }
2865 }
2866 
2867 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2868                                         DeviceState *dev, Error **errp)
2869 {
2870     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2871 
2872     if (vms->platform_bus_dev) {
2873         MachineClass *mc = MACHINE_GET_CLASS(vms);
2874 
2875         if (device_is_dynamic_sysbus(mc, dev)) {
2876             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2877                                      SYS_BUS_DEVICE(dev));
2878         }
2879     }
2880 
2881     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2882         virt_memory_plug(hotplug_dev, dev, errp);
2883     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2884         virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2885     }
2886 
2887     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2888         PCIDevice *pdev = PCI_DEVICE(dev);
2889 
2890         vms->iommu = VIRT_IOMMU_VIRTIO;
2891         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2892         create_virtio_iommu_dt_bindings(vms);
2893     }
2894 }
2895 
2896 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2897                                      DeviceState *dev, Error **errp)
2898 {
2899     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2900 
2901     if (!vms->acpi_dev) {
2902         error_setg(errp,
2903                    "memory hotplug is not enabled: missing acpi-ged device");
2904         return;
2905     }
2906 
2907     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2908         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2909         return;
2910     }
2911 
2912     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2913                                    errp);
2914 }
2915 
2916 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2917                              DeviceState *dev, Error **errp)
2918 {
2919     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2920     Error *local_err = NULL;
2921 
2922     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2923     if (local_err) {
2924         goto out;
2925     }
2926 
2927     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2928     qdev_unrealize(dev);
2929 
2930 out:
2931     error_propagate(errp, local_err);
2932 }
2933 
2934 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2935                                           DeviceState *dev, Error **errp)
2936 {
2937     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2938         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2939     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2940         virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2941                                      errp);
2942     } else {
2943         error_setg(errp, "device unplug request for unsupported device"
2944                    " type: %s", object_get_typename(OBJECT(dev)));
2945     }
2946 }
2947 
2948 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2949                                           DeviceState *dev, Error **errp)
2950 {
2951     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2952         virt_dimm_unplug(hotplug_dev, dev, errp);
2953     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2954         virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2955     } else {
2956         error_setg(errp, "virt: device unplug for unsupported device"
2957                    " type: %s", object_get_typename(OBJECT(dev)));
2958     }
2959 }
2960 
2961 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2962                                                         DeviceState *dev)
2963 {
2964     MachineClass *mc = MACHINE_GET_CLASS(machine);
2965 
2966     if (device_is_dynamic_sysbus(mc, dev) ||
2967         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2968         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2969         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2970         return HOTPLUG_HANDLER(machine);
2971     }
2972     return NULL;
2973 }
2974 
2975 /*
2976  * for arm64 kvm_type [7-0] encodes the requested number of bits
2977  * in the IPA address space
2978  */
2979 static int virt_kvm_type(MachineState *ms, const char *type_str)
2980 {
2981     VirtMachineState *vms = VIRT_MACHINE(ms);
2982     int max_vm_pa_size, requested_pa_size;
2983     bool fixed_ipa;
2984 
2985     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2986 
2987     /* we freeze the memory map to compute the highest gpa */
2988     virt_set_memmap(vms, max_vm_pa_size);
2989 
2990     requested_pa_size = 64 - clz64(vms->highest_gpa);
2991 
2992     /*
2993      * KVM requires the IPA size to be at least 32 bits.
2994      */
2995     if (requested_pa_size < 32) {
2996         requested_pa_size = 32;
2997     }
2998 
2999     if (requested_pa_size > max_vm_pa_size) {
3000         error_report("-m and ,maxmem option values "
3001                      "require an IPA range (%d bits) larger than "
3002                      "the one supported by the host (%d bits)",
3003                      requested_pa_size, max_vm_pa_size);
3004         return -1;
3005     }
3006     /*
3007      * We return the requested PA log size, unless KVM only supports
3008      * the implicit legacy 40b IPA setting, in which case the kvm_type
3009      * must be 0.
3010      */
3011     return fixed_ipa ? 0 : requested_pa_size;
3012 }
3013 
3014 static void virt_machine_class_init(ObjectClass *oc, void *data)
3015 {
3016     MachineClass *mc = MACHINE_CLASS(oc);
3017     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3018     static const char * const valid_cpu_types[] = {
3019 #ifdef CONFIG_TCG
3020         ARM_CPU_TYPE_NAME("cortex-a7"),
3021         ARM_CPU_TYPE_NAME("cortex-a15"),
3022 #ifdef TARGET_AARCH64
3023         ARM_CPU_TYPE_NAME("cortex-a35"),
3024         ARM_CPU_TYPE_NAME("cortex-a55"),
3025         ARM_CPU_TYPE_NAME("cortex-a72"),
3026         ARM_CPU_TYPE_NAME("cortex-a76"),
3027         ARM_CPU_TYPE_NAME("cortex-a710"),
3028         ARM_CPU_TYPE_NAME("a64fx"),
3029         ARM_CPU_TYPE_NAME("neoverse-n1"),
3030         ARM_CPU_TYPE_NAME("neoverse-v1"),
3031         ARM_CPU_TYPE_NAME("neoverse-n2"),
3032 #endif /* TARGET_AARCH64 */
3033 #endif /* CONFIG_TCG */
3034 #ifdef TARGET_AARCH64
3035         ARM_CPU_TYPE_NAME("cortex-a53"),
3036         ARM_CPU_TYPE_NAME("cortex-a57"),
3037 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
3038         ARM_CPU_TYPE_NAME("host"),
3039 #endif /* CONFIG_KVM || CONFIG_HVF */
3040 #endif /* TARGET_AARCH64 */
3041         ARM_CPU_TYPE_NAME("max"),
3042         NULL
3043     };
3044 
3045     mc->init = machvirt_init;
3046     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
3047      * The value may be reduced later when we have more information about the
3048      * configuration of the particular instance.
3049      */
3050     mc->max_cpus = 512;
3051     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
3052     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
3053     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
3054     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
3055 #ifdef CONFIG_TPM
3056     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
3057 #endif
3058     mc->block_default_type = IF_VIRTIO;
3059     mc->no_cdrom = 1;
3060     mc->pci_allow_0_address = true;
3061     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3062     mc->minimum_page_bits = 12;
3063     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3064     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3065 #ifdef CONFIG_TCG
3066     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3067 #else
3068     mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
3069 #endif
3070     mc->valid_cpu_types = valid_cpu_types;
3071     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3072     mc->kvm_type = virt_kvm_type;
3073     assert(!mc->get_hotplug_handler);
3074     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3075     hc->pre_plug = virt_machine_device_pre_plug_cb;
3076     hc->plug = virt_machine_device_plug_cb;
3077     hc->unplug_request = virt_machine_device_unplug_request_cb;
3078     hc->unplug = virt_machine_device_unplug_cb;
3079     mc->nvdimm_supported = true;
3080     mc->smp_props.clusters_supported = true;
3081     mc->auto_enable_numa_with_memhp = true;
3082     mc->auto_enable_numa_with_memdev = true;
3083     /* platform instead of architectural choice */
3084     mc->cpu_cluster_has_numa_boundary = true;
3085     mc->default_ram_id = "mach-virt.ram";
3086     mc->default_nic = "virtio-net-pci";
3087 
3088     object_class_property_add(oc, "acpi", "OnOffAuto",
3089         virt_get_acpi, virt_set_acpi,
3090         NULL, NULL);
3091     object_class_property_set_description(oc, "acpi",
3092         "Enable ACPI");
3093     object_class_property_add_bool(oc, "secure", virt_get_secure,
3094                                    virt_set_secure);
3095     object_class_property_set_description(oc, "secure",
3096                                                 "Set on/off to enable/disable the ARM "
3097                                                 "Security Extensions (TrustZone)");
3098 
3099     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3100                                    virt_set_virt);
3101     object_class_property_set_description(oc, "virtualization",
3102                                           "Set on/off to enable/disable emulating a "
3103                                           "guest CPU which implements the ARM "
3104                                           "Virtualization Extensions");
3105 
3106     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3107                                    virt_set_highmem);
3108     object_class_property_set_description(oc, "highmem",
3109                                           "Set on/off to enable/disable using "
3110                                           "physical address space above 32 bits");
3111 
3112     object_class_property_add_bool(oc, "compact-highmem",
3113                                    virt_get_compact_highmem,
3114                                    virt_set_compact_highmem);
3115     object_class_property_set_description(oc, "compact-highmem",
3116                                           "Set on/off to enable/disable compact "
3117                                           "layout for high memory regions");
3118 
3119     object_class_property_add_bool(oc, "highmem-redists",
3120                                    virt_get_highmem_redists,
3121                                    virt_set_highmem_redists);
3122     object_class_property_set_description(oc, "highmem-redists",
3123                                           "Set on/off to enable/disable high "
3124                                           "memory region for GICv3 or GICv4 "
3125                                           "redistributor");
3126 
3127     object_class_property_add_bool(oc, "highmem-ecam",
3128                                    virt_get_highmem_ecam,
3129                                    virt_set_highmem_ecam);
3130     object_class_property_set_description(oc, "highmem-ecam",
3131                                           "Set on/off to enable/disable high "
3132                                           "memory region for PCI ECAM");
3133 
3134     object_class_property_add_bool(oc, "highmem-mmio",
3135                                    virt_get_highmem_mmio,
3136                                    virt_set_highmem_mmio);
3137     object_class_property_set_description(oc, "highmem-mmio",
3138                                           "Set on/off to enable/disable high "
3139                                           "memory region for PCI MMIO");
3140 
3141     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3142                                   virt_set_gic_version);
3143     object_class_property_set_description(oc, "gic-version",
3144                                           "Set GIC version. "
3145                                           "Valid values are 2, 3, 4, host and max");
3146 
3147     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3148     object_class_property_set_description(oc, "iommu",
3149                                           "Set the IOMMU type. "
3150                                           "Valid values are none and smmuv3");
3151 
3152     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3153                                    virt_get_default_bus_bypass_iommu,
3154                                    virt_set_default_bus_bypass_iommu);
3155     object_class_property_set_description(oc, "default-bus-bypass-iommu",
3156                                           "Set on/off to enable/disable "
3157                                           "bypass_iommu for default root bus");
3158 
3159     object_class_property_add_bool(oc, "ras", virt_get_ras,
3160                                    virt_set_ras);
3161     object_class_property_set_description(oc, "ras",
3162                                           "Set on/off to enable/disable reporting host memory errors "
3163                                           "to a KVM guest using ACPI and guest external abort exceptions");
3164 
3165     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3166     object_class_property_set_description(oc, "mte",
3167                                           "Set on/off to enable/disable emulating a "
3168                                           "guest CPU which implements the ARM "
3169                                           "Memory Tagging Extension");
3170 
3171     object_class_property_add_bool(oc, "its", virt_get_its,
3172                                    virt_set_its);
3173     object_class_property_set_description(oc, "its",
3174                                           "Set on/off to enable/disable "
3175                                           "ITS instantiation");
3176 
3177     object_class_property_add_bool(oc, "dtb-randomness",
3178                                    virt_get_dtb_randomness,
3179                                    virt_set_dtb_randomness);
3180     object_class_property_set_description(oc, "dtb-randomness",
3181                                           "Set off to disable passing random or "
3182                                           "non-deterministic dtb nodes to guest");
3183 
3184     object_class_property_add_bool(oc, "dtb-kaslr-seed",
3185                                    virt_get_dtb_randomness,
3186                                    virt_set_dtb_randomness);
3187     object_class_property_set_description(oc, "dtb-kaslr-seed",
3188                                           "Deprecated synonym of dtb-randomness");
3189 
3190     object_class_property_add_str(oc, "x-oem-id",
3191                                   virt_get_oem_id,
3192                                   virt_set_oem_id);
3193     object_class_property_set_description(oc, "x-oem-id",
3194                                           "Override the default value of field OEMID "
3195                                           "in ACPI table header."
3196                                           "The string may be up to 6 bytes in size");
3197 
3198 
3199     object_class_property_add_str(oc, "x-oem-table-id",
3200                                   virt_get_oem_table_id,
3201                                   virt_set_oem_table_id);
3202     object_class_property_set_description(oc, "x-oem-table-id",
3203                                           "Override the default value of field OEM Table ID "
3204                                           "in ACPI table header."
3205                                           "The string may be up to 8 bytes in size");
3206 
3207 }
3208 
3209 static void virt_instance_init(Object *obj)
3210 {
3211     VirtMachineState *vms = VIRT_MACHINE(obj);
3212     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3213 
3214     /* EL3 is disabled by default on virt: this makes us consistent
3215      * between KVM and TCG for this board, and it also allows us to
3216      * boot UEFI blobs which assume no TrustZone support.
3217      */
3218     vms->secure = false;
3219 
3220     /* EL2 is also disabled by default, for similar reasons */
3221     vms->virt = false;
3222 
3223     /* High memory is enabled by default */
3224     vms->highmem = true;
3225     vms->highmem_compact = !vmc->no_highmem_compact;
3226     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3227 
3228     vms->highmem_ecam = !vmc->no_highmem_ecam;
3229     vms->highmem_mmio = true;
3230     vms->highmem_redists = true;
3231 
3232     if (vmc->no_its) {
3233         vms->its = false;
3234     } else {
3235         /* Default allows ITS instantiation */
3236         vms->its = true;
3237 
3238         if (vmc->no_tcg_its) {
3239             vms->tcg_its = false;
3240         } else {
3241             vms->tcg_its = true;
3242         }
3243     }
3244 
3245     /* Default disallows iommu instantiation */
3246     vms->iommu = VIRT_IOMMU_NONE;
3247 
3248     /* The default root bus is attached to iommu by default */
3249     vms->default_bus_bypass_iommu = false;
3250 
3251     /* Default disallows RAS instantiation */
3252     vms->ras = false;
3253 
3254     /* MTE is disabled by default.  */
3255     vms->mte = false;
3256 
3257     /* Supply kaslr-seed and rng-seed by default */
3258     vms->dtb_randomness = true;
3259 
3260     vms->irqmap = a15irqmap;
3261 
3262     virt_flash_create(vms);
3263 
3264     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3265     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3266 }
3267 
3268 static const TypeInfo virt_machine_info = {
3269     .name          = TYPE_VIRT_MACHINE,
3270     .parent        = TYPE_MACHINE,
3271     .abstract      = true,
3272     .instance_size = sizeof(VirtMachineState),
3273     .class_size    = sizeof(VirtMachineClass),
3274     .class_init    = virt_machine_class_init,
3275     .instance_init = virt_instance_init,
3276     .interfaces = (InterfaceInfo[]) {
3277          { TYPE_HOTPLUG_HANDLER },
3278          { }
3279     },
3280 };
3281 
3282 static void machvirt_machine_init(void)
3283 {
3284     type_register_static(&virt_machine_info);
3285 }
3286 type_init(machvirt_machine_init);
3287 
3288 static void virt_machine_9_1_options(MachineClass *mc)
3289 {
3290 }
3291 DEFINE_VIRT_MACHINE_AS_LATEST(9, 1)
3292 
3293 static void virt_machine_9_0_options(MachineClass *mc)
3294 {
3295     virt_machine_9_1_options(mc);
3296     compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
3297 }
3298 DEFINE_VIRT_MACHINE(9, 0)
3299 
3300 static void virt_machine_8_2_options(MachineClass *mc)
3301 {
3302     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3303 
3304     virt_machine_9_0_options(mc);
3305     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3306     /*
3307      * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and
3308      * earlier machines. (Exposing it tickles a bug in older EDK2
3309      * guest BIOS binaries.)
3310      */
3311     vmc->no_ns_el2_virt_timer_irq = true;
3312 }
3313 DEFINE_VIRT_MACHINE(8, 2)
3314 
3315 static void virt_machine_8_1_options(MachineClass *mc)
3316 {
3317     virt_machine_8_2_options(mc);
3318     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3319 }
3320 DEFINE_VIRT_MACHINE(8, 1)
3321 
3322 static void virt_machine_8_0_options(MachineClass *mc)
3323 {
3324     virt_machine_8_1_options(mc);
3325     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3326 }
3327 DEFINE_VIRT_MACHINE(8, 0)
3328 
3329 static void virt_machine_7_2_options(MachineClass *mc)
3330 {
3331     virt_machine_8_0_options(mc);
3332     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3333 }
3334 DEFINE_VIRT_MACHINE(7, 2)
3335 
3336 static void virt_machine_7_1_options(MachineClass *mc)
3337 {
3338     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3339 
3340     virt_machine_7_2_options(mc);
3341     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3342     /* Compact layout for high memory regions was introduced with 7.2 */
3343     vmc->no_highmem_compact = true;
3344 }
3345 DEFINE_VIRT_MACHINE(7, 1)
3346 
3347 static void virt_machine_7_0_options(MachineClass *mc)
3348 {
3349     virt_machine_7_1_options(mc);
3350     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3351 }
3352 DEFINE_VIRT_MACHINE(7, 0)
3353 
3354 static void virt_machine_6_2_options(MachineClass *mc)
3355 {
3356     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3357 
3358     virt_machine_7_0_options(mc);
3359     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3360     vmc->no_tcg_lpa2 = true;
3361 }
3362 DEFINE_VIRT_MACHINE(6, 2)
3363 
3364 static void virt_machine_6_1_options(MachineClass *mc)
3365 {
3366     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3367 
3368     virt_machine_6_2_options(mc);
3369     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3370     mc->smp_props.prefer_sockets = true;
3371     vmc->no_cpu_topology = true;
3372 
3373     /* qemu ITS was introduced with 6.2 */
3374     vmc->no_tcg_its = true;
3375 }
3376 DEFINE_VIRT_MACHINE(6, 1)
3377 
3378 static void virt_machine_6_0_options(MachineClass *mc)
3379 {
3380     virt_machine_6_1_options(mc);
3381     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3382 }
3383 DEFINE_VIRT_MACHINE(6, 0)
3384 
3385 static void virt_machine_5_2_options(MachineClass *mc)
3386 {
3387     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3388 
3389     virt_machine_6_0_options(mc);
3390     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3391     vmc->no_secure_gpio = true;
3392 }
3393 DEFINE_VIRT_MACHINE(5, 2)
3394 
3395 static void virt_machine_5_1_options(MachineClass *mc)
3396 {
3397     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3398 
3399     virt_machine_5_2_options(mc);
3400     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3401     vmc->no_kvm_steal_time = true;
3402 }
3403 DEFINE_VIRT_MACHINE(5, 1)
3404 
3405 static void virt_machine_5_0_options(MachineClass *mc)
3406 {
3407     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3408 
3409     virt_machine_5_1_options(mc);
3410     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3411     mc->numa_mem_supported = true;
3412     vmc->acpi_expose_flash = true;
3413     mc->auto_enable_numa_with_memdev = false;
3414 }
3415 DEFINE_VIRT_MACHINE(5, 0)
3416 
3417 static void virt_machine_4_2_options(MachineClass *mc)
3418 {
3419     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3420 
3421     virt_machine_5_0_options(mc);
3422     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3423     vmc->kvm_no_adjvtime = true;
3424 }
3425 DEFINE_VIRT_MACHINE(4, 2)
3426 
3427 static void virt_machine_4_1_options(MachineClass *mc)
3428 {
3429     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3430 
3431     virt_machine_4_2_options(mc);
3432     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3433     vmc->no_ged = true;
3434     mc->auto_enable_numa_with_memhp = false;
3435 }
3436 DEFINE_VIRT_MACHINE(4, 1)
3437 
3438 static void virt_machine_4_0_options(MachineClass *mc)
3439 {
3440     virt_machine_4_1_options(mc);
3441     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3442 }
3443 DEFINE_VIRT_MACHINE(4, 0)
3444 
3445 static void virt_machine_3_1_options(MachineClass *mc)
3446 {
3447     virt_machine_4_0_options(mc);
3448     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3449 }
3450 DEFINE_VIRT_MACHINE(3, 1)
3451 
3452 static void virt_machine_3_0_options(MachineClass *mc)
3453 {
3454     virt_machine_3_1_options(mc);
3455     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3456 }
3457 DEFINE_VIRT_MACHINE(3, 0)
3458 
3459 static void virt_machine_2_12_options(MachineClass *mc)
3460 {
3461     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3462 
3463     virt_machine_3_0_options(mc);
3464     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3465     vmc->no_highmem_ecam = true;
3466     mc->max_cpus = 255;
3467 }
3468 DEFINE_VIRT_MACHINE(2, 12)
3469 
3470 static void virt_machine_2_11_options(MachineClass *mc)
3471 {
3472     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3473 
3474     virt_machine_2_12_options(mc);
3475     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3476     vmc->smbios_old_sys_ver = true;
3477 }
3478 DEFINE_VIRT_MACHINE(2, 11)
3479 
3480 static void virt_machine_2_10_options(MachineClass *mc)
3481 {
3482     virt_machine_2_11_options(mc);
3483     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3484     /* before 2.11 we never faulted accesses to bad addresses */
3485     mc->ignore_memory_transaction_failures = true;
3486 }
3487 DEFINE_VIRT_MACHINE(2, 10)
3488 
3489 static void virt_machine_2_9_options(MachineClass *mc)
3490 {
3491     virt_machine_2_10_options(mc);
3492     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3493 }
3494 DEFINE_VIRT_MACHINE(2, 9)
3495 
3496 static void virt_machine_2_8_options(MachineClass *mc)
3497 {
3498     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3499 
3500     virt_machine_2_9_options(mc);
3501     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3502     /* For 2.8 and earlier we falsely claimed in the DT that
3503      * our timers were edge-triggered, not level-triggered.
3504      */
3505     vmc->claim_edge_triggered_timers = true;
3506 }
3507 DEFINE_VIRT_MACHINE(2, 8)
3508 
3509 static void virt_machine_2_7_options(MachineClass *mc)
3510 {
3511     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3512 
3513     virt_machine_2_8_options(mc);
3514     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3515     /* ITS was introduced with 2.8 */
3516     vmc->no_its = true;
3517     /* Stick with 1K pages for migration compatibility */
3518     mc->minimum_page_bits = 0;
3519 }
3520 DEFINE_VIRT_MACHINE(2, 7)
3521 
3522 static void virt_machine_2_6_options(MachineClass *mc)
3523 {
3524     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3525 
3526     virt_machine_2_7_options(mc);
3527     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3528     vmc->disallow_affinity_adjustment = true;
3529     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3530     vmc->no_pmu = true;
3531 }
3532 DEFINE_VIRT_MACHINE(2, 6)
3533