xref: /openbmc/qemu/hw/arm/virt.c (revision e69d2fa0650aec5e4e1a757c184ae294c902949a)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
59 
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62                                                     void *data) \
63     { \
64         MachineClass *mc = MACHINE_CLASS(oc); \
65         virt_machine_##major##_##minor##_options(mc); \
66         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67         if (latest) { \
68             mc->alias = "virt"; \
69         } \
70     } \
71     static const TypeInfo machvirt_##major##_##minor##_info = { \
72         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73         .parent = TYPE_VIRT_MACHINE, \
74         .instance_init = virt_##major##_##minor##_instance_init, \
75         .class_init = virt_##major##_##minor##_class_init, \
76     }; \
77     static void machvirt_machine_##major##_##minor##_init(void) \
78     { \
79         type_register_static(&machvirt_##major##_##minor##_info); \
80     } \
81     type_init(machvirt_machine_##major##_##minor##_init);
82 
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
87 
88 
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
91 
92 #define PLATFORM_BUS_NUM_IRQS 64
93 
94 static ARMPlatformBusSystemParams platform_bus_params;
95 
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97  * RAM can go up to the 256GB mark, leaving 256GB of the physical
98  * address space unallocated and free for future use between 256G and 512G.
99  * If we need to provide more RAM to VMs in the future then we need to:
100  *  * allocate a second bank of RAM starting at 2TB and working up
101  *  * fix the DT and ACPI table generation code in QEMU to correctly
102  *    report two split lumps of RAM to the guest
103  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
104  * (We don't want to fill all the way up to 512GB with RAM because
105  * we might want it for non-RAM purposes later. Conversely it seems
106  * reasonable to assume that anybody configuring a VM with a quarter
107  * of a terabyte of RAM will be doing it on a host with more than a
108  * terabyte of physical address space.)
109  */
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
112 
113 /* Addresses and sizes of our components.
114  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115  * 128MB..256MB is used for miscellaneous device I/O.
116  * 256MB..1GB is reserved for possible future PCI support (ie where the
117  * PCI memory window will go if we add a PCI host controller).
118  * 1GB and up is RAM (which may happily spill over into the
119  * high memory region beyond 4GB).
120  * This represents a compromise between how much RAM can be given to
121  * a 32 bit VM and leaving space for expansion and in particular for PCI.
122  * Note that devices should generally be placed at multiples of 0x10000,
123  * to accommodate guests using 64K pages.
124  */
125 static const MemMapEntry a15memmap[] = {
126     /* Space up to 0x8000000 is reserved for a boot ROM */
127     [VIRT_FLASH] =              {          0, 0x08000000 },
128     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
129     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
131     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
132     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
133     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
135     /* This redistributor space allows up to 2*64kB*123 CPUs */
136     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
137     [VIRT_UART] =               { 0x09000000, 0x00001000 },
138     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
139     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
140     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
141     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
142     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
143     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
145     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
146     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
147     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
148     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
149     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
150     /* Second PCIe window, 512GB wide at the 512GB boundary */
151     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
152 };
153 
154 static const int a15irqmap[] = {
155     [VIRT_UART] = 1,
156     [VIRT_RTC] = 2,
157     [VIRT_PCIE] = 3, /* ... to 6 */
158     [VIRT_GPIO] = 7,
159     [VIRT_SECURE_UART] = 8,
160     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
163 };
164 
165 static const char *valid_cpus[] = {
166     "cortex-a15",
167     "cortex-a53",
168     "cortex-a57",
169     "host",
170 };
171 
172 static bool cpuname_valid(const char *cpu)
173 {
174     int i;
175 
176     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177         if (strcmp(cpu, valid_cpus[i]) == 0) {
178             return true;
179         }
180     }
181     return false;
182 }
183 
184 static void create_fdt(VirtMachineState *vms)
185 {
186     void *fdt = create_device_tree(&vms->fdt_size);
187 
188     if (!fdt) {
189         error_report("create_device_tree() failed");
190         exit(1);
191     }
192 
193     vms->fdt = fdt;
194 
195     /* Header */
196     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
199 
200     /*
201      * /chosen and /memory nodes must exist for load_dtb
202      * to fill in necessary properties later
203      */
204     qemu_fdt_add_subnode(fdt, "/chosen");
205     qemu_fdt_add_subnode(fdt, "/memory");
206     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
207 
208     /* Clock node, for the benefit of the UART. The kernel device tree
209      * binding documentation claims the PL011 node clock properties are
210      * optional but in practice if you omit them the kernel refuses to
211      * probe for the device.
212      */
213     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214     qemu_fdt_add_subnode(fdt, "/apb-pclk");
215     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219                                 "clk24mhz");
220     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
221 
222 }
223 
224 static void fdt_add_psci_node(const VirtMachineState *vms)
225 {
226     uint32_t cpu_suspend_fn;
227     uint32_t cpu_off_fn;
228     uint32_t cpu_on_fn;
229     uint32_t migrate_fn;
230     void *fdt = vms->fdt;
231     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
232 
233     if (!vms->using_psci) {
234         return;
235     }
236 
237     qemu_fdt_add_subnode(fdt, "/psci");
238     if (armcpu->psci_version == 2) {
239         const char comp[] = "arm,psci-0.2\0arm,psci";
240         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
241 
242         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
243         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
244             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
245             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
246             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
247         } else {
248             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
249             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
250             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
251         }
252     } else {
253         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
254 
255         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
256         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
257         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
258         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
259     }
260 
261     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
262      * to the instruction that should be used to invoke PSCI functions.
263      * However, the device tree binding uses 'method' instead, so that is
264      * what we should use here.
265      */
266     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
267 
268     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
269     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
270     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
271     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
272 }
273 
274 static void fdt_add_timer_nodes(const VirtMachineState *vms)
275 {
276     /* On real hardware these interrupts are level-triggered.
277      * On KVM they were edge-triggered before host kernel version 4.4,
278      * and level-triggered afterwards.
279      * On emulated QEMU they are level-triggered.
280      *
281      * Getting the DTB info about them wrong is awkward for some
282      * guest kernels:
283      *  pre-4.8 ignore the DT and leave the interrupt configured
284      *   with whatever the GIC reset value (or the bootloader) left it at
285      *  4.8 before rc6 honour the incorrect data by programming it back
286      *   into the GIC, causing problems
287      *  4.8rc6 and later ignore the DT and always write "level triggered"
288      *   into the GIC
289      *
290      * For backwards-compatibility, virt-2.8 and earlier will continue
291      * to say these are edge-triggered, but later machines will report
292      * the correct information.
293      */
294     ARMCPU *armcpu;
295     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
296     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
297 
298     if (vmc->claim_edge_triggered_timers) {
299         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
300     }
301 
302     if (vms->gic_version == 2) {
303         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
304                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
305                              (1 << vms->smp_cpus) - 1);
306     }
307 
308     qemu_fdt_add_subnode(vms->fdt, "/timer");
309 
310     armcpu = ARM_CPU(qemu_get_cpu(0));
311     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
312         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
313         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
314                          compat, sizeof(compat));
315     } else {
316         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
317                                 "arm,armv7-timer");
318     }
319     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
320     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
321                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
322                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
323                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
324                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
325 }
326 
327 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
328 {
329     int cpu;
330     int addr_cells = 1;
331     unsigned int i;
332 
333     /*
334      * From Documentation/devicetree/bindings/arm/cpus.txt
335      *  On ARM v8 64-bit systems value should be set to 2,
336      *  that corresponds to the MPIDR_EL1 register size.
337      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
338      *  in the system, #address-cells can be set to 1, since
339      *  MPIDR_EL1[63:32] bits are not used for CPUs
340      *  identification.
341      *
342      *  Here we actually don't know whether our system is 32- or 64-bit one.
343      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
344      *  at least one of them has Aff3 populated, we set #address-cells to 2.
345      */
346     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
347         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
348 
349         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
350             addr_cells = 2;
351             break;
352         }
353     }
354 
355     qemu_fdt_add_subnode(vms->fdt, "/cpus");
356     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
357     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
358 
359     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
360         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
361         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
362 
363         qemu_fdt_add_subnode(vms->fdt, nodename);
364         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
365         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
366                                     armcpu->dtb_compatible);
367 
368         if (vms->using_psci && vms->smp_cpus > 1) {
369             qemu_fdt_setprop_string(vms->fdt, nodename,
370                                         "enable-method", "psci");
371         }
372 
373         if (addr_cells == 2) {
374             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
375                                  armcpu->mp_affinity);
376         } else {
377             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
378                                   armcpu->mp_affinity);
379         }
380 
381         i = numa_get_node_for_cpu(cpu);
382         if (i < nb_numa_nodes) {
383             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
384         }
385 
386         g_free(nodename);
387     }
388 }
389 
390 static void fdt_add_its_gic_node(VirtMachineState *vms)
391 {
392     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
393     qemu_fdt_add_subnode(vms->fdt, "/intc/its");
394     qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
395                             "arm,gic-v3-its");
396     qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
397     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
398                                  2, vms->memmap[VIRT_GIC_ITS].base,
399                                  2, vms->memmap[VIRT_GIC_ITS].size);
400     qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
401 }
402 
403 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
404 {
405     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
406     qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
407     qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
408                             "arm,gic-v2m-frame");
409     qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
410     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
411                                  2, vms->memmap[VIRT_GIC_V2M].base,
412                                  2, vms->memmap[VIRT_GIC_V2M].size);
413     qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
414 }
415 
416 static void fdt_add_gic_node(VirtMachineState *vms)
417 {
418     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
419     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
420 
421     qemu_fdt_add_subnode(vms->fdt, "/intc");
422     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
423     qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
424     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
425     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
426     qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
427     if (vms->gic_version == 3) {
428         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
429                                 "arm,gic-v3");
430         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
431                                      2, vms->memmap[VIRT_GIC_DIST].base,
432                                      2, vms->memmap[VIRT_GIC_DIST].size,
433                                      2, vms->memmap[VIRT_GIC_REDIST].base,
434                                      2, vms->memmap[VIRT_GIC_REDIST].size);
435     } else {
436         /* 'cortex-a15-gic' means 'GIC v2' */
437         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
438                                 "arm,cortex-a15-gic");
439         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
440                                       2, vms->memmap[VIRT_GIC_DIST].base,
441                                       2, vms->memmap[VIRT_GIC_DIST].size,
442                                       2, vms->memmap[VIRT_GIC_CPU].base,
443                                       2, vms->memmap[VIRT_GIC_CPU].size);
444     }
445 
446     qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
447 }
448 
449 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
450 {
451     CPUState *cpu;
452     ARMCPU *armcpu;
453     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
454 
455     CPU_FOREACH(cpu) {
456         armcpu = ARM_CPU(cpu);
457         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
458             !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
459             return;
460         }
461     }
462 
463     if (vms->gic_version == 2) {
464         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
465                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
466                              (1 << vms->smp_cpus) - 1);
467     }
468 
469     armcpu = ARM_CPU(qemu_get_cpu(0));
470     qemu_fdt_add_subnode(vms->fdt, "/pmu");
471     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
472         const char compat[] = "arm,armv8-pmuv3";
473         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
474                          compat, sizeof(compat));
475         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
476                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
477     }
478 }
479 
480 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
481 {
482     const char *itsclass = its_class_name();
483     DeviceState *dev;
484 
485     if (!itsclass) {
486         /* Do nothing if not supported */
487         return;
488     }
489 
490     dev = qdev_create(NULL, itsclass);
491 
492     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
493                              &error_abort);
494     qdev_init_nofail(dev);
495     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
496 
497     fdt_add_its_gic_node(vms);
498 }
499 
500 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
501 {
502     int i;
503     int irq = vms->irqmap[VIRT_GIC_V2M];
504     DeviceState *dev;
505 
506     dev = qdev_create(NULL, "arm-gicv2m");
507     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
508     qdev_prop_set_uint32(dev, "base-spi", irq);
509     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
510     qdev_init_nofail(dev);
511 
512     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
513         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
514     }
515 
516     fdt_add_v2m_gic_node(vms);
517 }
518 
519 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
520 {
521     /* We create a standalone GIC */
522     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
523     DeviceState *gicdev;
524     SysBusDevice *gicbusdev;
525     const char *gictype;
526     int type = vms->gic_version, i;
527 
528     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
529 
530     gicdev = qdev_create(NULL, gictype);
531     qdev_prop_set_uint32(gicdev, "revision", type);
532     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
533     /* Note that the num-irq property counts both internal and external
534      * interrupts; there are always 32 of the former (mandated by GIC spec).
535      */
536     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
537     if (!kvm_irqchip_in_kernel()) {
538         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
539     }
540     qdev_init_nofail(gicdev);
541     gicbusdev = SYS_BUS_DEVICE(gicdev);
542     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
543     if (type == 3) {
544         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
545     } else {
546         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
547     }
548 
549     /* Wire the outputs from each CPU's generic timer and the GICv3
550      * maintenance interrupt signal to the appropriate GIC PPI inputs,
551      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
552      */
553     for (i = 0; i < smp_cpus; i++) {
554         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
555         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
556         int irq;
557         /* Mapping from the output timer irq lines from the CPU to the
558          * GIC PPI inputs we use for the virt board.
559          */
560         const int timer_irq[] = {
561             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
562             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
563             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
564             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
565         };
566 
567         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
568             qdev_connect_gpio_out(cpudev, irq,
569                                   qdev_get_gpio_in(gicdev,
570                                                    ppibase + timer_irq[irq]));
571         }
572 
573         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
574                                     qdev_get_gpio_in(gicdev, ppibase
575                                                      + ARCH_GICV3_MAINT_IRQ));
576 
577         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
578         sysbus_connect_irq(gicbusdev, i + smp_cpus,
579                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
580         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
581                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
582         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
583                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
584     }
585 
586     for (i = 0; i < NUM_IRQS; i++) {
587         pic[i] = qdev_get_gpio_in(gicdev, i);
588     }
589 
590     fdt_add_gic_node(vms);
591 
592     if (type == 3 && !vmc->no_its) {
593         create_its(vms, gicdev);
594     } else if (type == 2) {
595         create_v2m(vms, pic);
596     }
597 }
598 
599 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
600                         MemoryRegion *mem, CharDriverState *chr)
601 {
602     char *nodename;
603     hwaddr base = vms->memmap[uart].base;
604     hwaddr size = vms->memmap[uart].size;
605     int irq = vms->irqmap[uart];
606     const char compat[] = "arm,pl011\0arm,primecell";
607     const char clocknames[] = "uartclk\0apb_pclk";
608     DeviceState *dev = qdev_create(NULL, "pl011");
609     SysBusDevice *s = SYS_BUS_DEVICE(dev);
610 
611     qdev_prop_set_chr(dev, "chardev", chr);
612     qdev_init_nofail(dev);
613     memory_region_add_subregion(mem, base,
614                                 sysbus_mmio_get_region(s, 0));
615     sysbus_connect_irq(s, 0, pic[irq]);
616 
617     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
618     qemu_fdt_add_subnode(vms->fdt, nodename);
619     /* Note that we can't use setprop_string because of the embedded NUL */
620     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
621                          compat, sizeof(compat));
622     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
623                                      2, base, 2, size);
624     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
625                                GIC_FDT_IRQ_TYPE_SPI, irq,
626                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
627     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
628                                vms->clock_phandle, vms->clock_phandle);
629     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
630                          clocknames, sizeof(clocknames));
631 
632     if (uart == VIRT_UART) {
633         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
634     } else {
635         /* Mark as not usable by the normal world */
636         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
637         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
638     }
639 
640     g_free(nodename);
641 }
642 
643 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
644 {
645     char *nodename;
646     hwaddr base = vms->memmap[VIRT_RTC].base;
647     hwaddr size = vms->memmap[VIRT_RTC].size;
648     int irq = vms->irqmap[VIRT_RTC];
649     const char compat[] = "arm,pl031\0arm,primecell";
650 
651     sysbus_create_simple("pl031", base, pic[irq]);
652 
653     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
654     qemu_fdt_add_subnode(vms->fdt, nodename);
655     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
656     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
657                                  2, base, 2, size);
658     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
659                            GIC_FDT_IRQ_TYPE_SPI, irq,
660                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
661     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
662     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
663     g_free(nodename);
664 }
665 
666 static DeviceState *gpio_key_dev;
667 static void virt_powerdown_req(Notifier *n, void *opaque)
668 {
669     /* use gpio Pin 3 for power button event */
670     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
671 }
672 
673 static Notifier virt_system_powerdown_notifier = {
674     .notify = virt_powerdown_req
675 };
676 
677 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
678 {
679     char *nodename;
680     DeviceState *pl061_dev;
681     hwaddr base = vms->memmap[VIRT_GPIO].base;
682     hwaddr size = vms->memmap[VIRT_GPIO].size;
683     int irq = vms->irqmap[VIRT_GPIO];
684     const char compat[] = "arm,pl061\0arm,primecell";
685 
686     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
687 
688     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
689     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
690     qemu_fdt_add_subnode(vms->fdt, nodename);
691     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
692                                  2, base, 2, size);
693     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
694     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
695     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
696     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
697                            GIC_FDT_IRQ_TYPE_SPI, irq,
698                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
699     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
700     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
701     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
702 
703     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
704                                         qdev_get_gpio_in(pl061_dev, 3));
705     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
706     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
707     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
708     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
709 
710     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
711     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
712                             "label", "GPIO Key Poweroff");
713     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
714                           KEY_POWER);
715     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
716                            "gpios", phandle, 3, 0);
717 
718     /* connect powerdown request */
719     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
720 
721     g_free(nodename);
722 }
723 
724 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
725 {
726     int i;
727     hwaddr size = vms->memmap[VIRT_MMIO].size;
728 
729     /* We create the transports in forwards order. Since qbus_realize()
730      * prepends (not appends) new child buses, the incrementing loop below will
731      * create a list of virtio-mmio buses with decreasing base addresses.
732      *
733      * When a -device option is processed from the command line,
734      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
735      * order. The upshot is that -device options in increasing command line
736      * order are mapped to virtio-mmio buses with decreasing base addresses.
737      *
738      * When this code was originally written, that arrangement ensured that the
739      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
740      * the first -device on the command line. (The end-to-end order is a
741      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
742      * guest kernel's name-to-address assignment strategy.)
743      *
744      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
745      * the message, if not necessarily the code, of commit 70161ff336.
746      * Therefore the loop now establishes the inverse of the original intent.
747      *
748      * Unfortunately, we can't counteract the kernel change by reversing the
749      * loop; it would break existing command lines.
750      *
751      * In any case, the kernel makes no guarantee about the stability of
752      * enumeration order of virtio devices (as demonstrated by it changing
753      * between kernel versions). For reliable and stable identification
754      * of disks users must use UUIDs or similar mechanisms.
755      */
756     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
757         int irq = vms->irqmap[VIRT_MMIO] + i;
758         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
759 
760         sysbus_create_simple("virtio-mmio", base, pic[irq]);
761     }
762 
763     /* We add dtb nodes in reverse order so that they appear in the finished
764      * device tree lowest address first.
765      *
766      * Note that this mapping is independent of the loop above. The previous
767      * loop influences virtio device to virtio transport assignment, whereas
768      * this loop controls how virtio transports are laid out in the dtb.
769      */
770     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
771         char *nodename;
772         int irq = vms->irqmap[VIRT_MMIO] + i;
773         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
774 
775         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
776         qemu_fdt_add_subnode(vms->fdt, nodename);
777         qemu_fdt_setprop_string(vms->fdt, nodename,
778                                 "compatible", "virtio,mmio");
779         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
780                                      2, base, 2, size);
781         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
782                                GIC_FDT_IRQ_TYPE_SPI, irq,
783                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
784         g_free(nodename);
785     }
786 }
787 
788 static void create_one_flash(const char *name, hwaddr flashbase,
789                              hwaddr flashsize, const char *file,
790                              MemoryRegion *sysmem)
791 {
792     /* Create and map a single flash device. We use the same
793      * parameters as the flash devices on the Versatile Express board.
794      */
795     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
796     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
797     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
798     const uint64_t sectorlength = 256 * 1024;
799 
800     if (dinfo) {
801         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
802                             &error_abort);
803     }
804 
805     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
806     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
807     qdev_prop_set_uint8(dev, "width", 4);
808     qdev_prop_set_uint8(dev, "device-width", 2);
809     qdev_prop_set_bit(dev, "big-endian", false);
810     qdev_prop_set_uint16(dev, "id0", 0x89);
811     qdev_prop_set_uint16(dev, "id1", 0x18);
812     qdev_prop_set_uint16(dev, "id2", 0x00);
813     qdev_prop_set_uint16(dev, "id3", 0x00);
814     qdev_prop_set_string(dev, "name", name);
815     qdev_init_nofail(dev);
816 
817     memory_region_add_subregion(sysmem, flashbase,
818                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
819 
820     if (file) {
821         char *fn;
822         int image_size;
823 
824         if (drive_get(IF_PFLASH, 0, 0)) {
825             error_report("The contents of the first flash device may be "
826                          "specified with -bios or with -drive if=pflash... "
827                          "but you cannot use both options at once");
828             exit(1);
829         }
830         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
831         if (!fn) {
832             error_report("Could not find ROM image '%s'", file);
833             exit(1);
834         }
835         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
836         g_free(fn);
837         if (image_size < 0) {
838             error_report("Could not load ROM image '%s'", file);
839             exit(1);
840         }
841     }
842 }
843 
844 static void create_flash(const VirtMachineState *vms,
845                          MemoryRegion *sysmem,
846                          MemoryRegion *secure_sysmem)
847 {
848     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
849      * Any file passed via -bios goes in the first of these.
850      * sysmem is the system memory space. secure_sysmem is the secure view
851      * of the system, and the first flash device should be made visible only
852      * there. The second flash device is visible to both secure and nonsecure.
853      * If sysmem == secure_sysmem this means there is no separate Secure
854      * address space and both flash devices are generally visible.
855      */
856     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
857     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
858     char *nodename;
859 
860     create_one_flash("virt.flash0", flashbase, flashsize,
861                      bios_name, secure_sysmem);
862     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
863                      NULL, sysmem);
864 
865     if (sysmem == secure_sysmem) {
866         /* Report both flash devices as a single node in the DT */
867         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
868         qemu_fdt_add_subnode(vms->fdt, nodename);
869         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
870         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
871                                      2, flashbase, 2, flashsize,
872                                      2, flashbase + flashsize, 2, flashsize);
873         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
874         g_free(nodename);
875     } else {
876         /* Report the devices as separate nodes so we can mark one as
877          * only visible to the secure world.
878          */
879         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
880         qemu_fdt_add_subnode(vms->fdt, nodename);
881         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
882         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
883                                      2, flashbase, 2, flashsize);
884         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
885         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
886         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
887         g_free(nodename);
888 
889         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
890         qemu_fdt_add_subnode(vms->fdt, nodename);
891         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
892         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
893                                      2, flashbase + flashsize, 2, flashsize);
894         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
895         g_free(nodename);
896     }
897 }
898 
899 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
900 {
901     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
902     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
903     FWCfgState *fw_cfg;
904     char *nodename;
905 
906     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
907     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
908 
909     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
910     qemu_fdt_add_subnode(vms->fdt, nodename);
911     qemu_fdt_setprop_string(vms->fdt, nodename,
912                             "compatible", "qemu,fw-cfg-mmio");
913     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
914                                  2, base, 2, size);
915     g_free(nodename);
916     return fw_cfg;
917 }
918 
919 static void create_pcie_irq_map(const VirtMachineState *vms,
920                                 uint32_t gic_phandle,
921                                 int first_irq, const char *nodename)
922 {
923     int devfn, pin;
924     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
925     uint32_t *irq_map = full_irq_map;
926 
927     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
928         for (pin = 0; pin < 4; pin++) {
929             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
930             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
931             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
932             int i;
933 
934             uint32_t map[] = {
935                 devfn << 8, 0, 0,                           /* devfn */
936                 pin + 1,                                    /* PCI pin */
937                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
938 
939             /* Convert map to big endian */
940             for (i = 0; i < 10; i++) {
941                 irq_map[i] = cpu_to_be32(map[i]);
942             }
943             irq_map += 10;
944         }
945     }
946 
947     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
948                      full_irq_map, sizeof(full_irq_map));
949 
950     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
951                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
952                            0x7           /* PCI irq */);
953 }
954 
955 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
956 {
957     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
958     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
959     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
960     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
961     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
962     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
963     hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
964     hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
965     hwaddr base = base_mmio;
966     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
967     int irq = vms->irqmap[VIRT_PCIE];
968     MemoryRegion *mmio_alias;
969     MemoryRegion *mmio_reg;
970     MemoryRegion *ecam_alias;
971     MemoryRegion *ecam_reg;
972     DeviceState *dev;
973     char *nodename;
974     int i;
975     PCIHostState *pci;
976 
977     dev = qdev_create(NULL, TYPE_GPEX_HOST);
978     qdev_init_nofail(dev);
979 
980     /* Map only the first size_ecam bytes of ECAM space */
981     ecam_alias = g_new0(MemoryRegion, 1);
982     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
983     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
984                              ecam_reg, 0, size_ecam);
985     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
986 
987     /* Map the MMIO window into system address space so as to expose
988      * the section of PCI MMIO space which starts at the same base address
989      * (ie 1:1 mapping for that part of PCI MMIO space visible through
990      * the window).
991      */
992     mmio_alias = g_new0(MemoryRegion, 1);
993     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
994     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
995                              mmio_reg, base_mmio, size_mmio);
996     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
997 
998     if (vms->highmem) {
999         /* Map high MMIO space */
1000         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1001 
1002         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1003                                  mmio_reg, base_mmio_high, size_mmio_high);
1004         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1005                                     high_mmio_alias);
1006     }
1007 
1008     /* Map IO port space */
1009     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1010 
1011     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1012         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1013     }
1014 
1015     pci = PCI_HOST_BRIDGE(dev);
1016     if (pci->bus) {
1017         for (i = 0; i < nb_nics; i++) {
1018             NICInfo *nd = &nd_table[i];
1019 
1020             if (!nd->model) {
1021                 nd->model = g_strdup("virtio");
1022             }
1023 
1024             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1025         }
1026     }
1027 
1028     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1029     qemu_fdt_add_subnode(vms->fdt, nodename);
1030     qemu_fdt_setprop_string(vms->fdt, nodename,
1031                             "compatible", "pci-host-ecam-generic");
1032     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1033     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1034     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1035     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1036                            nr_pcie_buses - 1);
1037     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1038 
1039     if (vms->msi_phandle) {
1040         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1041                                vms->msi_phandle);
1042     }
1043 
1044     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1045                                  2, base_ecam, 2, size_ecam);
1046 
1047     if (vms->highmem) {
1048         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1049                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1050                                      2, base_pio, 2, size_pio,
1051                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1052                                      2, base_mmio, 2, size_mmio,
1053                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1054                                      2, base_mmio_high,
1055                                      2, base_mmio_high, 2, size_mmio_high);
1056     } else {
1057         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1058                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1059                                      2, base_pio, 2, size_pio,
1060                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1061                                      2, base_mmio, 2, size_mmio);
1062     }
1063 
1064     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1065     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1066 
1067     g_free(nodename);
1068 }
1069 
1070 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1071 {
1072     DeviceState *dev;
1073     SysBusDevice *s;
1074     int i;
1075     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1076     MemoryRegion *sysmem = get_system_memory();
1077 
1078     platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1079     platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1080     platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1081     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1082 
1083     fdt_params->system_params = &platform_bus_params;
1084     fdt_params->binfo = &vms->bootinfo;
1085     fdt_params->intc = "/intc";
1086     /*
1087      * register a machine init done notifier that creates the device tree
1088      * nodes of the platform bus and its children dynamic sysbus devices
1089      */
1090     arm_register_platform_bus_fdt_creator(fdt_params);
1091 
1092     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1093     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1094     qdev_prop_set_uint32(dev, "num_irqs",
1095         platform_bus_params.platform_bus_num_irqs);
1096     qdev_prop_set_uint32(dev, "mmio_size",
1097         platform_bus_params.platform_bus_size);
1098     qdev_init_nofail(dev);
1099     s = SYS_BUS_DEVICE(dev);
1100 
1101     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1102         int irqn = platform_bus_params.platform_bus_first_irq + i;
1103         sysbus_connect_irq(s, i, pic[irqn]);
1104     }
1105 
1106     memory_region_add_subregion(sysmem,
1107                                 platform_bus_params.platform_bus_base,
1108                                 sysbus_mmio_get_region(s, 0));
1109 }
1110 
1111 static void create_secure_ram(VirtMachineState *vms,
1112                               MemoryRegion *secure_sysmem)
1113 {
1114     MemoryRegion *secram = g_new(MemoryRegion, 1);
1115     char *nodename;
1116     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1117     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1118 
1119     memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1120     vmstate_register_ram_global(secram);
1121     memory_region_add_subregion(secure_sysmem, base, secram);
1122 
1123     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1124     qemu_fdt_add_subnode(vms->fdt, nodename);
1125     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1126     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1127     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1128     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1129 
1130     g_free(nodename);
1131 }
1132 
1133 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1134 {
1135     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1136                                                  bootinfo);
1137 
1138     *fdt_size = board->fdt_size;
1139     return board->fdt;
1140 }
1141 
1142 static void virt_build_smbios(VirtMachineState *vms)
1143 {
1144     uint8_t *smbios_tables, *smbios_anchor;
1145     size_t smbios_tables_len, smbios_anchor_len;
1146     const char *product = "QEMU Virtual Machine";
1147 
1148     if (!vms->fw_cfg) {
1149         return;
1150     }
1151 
1152     if (kvm_enabled()) {
1153         product = "KVM Virtual Machine";
1154     }
1155 
1156     smbios_set_defaults("QEMU", product,
1157                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1158 
1159     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1160                       &smbios_anchor, &smbios_anchor_len);
1161 
1162     if (smbios_anchor) {
1163         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1164                         smbios_tables, smbios_tables_len);
1165         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1166                         smbios_anchor, smbios_anchor_len);
1167     }
1168 }
1169 
1170 static
1171 void virt_machine_done(Notifier *notifier, void *data)
1172 {
1173     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1174                                          machine_done);
1175 
1176     virt_acpi_setup(vms);
1177     virt_build_smbios(vms);
1178 }
1179 
1180 static void machvirt_init(MachineState *machine)
1181 {
1182     VirtMachineState *vms = VIRT_MACHINE(machine);
1183     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1184     qemu_irq pic[NUM_IRQS];
1185     MemoryRegion *sysmem = get_system_memory();
1186     MemoryRegion *secure_sysmem = NULL;
1187     int n, virt_max_cpus;
1188     MemoryRegion *ram = g_new(MemoryRegion, 1);
1189     const char *cpu_model = machine->cpu_model;
1190     char **cpustr;
1191     ObjectClass *oc;
1192     const char *typename;
1193     CPUClass *cc;
1194     Error *err = NULL;
1195     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1196     uint8_t clustersz;
1197 
1198     if (!cpu_model) {
1199         cpu_model = "cortex-a15";
1200     }
1201 
1202     /* We can probe only here because during property set
1203      * KVM is not available yet
1204      */
1205     if (!vms->gic_version) {
1206         if (!kvm_enabled()) {
1207             error_report("gic-version=host requires KVM");
1208             exit(1);
1209         }
1210 
1211         vms->gic_version = kvm_arm_vgic_probe();
1212         if (!vms->gic_version) {
1213             error_report("Unable to determine GIC version supported by host");
1214             exit(1);
1215         }
1216     }
1217 
1218     /* Separate the actual CPU model name from any appended features */
1219     cpustr = g_strsplit(cpu_model, ",", 2);
1220 
1221     if (!cpuname_valid(cpustr[0])) {
1222         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1223         exit(1);
1224     }
1225 
1226     /* If we have an EL3 boot ROM then the assumption is that it will
1227      * implement PSCI itself, so disable QEMU's internal implementation
1228      * so it doesn't get in the way. Instead of starting secondary
1229      * CPUs in PSCI powerdown state we will start them all running and
1230      * let the boot ROM sort them out.
1231      * The usual case is that we do use QEMU's PSCI implementation.
1232      */
1233     vms->using_psci = !(vms->secure && firmware_loaded);
1234 
1235     /* The maximum number of CPUs depends on the GIC version, or on how
1236      * many redistributors we can fit into the memory map.
1237      */
1238     if (vms->gic_version == 3) {
1239         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1240         clustersz = GICV3_TARGETLIST_BITS;
1241     } else {
1242         virt_max_cpus = GIC_NCPU;
1243         clustersz = GIC_TARGETLIST_BITS;
1244     }
1245 
1246     if (max_cpus > virt_max_cpus) {
1247         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1248                      "supported by machine 'mach-virt' (%d)",
1249                      max_cpus, virt_max_cpus);
1250         exit(1);
1251     }
1252 
1253     vms->smp_cpus = smp_cpus;
1254 
1255     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1256         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1257         exit(1);
1258     }
1259 
1260     if (vms->secure) {
1261         if (kvm_enabled()) {
1262             error_report("mach-virt: KVM does not support Security extensions");
1263             exit(1);
1264         }
1265 
1266         /* The Secure view of the world is the same as the NonSecure,
1267          * but with a few extra devices. Create it as a container region
1268          * containing the system memory at low priority; any secure-only
1269          * devices go in at higher priority and take precedence.
1270          */
1271         secure_sysmem = g_new(MemoryRegion, 1);
1272         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1273                            UINT64_MAX);
1274         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1275     }
1276 
1277     create_fdt(vms);
1278 
1279     oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1280     if (!oc) {
1281         error_report("Unable to find CPU definition");
1282         exit(1);
1283     }
1284     typename = object_class_get_name(oc);
1285 
1286     /* convert -smp CPU options specified by the user into global props */
1287     cc = CPU_CLASS(oc);
1288     cc->parse_features(typename, cpustr[1], &err);
1289     g_strfreev(cpustr);
1290     if (err) {
1291         error_report_err(err);
1292         exit(1);
1293     }
1294 
1295     for (n = 0; n < smp_cpus; n++) {
1296         Object *cpuobj = object_new(typename);
1297         if (!vmc->disallow_affinity_adjustment) {
1298             /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1299              * GIC's target-list limitations. 32-bit KVM hosts currently
1300              * always create clusters of 4 CPUs, but that is expected to
1301              * change when they gain support for gicv3. When KVM is enabled
1302              * it will override the changes we make here, therefore our
1303              * purposes are to make TCG consistent (with 64-bit KVM hosts)
1304              * and to improve SGI efficiency.
1305              */
1306             uint8_t aff1 = n / clustersz;
1307             uint8_t aff0 = n % clustersz;
1308             object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1309                                     "mp-affinity", NULL);
1310         }
1311 
1312         if (!vms->secure) {
1313             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1314         }
1315 
1316         if (vms->using_psci) {
1317             object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1318                                     "psci-conduit", NULL);
1319 
1320             /* Secondary CPUs start in PSCI powered-down state */
1321             if (n > 0) {
1322                 object_property_set_bool(cpuobj, true,
1323                                          "start-powered-off", NULL);
1324             }
1325         }
1326 
1327         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1328             object_property_set_bool(cpuobj, false, "pmu", NULL);
1329         }
1330 
1331         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1332             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1333                                     "reset-cbar", &error_abort);
1334         }
1335 
1336         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1337                                  &error_abort);
1338         if (vms->secure) {
1339             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1340                                      "secure-memory", &error_abort);
1341         }
1342 
1343         object_property_set_bool(cpuobj, true, "realized", NULL);
1344     }
1345     fdt_add_timer_nodes(vms);
1346     fdt_add_cpu_nodes(vms);
1347     fdt_add_psci_node(vms);
1348 
1349     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1350                                          machine->ram_size);
1351     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1352 
1353     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1354 
1355     create_gic(vms, pic);
1356 
1357     fdt_add_pmu_nodes(vms);
1358 
1359     create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1360 
1361     if (vms->secure) {
1362         create_secure_ram(vms, secure_sysmem);
1363         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1364     }
1365 
1366     create_rtc(vms, pic);
1367 
1368     create_pcie(vms, pic);
1369 
1370     create_gpio(vms, pic);
1371 
1372     /* Create mmio transports, so the user can create virtio backends
1373      * (which will be automatically plugged in to the transports). If
1374      * no backend is created the transport will just sit harmlessly idle.
1375      */
1376     create_virtio_devices(vms, pic);
1377 
1378     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1379     rom_set_fw(vms->fw_cfg);
1380 
1381     vms->machine_done.notify = virt_machine_done;
1382     qemu_add_machine_init_done_notifier(&vms->machine_done);
1383 
1384     vms->bootinfo.ram_size = machine->ram_size;
1385     vms->bootinfo.kernel_filename = machine->kernel_filename;
1386     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1387     vms->bootinfo.initrd_filename = machine->initrd_filename;
1388     vms->bootinfo.nb_cpus = smp_cpus;
1389     vms->bootinfo.board_id = -1;
1390     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1391     vms->bootinfo.get_dtb = machvirt_dtb;
1392     vms->bootinfo.firmware_loaded = firmware_loaded;
1393     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1394 
1395     /*
1396      * arm_load_kernel machine init done notifier registration must
1397      * happen before the platform_bus_create call. In this latter,
1398      * another notifier is registered which adds platform bus nodes.
1399      * Notifiers are executed in registration reverse order.
1400      */
1401     create_platform_bus(vms, pic);
1402 }
1403 
1404 static bool virt_get_secure(Object *obj, Error **errp)
1405 {
1406     VirtMachineState *vms = VIRT_MACHINE(obj);
1407 
1408     return vms->secure;
1409 }
1410 
1411 static void virt_set_secure(Object *obj, bool value, Error **errp)
1412 {
1413     VirtMachineState *vms = VIRT_MACHINE(obj);
1414 
1415     vms->secure = value;
1416 }
1417 
1418 static bool virt_get_highmem(Object *obj, Error **errp)
1419 {
1420     VirtMachineState *vms = VIRT_MACHINE(obj);
1421 
1422     return vms->highmem;
1423 }
1424 
1425 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1426 {
1427     VirtMachineState *vms = VIRT_MACHINE(obj);
1428 
1429     vms->highmem = value;
1430 }
1431 
1432 static char *virt_get_gic_version(Object *obj, Error **errp)
1433 {
1434     VirtMachineState *vms = VIRT_MACHINE(obj);
1435     const char *val = vms->gic_version == 3 ? "3" : "2";
1436 
1437     return g_strdup(val);
1438 }
1439 
1440 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1441 {
1442     VirtMachineState *vms = VIRT_MACHINE(obj);
1443 
1444     if (!strcmp(value, "3")) {
1445         vms->gic_version = 3;
1446     } else if (!strcmp(value, "2")) {
1447         vms->gic_version = 2;
1448     } else if (!strcmp(value, "host")) {
1449         vms->gic_version = 0; /* Will probe later */
1450     } else {
1451         error_setg(errp, "Invalid gic-version value");
1452         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1453     }
1454 }
1455 
1456 static void virt_machine_class_init(ObjectClass *oc, void *data)
1457 {
1458     MachineClass *mc = MACHINE_CLASS(oc);
1459 
1460     mc->init = machvirt_init;
1461     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1462      * it later in machvirt_init, where we have more information about the
1463      * configuration of the particular instance.
1464      */
1465     mc->max_cpus = 255;
1466     mc->has_dynamic_sysbus = true;
1467     mc->block_default_type = IF_VIRTIO;
1468     mc->no_cdrom = 1;
1469     mc->pci_allow_0_address = true;
1470     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1471     mc->minimum_page_bits = 12;
1472 }
1473 
1474 static const TypeInfo virt_machine_info = {
1475     .name          = TYPE_VIRT_MACHINE,
1476     .parent        = TYPE_MACHINE,
1477     .abstract      = true,
1478     .instance_size = sizeof(VirtMachineState),
1479     .class_size    = sizeof(VirtMachineClass),
1480     .class_init    = virt_machine_class_init,
1481 };
1482 
1483 static void machvirt_machine_init(void)
1484 {
1485     type_register_static(&virt_machine_info);
1486 }
1487 type_init(machvirt_machine_init);
1488 
1489 static void virt_2_9_instance_init(Object *obj)
1490 {
1491     VirtMachineState *vms = VIRT_MACHINE(obj);
1492 
1493     /* EL3 is disabled by default on virt: this makes us consistent
1494      * between KVM and TCG for this board, and it also allows us to
1495      * boot UEFI blobs which assume no TrustZone support.
1496      */
1497     vms->secure = false;
1498     object_property_add_bool(obj, "secure", virt_get_secure,
1499                              virt_set_secure, NULL);
1500     object_property_set_description(obj, "secure",
1501                                     "Set on/off to enable/disable the ARM "
1502                                     "Security Extensions (TrustZone)",
1503                                     NULL);
1504 
1505     /* High memory is enabled by default */
1506     vms->highmem = true;
1507     object_property_add_bool(obj, "highmem", virt_get_highmem,
1508                              virt_set_highmem, NULL);
1509     object_property_set_description(obj, "highmem",
1510                                     "Set on/off to enable/disable using "
1511                                     "physical address space above 32 bits",
1512                                     NULL);
1513     /* Default GIC type is v2 */
1514     vms->gic_version = 2;
1515     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1516                         virt_set_gic_version, NULL);
1517     object_property_set_description(obj, "gic-version",
1518                                     "Set GIC version. "
1519                                     "Valid values are 2, 3 and host", NULL);
1520 
1521     vms->memmap = a15memmap;
1522     vms->irqmap = a15irqmap;
1523 }
1524 
1525 static void virt_machine_2_9_options(MachineClass *mc)
1526 {
1527 }
1528 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1529 
1530 #define VIRT_COMPAT_2_8 \
1531     HW_COMPAT_2_8
1532 
1533 static void virt_2_8_instance_init(Object *obj)
1534 {
1535     virt_2_9_instance_init(obj);
1536 }
1537 
1538 static void virt_machine_2_8_options(MachineClass *mc)
1539 {
1540     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1541 
1542     virt_machine_2_9_options(mc);
1543     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1544     /* For 2.8 and earlier we falsely claimed in the DT that
1545      * our timers were edge-triggered, not level-triggered.
1546      */
1547     vmc->claim_edge_triggered_timers = true;
1548 }
1549 DEFINE_VIRT_MACHINE(2, 8)
1550 
1551 #define VIRT_COMPAT_2_7 \
1552     HW_COMPAT_2_7
1553 
1554 static void virt_2_7_instance_init(Object *obj)
1555 {
1556     virt_2_8_instance_init(obj);
1557 }
1558 
1559 static void virt_machine_2_7_options(MachineClass *mc)
1560 {
1561     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1562 
1563     virt_machine_2_8_options(mc);
1564     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1565     /* ITS was introduced with 2.8 */
1566     vmc->no_its = true;
1567     /* Stick with 1K pages for migration compatibility */
1568     mc->minimum_page_bits = 0;
1569 }
1570 DEFINE_VIRT_MACHINE(2, 7)
1571 
1572 #define VIRT_COMPAT_2_6 \
1573     HW_COMPAT_2_6
1574 
1575 static void virt_2_6_instance_init(Object *obj)
1576 {
1577     virt_2_7_instance_init(obj);
1578 }
1579 
1580 static void virt_machine_2_6_options(MachineClass *mc)
1581 {
1582     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1583 
1584     virt_machine_2_7_options(mc);
1585     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1586     vmc->disallow_affinity_adjustment = true;
1587     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1588     vmc->no_pmu = true;
1589 }
1590 DEFINE_VIRT_MACHINE(2, 6)
1591