1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/datadir.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/runstate.h" 48 #include "sysemu/tpm.h" 49 #include "sysemu/tcg.h" 50 #include "sysemu/kvm.h" 51 #include "sysemu/hvf.h" 52 #include "sysemu/qtest.h" 53 #include "hw/loader.h" 54 #include "qapi/error.h" 55 #include "qemu/bitops.h" 56 #include "qemu/error-report.h" 57 #include "qemu/module.h" 58 #include "hw/pci-host/gpex.h" 59 #include "hw/virtio/virtio-pci.h" 60 #include "hw/core/sysbus-fdt.h" 61 #include "hw/platform-bus.h" 62 #include "hw/qdev-properties.h" 63 #include "hw/arm/fdt.h" 64 #include "hw/intc/arm_gic.h" 65 #include "hw/intc/arm_gicv3_common.h" 66 #include "hw/intc/arm_gicv3_its_common.h" 67 #include "hw/irq.h" 68 #include "kvm_arm.h" 69 #include "hw/firmware/smbios.h" 70 #include "qapi/visitor.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/qmp/qlist.h" 73 #include "standard-headers/linux/input.h" 74 #include "hw/arm/smmuv3.h" 75 #include "hw/acpi/acpi.h" 76 #include "target/arm/cpu-qom.h" 77 #include "target/arm/internals.h" 78 #include "target/arm/multiprocessing.h" 79 #include "target/arm/gtimer.h" 80 #include "hw/mem/pc-dimm.h" 81 #include "hw/mem/nvdimm.h" 82 #include "hw/acpi/generic_event_device.h" 83 #include "hw/virtio/virtio-md-pci.h" 84 #include "hw/virtio/virtio-iommu.h" 85 #include "hw/char/pl011.h" 86 #include "qemu/guest-random.h" 87 88 static GlobalProperty arm_virt_compat[] = { 89 { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" }, 90 }; 91 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat); 92 93 /* 94 * This cannot be called from the virt_machine_class_init() because 95 * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new() 96 * only is called on virt non abstract class init. 97 */ 98 static void arm_virt_compat_set(MachineClass *mc) 99 { 100 compat_props_add(mc->compat_props, arm_virt_compat, 101 arm_virt_compat_len); 102 } 103 104 #define DEFINE_VIRT_MACHINE_IMPL(latest, ...) \ 105 static void MACHINE_VER_SYM(class_init, virt, __VA_ARGS__)( \ 106 ObjectClass *oc, \ 107 void *data) \ 108 { \ 109 MachineClass *mc = MACHINE_CLASS(oc); \ 110 arm_virt_compat_set(mc); \ 111 MACHINE_VER_SYM(options, virt, __VA_ARGS__)(mc); \ 112 mc->desc = "QEMU " MACHINE_VER_STR(__VA_ARGS__) " ARM Virtual Machine"; \ 113 MACHINE_VER_DEPRECATION(__VA_ARGS__); \ 114 if (latest) { \ 115 mc->alias = "virt"; \ 116 } \ 117 } \ 118 static const TypeInfo MACHINE_VER_SYM(info, virt, __VA_ARGS__) = \ 119 { \ 120 .name = MACHINE_VER_TYPE_NAME("virt", __VA_ARGS__), \ 121 .parent = TYPE_VIRT_MACHINE, \ 122 .class_init = MACHINE_VER_SYM(class_init, virt, __VA_ARGS__), \ 123 }; \ 124 static void MACHINE_VER_SYM(register, virt, __VA_ARGS__)(void) \ 125 { \ 126 MACHINE_VER_DELETION(__VA_ARGS__); \ 127 type_register_static(&MACHINE_VER_SYM(info, virt, __VA_ARGS__)); \ 128 } \ 129 type_init(MACHINE_VER_SYM(register, virt, __VA_ARGS__)); 130 131 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 132 DEFINE_VIRT_MACHINE_IMPL(true, major, minor) 133 #define DEFINE_VIRT_MACHINE(major, minor) \ 134 DEFINE_VIRT_MACHINE_IMPL(false, major, minor) 135 136 137 /* Number of external interrupt lines to configure the GIC with */ 138 #define NUM_IRQS 256 139 140 #define PLATFORM_BUS_NUM_IRQS 64 141 142 /* Legacy RAM limit in GB (< version 4.0) */ 143 #define LEGACY_RAMLIMIT_GB 255 144 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 145 146 /* Addresses and sizes of our components. 147 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 148 * 128MB..256MB is used for miscellaneous device I/O. 149 * 256MB..1GB is reserved for possible future PCI support (ie where the 150 * PCI memory window will go if we add a PCI host controller). 151 * 1GB and up is RAM (which may happily spill over into the 152 * high memory region beyond 4GB). 153 * This represents a compromise between how much RAM can be given to 154 * a 32 bit VM and leaving space for expansion and in particular for PCI. 155 * Note that devices should generally be placed at multiples of 0x10000, 156 * to accommodate guests using 64K pages. 157 */ 158 static const MemMapEntry base_memmap[] = { 159 /* Space up to 0x8000000 is reserved for a boot ROM */ 160 [VIRT_FLASH] = { 0, 0x08000000 }, 161 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 162 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 163 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 164 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 165 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 166 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 167 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 168 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 169 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 170 /* This redistributor space allows up to 2*64kB*123 CPUs */ 171 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 172 [VIRT_UART0] = { 0x09000000, 0x00001000 }, 173 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 174 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 175 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 176 [VIRT_UART1] = { 0x09040000, 0x00001000 }, 177 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 178 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 179 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 180 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 181 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 182 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 183 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 184 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 185 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 186 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 187 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 188 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 189 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 190 /* Actual RAM size depends on initial RAM and device memory settings */ 191 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 192 }; 193 194 /* 195 * Highmem IO Regions: This memory map is floating, located after the RAM. 196 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 197 * top of the RAM, so that its base get the same alignment as the size, 198 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 199 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 200 * Note the extended_memmap is sized so that it eventually also includes the 201 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 202 * index of base_memmap). 203 * 204 * The memory map for these Highmem IO Regions can be in legacy or compact 205 * layout, depending on 'compact-highmem' property. With legacy layout, the 206 * PA space for one specific region is always reserved, even if the region 207 * has been disabled or doesn't fit into the PA space. However, the PA space 208 * for the region won't be reserved in these circumstances with compact layout. 209 */ 210 static MemMapEntry extended_memmap[] = { 211 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 212 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 213 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 214 /* Second PCIe window */ 215 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 216 }; 217 218 static const int a15irqmap[] = { 219 [VIRT_UART0] = 1, 220 [VIRT_RTC] = 2, 221 [VIRT_PCIE] = 3, /* ... to 6 */ 222 [VIRT_GPIO] = 7, 223 [VIRT_UART1] = 8, 224 [VIRT_ACPI_GED] = 9, 225 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 226 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 227 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 228 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 229 }; 230 231 static void create_randomness(MachineState *ms, const char *node) 232 { 233 struct { 234 uint64_t kaslr; 235 uint8_t rng[32]; 236 } seed; 237 238 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 239 return; 240 } 241 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); 242 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); 243 } 244 245 /* 246 * The CPU object always exposes the NS EL2 virt timer IRQ line, 247 * but we don't want to advertise it to the guest in the dtb or ACPI 248 * table unless it's really going to do something. 249 */ 250 static bool ns_el2_virt_timer_present(void) 251 { 252 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 253 CPUARMState *env = &cpu->env; 254 255 return arm_feature(env, ARM_FEATURE_AARCH64) && 256 arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu); 257 } 258 259 static void create_fdt(VirtMachineState *vms) 260 { 261 MachineState *ms = MACHINE(vms); 262 int nb_numa_nodes = ms->numa_state->num_nodes; 263 void *fdt = create_device_tree(&vms->fdt_size); 264 265 if (!fdt) { 266 error_report("create_device_tree() failed"); 267 exit(1); 268 } 269 270 ms->fdt = fdt; 271 272 /* Header */ 273 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 274 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 275 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 276 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); 277 278 /* 279 * For QEMU, all DMA is coherent. Advertising this in the root node 280 * has two benefits: 281 * 282 * - It avoids potential bugs where we forget to mark a DMA 283 * capable device as being dma-coherent 284 * - It avoids spurious warnings from the Linux kernel about 285 * devices which can't do DMA at all 286 */ 287 qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0); 288 289 /* /chosen must exist for load_dtb to fill in necessary properties later */ 290 qemu_fdt_add_subnode(fdt, "/chosen"); 291 if (vms->dtb_randomness) { 292 create_randomness(ms, "/chosen"); 293 } 294 295 if (vms->secure) { 296 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 297 if (vms->dtb_randomness) { 298 create_randomness(ms, "/secure-chosen"); 299 } 300 } 301 302 qemu_fdt_add_subnode(fdt, "/aliases"); 303 304 /* Clock node, for the benefit of the UART. The kernel device tree 305 * binding documentation claims the PL011 node clock properties are 306 * optional but in practice if you omit them the kernel refuses to 307 * probe for the device. 308 */ 309 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 310 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 311 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 312 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 313 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 314 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 315 "clk24mhz"); 316 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 317 318 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 319 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 320 uint32_t *matrix = g_malloc0(size); 321 int idx, i, j; 322 323 for (i = 0; i < nb_numa_nodes; i++) { 324 for (j = 0; j < nb_numa_nodes; j++) { 325 idx = (i * nb_numa_nodes + j) * 3; 326 matrix[idx + 0] = cpu_to_be32(i); 327 matrix[idx + 1] = cpu_to_be32(j); 328 matrix[idx + 2] = 329 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 330 } 331 } 332 333 qemu_fdt_add_subnode(fdt, "/distance-map"); 334 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 335 "numa-distance-map-v1"); 336 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 337 matrix, size); 338 g_free(matrix); 339 } 340 } 341 342 static void fdt_add_timer_nodes(const VirtMachineState *vms) 343 { 344 /* On real hardware these interrupts are level-triggered. 345 * On KVM they were edge-triggered before host kernel version 4.4, 346 * and level-triggered afterwards. 347 * On emulated QEMU they are level-triggered. 348 * 349 * Getting the DTB info about them wrong is awkward for some 350 * guest kernels: 351 * pre-4.8 ignore the DT and leave the interrupt configured 352 * with whatever the GIC reset value (or the bootloader) left it at 353 * 4.8 before rc6 honour the incorrect data by programming it back 354 * into the GIC, causing problems 355 * 4.8rc6 and later ignore the DT and always write "level triggered" 356 * into the GIC 357 * 358 * For backwards-compatibility, virt-2.8 and earlier will continue 359 * to say these are edge-triggered, but later machines will report 360 * the correct information. 361 */ 362 ARMCPU *armcpu; 363 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 364 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 365 MachineState *ms = MACHINE(vms); 366 367 if (vmc->claim_edge_triggered_timers) { 368 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 369 } 370 371 if (vms->gic_version == VIRT_GIC_VERSION_2) { 372 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 373 GIC_FDT_IRQ_PPI_CPU_WIDTH, 374 (1 << MACHINE(vms)->smp.cpus) - 1); 375 } 376 377 qemu_fdt_add_subnode(ms->fdt, "/timer"); 378 379 armcpu = ARM_CPU(qemu_get_cpu(0)); 380 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 381 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 382 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 383 compat, sizeof(compat)); 384 } else { 385 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 386 "arm,armv7-timer"); 387 } 388 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 389 if (vms->ns_el2_virt_timer_irq) { 390 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 391 GIC_FDT_IRQ_TYPE_PPI, 392 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 393 GIC_FDT_IRQ_TYPE_PPI, 394 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 395 GIC_FDT_IRQ_TYPE_PPI, 396 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 397 GIC_FDT_IRQ_TYPE_PPI, 398 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags, 399 GIC_FDT_IRQ_TYPE_PPI, 400 INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags); 401 } else { 402 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 403 GIC_FDT_IRQ_TYPE_PPI, 404 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 405 GIC_FDT_IRQ_TYPE_PPI, 406 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 407 GIC_FDT_IRQ_TYPE_PPI, 408 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 409 GIC_FDT_IRQ_TYPE_PPI, 410 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); 411 } 412 } 413 414 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 415 { 416 int cpu; 417 int addr_cells = 1; 418 const MachineState *ms = MACHINE(vms); 419 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 420 int smp_cpus = ms->smp.cpus; 421 422 /* 423 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 424 * On ARM v8 64-bit systems value should be set to 2, 425 * that corresponds to the MPIDR_EL1 register size. 426 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 427 * in the system, #address-cells can be set to 1, since 428 * MPIDR_EL1[63:32] bits are not used for CPUs 429 * identification. 430 * 431 * Here we actually don't know whether our system is 32- or 64-bit one. 432 * The simplest way to go is to examine affinity IDs of all our CPUs. If 433 * at least one of them has Aff3 populated, we set #address-cells to 2. 434 */ 435 for (cpu = 0; cpu < smp_cpus; cpu++) { 436 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 437 438 if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) { 439 addr_cells = 2; 440 break; 441 } 442 } 443 444 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 445 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 446 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 447 448 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 449 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 450 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 451 CPUState *cs = CPU(armcpu); 452 453 qemu_fdt_add_subnode(ms->fdt, nodename); 454 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 455 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 456 armcpu->dtb_compatible); 457 458 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 459 qemu_fdt_setprop_string(ms->fdt, nodename, 460 "enable-method", "psci"); 461 } 462 463 if (addr_cells == 2) { 464 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 465 arm_cpu_mp_affinity(armcpu)); 466 } else { 467 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 468 arm_cpu_mp_affinity(armcpu)); 469 } 470 471 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 472 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 473 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 474 } 475 476 if (!vmc->no_cpu_topology) { 477 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 478 qemu_fdt_alloc_phandle(ms->fdt)); 479 } 480 481 g_free(nodename); 482 } 483 484 if (!vmc->no_cpu_topology) { 485 /* 486 * Add vCPU topology description through fdt node cpu-map. 487 * 488 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 489 * In a SMP system, the hierarchy of CPUs can be defined through 490 * four entities that are used to describe the layout of CPUs in 491 * the system: socket/cluster/core/thread. 492 * 493 * A socket node represents the boundary of system physical package 494 * and its child nodes must be one or more cluster nodes. A system 495 * can contain several layers of clustering within a single physical 496 * package and cluster nodes can be contained in parent cluster nodes. 497 * 498 * Note: currently we only support one layer of clustering within 499 * each physical package. 500 */ 501 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 502 503 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 504 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 505 char *map_path; 506 507 if (ms->smp.threads > 1) { 508 map_path = g_strdup_printf( 509 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", 510 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), 511 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, 512 (cpu / ms->smp.threads) % ms->smp.cores, 513 cpu % ms->smp.threads); 514 } else { 515 map_path = g_strdup_printf( 516 "/cpus/cpu-map/socket%d/cluster%d/core%d", 517 cpu / (ms->smp.clusters * ms->smp.cores), 518 (cpu / ms->smp.cores) % ms->smp.clusters, 519 cpu % ms->smp.cores); 520 } 521 qemu_fdt_add_path(ms->fdt, map_path); 522 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 523 524 g_free(map_path); 525 g_free(cpu_path); 526 } 527 } 528 } 529 530 static void fdt_add_its_gic_node(VirtMachineState *vms) 531 { 532 char *nodename; 533 MachineState *ms = MACHINE(vms); 534 535 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 536 nodename = g_strdup_printf("/intc/its@%" PRIx64, 537 vms->memmap[VIRT_GIC_ITS].base); 538 qemu_fdt_add_subnode(ms->fdt, nodename); 539 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 540 "arm,gic-v3-its"); 541 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 542 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); 543 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 544 2, vms->memmap[VIRT_GIC_ITS].base, 545 2, vms->memmap[VIRT_GIC_ITS].size); 546 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 547 g_free(nodename); 548 } 549 550 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 551 { 552 MachineState *ms = MACHINE(vms); 553 char *nodename; 554 555 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 556 vms->memmap[VIRT_GIC_V2M].base); 557 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 558 qemu_fdt_add_subnode(ms->fdt, nodename); 559 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 560 "arm,gic-v2m-frame"); 561 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 562 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 563 2, vms->memmap[VIRT_GIC_V2M].base, 564 2, vms->memmap[VIRT_GIC_V2M].size); 565 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 566 g_free(nodename); 567 } 568 569 static void fdt_add_gic_node(VirtMachineState *vms) 570 { 571 MachineState *ms = MACHINE(vms); 572 char *nodename; 573 574 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 575 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 576 577 nodename = g_strdup_printf("/intc@%" PRIx64, 578 vms->memmap[VIRT_GIC_DIST].base); 579 qemu_fdt_add_subnode(ms->fdt, nodename); 580 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 581 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 582 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 583 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 584 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 585 if (vms->gic_version != VIRT_GIC_VERSION_2) { 586 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 587 588 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 589 "arm,gic-v3"); 590 591 qemu_fdt_setprop_cell(ms->fdt, nodename, 592 "#redistributor-regions", nb_redist_regions); 593 594 if (nb_redist_regions == 1) { 595 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 596 2, vms->memmap[VIRT_GIC_DIST].base, 597 2, vms->memmap[VIRT_GIC_DIST].size, 598 2, vms->memmap[VIRT_GIC_REDIST].base, 599 2, vms->memmap[VIRT_GIC_REDIST].size); 600 } else { 601 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 602 2, vms->memmap[VIRT_GIC_DIST].base, 603 2, vms->memmap[VIRT_GIC_DIST].size, 604 2, vms->memmap[VIRT_GIC_REDIST].base, 605 2, vms->memmap[VIRT_GIC_REDIST].size, 606 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 607 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 608 } 609 610 if (vms->virt) { 611 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 612 GIC_FDT_IRQ_TYPE_PPI, 613 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 614 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 615 } 616 } else { 617 /* 'cortex-a15-gic' means 'GIC v2' */ 618 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 619 "arm,cortex-a15-gic"); 620 if (!vms->virt) { 621 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 622 2, vms->memmap[VIRT_GIC_DIST].base, 623 2, vms->memmap[VIRT_GIC_DIST].size, 624 2, vms->memmap[VIRT_GIC_CPU].base, 625 2, vms->memmap[VIRT_GIC_CPU].size); 626 } else { 627 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 628 2, vms->memmap[VIRT_GIC_DIST].base, 629 2, vms->memmap[VIRT_GIC_DIST].size, 630 2, vms->memmap[VIRT_GIC_CPU].base, 631 2, vms->memmap[VIRT_GIC_CPU].size, 632 2, vms->memmap[VIRT_GIC_HYP].base, 633 2, vms->memmap[VIRT_GIC_HYP].size, 634 2, vms->memmap[VIRT_GIC_VCPU].base, 635 2, vms->memmap[VIRT_GIC_VCPU].size); 636 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 637 GIC_FDT_IRQ_TYPE_PPI, 638 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 639 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 640 } 641 } 642 643 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 644 g_free(nodename); 645 } 646 647 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 648 { 649 ARMCPU *armcpu = ARM_CPU(first_cpu); 650 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 651 MachineState *ms = MACHINE(vms); 652 653 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 654 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 655 return; 656 } 657 658 if (vms->gic_version == VIRT_GIC_VERSION_2) { 659 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 660 GIC_FDT_IRQ_PPI_CPU_WIDTH, 661 (1 << MACHINE(vms)->smp.cpus) - 1); 662 } 663 664 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 665 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 666 const char compat[] = "arm,armv8-pmuv3"; 667 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 668 compat, sizeof(compat)); 669 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 670 GIC_FDT_IRQ_TYPE_PPI, 671 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); 672 } 673 } 674 675 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 676 { 677 DeviceState *dev; 678 MachineState *ms = MACHINE(vms); 679 int irq = vms->irqmap[VIRT_ACPI_GED]; 680 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 681 682 if (ms->ram_slots) { 683 event |= ACPI_GED_MEM_HOTPLUG_EVT; 684 } 685 686 if (ms->nvdimms_state->is_enabled) { 687 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 688 } 689 690 dev = qdev_new(TYPE_ACPI_GED); 691 qdev_prop_set_uint32(dev, "ged-event", event); 692 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 693 694 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 695 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 696 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 697 698 return dev; 699 } 700 701 static void create_its(VirtMachineState *vms) 702 { 703 const char *itsclass = its_class_name(); 704 DeviceState *dev; 705 706 if (!strcmp(itsclass, "arm-gicv3-its")) { 707 if (!vms->tcg_its) { 708 itsclass = NULL; 709 } 710 } 711 712 if (!itsclass) { 713 /* Do nothing if not supported */ 714 return; 715 } 716 717 dev = qdev_new(itsclass); 718 719 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 720 &error_abort); 721 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 722 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 723 724 fdt_add_its_gic_node(vms); 725 vms->msi_controller = VIRT_MSI_CTRL_ITS; 726 } 727 728 static void create_v2m(VirtMachineState *vms) 729 { 730 int i; 731 int irq = vms->irqmap[VIRT_GIC_V2M]; 732 DeviceState *dev; 733 734 dev = qdev_new("arm-gicv2m"); 735 qdev_prop_set_uint32(dev, "base-spi", irq); 736 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 737 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 738 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 739 740 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 741 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 742 qdev_get_gpio_in(vms->gic, irq + i)); 743 } 744 745 fdt_add_v2m_gic_node(vms); 746 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 747 } 748 749 /* 750 * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too. 751 * It's permitted to have a configuration with NMI in the CPU (and thus the 752 * GICv3 CPU interface) but not in the distributor/redistributors, but it's 753 * not very useful. 754 */ 755 static bool gicv3_nmi_present(VirtMachineState *vms) 756 { 757 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 758 759 return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) && 760 (vms->gic_version != VIRT_GIC_VERSION_2); 761 } 762 763 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 764 { 765 MachineState *ms = MACHINE(vms); 766 /* We create a standalone GIC */ 767 SysBusDevice *gicbusdev; 768 const char *gictype; 769 int i; 770 unsigned int smp_cpus = ms->smp.cpus; 771 uint32_t nb_redist_regions = 0; 772 int revision; 773 774 if (vms->gic_version == VIRT_GIC_VERSION_2) { 775 gictype = gic_class_name(); 776 } else { 777 gictype = gicv3_class_name(); 778 } 779 780 switch (vms->gic_version) { 781 case VIRT_GIC_VERSION_2: 782 revision = 2; 783 break; 784 case VIRT_GIC_VERSION_3: 785 revision = 3; 786 break; 787 case VIRT_GIC_VERSION_4: 788 revision = 4; 789 break; 790 default: 791 g_assert_not_reached(); 792 } 793 vms->gic = qdev_new(gictype); 794 qdev_prop_set_uint32(vms->gic, "revision", revision); 795 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 796 /* Note that the num-irq property counts both internal and external 797 * interrupts; there are always 32 of the former (mandated by GIC spec). 798 */ 799 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 800 if (!kvm_irqchip_in_kernel()) { 801 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 802 } 803 804 if (vms->gic_version != VIRT_GIC_VERSION_2) { 805 QList *redist_region_count; 806 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); 807 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 808 809 nb_redist_regions = virt_gicv3_redist_region_count(vms); 810 811 redist_region_count = qlist_new(); 812 qlist_append_int(redist_region_count, redist0_count); 813 if (nb_redist_regions == 2) { 814 uint32_t redist1_capacity = 815 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 816 817 qlist_append_int(redist_region_count, 818 MIN(smp_cpus - redist0_count, redist1_capacity)); 819 } 820 qdev_prop_set_array(vms->gic, "redist-region-count", 821 redist_region_count); 822 823 if (!kvm_irqchip_in_kernel()) { 824 if (vms->tcg_its) { 825 object_property_set_link(OBJECT(vms->gic), "sysmem", 826 OBJECT(mem), &error_fatal); 827 qdev_prop_set_bit(vms->gic, "has-lpi", true); 828 } 829 } 830 } else { 831 if (!kvm_irqchip_in_kernel()) { 832 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 833 vms->virt); 834 } 835 } 836 837 if (gicv3_nmi_present(vms)) { 838 qdev_prop_set_bit(vms->gic, "has-nmi", true); 839 } 840 841 gicbusdev = SYS_BUS_DEVICE(vms->gic); 842 sysbus_realize_and_unref(gicbusdev, &error_fatal); 843 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 844 if (vms->gic_version != VIRT_GIC_VERSION_2) { 845 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 846 if (nb_redist_regions == 2) { 847 sysbus_mmio_map(gicbusdev, 2, 848 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 849 } 850 } else { 851 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 852 if (vms->virt) { 853 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 854 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 855 } 856 } 857 858 /* Wire the outputs from each CPU's generic timer and the GICv3 859 * maintenance interrupt signal to the appropriate GIC PPI inputs, 860 * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the 861 * CPU's inputs. 862 */ 863 for (i = 0; i < smp_cpus; i++) { 864 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 865 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 866 /* Mapping from the output timer irq lines from the CPU to the 867 * GIC PPI inputs we use for the virt board. 868 */ 869 const int timer_irq[] = { 870 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 871 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 872 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 873 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 874 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ, 875 }; 876 877 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 878 qdev_connect_gpio_out(cpudev, irq, 879 qdev_get_gpio_in(vms->gic, 880 intidbase + timer_irq[irq])); 881 } 882 883 if (vms->gic_version != VIRT_GIC_VERSION_2) { 884 qemu_irq irq = qdev_get_gpio_in(vms->gic, 885 intidbase + ARCH_GIC_MAINT_IRQ); 886 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 887 0, irq); 888 } else if (vms->virt) { 889 qemu_irq irq = qdev_get_gpio_in(vms->gic, 890 intidbase + ARCH_GIC_MAINT_IRQ); 891 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 892 } 893 894 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 895 qdev_get_gpio_in(vms->gic, intidbase 896 + VIRTUAL_PMU_IRQ)); 897 898 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 899 sysbus_connect_irq(gicbusdev, i + smp_cpus, 900 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 901 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 902 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 903 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 904 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 905 906 if (vms->gic_version != VIRT_GIC_VERSION_2) { 907 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, 908 qdev_get_gpio_in(cpudev, ARM_CPU_NMI)); 909 sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus, 910 qdev_get_gpio_in(cpudev, ARM_CPU_VINMI)); 911 } 912 } 913 914 fdt_add_gic_node(vms); 915 916 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { 917 create_its(vms); 918 } else if (vms->gic_version == VIRT_GIC_VERSION_2) { 919 create_v2m(vms); 920 } 921 } 922 923 static void create_uart(const VirtMachineState *vms, int uart, 924 MemoryRegion *mem, Chardev *chr, bool secure) 925 { 926 char *nodename; 927 hwaddr base = vms->memmap[uart].base; 928 hwaddr size = vms->memmap[uart].size; 929 int irq = vms->irqmap[uart]; 930 const char compat[] = "arm,pl011\0arm,primecell"; 931 const char clocknames[] = "uartclk\0apb_pclk"; 932 DeviceState *dev = qdev_new(TYPE_PL011); 933 SysBusDevice *s = SYS_BUS_DEVICE(dev); 934 MachineState *ms = MACHINE(vms); 935 936 qdev_prop_set_chr(dev, "chardev", chr); 937 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 938 memory_region_add_subregion(mem, base, 939 sysbus_mmio_get_region(s, 0)); 940 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 941 942 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 943 qemu_fdt_add_subnode(ms->fdt, nodename); 944 /* Note that we can't use setprop_string because of the embedded NUL */ 945 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 946 compat, sizeof(compat)); 947 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 948 2, base, 2, size); 949 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 950 GIC_FDT_IRQ_TYPE_SPI, irq, 951 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 952 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 953 vms->clock_phandle, vms->clock_phandle); 954 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 955 clocknames, sizeof(clocknames)); 956 957 if (uart == VIRT_UART0) { 958 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 959 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename); 960 } else { 961 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename); 962 } 963 if (secure) { 964 /* Mark as not usable by the normal world */ 965 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 966 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 967 968 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 969 nodename); 970 } 971 972 g_free(nodename); 973 } 974 975 static void create_rtc(const VirtMachineState *vms) 976 { 977 char *nodename; 978 hwaddr base = vms->memmap[VIRT_RTC].base; 979 hwaddr size = vms->memmap[VIRT_RTC].size; 980 int irq = vms->irqmap[VIRT_RTC]; 981 const char compat[] = "arm,pl031\0arm,primecell"; 982 MachineState *ms = MACHINE(vms); 983 984 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 985 986 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 987 qemu_fdt_add_subnode(ms->fdt, nodename); 988 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 989 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 990 2, base, 2, size); 991 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 992 GIC_FDT_IRQ_TYPE_SPI, irq, 993 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 994 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 995 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 996 g_free(nodename); 997 } 998 999 static DeviceState *gpio_key_dev; 1000 static void virt_powerdown_req(Notifier *n, void *opaque) 1001 { 1002 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 1003 1004 if (s->acpi_dev) { 1005 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 1006 } else { 1007 /* use gpio Pin for power button event */ 1008 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 1009 } 1010 } 1011 1012 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 1013 uint32_t phandle) 1014 { 1015 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 1016 qdev_get_gpio_in(pl061_dev, 1017 GPIO_PIN_POWER_BUTTON)); 1018 1019 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 1020 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 1021 1022 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 1023 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 1024 "label", "GPIO Key Poweroff"); 1025 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 1026 KEY_POWER); 1027 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 1028 "gpios", phandle, GPIO_PIN_POWER_BUTTON, 0); 1029 } 1030 1031 #define SECURE_GPIO_POWEROFF 0 1032 #define SECURE_GPIO_RESET 1 1033 1034 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 1035 uint32_t phandle) 1036 { 1037 DeviceState *gpio_pwr_dev; 1038 1039 /* gpio-pwr */ 1040 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 1041 1042 /* connect secure pl061 to gpio-pwr */ 1043 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 1044 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 1045 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 1046 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 1047 1048 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 1049 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 1050 "gpio-poweroff"); 1051 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 1052 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 1053 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 1054 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 1055 "okay"); 1056 1057 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 1058 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 1059 "gpio-restart"); 1060 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 1061 "gpios", phandle, SECURE_GPIO_RESET, 0); 1062 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 1063 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 1064 "okay"); 1065 } 1066 1067 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 1068 MemoryRegion *mem) 1069 { 1070 char *nodename; 1071 DeviceState *pl061_dev; 1072 hwaddr base = vms->memmap[gpio].base; 1073 hwaddr size = vms->memmap[gpio].size; 1074 int irq = vms->irqmap[gpio]; 1075 const char compat[] = "arm,pl061\0arm,primecell"; 1076 SysBusDevice *s; 1077 MachineState *ms = MACHINE(vms); 1078 1079 pl061_dev = qdev_new("pl061"); 1080 /* Pull lines down to 0 if not driven by the PL061 */ 1081 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 1082 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 1083 s = SYS_BUS_DEVICE(pl061_dev); 1084 sysbus_realize_and_unref(s, &error_fatal); 1085 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 1086 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 1087 1088 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 1089 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 1090 qemu_fdt_add_subnode(ms->fdt, nodename); 1091 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1092 2, base, 2, size); 1093 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 1094 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 1095 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 1096 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1097 GIC_FDT_IRQ_TYPE_SPI, irq, 1098 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1099 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1100 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1101 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 1102 1103 if (gpio != VIRT_GPIO) { 1104 /* Mark as not usable by the normal world */ 1105 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1106 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1107 } 1108 g_free(nodename); 1109 1110 /* Child gpio devices */ 1111 if (gpio == VIRT_GPIO) { 1112 create_gpio_keys(ms->fdt, pl061_dev, phandle); 1113 } else { 1114 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 1115 } 1116 } 1117 1118 static void create_virtio_devices(const VirtMachineState *vms) 1119 { 1120 int i; 1121 hwaddr size = vms->memmap[VIRT_MMIO].size; 1122 MachineState *ms = MACHINE(vms); 1123 1124 /* We create the transports in forwards order. Since qbus_realize() 1125 * prepends (not appends) new child buses, the incrementing loop below will 1126 * create a list of virtio-mmio buses with decreasing base addresses. 1127 * 1128 * When a -device option is processed from the command line, 1129 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1130 * order. The upshot is that -device options in increasing command line 1131 * order are mapped to virtio-mmio buses with decreasing base addresses. 1132 * 1133 * When this code was originally written, that arrangement ensured that the 1134 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1135 * the first -device on the command line. (The end-to-end order is a 1136 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1137 * guest kernel's name-to-address assignment strategy.) 1138 * 1139 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1140 * the message, if not necessarily the code, of commit 70161ff336. 1141 * Therefore the loop now establishes the inverse of the original intent. 1142 * 1143 * Unfortunately, we can't counteract the kernel change by reversing the 1144 * loop; it would break existing command lines. 1145 * 1146 * In any case, the kernel makes no guarantee about the stability of 1147 * enumeration order of virtio devices (as demonstrated by it changing 1148 * between kernel versions). For reliable and stable identification 1149 * of disks users must use UUIDs or similar mechanisms. 1150 */ 1151 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1152 int irq = vms->irqmap[VIRT_MMIO] + i; 1153 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1154 1155 sysbus_create_simple("virtio-mmio", base, 1156 qdev_get_gpio_in(vms->gic, irq)); 1157 } 1158 1159 /* We add dtb nodes in reverse order so that they appear in the finished 1160 * device tree lowest address first. 1161 * 1162 * Note that this mapping is independent of the loop above. The previous 1163 * loop influences virtio device to virtio transport assignment, whereas 1164 * this loop controls how virtio transports are laid out in the dtb. 1165 */ 1166 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1167 char *nodename; 1168 int irq = vms->irqmap[VIRT_MMIO] + i; 1169 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1170 1171 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1172 qemu_fdt_add_subnode(ms->fdt, nodename); 1173 qemu_fdt_setprop_string(ms->fdt, nodename, 1174 "compatible", "virtio,mmio"); 1175 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1176 2, base, 2, size); 1177 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1178 GIC_FDT_IRQ_TYPE_SPI, irq, 1179 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1180 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1181 g_free(nodename); 1182 } 1183 } 1184 1185 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1186 1187 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1188 const char *name, 1189 const char *alias_prop_name) 1190 { 1191 /* 1192 * Create a single flash device. We use the same parameters as 1193 * the flash devices on the Versatile Express board. 1194 */ 1195 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1196 1197 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1198 qdev_prop_set_uint8(dev, "width", 4); 1199 qdev_prop_set_uint8(dev, "device-width", 2); 1200 qdev_prop_set_bit(dev, "big-endian", false); 1201 qdev_prop_set_uint16(dev, "id0", 0x89); 1202 qdev_prop_set_uint16(dev, "id1", 0x18); 1203 qdev_prop_set_uint16(dev, "id2", 0x00); 1204 qdev_prop_set_uint16(dev, "id3", 0x00); 1205 qdev_prop_set_string(dev, "name", name); 1206 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1207 object_property_add_alias(OBJECT(vms), alias_prop_name, 1208 OBJECT(dev), "drive"); 1209 return PFLASH_CFI01(dev); 1210 } 1211 1212 static void virt_flash_create(VirtMachineState *vms) 1213 { 1214 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1215 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1216 } 1217 1218 static void virt_flash_map1(PFlashCFI01 *flash, 1219 hwaddr base, hwaddr size, 1220 MemoryRegion *sysmem) 1221 { 1222 DeviceState *dev = DEVICE(flash); 1223 1224 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1225 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1226 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1227 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1228 1229 memory_region_add_subregion(sysmem, base, 1230 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1231 0)); 1232 } 1233 1234 static void virt_flash_map(VirtMachineState *vms, 1235 MemoryRegion *sysmem, 1236 MemoryRegion *secure_sysmem) 1237 { 1238 /* 1239 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1240 * sysmem is the system memory space. secure_sysmem is the secure view 1241 * of the system, and the first flash device should be made visible only 1242 * there. The second flash device is visible to both secure and nonsecure. 1243 * If sysmem == secure_sysmem this means there is no separate Secure 1244 * address space and both flash devices are generally visible. 1245 */ 1246 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1247 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1248 1249 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1250 secure_sysmem); 1251 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1252 sysmem); 1253 } 1254 1255 static void virt_flash_fdt(VirtMachineState *vms, 1256 MemoryRegion *sysmem, 1257 MemoryRegion *secure_sysmem) 1258 { 1259 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1260 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1261 MachineState *ms = MACHINE(vms); 1262 char *nodename; 1263 1264 if (sysmem == secure_sysmem) { 1265 /* Report both flash devices as a single node in the DT */ 1266 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1267 qemu_fdt_add_subnode(ms->fdt, nodename); 1268 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1269 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1270 2, flashbase, 2, flashsize, 1271 2, flashbase + flashsize, 2, flashsize); 1272 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1273 g_free(nodename); 1274 } else { 1275 /* 1276 * Report the devices as separate nodes so we can mark one as 1277 * only visible to the secure world. 1278 */ 1279 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1280 qemu_fdt_add_subnode(ms->fdt, nodename); 1281 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1282 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1283 2, flashbase, 2, flashsize); 1284 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1285 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1286 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1287 g_free(nodename); 1288 1289 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); 1290 qemu_fdt_add_subnode(ms->fdt, nodename); 1291 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1292 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1293 2, flashbase + flashsize, 2, flashsize); 1294 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1295 g_free(nodename); 1296 } 1297 } 1298 1299 static bool virt_firmware_init(VirtMachineState *vms, 1300 MemoryRegion *sysmem, 1301 MemoryRegion *secure_sysmem) 1302 { 1303 int i; 1304 const char *bios_name; 1305 BlockBackend *pflash_blk0; 1306 1307 /* Map legacy -drive if=pflash to machine properties */ 1308 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1309 pflash_cfi01_legacy_drive(vms->flash[i], 1310 drive_get(IF_PFLASH, 0, i)); 1311 } 1312 1313 virt_flash_map(vms, sysmem, secure_sysmem); 1314 1315 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1316 1317 bios_name = MACHINE(vms)->firmware; 1318 if (bios_name) { 1319 char *fname; 1320 MemoryRegion *mr; 1321 int image_size; 1322 1323 if (pflash_blk0) { 1324 error_report("The contents of the first flash device may be " 1325 "specified with -bios or with -drive if=pflash... " 1326 "but you cannot use both options at once"); 1327 exit(1); 1328 } 1329 1330 /* Fall back to -bios */ 1331 1332 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1333 if (!fname) { 1334 error_report("Could not find ROM image '%s'", bios_name); 1335 exit(1); 1336 } 1337 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1338 image_size = load_image_mr(fname, mr); 1339 g_free(fname); 1340 if (image_size < 0) { 1341 error_report("Could not load ROM image '%s'", bios_name); 1342 exit(1); 1343 } 1344 } 1345 1346 return pflash_blk0 || bios_name; 1347 } 1348 1349 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1350 { 1351 MachineState *ms = MACHINE(vms); 1352 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1353 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1354 FWCfgState *fw_cfg; 1355 char *nodename; 1356 1357 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1358 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1359 1360 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1361 qemu_fdt_add_subnode(ms->fdt, nodename); 1362 qemu_fdt_setprop_string(ms->fdt, nodename, 1363 "compatible", "qemu,fw-cfg-mmio"); 1364 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1365 2, base, 2, size); 1366 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1367 g_free(nodename); 1368 return fw_cfg; 1369 } 1370 1371 static void create_pcie_irq_map(const MachineState *ms, 1372 uint32_t gic_phandle, 1373 int first_irq, const char *nodename) 1374 { 1375 int devfn, pin; 1376 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1377 uint32_t *irq_map = full_irq_map; 1378 1379 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1380 for (pin = 0; pin < 4; pin++) { 1381 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1382 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1383 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1384 int i; 1385 1386 uint32_t map[] = { 1387 devfn << 8, 0, 0, /* devfn */ 1388 pin + 1, /* PCI pin */ 1389 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1390 1391 /* Convert map to big endian */ 1392 for (i = 0; i < 10; i++) { 1393 irq_map[i] = cpu_to_be32(map[i]); 1394 } 1395 irq_map += 10; 1396 } 1397 } 1398 1399 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1400 full_irq_map, sizeof(full_irq_map)); 1401 1402 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1403 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1404 0, 0, 1405 0x7 /* PCI irq */); 1406 } 1407 1408 static void create_smmu(const VirtMachineState *vms, 1409 PCIBus *bus) 1410 { 1411 char *node; 1412 const char compat[] = "arm,smmu-v3"; 1413 int irq = vms->irqmap[VIRT_SMMU]; 1414 int i; 1415 hwaddr base = vms->memmap[VIRT_SMMU].base; 1416 hwaddr size = vms->memmap[VIRT_SMMU].size; 1417 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1418 DeviceState *dev; 1419 MachineState *ms = MACHINE(vms); 1420 1421 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1422 return; 1423 } 1424 1425 dev = qdev_new(TYPE_ARM_SMMUV3); 1426 1427 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1428 &error_abort); 1429 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1430 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1431 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1432 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1433 qdev_get_gpio_in(vms->gic, irq + i)); 1434 } 1435 1436 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1437 qemu_fdt_add_subnode(ms->fdt, node); 1438 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1439 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1440 1441 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1442 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1443 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1444 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1445 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1446 1447 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1448 sizeof(irq_names)); 1449 1450 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1451 1452 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1453 1454 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1455 g_free(node); 1456 } 1457 1458 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1459 { 1460 const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; 1461 uint16_t bdf = vms->virtio_iommu_bdf; 1462 MachineState *ms = MACHINE(vms); 1463 char *node; 1464 1465 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1466 1467 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, 1468 PCI_SLOT(bdf), PCI_FUNC(bdf)); 1469 qemu_fdt_add_subnode(ms->fdt, node); 1470 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1471 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1472 1, bdf << 8, 1, 0, 1, 0, 1473 1, 0, 1, 0); 1474 1475 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1476 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1477 g_free(node); 1478 1479 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1480 0x0, vms->iommu_phandle, 0x0, bdf, 1481 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1482 } 1483 1484 static void create_pcie(VirtMachineState *vms) 1485 { 1486 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1487 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1488 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1489 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1490 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1491 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1492 hwaddr base_ecam, size_ecam; 1493 hwaddr base = base_mmio; 1494 int nr_pcie_buses; 1495 int irq = vms->irqmap[VIRT_PCIE]; 1496 MemoryRegion *mmio_alias; 1497 MemoryRegion *mmio_reg; 1498 MemoryRegion *ecam_alias; 1499 MemoryRegion *ecam_reg; 1500 DeviceState *dev; 1501 char *nodename; 1502 int i, ecam_id; 1503 PCIHostState *pci; 1504 MachineState *ms = MACHINE(vms); 1505 MachineClass *mc = MACHINE_GET_CLASS(ms); 1506 1507 dev = qdev_new(TYPE_GPEX_HOST); 1508 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1509 1510 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1511 base_ecam = vms->memmap[ecam_id].base; 1512 size_ecam = vms->memmap[ecam_id].size; 1513 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1514 /* Map only the first size_ecam bytes of ECAM space */ 1515 ecam_alias = g_new0(MemoryRegion, 1); 1516 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1517 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1518 ecam_reg, 0, size_ecam); 1519 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1520 1521 /* Map the MMIO window into system address space so as to expose 1522 * the section of PCI MMIO space which starts at the same base address 1523 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1524 * the window). 1525 */ 1526 mmio_alias = g_new0(MemoryRegion, 1); 1527 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1528 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1529 mmio_reg, base_mmio, size_mmio); 1530 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1531 1532 if (vms->highmem_mmio) { 1533 /* Map high MMIO space */ 1534 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1535 1536 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1537 mmio_reg, base_mmio_high, size_mmio_high); 1538 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1539 high_mmio_alias); 1540 } 1541 1542 /* Map IO port space */ 1543 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1544 1545 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1546 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1547 qdev_get_gpio_in(vms->gic, irq + i)); 1548 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1549 } 1550 1551 pci = PCI_HOST_BRIDGE(dev); 1552 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1553 vms->bus = pci->bus; 1554 if (vms->bus) { 1555 pci_init_nic_devices(pci->bus, mc->default_nic); 1556 } 1557 1558 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1559 qemu_fdt_add_subnode(ms->fdt, nodename); 1560 qemu_fdt_setprop_string(ms->fdt, nodename, 1561 "compatible", "pci-host-ecam-generic"); 1562 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1563 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1564 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1565 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1566 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1567 nr_pcie_buses - 1); 1568 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1569 1570 if (vms->msi_phandle) { 1571 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 1572 0, vms->msi_phandle, 0, 0x10000); 1573 } 1574 1575 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1576 2, base_ecam, 2, size_ecam); 1577 1578 if (vms->highmem_mmio) { 1579 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1580 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1581 2, base_pio, 2, size_pio, 1582 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1583 2, base_mmio, 2, size_mmio, 1584 1, FDT_PCI_RANGE_MMIO_64BIT, 1585 2, base_mmio_high, 1586 2, base_mmio_high, 2, size_mmio_high); 1587 } else { 1588 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1589 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1590 2, base_pio, 2, size_pio, 1591 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1592 2, base_mmio, 2, size_mmio); 1593 } 1594 1595 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1596 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1597 1598 if (vms->iommu) { 1599 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1600 1601 switch (vms->iommu) { 1602 case VIRT_IOMMU_SMMUV3: 1603 create_smmu(vms, vms->bus); 1604 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1605 0x0, vms->iommu_phandle, 0x0, 0x10000); 1606 break; 1607 default: 1608 g_assert_not_reached(); 1609 } 1610 } 1611 } 1612 1613 static void create_platform_bus(VirtMachineState *vms) 1614 { 1615 DeviceState *dev; 1616 SysBusDevice *s; 1617 int i; 1618 MemoryRegion *sysmem = get_system_memory(); 1619 1620 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1621 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1622 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1623 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1624 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1625 vms->platform_bus_dev = dev; 1626 1627 s = SYS_BUS_DEVICE(dev); 1628 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1629 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1630 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1631 } 1632 1633 memory_region_add_subregion(sysmem, 1634 vms->memmap[VIRT_PLATFORM_BUS].base, 1635 sysbus_mmio_get_region(s, 0)); 1636 } 1637 1638 static void create_tag_ram(MemoryRegion *tag_sysmem, 1639 hwaddr base, hwaddr size, 1640 const char *name) 1641 { 1642 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1643 1644 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1645 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1646 } 1647 1648 static void create_secure_ram(VirtMachineState *vms, 1649 MemoryRegion *secure_sysmem, 1650 MemoryRegion *secure_tag_sysmem) 1651 { 1652 MemoryRegion *secram = g_new(MemoryRegion, 1); 1653 char *nodename; 1654 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1655 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1656 MachineState *ms = MACHINE(vms); 1657 1658 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1659 &error_fatal); 1660 memory_region_add_subregion(secure_sysmem, base, secram); 1661 1662 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1663 qemu_fdt_add_subnode(ms->fdt, nodename); 1664 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1665 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1666 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1667 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1668 1669 if (secure_tag_sysmem) { 1670 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1671 } 1672 1673 g_free(nodename); 1674 } 1675 1676 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1677 { 1678 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1679 bootinfo); 1680 MachineState *ms = MACHINE(board); 1681 1682 1683 *fdt_size = board->fdt_size; 1684 return ms->fdt; 1685 } 1686 1687 static void virt_build_smbios(VirtMachineState *vms) 1688 { 1689 MachineClass *mc = MACHINE_GET_CLASS(vms); 1690 MachineState *ms = MACHINE(vms); 1691 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1692 uint8_t *smbios_tables, *smbios_anchor; 1693 size_t smbios_tables_len, smbios_anchor_len; 1694 struct smbios_phys_mem_area mem_array; 1695 const char *product = "QEMU Virtual Machine"; 1696 1697 if (kvm_enabled()) { 1698 product = "KVM Virtual Machine"; 1699 } 1700 1701 smbios_set_defaults("QEMU", product, 1702 vmc->smbios_old_sys_ver ? "1.0" : mc->name); 1703 1704 /* build the array of physical mem area from base_memmap */ 1705 mem_array.address = vms->memmap[VIRT_MEM].base; 1706 mem_array.length = ms->ram_size; 1707 1708 smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1, 1709 &smbios_tables, &smbios_tables_len, 1710 &smbios_anchor, &smbios_anchor_len, 1711 &error_fatal); 1712 1713 if (smbios_anchor) { 1714 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1715 smbios_tables, smbios_tables_len); 1716 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1717 smbios_anchor, smbios_anchor_len); 1718 } 1719 } 1720 1721 static 1722 void virt_machine_done(Notifier *notifier, void *data) 1723 { 1724 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1725 machine_done); 1726 MachineState *ms = MACHINE(vms); 1727 ARMCPU *cpu = ARM_CPU(first_cpu); 1728 struct arm_boot_info *info = &vms->bootinfo; 1729 AddressSpace *as = arm_boot_address_space(cpu, info); 1730 1731 /* 1732 * If the user provided a dtb, we assume the dynamic sysbus nodes 1733 * already are integrated there. This corresponds to a use case where 1734 * the dynamic sysbus nodes are complex and their generation is not yet 1735 * supported. In that case the user can take charge of the guest dt 1736 * while qemu takes charge of the qom stuff. 1737 */ 1738 if (info->dtb_filename == NULL) { 1739 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1740 vms->memmap[VIRT_PLATFORM_BUS].base, 1741 vms->memmap[VIRT_PLATFORM_BUS].size, 1742 vms->irqmap[VIRT_PLATFORM_BUS]); 1743 } 1744 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1745 exit(1); 1746 } 1747 1748 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1749 1750 virt_acpi_setup(vms); 1751 virt_build_smbios(vms); 1752 } 1753 1754 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1755 { 1756 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1757 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1758 1759 if (!vmc->disallow_affinity_adjustment) { 1760 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1761 * GIC's target-list limitations. 32-bit KVM hosts currently 1762 * always create clusters of 4 CPUs, but that is expected to 1763 * change when they gain support for gicv3. When KVM is enabled 1764 * it will override the changes we make here, therefore our 1765 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1766 * and to improve SGI efficiency. 1767 */ 1768 if (vms->gic_version == VIRT_GIC_VERSION_2) { 1769 clustersz = GIC_TARGETLIST_BITS; 1770 } else { 1771 clustersz = GICV3_TARGETLIST_BITS; 1772 } 1773 } 1774 return arm_build_mp_affinity(idx, clustersz); 1775 } 1776 1777 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, 1778 int index) 1779 { 1780 bool *enabled_array[] = { 1781 &vms->highmem_redists, 1782 &vms->highmem_ecam, 1783 &vms->highmem_mmio, 1784 }; 1785 1786 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == 1787 ARRAY_SIZE(enabled_array)); 1788 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); 1789 1790 return enabled_array[index - VIRT_LOWMEMMAP_LAST]; 1791 } 1792 1793 static void virt_set_high_memmap(VirtMachineState *vms, 1794 hwaddr base, int pa_bits) 1795 { 1796 hwaddr region_base, region_size; 1797 bool *region_enabled, fits; 1798 int i; 1799 1800 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1801 region_enabled = virt_get_high_memmap_enabled(vms, i); 1802 region_base = ROUND_UP(base, extended_memmap[i].size); 1803 region_size = extended_memmap[i].size; 1804 1805 vms->memmap[i].base = region_base; 1806 vms->memmap[i].size = region_size; 1807 1808 /* 1809 * Check each device to see if it fits in the PA space, 1810 * moving highest_gpa as we go. For compatibility, move 1811 * highest_gpa for disabled fitting devices as well, if 1812 * the compact layout has been disabled. 1813 * 1814 * For each device that doesn't fit, disable it. 1815 */ 1816 fits = (region_base + region_size) <= BIT_ULL(pa_bits); 1817 *region_enabled &= fits; 1818 if (vms->highmem_compact && !*region_enabled) { 1819 continue; 1820 } 1821 1822 base = region_base + region_size; 1823 if (fits) { 1824 vms->highest_gpa = base - 1; 1825 } 1826 } 1827 } 1828 1829 static void virt_set_memmap(VirtMachineState *vms, int pa_bits) 1830 { 1831 MachineState *ms = MACHINE(vms); 1832 hwaddr base, device_memory_base, device_memory_size, memtop; 1833 int i; 1834 1835 vms->memmap = extended_memmap; 1836 1837 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1838 vms->memmap[i] = base_memmap[i]; 1839 } 1840 1841 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1842 error_report("unsupported number of memory slots: %"PRIu64, 1843 ms->ram_slots); 1844 exit(EXIT_FAILURE); 1845 } 1846 1847 /* 1848 * !highmem is exactly the same as limiting the PA space to 32bit, 1849 * irrespective of the underlying capabilities of the HW. 1850 */ 1851 if (!vms->highmem) { 1852 pa_bits = 32; 1853 } 1854 1855 /* 1856 * We compute the base of the high IO region depending on the 1857 * amount of initial and device memory. The device memory start/size 1858 * is aligned on 1GiB. We never put the high IO region below 256GiB 1859 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1860 * The device region size assumes 1GiB page max alignment per slot. 1861 */ 1862 device_memory_base = 1863 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1864 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1865 1866 /* Base address of the high IO region */ 1867 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1868 if (memtop > BIT_ULL(pa_bits)) { 1869 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes", 1870 pa_bits, memtop - BIT_ULL(pa_bits)); 1871 exit(EXIT_FAILURE); 1872 } 1873 if (base < device_memory_base) { 1874 error_report("maxmem/slots too huge"); 1875 exit(EXIT_FAILURE); 1876 } 1877 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1878 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1879 } 1880 1881 /* We know for sure that at least the memory fits in the PA space */ 1882 vms->highest_gpa = memtop - 1; 1883 1884 virt_set_high_memmap(vms, base, pa_bits); 1885 1886 if (device_memory_size > 0) { 1887 machine_memory_devices_init(ms, device_memory_base, device_memory_size); 1888 } 1889 } 1890 1891 static VirtGICType finalize_gic_version_do(const char *accel_name, 1892 VirtGICType gic_version, 1893 int gics_supported, 1894 unsigned int max_cpus) 1895 { 1896 /* Convert host/max/nosel to GIC version number */ 1897 switch (gic_version) { 1898 case VIRT_GIC_VERSION_HOST: 1899 if (!kvm_enabled()) { 1900 error_report("gic-version=host requires KVM"); 1901 exit(1); 1902 } 1903 1904 /* For KVM, gic-version=host means gic-version=max */ 1905 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, 1906 gics_supported, max_cpus); 1907 case VIRT_GIC_VERSION_MAX: 1908 if (gics_supported & VIRT_GIC_VERSION_4_MASK) { 1909 gic_version = VIRT_GIC_VERSION_4; 1910 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1911 gic_version = VIRT_GIC_VERSION_3; 1912 } else { 1913 gic_version = VIRT_GIC_VERSION_2; 1914 } 1915 break; 1916 case VIRT_GIC_VERSION_NOSEL: 1917 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && 1918 max_cpus <= GIC_NCPU) { 1919 gic_version = VIRT_GIC_VERSION_2; 1920 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1921 /* 1922 * in case the host does not support v2 emulation or 1923 * the end-user requested more than 8 VCPUs we now default 1924 * to v3. In any case defaulting to v2 would be broken. 1925 */ 1926 gic_version = VIRT_GIC_VERSION_3; 1927 } else if (max_cpus > GIC_NCPU) { 1928 error_report("%s only supports GICv2 emulation but more than 8 " 1929 "vcpus are requested", accel_name); 1930 exit(1); 1931 } 1932 break; 1933 case VIRT_GIC_VERSION_2: 1934 case VIRT_GIC_VERSION_3: 1935 case VIRT_GIC_VERSION_4: 1936 break; 1937 } 1938 1939 /* Check chosen version is effectively supported */ 1940 switch (gic_version) { 1941 case VIRT_GIC_VERSION_2: 1942 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { 1943 error_report("%s does not support GICv2 emulation", accel_name); 1944 exit(1); 1945 } 1946 break; 1947 case VIRT_GIC_VERSION_3: 1948 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { 1949 error_report("%s does not support GICv3 emulation", accel_name); 1950 exit(1); 1951 } 1952 break; 1953 case VIRT_GIC_VERSION_4: 1954 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { 1955 error_report("%s does not support GICv4 emulation, is virtualization=on?", 1956 accel_name); 1957 exit(1); 1958 } 1959 break; 1960 default: 1961 error_report("logic error in finalize_gic_version"); 1962 exit(1); 1963 break; 1964 } 1965 1966 return gic_version; 1967 } 1968 1969 /* 1970 * finalize_gic_version - Determines the final gic_version 1971 * according to the gic-version property 1972 * 1973 * Default GIC type is v2 1974 */ 1975 static void finalize_gic_version(VirtMachineState *vms) 1976 { 1977 const char *accel_name = current_accel_name(); 1978 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1979 int gics_supported = 0; 1980 1981 /* Determine which GIC versions the current environment supports */ 1982 if (kvm_enabled() && kvm_irqchip_in_kernel()) { 1983 int probe_bitmap = kvm_arm_vgic_probe(); 1984 1985 if (!probe_bitmap) { 1986 error_report("Unable to determine GIC version supported by host"); 1987 exit(1); 1988 } 1989 1990 if (probe_bitmap & KVM_ARM_VGIC_V2) { 1991 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1992 } 1993 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1994 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1995 } 1996 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 1997 /* KVM w/o kernel irqchip can only deal with GICv2 */ 1998 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1999 accel_name = "KVM with kernel-irqchip=off"; 2000 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { 2001 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2002 if (module_object_class_by_name("arm-gicv3")) { 2003 gics_supported |= VIRT_GIC_VERSION_3_MASK; 2004 if (vms->virt) { 2005 /* GICv4 only makes sense if CPU has EL2 */ 2006 gics_supported |= VIRT_GIC_VERSION_4_MASK; 2007 } 2008 } 2009 } else { 2010 error_report("Unsupported accelerator, can not determine GIC support"); 2011 exit(1); 2012 } 2013 2014 /* 2015 * Then convert helpers like host/max to concrete GIC versions and ensure 2016 * the desired version is supported 2017 */ 2018 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, 2019 gics_supported, max_cpus); 2020 } 2021 2022 /* 2023 * virt_cpu_post_init() must be called after the CPUs have 2024 * been realized and the GIC has been created. 2025 */ 2026 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 2027 { 2028 int max_cpus = MACHINE(vms)->smp.max_cpus; 2029 bool aarch64, pmu, steal_time; 2030 CPUState *cpu; 2031 2032 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 2033 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 2034 steal_time = object_property_get_bool(OBJECT(first_cpu), 2035 "kvm-steal-time", NULL); 2036 2037 if (kvm_enabled()) { 2038 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 2039 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 2040 2041 if (steal_time) { 2042 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 2043 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 2044 2045 /* The memory region size must be a multiple of host page size. */ 2046 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 2047 2048 if (pvtime_size > pvtime_reg_size) { 2049 error_report("pvtime requires a %" HWADDR_PRId 2050 " byte memory region for %d CPUs," 2051 " but only %" HWADDR_PRId " has been reserved", 2052 pvtime_size, max_cpus, pvtime_reg_size); 2053 exit(1); 2054 } 2055 2056 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 2057 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 2058 } 2059 2060 CPU_FOREACH(cpu) { 2061 if (pmu) { 2062 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 2063 if (kvm_irqchip_in_kernel()) { 2064 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ); 2065 } 2066 kvm_arm_pmu_init(ARM_CPU(cpu)); 2067 } 2068 if (steal_time) { 2069 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base 2070 + cpu->cpu_index 2071 * PVTIME_SIZE_PER_CPU); 2072 } 2073 } 2074 } else { 2075 if (aarch64 && vms->highmem) { 2076 int requested_pa_size = 64 - clz64(vms->highest_gpa); 2077 int pamax = arm_pamax(ARM_CPU(first_cpu)); 2078 2079 if (pamax < requested_pa_size) { 2080 error_report("VCPU supports less PA bits (%d) than " 2081 "requested by the memory map (%d)", 2082 pamax, requested_pa_size); 2083 exit(1); 2084 } 2085 } 2086 } 2087 } 2088 2089 static void machvirt_init(MachineState *machine) 2090 { 2091 VirtMachineState *vms = VIRT_MACHINE(machine); 2092 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 2093 MachineClass *mc = MACHINE_GET_CLASS(machine); 2094 const CPUArchIdList *possible_cpus; 2095 MemoryRegion *sysmem = get_system_memory(); 2096 MemoryRegion *secure_sysmem = NULL; 2097 MemoryRegion *tag_sysmem = NULL; 2098 MemoryRegion *secure_tag_sysmem = NULL; 2099 int n, virt_max_cpus; 2100 bool firmware_loaded; 2101 bool aarch64 = true; 2102 bool has_ged = !vmc->no_ged; 2103 unsigned int smp_cpus = machine->smp.cpus; 2104 unsigned int max_cpus = machine->smp.max_cpus; 2105 2106 possible_cpus = mc->possible_cpu_arch_ids(machine); 2107 2108 /* 2109 * In accelerated mode, the memory map is computed earlier in kvm_type() 2110 * to create a VM with the right number of IPA bits. 2111 */ 2112 if (!vms->memmap) { 2113 Object *cpuobj; 2114 ARMCPU *armcpu; 2115 int pa_bits; 2116 2117 /* 2118 * Instantiate a temporary CPU object to find out about what 2119 * we are about to deal with. Once this is done, get rid of 2120 * the object. 2121 */ 2122 cpuobj = object_new(possible_cpus->cpus[0].type); 2123 armcpu = ARM_CPU(cpuobj); 2124 2125 pa_bits = arm_pamax(armcpu); 2126 2127 object_unref(cpuobj); 2128 2129 virt_set_memmap(vms, pa_bits); 2130 } 2131 2132 /* We can probe only here because during property set 2133 * KVM is not available yet 2134 */ 2135 finalize_gic_version(vms); 2136 2137 if (vms->secure) { 2138 /* 2139 * The Secure view of the world is the same as the NonSecure, 2140 * but with a few extra devices. Create it as a container region 2141 * containing the system memory at low priority; any secure-only 2142 * devices go in at higher priority and take precedence. 2143 */ 2144 secure_sysmem = g_new(MemoryRegion, 1); 2145 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 2146 UINT64_MAX); 2147 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 2148 } 2149 2150 firmware_loaded = virt_firmware_init(vms, sysmem, 2151 secure_sysmem ?: sysmem); 2152 2153 /* If we have an EL3 boot ROM then the assumption is that it will 2154 * implement PSCI itself, so disable QEMU's internal implementation 2155 * so it doesn't get in the way. Instead of starting secondary 2156 * CPUs in PSCI powerdown state we will start them all running and 2157 * let the boot ROM sort them out. 2158 * The usual case is that we do use QEMU's PSCI implementation; 2159 * if the guest has EL2 then we will use SMC as the conduit, 2160 * and otherwise we will use HVC (for backwards compatibility and 2161 * because if we're using KVM then we must use HVC). 2162 */ 2163 if (vms->secure && firmware_loaded) { 2164 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 2165 } else if (vms->virt) { 2166 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 2167 } else { 2168 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 2169 } 2170 2171 /* 2172 * The maximum number of CPUs depends on the GIC version, or on how 2173 * many redistributors we can fit into the memory map (which in turn 2174 * depends on whether this is a GICv3 or v4). 2175 */ 2176 if (vms->gic_version == VIRT_GIC_VERSION_2) { 2177 virt_max_cpus = GIC_NCPU; 2178 } else { 2179 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); 2180 if (vms->highmem_redists) { 2181 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 2182 } 2183 } 2184 2185 if (max_cpus > virt_max_cpus) { 2186 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 2187 "supported by machine 'mach-virt' (%d)", 2188 max_cpus, virt_max_cpus); 2189 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { 2190 error_printf("Try 'highmem-redists=on' for more CPUs\n"); 2191 } 2192 2193 exit(1); 2194 } 2195 2196 if (vms->secure && (kvm_enabled() || hvf_enabled())) { 2197 error_report("mach-virt: %s does not support providing " 2198 "Security extensions (TrustZone) to the guest CPU", 2199 current_accel_name()); 2200 exit(1); 2201 } 2202 2203 if (vms->virt && (kvm_enabled() || hvf_enabled())) { 2204 error_report("mach-virt: %s does not support providing " 2205 "Virtualization extensions to the guest CPU", 2206 current_accel_name()); 2207 exit(1); 2208 } 2209 2210 if (vms->mte && (kvm_enabled() || hvf_enabled())) { 2211 error_report("mach-virt: %s does not support providing " 2212 "MTE to the guest CPU", 2213 current_accel_name()); 2214 exit(1); 2215 } 2216 2217 create_fdt(vms); 2218 2219 assert(possible_cpus->len == max_cpus); 2220 for (n = 0; n < possible_cpus->len; n++) { 2221 Object *cpuobj; 2222 CPUState *cs; 2223 2224 if (n >= smp_cpus) { 2225 break; 2226 } 2227 2228 cpuobj = object_new(possible_cpus->cpus[n].type); 2229 object_property_set_int(cpuobj, "mp-affinity", 2230 possible_cpus->cpus[n].arch_id, NULL); 2231 2232 cs = CPU(cpuobj); 2233 cs->cpu_index = n; 2234 2235 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2236 &error_fatal); 2237 2238 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2239 2240 if (!vms->secure) { 2241 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2242 } 2243 2244 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2245 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2246 } 2247 2248 if (vmc->kvm_no_adjvtime && 2249 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2250 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2251 } 2252 2253 if (vmc->no_kvm_steal_time && 2254 object_property_find(cpuobj, "kvm-steal-time")) { 2255 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2256 } 2257 2258 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 2259 object_property_set_bool(cpuobj, "pmu", false, NULL); 2260 } 2261 2262 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { 2263 object_property_set_bool(cpuobj, "lpa2", false, NULL); 2264 } 2265 2266 if (object_property_find(cpuobj, "reset-cbar")) { 2267 object_property_set_int(cpuobj, "reset-cbar", 2268 vms->memmap[VIRT_CPUPERIPHS].base, 2269 &error_abort); 2270 } 2271 2272 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2273 &error_abort); 2274 if (vms->secure) { 2275 object_property_set_link(cpuobj, "secure-memory", 2276 OBJECT(secure_sysmem), &error_abort); 2277 } 2278 2279 if (vms->mte) { 2280 /* Create the memory region only once, but link to all cpus. */ 2281 if (!tag_sysmem) { 2282 /* 2283 * The property exists only if MemTag is supported. 2284 * If it is, we must allocate the ram to back that up. 2285 */ 2286 if (!object_property_find(cpuobj, "tag-memory")) { 2287 error_report("MTE requested, but not supported " 2288 "by the guest CPU"); 2289 exit(1); 2290 } 2291 2292 tag_sysmem = g_new(MemoryRegion, 1); 2293 memory_region_init(tag_sysmem, OBJECT(machine), 2294 "tag-memory", UINT64_MAX / 32); 2295 2296 if (vms->secure) { 2297 secure_tag_sysmem = g_new(MemoryRegion, 1); 2298 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2299 "secure-tag-memory", UINT64_MAX / 32); 2300 2301 /* As with ram, secure-tag takes precedence over tag. */ 2302 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2303 tag_sysmem, -1); 2304 } 2305 } 2306 2307 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2308 &error_abort); 2309 if (vms->secure) { 2310 object_property_set_link(cpuobj, "secure-tag-memory", 2311 OBJECT(secure_tag_sysmem), 2312 &error_abort); 2313 } 2314 } 2315 2316 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2317 object_unref(cpuobj); 2318 } 2319 2320 /* Now we've created the CPUs we can see if they have the hypvirt timer */ 2321 vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() && 2322 !vmc->no_ns_el2_virt_timer_irq; 2323 2324 fdt_add_timer_nodes(vms); 2325 fdt_add_cpu_nodes(vms); 2326 2327 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2328 machine->ram); 2329 2330 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2331 2332 create_gic(vms, sysmem); 2333 2334 virt_cpu_post_init(vms, sysmem); 2335 2336 fdt_add_pmu_nodes(vms); 2337 2338 /* 2339 * The first UART always exists. If the security extensions are 2340 * enabled, the second UART also always exists. Otherwise, it only exists 2341 * if a backend is configured explicitly via '-serial <backend>'. 2342 * This avoids potentially breaking existing user setups that expect 2343 * only one NonSecure UART to be present (for instance, older EDK2 2344 * binaries). 2345 * 2346 * The nodes end up in the DTB in reverse order of creation, so we must 2347 * create UART0 last to ensure it appears as the first node in the DTB, 2348 * for compatibility with guest software that just iterates through the 2349 * DTB to find the first UART, as older versions of EDK2 do. 2350 * DTB readers that follow the spec, as Linux does, should honour the 2351 * aliases node information and /chosen/stdout-path regardless of 2352 * the order that nodes appear in the DTB. 2353 * 2354 * For similar back-compatibility reasons, if UART1 is the secure UART 2355 * we create it second (and so it appears first in the DTB), because 2356 * that's what QEMU has always done. 2357 */ 2358 if (!vms->secure) { 2359 Chardev *serial1 = serial_hd(1); 2360 2361 if (serial1) { 2362 vms->second_ns_uart_present = true; 2363 create_uart(vms, VIRT_UART1, sysmem, serial1, false); 2364 } 2365 } 2366 create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false); 2367 if (vms->secure) { 2368 create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true); 2369 } 2370 2371 if (vms->secure) { 2372 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2373 } 2374 2375 if (tag_sysmem) { 2376 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2377 machine->ram_size, "mach-virt.tag"); 2378 } 2379 2380 vms->highmem_ecam &= (!firmware_loaded || aarch64); 2381 2382 create_rtc(vms); 2383 2384 create_pcie(vms); 2385 2386 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2387 vms->acpi_dev = create_acpi_ged(vms); 2388 } else { 2389 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2390 } 2391 2392 if (vms->secure && !vmc->no_secure_gpio) { 2393 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2394 } 2395 2396 /* connect powerdown request */ 2397 vms->powerdown_notifier.notify = virt_powerdown_req; 2398 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2399 2400 /* Create mmio transports, so the user can create virtio backends 2401 * (which will be automatically plugged in to the transports). If 2402 * no backend is created the transport will just sit harmlessly idle. 2403 */ 2404 create_virtio_devices(vms); 2405 2406 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2407 rom_set_fw(vms->fw_cfg); 2408 2409 create_platform_bus(vms); 2410 2411 if (machine->nvdimms_state->is_enabled) { 2412 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2413 .space_id = AML_AS_SYSTEM_MEMORY, 2414 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2415 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2416 }; 2417 2418 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2419 arm_virt_nvdimm_acpi_dsmio, 2420 vms->fw_cfg, OBJECT(vms)); 2421 } 2422 2423 vms->bootinfo.ram_size = machine->ram_size; 2424 vms->bootinfo.board_id = -1; 2425 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2426 vms->bootinfo.get_dtb = machvirt_dtb; 2427 vms->bootinfo.skip_dtb_autoload = true; 2428 vms->bootinfo.firmware_loaded = firmware_loaded; 2429 vms->bootinfo.psci_conduit = vms->psci_conduit; 2430 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2431 2432 vms->machine_done.notify = virt_machine_done; 2433 qemu_add_machine_init_done_notifier(&vms->machine_done); 2434 } 2435 2436 static bool virt_get_secure(Object *obj, Error **errp) 2437 { 2438 VirtMachineState *vms = VIRT_MACHINE(obj); 2439 2440 return vms->secure; 2441 } 2442 2443 static void virt_set_secure(Object *obj, bool value, Error **errp) 2444 { 2445 VirtMachineState *vms = VIRT_MACHINE(obj); 2446 2447 vms->secure = value; 2448 } 2449 2450 static bool virt_get_virt(Object *obj, Error **errp) 2451 { 2452 VirtMachineState *vms = VIRT_MACHINE(obj); 2453 2454 return vms->virt; 2455 } 2456 2457 static void virt_set_virt(Object *obj, bool value, Error **errp) 2458 { 2459 VirtMachineState *vms = VIRT_MACHINE(obj); 2460 2461 vms->virt = value; 2462 } 2463 2464 static bool virt_get_highmem(Object *obj, Error **errp) 2465 { 2466 VirtMachineState *vms = VIRT_MACHINE(obj); 2467 2468 return vms->highmem; 2469 } 2470 2471 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2472 { 2473 VirtMachineState *vms = VIRT_MACHINE(obj); 2474 2475 vms->highmem = value; 2476 } 2477 2478 static bool virt_get_compact_highmem(Object *obj, Error **errp) 2479 { 2480 VirtMachineState *vms = VIRT_MACHINE(obj); 2481 2482 return vms->highmem_compact; 2483 } 2484 2485 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) 2486 { 2487 VirtMachineState *vms = VIRT_MACHINE(obj); 2488 2489 vms->highmem_compact = value; 2490 } 2491 2492 static bool virt_get_highmem_redists(Object *obj, Error **errp) 2493 { 2494 VirtMachineState *vms = VIRT_MACHINE(obj); 2495 2496 return vms->highmem_redists; 2497 } 2498 2499 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) 2500 { 2501 VirtMachineState *vms = VIRT_MACHINE(obj); 2502 2503 vms->highmem_redists = value; 2504 } 2505 2506 static bool virt_get_highmem_ecam(Object *obj, Error **errp) 2507 { 2508 VirtMachineState *vms = VIRT_MACHINE(obj); 2509 2510 return vms->highmem_ecam; 2511 } 2512 2513 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) 2514 { 2515 VirtMachineState *vms = VIRT_MACHINE(obj); 2516 2517 vms->highmem_ecam = value; 2518 } 2519 2520 static bool virt_get_highmem_mmio(Object *obj, Error **errp) 2521 { 2522 VirtMachineState *vms = VIRT_MACHINE(obj); 2523 2524 return vms->highmem_mmio; 2525 } 2526 2527 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) 2528 { 2529 VirtMachineState *vms = VIRT_MACHINE(obj); 2530 2531 vms->highmem_mmio = value; 2532 } 2533 2534 2535 static bool virt_get_its(Object *obj, Error **errp) 2536 { 2537 VirtMachineState *vms = VIRT_MACHINE(obj); 2538 2539 return vms->its; 2540 } 2541 2542 static void virt_set_its(Object *obj, bool value, Error **errp) 2543 { 2544 VirtMachineState *vms = VIRT_MACHINE(obj); 2545 2546 vms->its = value; 2547 } 2548 2549 static bool virt_get_dtb_randomness(Object *obj, Error **errp) 2550 { 2551 VirtMachineState *vms = VIRT_MACHINE(obj); 2552 2553 return vms->dtb_randomness; 2554 } 2555 2556 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) 2557 { 2558 VirtMachineState *vms = VIRT_MACHINE(obj); 2559 2560 vms->dtb_randomness = value; 2561 } 2562 2563 static char *virt_get_oem_id(Object *obj, Error **errp) 2564 { 2565 VirtMachineState *vms = VIRT_MACHINE(obj); 2566 2567 return g_strdup(vms->oem_id); 2568 } 2569 2570 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2571 { 2572 VirtMachineState *vms = VIRT_MACHINE(obj); 2573 size_t len = strlen(value); 2574 2575 if (len > 6) { 2576 error_setg(errp, 2577 "User specified oem-id value is bigger than 6 bytes in size"); 2578 return; 2579 } 2580 2581 strncpy(vms->oem_id, value, 6); 2582 } 2583 2584 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2585 { 2586 VirtMachineState *vms = VIRT_MACHINE(obj); 2587 2588 return g_strdup(vms->oem_table_id); 2589 } 2590 2591 static void virt_set_oem_table_id(Object *obj, const char *value, 2592 Error **errp) 2593 { 2594 VirtMachineState *vms = VIRT_MACHINE(obj); 2595 size_t len = strlen(value); 2596 2597 if (len > 8) { 2598 error_setg(errp, 2599 "User specified oem-table-id value is bigger than 8 bytes in size"); 2600 return; 2601 } 2602 strncpy(vms->oem_table_id, value, 8); 2603 } 2604 2605 2606 bool virt_is_acpi_enabled(VirtMachineState *vms) 2607 { 2608 if (vms->acpi == ON_OFF_AUTO_OFF) { 2609 return false; 2610 } 2611 return true; 2612 } 2613 2614 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2615 void *opaque, Error **errp) 2616 { 2617 VirtMachineState *vms = VIRT_MACHINE(obj); 2618 OnOffAuto acpi = vms->acpi; 2619 2620 visit_type_OnOffAuto(v, name, &acpi, errp); 2621 } 2622 2623 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2624 void *opaque, Error **errp) 2625 { 2626 VirtMachineState *vms = VIRT_MACHINE(obj); 2627 2628 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2629 } 2630 2631 static bool virt_get_ras(Object *obj, Error **errp) 2632 { 2633 VirtMachineState *vms = VIRT_MACHINE(obj); 2634 2635 return vms->ras; 2636 } 2637 2638 static void virt_set_ras(Object *obj, bool value, Error **errp) 2639 { 2640 VirtMachineState *vms = VIRT_MACHINE(obj); 2641 2642 vms->ras = value; 2643 } 2644 2645 static bool virt_get_mte(Object *obj, Error **errp) 2646 { 2647 VirtMachineState *vms = VIRT_MACHINE(obj); 2648 2649 return vms->mte; 2650 } 2651 2652 static void virt_set_mte(Object *obj, bool value, Error **errp) 2653 { 2654 VirtMachineState *vms = VIRT_MACHINE(obj); 2655 2656 vms->mte = value; 2657 } 2658 2659 static char *virt_get_gic_version(Object *obj, Error **errp) 2660 { 2661 VirtMachineState *vms = VIRT_MACHINE(obj); 2662 const char *val; 2663 2664 switch (vms->gic_version) { 2665 case VIRT_GIC_VERSION_4: 2666 val = "4"; 2667 break; 2668 case VIRT_GIC_VERSION_3: 2669 val = "3"; 2670 break; 2671 default: 2672 val = "2"; 2673 break; 2674 } 2675 return g_strdup(val); 2676 } 2677 2678 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2679 { 2680 VirtMachineState *vms = VIRT_MACHINE(obj); 2681 2682 if (!strcmp(value, "4")) { 2683 vms->gic_version = VIRT_GIC_VERSION_4; 2684 } else if (!strcmp(value, "3")) { 2685 vms->gic_version = VIRT_GIC_VERSION_3; 2686 } else if (!strcmp(value, "2")) { 2687 vms->gic_version = VIRT_GIC_VERSION_2; 2688 } else if (!strcmp(value, "host")) { 2689 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2690 } else if (!strcmp(value, "max")) { 2691 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2692 } else { 2693 error_setg(errp, "Invalid gic-version value"); 2694 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2695 } 2696 } 2697 2698 static char *virt_get_iommu(Object *obj, Error **errp) 2699 { 2700 VirtMachineState *vms = VIRT_MACHINE(obj); 2701 2702 switch (vms->iommu) { 2703 case VIRT_IOMMU_NONE: 2704 return g_strdup("none"); 2705 case VIRT_IOMMU_SMMUV3: 2706 return g_strdup("smmuv3"); 2707 default: 2708 g_assert_not_reached(); 2709 } 2710 } 2711 2712 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2713 { 2714 VirtMachineState *vms = VIRT_MACHINE(obj); 2715 2716 if (!strcmp(value, "smmuv3")) { 2717 vms->iommu = VIRT_IOMMU_SMMUV3; 2718 } else if (!strcmp(value, "none")) { 2719 vms->iommu = VIRT_IOMMU_NONE; 2720 } else { 2721 error_setg(errp, "Invalid iommu value"); 2722 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2723 } 2724 } 2725 2726 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2727 { 2728 VirtMachineState *vms = VIRT_MACHINE(obj); 2729 2730 return vms->default_bus_bypass_iommu; 2731 } 2732 2733 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2734 Error **errp) 2735 { 2736 VirtMachineState *vms = VIRT_MACHINE(obj); 2737 2738 vms->default_bus_bypass_iommu = value; 2739 } 2740 2741 static CpuInstanceProperties 2742 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2743 { 2744 MachineClass *mc = MACHINE_GET_CLASS(ms); 2745 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2746 2747 assert(cpu_index < possible_cpus->len); 2748 return possible_cpus->cpus[cpu_index].props; 2749 } 2750 2751 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2752 { 2753 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; 2754 2755 return socket_id % ms->numa_state->num_nodes; 2756 } 2757 2758 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2759 { 2760 int n; 2761 unsigned int max_cpus = ms->smp.max_cpus; 2762 VirtMachineState *vms = VIRT_MACHINE(ms); 2763 MachineClass *mc = MACHINE_GET_CLASS(vms); 2764 2765 if (ms->possible_cpus) { 2766 assert(ms->possible_cpus->len == max_cpus); 2767 return ms->possible_cpus; 2768 } 2769 2770 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2771 sizeof(CPUArchId) * max_cpus); 2772 ms->possible_cpus->len = max_cpus; 2773 for (n = 0; n < ms->possible_cpus->len; n++) { 2774 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2775 ms->possible_cpus->cpus[n].arch_id = 2776 virt_cpu_mp_affinity(vms, n); 2777 2778 assert(!mc->smp_props.dies_supported); 2779 ms->possible_cpus->cpus[n].props.has_socket_id = true; 2780 ms->possible_cpus->cpus[n].props.socket_id = 2781 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); 2782 ms->possible_cpus->cpus[n].props.has_cluster_id = true; 2783 ms->possible_cpus->cpus[n].props.cluster_id = 2784 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; 2785 ms->possible_cpus->cpus[n].props.has_core_id = true; 2786 ms->possible_cpus->cpus[n].props.core_id = 2787 (n / ms->smp.threads) % ms->smp.cores; 2788 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2789 ms->possible_cpus->cpus[n].props.thread_id = 2790 n % ms->smp.threads; 2791 } 2792 return ms->possible_cpus; 2793 } 2794 2795 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2796 Error **errp) 2797 { 2798 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2799 const MachineState *ms = MACHINE(hotplug_dev); 2800 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2801 2802 if (!vms->acpi_dev) { 2803 error_setg(errp, 2804 "memory hotplug is not enabled: missing acpi-ged device"); 2805 return; 2806 } 2807 2808 if (vms->mte) { 2809 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2810 return; 2811 } 2812 2813 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2814 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2815 return; 2816 } 2817 2818 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp); 2819 } 2820 2821 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2822 DeviceState *dev, Error **errp) 2823 { 2824 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2825 MachineState *ms = MACHINE(hotplug_dev); 2826 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2827 2828 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2829 2830 if (is_nvdimm) { 2831 nvdimm_plug(ms->nvdimms_state); 2832 } 2833 2834 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2835 dev, &error_abort); 2836 } 2837 2838 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2839 DeviceState *dev, Error **errp) 2840 { 2841 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2842 2843 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2844 virt_memory_pre_plug(hotplug_dev, dev, errp); 2845 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2846 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2847 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2848 hwaddr db_start = 0, db_end = 0; 2849 QList *reserved_regions; 2850 char *resv_prop_str; 2851 2852 if (vms->iommu != VIRT_IOMMU_NONE) { 2853 error_setg(errp, "virt machine does not support multiple IOMMUs"); 2854 return; 2855 } 2856 2857 switch (vms->msi_controller) { 2858 case VIRT_MSI_CTRL_NONE: 2859 return; 2860 case VIRT_MSI_CTRL_ITS: 2861 /* GITS_TRANSLATER page */ 2862 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2863 db_end = base_memmap[VIRT_GIC_ITS].base + 2864 base_memmap[VIRT_GIC_ITS].size - 1; 2865 break; 2866 case VIRT_MSI_CTRL_GICV2M: 2867 /* MSI_SETSPI_NS page */ 2868 db_start = base_memmap[VIRT_GIC_V2M].base; 2869 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2870 break; 2871 } 2872 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2873 db_start, db_end, 2874 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2875 2876 reserved_regions = qlist_new(); 2877 qlist_append_str(reserved_regions, resv_prop_str); 2878 qdev_prop_set_array(dev, "reserved-regions", reserved_regions); 2879 g_free(resv_prop_str); 2880 } 2881 } 2882 2883 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2884 DeviceState *dev, Error **errp) 2885 { 2886 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2887 2888 if (vms->platform_bus_dev) { 2889 MachineClass *mc = MACHINE_GET_CLASS(vms); 2890 2891 if (device_is_dynamic_sysbus(mc, dev)) { 2892 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2893 SYS_BUS_DEVICE(dev)); 2894 } 2895 } 2896 2897 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2898 virt_memory_plug(hotplug_dev, dev, errp); 2899 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2900 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2901 } 2902 2903 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2904 PCIDevice *pdev = PCI_DEVICE(dev); 2905 2906 vms->iommu = VIRT_IOMMU_VIRTIO; 2907 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2908 create_virtio_iommu_dt_bindings(vms); 2909 } 2910 } 2911 2912 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2913 DeviceState *dev, Error **errp) 2914 { 2915 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2916 2917 if (!vms->acpi_dev) { 2918 error_setg(errp, 2919 "memory hotplug is not enabled: missing acpi-ged device"); 2920 return; 2921 } 2922 2923 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2924 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 2925 return; 2926 } 2927 2928 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2929 errp); 2930 } 2931 2932 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2933 DeviceState *dev, Error **errp) 2934 { 2935 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2936 Error *local_err = NULL; 2937 2938 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2939 if (local_err) { 2940 goto out; 2941 } 2942 2943 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2944 qdev_unrealize(dev); 2945 2946 out: 2947 error_propagate(errp, local_err); 2948 } 2949 2950 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2951 DeviceState *dev, Error **errp) 2952 { 2953 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2954 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2955 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2956 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), 2957 errp); 2958 } else { 2959 error_setg(errp, "device unplug request for unsupported device" 2960 " type: %s", object_get_typename(OBJECT(dev))); 2961 } 2962 } 2963 2964 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2965 DeviceState *dev, Error **errp) 2966 { 2967 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2968 virt_dimm_unplug(hotplug_dev, dev, errp); 2969 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2970 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2971 } else { 2972 error_setg(errp, "virt: device unplug for unsupported device" 2973 " type: %s", object_get_typename(OBJECT(dev))); 2974 } 2975 } 2976 2977 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2978 DeviceState *dev) 2979 { 2980 MachineClass *mc = MACHINE_GET_CLASS(machine); 2981 2982 if (device_is_dynamic_sysbus(mc, dev) || 2983 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2984 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || 2985 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2986 return HOTPLUG_HANDLER(machine); 2987 } 2988 return NULL; 2989 } 2990 2991 /* 2992 * for arm64 kvm_type [7-0] encodes the requested number of bits 2993 * in the IPA address space 2994 */ 2995 static int virt_kvm_type(MachineState *ms, const char *type_str) 2996 { 2997 VirtMachineState *vms = VIRT_MACHINE(ms); 2998 int max_vm_pa_size, requested_pa_size; 2999 bool fixed_ipa; 3000 3001 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 3002 3003 /* we freeze the memory map to compute the highest gpa */ 3004 virt_set_memmap(vms, max_vm_pa_size); 3005 3006 requested_pa_size = 64 - clz64(vms->highest_gpa); 3007 3008 /* 3009 * KVM requires the IPA size to be at least 32 bits. 3010 */ 3011 if (requested_pa_size < 32) { 3012 requested_pa_size = 32; 3013 } 3014 3015 if (requested_pa_size > max_vm_pa_size) { 3016 error_report("-m and ,maxmem option values " 3017 "require an IPA range (%d bits) larger than " 3018 "the one supported by the host (%d bits)", 3019 requested_pa_size, max_vm_pa_size); 3020 return -1; 3021 } 3022 /* 3023 * We return the requested PA log size, unless KVM only supports 3024 * the implicit legacy 40b IPA setting, in which case the kvm_type 3025 * must be 0. 3026 */ 3027 return fixed_ipa ? 0 : requested_pa_size; 3028 } 3029 3030 static void virt_machine_class_init(ObjectClass *oc, void *data) 3031 { 3032 MachineClass *mc = MACHINE_CLASS(oc); 3033 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3034 static const char * const valid_cpu_types[] = { 3035 #ifdef CONFIG_TCG 3036 ARM_CPU_TYPE_NAME("cortex-a7"), 3037 ARM_CPU_TYPE_NAME("cortex-a15"), 3038 #ifdef TARGET_AARCH64 3039 ARM_CPU_TYPE_NAME("cortex-a35"), 3040 ARM_CPU_TYPE_NAME("cortex-a55"), 3041 ARM_CPU_TYPE_NAME("cortex-a72"), 3042 ARM_CPU_TYPE_NAME("cortex-a76"), 3043 ARM_CPU_TYPE_NAME("cortex-a710"), 3044 ARM_CPU_TYPE_NAME("a64fx"), 3045 ARM_CPU_TYPE_NAME("neoverse-n1"), 3046 ARM_CPU_TYPE_NAME("neoverse-v1"), 3047 ARM_CPU_TYPE_NAME("neoverse-n2"), 3048 #endif /* TARGET_AARCH64 */ 3049 #endif /* CONFIG_TCG */ 3050 #ifdef TARGET_AARCH64 3051 ARM_CPU_TYPE_NAME("cortex-a53"), 3052 ARM_CPU_TYPE_NAME("cortex-a57"), 3053 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 3054 ARM_CPU_TYPE_NAME("host"), 3055 #endif /* CONFIG_KVM || CONFIG_HVF */ 3056 #endif /* TARGET_AARCH64 */ 3057 ARM_CPU_TYPE_NAME("max"), 3058 NULL 3059 }; 3060 3061 mc->init = machvirt_init; 3062 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 3063 * The value may be reduced later when we have more information about the 3064 * configuration of the particular instance. 3065 */ 3066 mc->max_cpus = 512; 3067 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 3068 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 3069 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 3070 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 3071 #ifdef CONFIG_TPM 3072 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 3073 #endif 3074 mc->block_default_type = IF_VIRTIO; 3075 mc->no_cdrom = 1; 3076 mc->pci_allow_0_address = true; 3077 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 3078 mc->minimum_page_bits = 12; 3079 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 3080 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 3081 #ifdef CONFIG_TCG 3082 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 3083 #else 3084 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); 3085 #endif 3086 mc->valid_cpu_types = valid_cpu_types; 3087 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 3088 mc->kvm_type = virt_kvm_type; 3089 assert(!mc->get_hotplug_handler); 3090 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 3091 hc->pre_plug = virt_machine_device_pre_plug_cb; 3092 hc->plug = virt_machine_device_plug_cb; 3093 hc->unplug_request = virt_machine_device_unplug_request_cb; 3094 hc->unplug = virt_machine_device_unplug_cb; 3095 mc->nvdimm_supported = true; 3096 mc->smp_props.clusters_supported = true; 3097 mc->auto_enable_numa_with_memhp = true; 3098 mc->auto_enable_numa_with_memdev = true; 3099 /* platform instead of architectural choice */ 3100 mc->cpu_cluster_has_numa_boundary = true; 3101 mc->default_ram_id = "mach-virt.ram"; 3102 mc->default_nic = "virtio-net-pci"; 3103 3104 object_class_property_add(oc, "acpi", "OnOffAuto", 3105 virt_get_acpi, virt_set_acpi, 3106 NULL, NULL); 3107 object_class_property_set_description(oc, "acpi", 3108 "Enable ACPI"); 3109 object_class_property_add_bool(oc, "secure", virt_get_secure, 3110 virt_set_secure); 3111 object_class_property_set_description(oc, "secure", 3112 "Set on/off to enable/disable the ARM " 3113 "Security Extensions (TrustZone)"); 3114 3115 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 3116 virt_set_virt); 3117 object_class_property_set_description(oc, "virtualization", 3118 "Set on/off to enable/disable emulating a " 3119 "guest CPU which implements the ARM " 3120 "Virtualization Extensions"); 3121 3122 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 3123 virt_set_highmem); 3124 object_class_property_set_description(oc, "highmem", 3125 "Set on/off to enable/disable using " 3126 "physical address space above 32 bits"); 3127 3128 object_class_property_add_bool(oc, "compact-highmem", 3129 virt_get_compact_highmem, 3130 virt_set_compact_highmem); 3131 object_class_property_set_description(oc, "compact-highmem", 3132 "Set on/off to enable/disable compact " 3133 "layout for high memory regions"); 3134 3135 object_class_property_add_bool(oc, "highmem-redists", 3136 virt_get_highmem_redists, 3137 virt_set_highmem_redists); 3138 object_class_property_set_description(oc, "highmem-redists", 3139 "Set on/off to enable/disable high " 3140 "memory region for GICv3 or GICv4 " 3141 "redistributor"); 3142 3143 object_class_property_add_bool(oc, "highmem-ecam", 3144 virt_get_highmem_ecam, 3145 virt_set_highmem_ecam); 3146 object_class_property_set_description(oc, "highmem-ecam", 3147 "Set on/off to enable/disable high " 3148 "memory region for PCI ECAM"); 3149 3150 object_class_property_add_bool(oc, "highmem-mmio", 3151 virt_get_highmem_mmio, 3152 virt_set_highmem_mmio); 3153 object_class_property_set_description(oc, "highmem-mmio", 3154 "Set on/off to enable/disable high " 3155 "memory region for PCI MMIO"); 3156 3157 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 3158 virt_set_gic_version); 3159 object_class_property_set_description(oc, "gic-version", 3160 "Set GIC version. " 3161 "Valid values are 2, 3, 4, host and max"); 3162 3163 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 3164 object_class_property_set_description(oc, "iommu", 3165 "Set the IOMMU type. " 3166 "Valid values are none and smmuv3"); 3167 3168 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 3169 virt_get_default_bus_bypass_iommu, 3170 virt_set_default_bus_bypass_iommu); 3171 object_class_property_set_description(oc, "default-bus-bypass-iommu", 3172 "Set on/off to enable/disable " 3173 "bypass_iommu for default root bus"); 3174 3175 object_class_property_add_bool(oc, "ras", virt_get_ras, 3176 virt_set_ras); 3177 object_class_property_set_description(oc, "ras", 3178 "Set on/off to enable/disable reporting host memory errors " 3179 "to a KVM guest using ACPI and guest external abort exceptions"); 3180 3181 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 3182 object_class_property_set_description(oc, "mte", 3183 "Set on/off to enable/disable emulating a " 3184 "guest CPU which implements the ARM " 3185 "Memory Tagging Extension"); 3186 3187 object_class_property_add_bool(oc, "its", virt_get_its, 3188 virt_set_its); 3189 object_class_property_set_description(oc, "its", 3190 "Set on/off to enable/disable " 3191 "ITS instantiation"); 3192 3193 object_class_property_add_bool(oc, "dtb-randomness", 3194 virt_get_dtb_randomness, 3195 virt_set_dtb_randomness); 3196 object_class_property_set_description(oc, "dtb-randomness", 3197 "Set off to disable passing random or " 3198 "non-deterministic dtb nodes to guest"); 3199 3200 object_class_property_add_bool(oc, "dtb-kaslr-seed", 3201 virt_get_dtb_randomness, 3202 virt_set_dtb_randomness); 3203 object_class_property_set_description(oc, "dtb-kaslr-seed", 3204 "Deprecated synonym of dtb-randomness"); 3205 3206 object_class_property_add_str(oc, "x-oem-id", 3207 virt_get_oem_id, 3208 virt_set_oem_id); 3209 object_class_property_set_description(oc, "x-oem-id", 3210 "Override the default value of field OEMID " 3211 "in ACPI table header." 3212 "The string may be up to 6 bytes in size"); 3213 3214 3215 object_class_property_add_str(oc, "x-oem-table-id", 3216 virt_get_oem_table_id, 3217 virt_set_oem_table_id); 3218 object_class_property_set_description(oc, "x-oem-table-id", 3219 "Override the default value of field OEM Table ID " 3220 "in ACPI table header." 3221 "The string may be up to 8 bytes in size"); 3222 3223 } 3224 3225 static void virt_instance_init(Object *obj) 3226 { 3227 VirtMachineState *vms = VIRT_MACHINE(obj); 3228 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 3229 3230 /* EL3 is disabled by default on virt: this makes us consistent 3231 * between KVM and TCG for this board, and it also allows us to 3232 * boot UEFI blobs which assume no TrustZone support. 3233 */ 3234 vms->secure = false; 3235 3236 /* EL2 is also disabled by default, for similar reasons */ 3237 vms->virt = false; 3238 3239 /* High memory is enabled by default */ 3240 vms->highmem = true; 3241 vms->highmem_compact = !vmc->no_highmem_compact; 3242 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 3243 3244 vms->highmem_ecam = !vmc->no_highmem_ecam; 3245 vms->highmem_mmio = true; 3246 vms->highmem_redists = true; 3247 3248 if (vmc->no_its) { 3249 vms->its = false; 3250 } else { 3251 /* Default allows ITS instantiation */ 3252 vms->its = true; 3253 3254 if (vmc->no_tcg_its) { 3255 vms->tcg_its = false; 3256 } else { 3257 vms->tcg_its = true; 3258 } 3259 } 3260 3261 /* Default disallows iommu instantiation */ 3262 vms->iommu = VIRT_IOMMU_NONE; 3263 3264 /* The default root bus is attached to iommu by default */ 3265 vms->default_bus_bypass_iommu = false; 3266 3267 /* Default disallows RAS instantiation */ 3268 vms->ras = false; 3269 3270 /* MTE is disabled by default. */ 3271 vms->mte = false; 3272 3273 /* Supply kaslr-seed and rng-seed by default */ 3274 vms->dtb_randomness = true; 3275 3276 vms->irqmap = a15irqmap; 3277 3278 virt_flash_create(vms); 3279 3280 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 3281 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 3282 } 3283 3284 static const TypeInfo virt_machine_info = { 3285 .name = TYPE_VIRT_MACHINE, 3286 .parent = TYPE_MACHINE, 3287 .abstract = true, 3288 .instance_size = sizeof(VirtMachineState), 3289 .class_size = sizeof(VirtMachineClass), 3290 .class_init = virt_machine_class_init, 3291 .instance_init = virt_instance_init, 3292 .interfaces = (InterfaceInfo[]) { 3293 { TYPE_HOTPLUG_HANDLER }, 3294 { } 3295 }, 3296 }; 3297 3298 static void machvirt_machine_init(void) 3299 { 3300 type_register_static(&virt_machine_info); 3301 } 3302 type_init(machvirt_machine_init); 3303 3304 static void virt_machine_9_1_options(MachineClass *mc) 3305 { 3306 } 3307 DEFINE_VIRT_MACHINE_AS_LATEST(9, 1) 3308 3309 static void virt_machine_9_0_options(MachineClass *mc) 3310 { 3311 virt_machine_9_1_options(mc); 3312 mc->smbios_memory_device_size = 16 * GiB; 3313 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); 3314 } 3315 DEFINE_VIRT_MACHINE(9, 0) 3316 3317 static void virt_machine_8_2_options(MachineClass *mc) 3318 { 3319 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3320 3321 virt_machine_9_0_options(mc); 3322 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 3323 /* 3324 * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and 3325 * earlier machines. (Exposing it tickles a bug in older EDK2 3326 * guest BIOS binaries.) 3327 */ 3328 vmc->no_ns_el2_virt_timer_irq = true; 3329 } 3330 DEFINE_VIRT_MACHINE(8, 2) 3331 3332 static void virt_machine_8_1_options(MachineClass *mc) 3333 { 3334 virt_machine_8_2_options(mc); 3335 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 3336 } 3337 DEFINE_VIRT_MACHINE(8, 1) 3338 3339 static void virt_machine_8_0_options(MachineClass *mc) 3340 { 3341 virt_machine_8_1_options(mc); 3342 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 3343 } 3344 DEFINE_VIRT_MACHINE(8, 0) 3345 3346 static void virt_machine_7_2_options(MachineClass *mc) 3347 { 3348 virt_machine_8_0_options(mc); 3349 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 3350 } 3351 DEFINE_VIRT_MACHINE(7, 2) 3352 3353 static void virt_machine_7_1_options(MachineClass *mc) 3354 { 3355 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3356 3357 virt_machine_7_2_options(mc); 3358 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 3359 /* Compact layout for high memory regions was introduced with 7.2 */ 3360 vmc->no_highmem_compact = true; 3361 } 3362 DEFINE_VIRT_MACHINE(7, 1) 3363 3364 static void virt_machine_7_0_options(MachineClass *mc) 3365 { 3366 virt_machine_7_1_options(mc); 3367 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 3368 } 3369 DEFINE_VIRT_MACHINE(7, 0) 3370 3371 static void virt_machine_6_2_options(MachineClass *mc) 3372 { 3373 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3374 3375 virt_machine_7_0_options(mc); 3376 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 3377 vmc->no_tcg_lpa2 = true; 3378 } 3379 DEFINE_VIRT_MACHINE(6, 2) 3380 3381 static void virt_machine_6_1_options(MachineClass *mc) 3382 { 3383 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3384 3385 virt_machine_6_2_options(mc); 3386 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 3387 mc->smp_props.prefer_sockets = true; 3388 vmc->no_cpu_topology = true; 3389 3390 /* qemu ITS was introduced with 6.2 */ 3391 vmc->no_tcg_its = true; 3392 } 3393 DEFINE_VIRT_MACHINE(6, 1) 3394 3395 static void virt_machine_6_0_options(MachineClass *mc) 3396 { 3397 virt_machine_6_1_options(mc); 3398 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 3399 } 3400 DEFINE_VIRT_MACHINE(6, 0) 3401 3402 static void virt_machine_5_2_options(MachineClass *mc) 3403 { 3404 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3405 3406 virt_machine_6_0_options(mc); 3407 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 3408 vmc->no_secure_gpio = true; 3409 } 3410 DEFINE_VIRT_MACHINE(5, 2) 3411 3412 static void virt_machine_5_1_options(MachineClass *mc) 3413 { 3414 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3415 3416 virt_machine_5_2_options(mc); 3417 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 3418 vmc->no_kvm_steal_time = true; 3419 } 3420 DEFINE_VIRT_MACHINE(5, 1) 3421 3422 static void virt_machine_5_0_options(MachineClass *mc) 3423 { 3424 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3425 3426 virt_machine_5_1_options(mc); 3427 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 3428 mc->numa_mem_supported = true; 3429 vmc->acpi_expose_flash = true; 3430 mc->auto_enable_numa_with_memdev = false; 3431 } 3432 DEFINE_VIRT_MACHINE(5, 0) 3433 3434 static void virt_machine_4_2_options(MachineClass *mc) 3435 { 3436 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3437 3438 virt_machine_5_0_options(mc); 3439 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 3440 vmc->kvm_no_adjvtime = true; 3441 } 3442 DEFINE_VIRT_MACHINE(4, 2) 3443 3444 static void virt_machine_4_1_options(MachineClass *mc) 3445 { 3446 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3447 3448 virt_machine_4_2_options(mc); 3449 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 3450 vmc->no_ged = true; 3451 mc->auto_enable_numa_with_memhp = false; 3452 } 3453 DEFINE_VIRT_MACHINE(4, 1) 3454 3455 static void virt_machine_4_0_options(MachineClass *mc) 3456 { 3457 virt_machine_4_1_options(mc); 3458 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 3459 } 3460 DEFINE_VIRT_MACHINE(4, 0) 3461 3462 static void virt_machine_3_1_options(MachineClass *mc) 3463 { 3464 virt_machine_4_0_options(mc); 3465 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 3466 } 3467 DEFINE_VIRT_MACHINE(3, 1) 3468 3469 static void virt_machine_3_0_options(MachineClass *mc) 3470 { 3471 virt_machine_3_1_options(mc); 3472 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 3473 } 3474 DEFINE_VIRT_MACHINE(3, 0) 3475 3476 static void virt_machine_2_12_options(MachineClass *mc) 3477 { 3478 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3479 3480 virt_machine_3_0_options(mc); 3481 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 3482 vmc->no_highmem_ecam = true; 3483 mc->max_cpus = 255; 3484 } 3485 DEFINE_VIRT_MACHINE(2, 12) 3486 3487 static void virt_machine_2_11_options(MachineClass *mc) 3488 { 3489 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3490 3491 virt_machine_2_12_options(mc); 3492 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 3493 vmc->smbios_old_sys_ver = true; 3494 } 3495 DEFINE_VIRT_MACHINE(2, 11) 3496 3497 static void virt_machine_2_10_options(MachineClass *mc) 3498 { 3499 virt_machine_2_11_options(mc); 3500 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 3501 /* before 2.11 we never faulted accesses to bad addresses */ 3502 mc->ignore_memory_transaction_failures = true; 3503 } 3504 DEFINE_VIRT_MACHINE(2, 10) 3505 3506 static void virt_machine_2_9_options(MachineClass *mc) 3507 { 3508 virt_machine_2_10_options(mc); 3509 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 3510 } 3511 DEFINE_VIRT_MACHINE(2, 9) 3512 3513 static void virt_machine_2_8_options(MachineClass *mc) 3514 { 3515 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3516 3517 virt_machine_2_9_options(mc); 3518 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 3519 /* For 2.8 and earlier we falsely claimed in the DT that 3520 * our timers were edge-triggered, not level-triggered. 3521 */ 3522 vmc->claim_edge_triggered_timers = true; 3523 } 3524 DEFINE_VIRT_MACHINE(2, 8) 3525 3526 static void virt_machine_2_7_options(MachineClass *mc) 3527 { 3528 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3529 3530 virt_machine_2_8_options(mc); 3531 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 3532 /* ITS was introduced with 2.8 */ 3533 vmc->no_its = true; 3534 /* Stick with 1K pages for migration compatibility */ 3535 mc->minimum_page_bits = 0; 3536 } 3537 DEFINE_VIRT_MACHINE(2, 7) 3538 3539 static void virt_machine_2_6_options(MachineClass *mc) 3540 { 3541 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3542 3543 virt_machine_2_7_options(mc); 3544 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 3545 vmc->disallow_affinity_adjustment = true; 3546 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 3547 vmc->no_pmu = true; 3548 } 3549 DEFINE_VIRT_MACHINE(2, 6) 3550