xref: /openbmc/qemu/hw/arm/virt.c (revision e2f948a8)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
46 #include "net/net.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/tpm.h"
51 #include "sysemu/kvm.h"
52 #include "hw/loader.h"
53 #include "qapi/error.h"
54 #include "qemu/bitops.h"
55 #include "qemu/error-report.h"
56 #include "qemu/module.h"
57 #include "hw/pci-host/gpex.h"
58 #include "hw/virtio/virtio-pci.h"
59 #include "hw/arm/sysbus-fdt.h"
60 #include "hw/platform-bus.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/arm/fdt.h"
63 #include "hw/intc/arm_gic.h"
64 #include "hw/intc/arm_gicv3_common.h"
65 #include "hw/irq.h"
66 #include "kvm_arm.h"
67 #include "hw/firmware/smbios.h"
68 #include "qapi/visitor.h"
69 #include "qapi/qapi-visit-common.h"
70 #include "standard-headers/linux/input.h"
71 #include "hw/arm/smmuv3.h"
72 #include "hw/acpi/acpi.h"
73 #include "target/arm/internals.h"
74 #include "hw/mem/pc-dimm.h"
75 #include "hw/mem/nvdimm.h"
76 #include "hw/acpi/generic_event_device.h"
77 #include "hw/virtio/virtio-iommu.h"
78 #include "hw/char/pl011.h"
79 #include "qemu/guest-random.h"
80 
81 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
82     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
83                                                     void *data) \
84     { \
85         MachineClass *mc = MACHINE_CLASS(oc); \
86         virt_machine_##major##_##minor##_options(mc); \
87         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
88         if (latest) { \
89             mc->alias = "virt"; \
90         } \
91     } \
92     static const TypeInfo machvirt_##major##_##minor##_info = { \
93         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
94         .parent = TYPE_VIRT_MACHINE, \
95         .class_init = virt_##major##_##minor##_class_init, \
96     }; \
97     static void machvirt_machine_##major##_##minor##_init(void) \
98     { \
99         type_register_static(&machvirt_##major##_##minor##_info); \
100     } \
101     type_init(machvirt_machine_##major##_##minor##_init);
102 
103 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
104     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
105 #define DEFINE_VIRT_MACHINE(major, minor) \
106     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
107 
108 
109 /* Number of external interrupt lines to configure the GIC with */
110 #define NUM_IRQS 256
111 
112 #define PLATFORM_BUS_NUM_IRQS 64
113 
114 /* Legacy RAM limit in GB (< version 4.0) */
115 #define LEGACY_RAMLIMIT_GB 255
116 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
117 
118 /* Addresses and sizes of our components.
119  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
120  * 128MB..256MB is used for miscellaneous device I/O.
121  * 256MB..1GB is reserved for possible future PCI support (ie where the
122  * PCI memory window will go if we add a PCI host controller).
123  * 1GB and up is RAM (which may happily spill over into the
124  * high memory region beyond 4GB).
125  * This represents a compromise between how much RAM can be given to
126  * a 32 bit VM and leaving space for expansion and in particular for PCI.
127  * Note that devices should generally be placed at multiples of 0x10000,
128  * to accommodate guests using 64K pages.
129  */
130 static const MemMapEntry base_memmap[] = {
131     /* Space up to 0x8000000 is reserved for a boot ROM */
132     [VIRT_FLASH] =              {          0, 0x08000000 },
133     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
134     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
135     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
136     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
137     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
138     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
139     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
140     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
141     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
142     /* This redistributor space allows up to 2*64kB*123 CPUs */
143     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
144     [VIRT_UART] =               { 0x09000000, 0x00001000 },
145     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
146     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
147     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
148     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
149     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
150     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
151     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
152     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
153     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
154     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
155     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
156     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
157     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
158     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
159     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
160     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
161     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
162     /* Actual RAM size depends on initial RAM and device memory settings */
163     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
164 };
165 
166 /*
167  * Highmem IO Regions: This memory map is floating, located after the RAM.
168  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
169  * top of the RAM, so that its base get the same alignment as the size,
170  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
171  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
172  * Note the extended_memmap is sized so that it eventually also includes the
173  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
174  * index of base_memmap).
175  */
176 static MemMapEntry extended_memmap[] = {
177     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
178     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
179     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
180     /* Second PCIe window */
181     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
182 };
183 
184 static const int a15irqmap[] = {
185     [VIRT_UART] = 1,
186     [VIRT_RTC] = 2,
187     [VIRT_PCIE] = 3, /* ... to 6 */
188     [VIRT_GPIO] = 7,
189     [VIRT_SECURE_UART] = 8,
190     [VIRT_ACPI_GED] = 9,
191     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
192     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
193     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
194     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
195 };
196 
197 static const char *valid_cpus[] = {
198     ARM_CPU_TYPE_NAME("cortex-a7"),
199     ARM_CPU_TYPE_NAME("cortex-a15"),
200     ARM_CPU_TYPE_NAME("cortex-a53"),
201     ARM_CPU_TYPE_NAME("cortex-a57"),
202     ARM_CPU_TYPE_NAME("cortex-a72"),
203     ARM_CPU_TYPE_NAME("host"),
204     ARM_CPU_TYPE_NAME("max"),
205 };
206 
207 static bool cpu_type_valid(const char *cpu)
208 {
209     int i;
210 
211     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
212         if (strcmp(cpu, valid_cpus[i]) == 0) {
213             return true;
214         }
215     }
216     return false;
217 }
218 
219 static void create_kaslr_seed(MachineState *ms, const char *node)
220 {
221     uint64_t seed;
222 
223     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
224         return;
225     }
226     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed);
227 }
228 
229 static void create_fdt(VirtMachineState *vms)
230 {
231     MachineState *ms = MACHINE(vms);
232     int nb_numa_nodes = ms->numa_state->num_nodes;
233     void *fdt = create_device_tree(&vms->fdt_size);
234 
235     if (!fdt) {
236         error_report("create_device_tree() failed");
237         exit(1);
238     }
239 
240     ms->fdt = fdt;
241 
242     /* Header */
243     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
244     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
245     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
246 
247     /* /chosen must exist for load_dtb to fill in necessary properties later */
248     qemu_fdt_add_subnode(fdt, "/chosen");
249     create_kaslr_seed(ms, "/chosen");
250 
251     if (vms->secure) {
252         qemu_fdt_add_subnode(fdt, "/secure-chosen");
253         create_kaslr_seed(ms, "/secure-chosen");
254     }
255 
256     /* Clock node, for the benefit of the UART. The kernel device tree
257      * binding documentation claims the PL011 node clock properties are
258      * optional but in practice if you omit them the kernel refuses to
259      * probe for the device.
260      */
261     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
262     qemu_fdt_add_subnode(fdt, "/apb-pclk");
263     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
264     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
265     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
266     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
267                                 "clk24mhz");
268     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
269 
270     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
271         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
272         uint32_t *matrix = g_malloc0(size);
273         int idx, i, j;
274 
275         for (i = 0; i < nb_numa_nodes; i++) {
276             for (j = 0; j < nb_numa_nodes; j++) {
277                 idx = (i * nb_numa_nodes + j) * 3;
278                 matrix[idx + 0] = cpu_to_be32(i);
279                 matrix[idx + 1] = cpu_to_be32(j);
280                 matrix[idx + 2] =
281                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
282             }
283         }
284 
285         qemu_fdt_add_subnode(fdt, "/distance-map");
286         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
287                                 "numa-distance-map-v1");
288         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
289                          matrix, size);
290         g_free(matrix);
291     }
292 }
293 
294 static void fdt_add_timer_nodes(const VirtMachineState *vms)
295 {
296     /* On real hardware these interrupts are level-triggered.
297      * On KVM they were edge-triggered before host kernel version 4.4,
298      * and level-triggered afterwards.
299      * On emulated QEMU they are level-triggered.
300      *
301      * Getting the DTB info about them wrong is awkward for some
302      * guest kernels:
303      *  pre-4.8 ignore the DT and leave the interrupt configured
304      *   with whatever the GIC reset value (or the bootloader) left it at
305      *  4.8 before rc6 honour the incorrect data by programming it back
306      *   into the GIC, causing problems
307      *  4.8rc6 and later ignore the DT and always write "level triggered"
308      *   into the GIC
309      *
310      * For backwards-compatibility, virt-2.8 and earlier will continue
311      * to say these are edge-triggered, but later machines will report
312      * the correct information.
313      */
314     ARMCPU *armcpu;
315     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
316     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
317     MachineState *ms = MACHINE(vms);
318 
319     if (vmc->claim_edge_triggered_timers) {
320         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
321     }
322 
323     if (vms->gic_version == VIRT_GIC_VERSION_2) {
324         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
325                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
326                              (1 << MACHINE(vms)->smp.cpus) - 1);
327     }
328 
329     qemu_fdt_add_subnode(ms->fdt, "/timer");
330 
331     armcpu = ARM_CPU(qemu_get_cpu(0));
332     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
333         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
334         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
335                          compat, sizeof(compat));
336     } else {
337         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
338                                 "arm,armv7-timer");
339     }
340     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
341     qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
342                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
343                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
344                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
345                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
346 }
347 
348 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
349 {
350     int cpu;
351     int addr_cells = 1;
352     const MachineState *ms = MACHINE(vms);
353     int smp_cpus = ms->smp.cpus;
354 
355     /*
356      * From Documentation/devicetree/bindings/arm/cpus.txt
357      *  On ARM v8 64-bit systems value should be set to 2,
358      *  that corresponds to the MPIDR_EL1 register size.
359      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
360      *  in the system, #address-cells can be set to 1, since
361      *  MPIDR_EL1[63:32] bits are not used for CPUs
362      *  identification.
363      *
364      *  Here we actually don't know whether our system is 32- or 64-bit one.
365      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
366      *  at least one of them has Aff3 populated, we set #address-cells to 2.
367      */
368     for (cpu = 0; cpu < smp_cpus; cpu++) {
369         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
370 
371         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
372             addr_cells = 2;
373             break;
374         }
375     }
376 
377     qemu_fdt_add_subnode(ms->fdt, "/cpus");
378     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
379     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
380 
381     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
382         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
383         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
384         CPUState *cs = CPU(armcpu);
385 
386         qemu_fdt_add_subnode(ms->fdt, nodename);
387         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
388         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
389                                     armcpu->dtb_compatible);
390 
391         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
392             qemu_fdt_setprop_string(ms->fdt, nodename,
393                                         "enable-method", "psci");
394         }
395 
396         if (addr_cells == 2) {
397             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
398                                  armcpu->mp_affinity);
399         } else {
400             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
401                                   armcpu->mp_affinity);
402         }
403 
404         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
405             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
406                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
407         }
408 
409         g_free(nodename);
410     }
411 }
412 
413 static void fdt_add_its_gic_node(VirtMachineState *vms)
414 {
415     char *nodename;
416     MachineState *ms = MACHINE(vms);
417 
418     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
419     nodename = g_strdup_printf("/intc/its@%" PRIx64,
420                                vms->memmap[VIRT_GIC_ITS].base);
421     qemu_fdt_add_subnode(ms->fdt, nodename);
422     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
423                             "arm,gic-v3-its");
424     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
425     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
426                                  2, vms->memmap[VIRT_GIC_ITS].base,
427                                  2, vms->memmap[VIRT_GIC_ITS].size);
428     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
429     g_free(nodename);
430 }
431 
432 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
433 {
434     MachineState *ms = MACHINE(vms);
435     char *nodename;
436 
437     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
438                                vms->memmap[VIRT_GIC_V2M].base);
439     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
440     qemu_fdt_add_subnode(ms->fdt, nodename);
441     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
442                             "arm,gic-v2m-frame");
443     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
444     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
445                                  2, vms->memmap[VIRT_GIC_V2M].base,
446                                  2, vms->memmap[VIRT_GIC_V2M].size);
447     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
448     g_free(nodename);
449 }
450 
451 static void fdt_add_gic_node(VirtMachineState *vms)
452 {
453     MachineState *ms = MACHINE(vms);
454     char *nodename;
455 
456     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
457     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
458 
459     nodename = g_strdup_printf("/intc@%" PRIx64,
460                                vms->memmap[VIRT_GIC_DIST].base);
461     qemu_fdt_add_subnode(ms->fdt, nodename);
462     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
463     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
464     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
465     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
466     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
467     if (vms->gic_version == VIRT_GIC_VERSION_3) {
468         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
469 
470         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
471                                 "arm,gic-v3");
472 
473         qemu_fdt_setprop_cell(ms->fdt, nodename,
474                               "#redistributor-regions", nb_redist_regions);
475 
476         if (nb_redist_regions == 1) {
477             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
478                                          2, vms->memmap[VIRT_GIC_DIST].base,
479                                          2, vms->memmap[VIRT_GIC_DIST].size,
480                                          2, vms->memmap[VIRT_GIC_REDIST].base,
481                                          2, vms->memmap[VIRT_GIC_REDIST].size);
482         } else {
483             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
484                                  2, vms->memmap[VIRT_GIC_DIST].base,
485                                  2, vms->memmap[VIRT_GIC_DIST].size,
486                                  2, vms->memmap[VIRT_GIC_REDIST].base,
487                                  2, vms->memmap[VIRT_GIC_REDIST].size,
488                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
489                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
490         }
491 
492         if (vms->virt) {
493             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
494                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
495                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
496         }
497     } else {
498         /* 'cortex-a15-gic' means 'GIC v2' */
499         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
500                                 "arm,cortex-a15-gic");
501         if (!vms->virt) {
502             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
503                                          2, vms->memmap[VIRT_GIC_DIST].base,
504                                          2, vms->memmap[VIRT_GIC_DIST].size,
505                                          2, vms->memmap[VIRT_GIC_CPU].base,
506                                          2, vms->memmap[VIRT_GIC_CPU].size);
507         } else {
508             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
509                                          2, vms->memmap[VIRT_GIC_DIST].base,
510                                          2, vms->memmap[VIRT_GIC_DIST].size,
511                                          2, vms->memmap[VIRT_GIC_CPU].base,
512                                          2, vms->memmap[VIRT_GIC_CPU].size,
513                                          2, vms->memmap[VIRT_GIC_HYP].base,
514                                          2, vms->memmap[VIRT_GIC_HYP].size,
515                                          2, vms->memmap[VIRT_GIC_VCPU].base,
516                                          2, vms->memmap[VIRT_GIC_VCPU].size);
517             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
518                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
519                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
520         }
521     }
522 
523     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
524     g_free(nodename);
525 }
526 
527 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
528 {
529     ARMCPU *armcpu = ARM_CPU(first_cpu);
530     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
531     MachineState *ms = MACHINE(vms);
532 
533     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
534         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
535         return;
536     }
537 
538     if (vms->gic_version == VIRT_GIC_VERSION_2) {
539         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
540                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
541                              (1 << MACHINE(vms)->smp.cpus) - 1);
542     }
543 
544     qemu_fdt_add_subnode(ms->fdt, "/pmu");
545     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
546         const char compat[] = "arm,armv8-pmuv3";
547         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
548                          compat, sizeof(compat));
549         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
550                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
551     }
552 }
553 
554 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
555 {
556     DeviceState *dev;
557     MachineState *ms = MACHINE(vms);
558     int irq = vms->irqmap[VIRT_ACPI_GED];
559     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
560 
561     if (ms->ram_slots) {
562         event |= ACPI_GED_MEM_HOTPLUG_EVT;
563     }
564 
565     if (ms->nvdimms_state->is_enabled) {
566         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
567     }
568 
569     dev = qdev_new(TYPE_ACPI_GED);
570     qdev_prop_set_uint32(dev, "ged-event", event);
571 
572     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
573     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
574     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
575 
576     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
577 
578     return dev;
579 }
580 
581 static void create_its(VirtMachineState *vms)
582 {
583     const char *itsclass = its_class_name();
584     DeviceState *dev;
585 
586     if (!itsclass) {
587         /* Do nothing if not supported */
588         return;
589     }
590 
591     dev = qdev_new(itsclass);
592 
593     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
594                              &error_abort);
595     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
596     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
597 
598     fdt_add_its_gic_node(vms);
599     vms->msi_controller = VIRT_MSI_CTRL_ITS;
600 }
601 
602 static void create_v2m(VirtMachineState *vms)
603 {
604     int i;
605     int irq = vms->irqmap[VIRT_GIC_V2M];
606     DeviceState *dev;
607 
608     dev = qdev_new("arm-gicv2m");
609     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
610     qdev_prop_set_uint32(dev, "base-spi", irq);
611     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
612     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
613 
614     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
615         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
616                            qdev_get_gpio_in(vms->gic, irq + i));
617     }
618 
619     fdt_add_v2m_gic_node(vms);
620     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
621 }
622 
623 static void create_gic(VirtMachineState *vms)
624 {
625     MachineState *ms = MACHINE(vms);
626     /* We create a standalone GIC */
627     SysBusDevice *gicbusdev;
628     const char *gictype;
629     int type = vms->gic_version, i;
630     unsigned int smp_cpus = ms->smp.cpus;
631     uint32_t nb_redist_regions = 0;
632 
633     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
634 
635     vms->gic = qdev_new(gictype);
636     qdev_prop_set_uint32(vms->gic, "revision", type);
637     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
638     /* Note that the num-irq property counts both internal and external
639      * interrupts; there are always 32 of the former (mandated by GIC spec).
640      */
641     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
642     if (!kvm_irqchip_in_kernel()) {
643         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
644     }
645 
646     if (type == 3) {
647         uint32_t redist0_capacity =
648                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
649         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
650 
651         nb_redist_regions = virt_gicv3_redist_region_count(vms);
652 
653         qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
654                              nb_redist_regions);
655         qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
656 
657         if (nb_redist_regions == 2) {
658             uint32_t redist1_capacity =
659                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
660 
661             qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
662                 MIN(smp_cpus - redist0_count, redist1_capacity));
663         }
664     } else {
665         if (!kvm_irqchip_in_kernel()) {
666             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
667                               vms->virt);
668         }
669     }
670     gicbusdev = SYS_BUS_DEVICE(vms->gic);
671     sysbus_realize_and_unref(gicbusdev, &error_fatal);
672     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
673     if (type == 3) {
674         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
675         if (nb_redist_regions == 2) {
676             sysbus_mmio_map(gicbusdev, 2,
677                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
678         }
679     } else {
680         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
681         if (vms->virt) {
682             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
683             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
684         }
685     }
686 
687     /* Wire the outputs from each CPU's generic timer and the GICv3
688      * maintenance interrupt signal to the appropriate GIC PPI inputs,
689      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
690      */
691     for (i = 0; i < smp_cpus; i++) {
692         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
693         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
694         int irq;
695         /* Mapping from the output timer irq lines from the CPU to the
696          * GIC PPI inputs we use for the virt board.
697          */
698         const int timer_irq[] = {
699             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
700             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
701             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
702             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
703         };
704 
705         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
706             qdev_connect_gpio_out(cpudev, irq,
707                                   qdev_get_gpio_in(vms->gic,
708                                                    ppibase + timer_irq[irq]));
709         }
710 
711         if (type == 3) {
712             qemu_irq irq = qdev_get_gpio_in(vms->gic,
713                                             ppibase + ARCH_GIC_MAINT_IRQ);
714             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
715                                         0, irq);
716         } else if (vms->virt) {
717             qemu_irq irq = qdev_get_gpio_in(vms->gic,
718                                             ppibase + ARCH_GIC_MAINT_IRQ);
719             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
720         }
721 
722         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
723                                     qdev_get_gpio_in(vms->gic, ppibase
724                                                      + VIRTUAL_PMU_IRQ));
725 
726         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
727         sysbus_connect_irq(gicbusdev, i + smp_cpus,
728                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
729         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
730                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
731         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
732                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
733     }
734 
735     fdt_add_gic_node(vms);
736 
737     if (type == 3 && vms->its) {
738         create_its(vms);
739     } else if (type == 2) {
740         create_v2m(vms);
741     }
742 }
743 
744 static void create_uart(const VirtMachineState *vms, int uart,
745                         MemoryRegion *mem, Chardev *chr)
746 {
747     char *nodename;
748     hwaddr base = vms->memmap[uart].base;
749     hwaddr size = vms->memmap[uart].size;
750     int irq = vms->irqmap[uart];
751     const char compat[] = "arm,pl011\0arm,primecell";
752     const char clocknames[] = "uartclk\0apb_pclk";
753     DeviceState *dev = qdev_new(TYPE_PL011);
754     SysBusDevice *s = SYS_BUS_DEVICE(dev);
755     MachineState *ms = MACHINE(vms);
756 
757     qdev_prop_set_chr(dev, "chardev", chr);
758     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
759     memory_region_add_subregion(mem, base,
760                                 sysbus_mmio_get_region(s, 0));
761     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
762 
763     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
764     qemu_fdt_add_subnode(ms->fdt, nodename);
765     /* Note that we can't use setprop_string because of the embedded NUL */
766     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
767                          compat, sizeof(compat));
768     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
769                                      2, base, 2, size);
770     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
771                                GIC_FDT_IRQ_TYPE_SPI, irq,
772                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
773     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
774                                vms->clock_phandle, vms->clock_phandle);
775     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
776                          clocknames, sizeof(clocknames));
777 
778     if (uart == VIRT_UART) {
779         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
780     } else {
781         /* Mark as not usable by the normal world */
782         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
783         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
784 
785         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
786                                 nodename);
787     }
788 
789     g_free(nodename);
790 }
791 
792 static void create_rtc(const VirtMachineState *vms)
793 {
794     char *nodename;
795     hwaddr base = vms->memmap[VIRT_RTC].base;
796     hwaddr size = vms->memmap[VIRT_RTC].size;
797     int irq = vms->irqmap[VIRT_RTC];
798     const char compat[] = "arm,pl031\0arm,primecell";
799     MachineState *ms = MACHINE(vms);
800 
801     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
802 
803     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
804     qemu_fdt_add_subnode(ms->fdt, nodename);
805     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
806     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
807                                  2, base, 2, size);
808     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
809                            GIC_FDT_IRQ_TYPE_SPI, irq,
810                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
811     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
812     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
813     g_free(nodename);
814 }
815 
816 static DeviceState *gpio_key_dev;
817 static void virt_powerdown_req(Notifier *n, void *opaque)
818 {
819     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
820 
821     if (s->acpi_dev) {
822         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
823     } else {
824         /* use gpio Pin 3 for power button event */
825         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
826     }
827 }
828 
829 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
830                              uint32_t phandle)
831 {
832     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
833                                         qdev_get_gpio_in(pl061_dev, 3));
834 
835     qemu_fdt_add_subnode(fdt, "/gpio-keys");
836     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
837     qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0);
838     qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1);
839 
840     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
841     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
842                             "label", "GPIO Key Poweroff");
843     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
844                           KEY_POWER);
845     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
846                            "gpios", phandle, 3, 0);
847 }
848 
849 #define SECURE_GPIO_POWEROFF 0
850 #define SECURE_GPIO_RESET    1
851 
852 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
853                                    uint32_t phandle)
854 {
855     DeviceState *gpio_pwr_dev;
856 
857     /* gpio-pwr */
858     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
859 
860     /* connect secure pl061 to gpio-pwr */
861     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
862                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
863     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
864                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
865 
866     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
867     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
868                             "gpio-poweroff");
869     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
870                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
871     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
872     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
873                             "okay");
874 
875     qemu_fdt_add_subnode(fdt, "/gpio-restart");
876     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
877                             "gpio-restart");
878     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
879                            "gpios", phandle, SECURE_GPIO_RESET, 0);
880     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
881     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
882                             "okay");
883 }
884 
885 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
886                                 MemoryRegion *mem)
887 {
888     char *nodename;
889     DeviceState *pl061_dev;
890     hwaddr base = vms->memmap[gpio].base;
891     hwaddr size = vms->memmap[gpio].size;
892     int irq = vms->irqmap[gpio];
893     const char compat[] = "arm,pl061\0arm,primecell";
894     SysBusDevice *s;
895     MachineState *ms = MACHINE(vms);
896 
897     pl061_dev = qdev_new("pl061");
898     /* Pull lines down to 0 if not driven by the PL061 */
899     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
900     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
901     s = SYS_BUS_DEVICE(pl061_dev);
902     sysbus_realize_and_unref(s, &error_fatal);
903     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
904     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
905 
906     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
907     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
908     qemu_fdt_add_subnode(ms->fdt, nodename);
909     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
910                                  2, base, 2, size);
911     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
912     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
913     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
914     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
915                            GIC_FDT_IRQ_TYPE_SPI, irq,
916                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
917     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
918     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
919     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
920 
921     if (gpio != VIRT_GPIO) {
922         /* Mark as not usable by the normal world */
923         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
924         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
925     }
926     g_free(nodename);
927 
928     /* Child gpio devices */
929     if (gpio == VIRT_GPIO) {
930         create_gpio_keys(ms->fdt, pl061_dev, phandle);
931     } else {
932         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
933     }
934 }
935 
936 static void create_virtio_devices(const VirtMachineState *vms)
937 {
938     int i;
939     hwaddr size = vms->memmap[VIRT_MMIO].size;
940     MachineState *ms = MACHINE(vms);
941 
942     /* We create the transports in forwards order. Since qbus_realize()
943      * prepends (not appends) new child buses, the incrementing loop below will
944      * create a list of virtio-mmio buses with decreasing base addresses.
945      *
946      * When a -device option is processed from the command line,
947      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
948      * order. The upshot is that -device options in increasing command line
949      * order are mapped to virtio-mmio buses with decreasing base addresses.
950      *
951      * When this code was originally written, that arrangement ensured that the
952      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
953      * the first -device on the command line. (The end-to-end order is a
954      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
955      * guest kernel's name-to-address assignment strategy.)
956      *
957      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
958      * the message, if not necessarily the code, of commit 70161ff336.
959      * Therefore the loop now establishes the inverse of the original intent.
960      *
961      * Unfortunately, we can't counteract the kernel change by reversing the
962      * loop; it would break existing command lines.
963      *
964      * In any case, the kernel makes no guarantee about the stability of
965      * enumeration order of virtio devices (as demonstrated by it changing
966      * between kernel versions). For reliable and stable identification
967      * of disks users must use UUIDs or similar mechanisms.
968      */
969     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
970         int irq = vms->irqmap[VIRT_MMIO] + i;
971         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
972 
973         sysbus_create_simple("virtio-mmio", base,
974                              qdev_get_gpio_in(vms->gic, irq));
975     }
976 
977     /* We add dtb nodes in reverse order so that they appear in the finished
978      * device tree lowest address first.
979      *
980      * Note that this mapping is independent of the loop above. The previous
981      * loop influences virtio device to virtio transport assignment, whereas
982      * this loop controls how virtio transports are laid out in the dtb.
983      */
984     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
985         char *nodename;
986         int irq = vms->irqmap[VIRT_MMIO] + i;
987         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
988 
989         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
990         qemu_fdt_add_subnode(ms->fdt, nodename);
991         qemu_fdt_setprop_string(ms->fdt, nodename,
992                                 "compatible", "virtio,mmio");
993         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
994                                      2, base, 2, size);
995         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
996                                GIC_FDT_IRQ_TYPE_SPI, irq,
997                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
998         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
999         g_free(nodename);
1000     }
1001 }
1002 
1003 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1004 
1005 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1006                                         const char *name,
1007                                         const char *alias_prop_name)
1008 {
1009     /*
1010      * Create a single flash device.  We use the same parameters as
1011      * the flash devices on the Versatile Express board.
1012      */
1013     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1014 
1015     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1016     qdev_prop_set_uint8(dev, "width", 4);
1017     qdev_prop_set_uint8(dev, "device-width", 2);
1018     qdev_prop_set_bit(dev, "big-endian", false);
1019     qdev_prop_set_uint16(dev, "id0", 0x89);
1020     qdev_prop_set_uint16(dev, "id1", 0x18);
1021     qdev_prop_set_uint16(dev, "id2", 0x00);
1022     qdev_prop_set_uint16(dev, "id3", 0x00);
1023     qdev_prop_set_string(dev, "name", name);
1024     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1025     object_property_add_alias(OBJECT(vms), alias_prop_name,
1026                               OBJECT(dev), "drive");
1027     return PFLASH_CFI01(dev);
1028 }
1029 
1030 static void virt_flash_create(VirtMachineState *vms)
1031 {
1032     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1033     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1034 }
1035 
1036 static void virt_flash_map1(PFlashCFI01 *flash,
1037                             hwaddr base, hwaddr size,
1038                             MemoryRegion *sysmem)
1039 {
1040     DeviceState *dev = DEVICE(flash);
1041 
1042     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1043     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1044     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1045     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1046 
1047     memory_region_add_subregion(sysmem, base,
1048                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1049                                                        0));
1050 }
1051 
1052 static void virt_flash_map(VirtMachineState *vms,
1053                            MemoryRegion *sysmem,
1054                            MemoryRegion *secure_sysmem)
1055 {
1056     /*
1057      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1058      * sysmem is the system memory space. secure_sysmem is the secure view
1059      * of the system, and the first flash device should be made visible only
1060      * there. The second flash device is visible to both secure and nonsecure.
1061      * If sysmem == secure_sysmem this means there is no separate Secure
1062      * address space and both flash devices are generally visible.
1063      */
1064     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1065     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1066 
1067     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1068                     secure_sysmem);
1069     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1070                     sysmem);
1071 }
1072 
1073 static void virt_flash_fdt(VirtMachineState *vms,
1074                            MemoryRegion *sysmem,
1075                            MemoryRegion *secure_sysmem)
1076 {
1077     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1078     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1079     MachineState *ms = MACHINE(vms);
1080     char *nodename;
1081 
1082     if (sysmem == secure_sysmem) {
1083         /* Report both flash devices as a single node in the DT */
1084         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1085         qemu_fdt_add_subnode(ms->fdt, nodename);
1086         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1087         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1088                                      2, flashbase, 2, flashsize,
1089                                      2, flashbase + flashsize, 2, flashsize);
1090         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1091         g_free(nodename);
1092     } else {
1093         /*
1094          * Report the devices as separate nodes so we can mark one as
1095          * only visible to the secure world.
1096          */
1097         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1098         qemu_fdt_add_subnode(ms->fdt, nodename);
1099         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1100         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1101                                      2, flashbase, 2, flashsize);
1102         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1103         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1104         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1105         g_free(nodename);
1106 
1107         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1108         qemu_fdt_add_subnode(ms->fdt, nodename);
1109         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1110         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1111                                      2, flashbase + flashsize, 2, flashsize);
1112         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1113         g_free(nodename);
1114     }
1115 }
1116 
1117 static bool virt_firmware_init(VirtMachineState *vms,
1118                                MemoryRegion *sysmem,
1119                                MemoryRegion *secure_sysmem)
1120 {
1121     int i;
1122     const char *bios_name;
1123     BlockBackend *pflash_blk0;
1124 
1125     /* Map legacy -drive if=pflash to machine properties */
1126     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1127         pflash_cfi01_legacy_drive(vms->flash[i],
1128                                   drive_get(IF_PFLASH, 0, i));
1129     }
1130 
1131     virt_flash_map(vms, sysmem, secure_sysmem);
1132 
1133     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1134 
1135     bios_name = MACHINE(vms)->firmware;
1136     if (bios_name) {
1137         char *fname;
1138         MemoryRegion *mr;
1139         int image_size;
1140 
1141         if (pflash_blk0) {
1142             error_report("The contents of the first flash device may be "
1143                          "specified with -bios or with -drive if=pflash... "
1144                          "but you cannot use both options at once");
1145             exit(1);
1146         }
1147 
1148         /* Fall back to -bios */
1149 
1150         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1151         if (!fname) {
1152             error_report("Could not find ROM image '%s'", bios_name);
1153             exit(1);
1154         }
1155         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1156         image_size = load_image_mr(fname, mr);
1157         g_free(fname);
1158         if (image_size < 0) {
1159             error_report("Could not load ROM image '%s'", bios_name);
1160             exit(1);
1161         }
1162     }
1163 
1164     return pflash_blk0 || bios_name;
1165 }
1166 
1167 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1168 {
1169     MachineState *ms = MACHINE(vms);
1170     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1171     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1172     FWCfgState *fw_cfg;
1173     char *nodename;
1174 
1175     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1176     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1177 
1178     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1179     qemu_fdt_add_subnode(ms->fdt, nodename);
1180     qemu_fdt_setprop_string(ms->fdt, nodename,
1181                             "compatible", "qemu,fw-cfg-mmio");
1182     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1183                                  2, base, 2, size);
1184     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1185     g_free(nodename);
1186     return fw_cfg;
1187 }
1188 
1189 static void create_pcie_irq_map(const MachineState *ms,
1190                                 uint32_t gic_phandle,
1191                                 int first_irq, const char *nodename)
1192 {
1193     int devfn, pin;
1194     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1195     uint32_t *irq_map = full_irq_map;
1196 
1197     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1198         for (pin = 0; pin < 4; pin++) {
1199             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1200             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1201             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1202             int i;
1203 
1204             uint32_t map[] = {
1205                 devfn << 8, 0, 0,                           /* devfn */
1206                 pin + 1,                                    /* PCI pin */
1207                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1208 
1209             /* Convert map to big endian */
1210             for (i = 0; i < 10; i++) {
1211                 irq_map[i] = cpu_to_be32(map[i]);
1212             }
1213             irq_map += 10;
1214         }
1215     }
1216 
1217     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1218                      full_irq_map, sizeof(full_irq_map));
1219 
1220     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1221                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1222                            0, 0,
1223                            0x7           /* PCI irq */);
1224 }
1225 
1226 static void create_smmu(const VirtMachineState *vms,
1227                         PCIBus *bus)
1228 {
1229     char *node;
1230     const char compat[] = "arm,smmu-v3";
1231     int irq =  vms->irqmap[VIRT_SMMU];
1232     int i;
1233     hwaddr base = vms->memmap[VIRT_SMMU].base;
1234     hwaddr size = vms->memmap[VIRT_SMMU].size;
1235     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1236     DeviceState *dev;
1237     MachineState *ms = MACHINE(vms);
1238 
1239     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1240         return;
1241     }
1242 
1243     dev = qdev_new("arm-smmuv3");
1244 
1245     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1246                              &error_abort);
1247     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1248     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1249     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1250         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1251                            qdev_get_gpio_in(vms->gic, irq + i));
1252     }
1253 
1254     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1255     qemu_fdt_add_subnode(ms->fdt, node);
1256     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1257     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1258 
1259     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1260             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1261             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1262             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1263             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1264 
1265     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1266                      sizeof(irq_names));
1267 
1268     qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1269     qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1270     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1271 
1272     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1273 
1274     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1275     g_free(node);
1276 }
1277 
1278 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1279 {
1280     const char compat[] = "virtio,pci-iommu";
1281     uint16_t bdf = vms->virtio_iommu_bdf;
1282     MachineState *ms = MACHINE(vms);
1283     char *node;
1284 
1285     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1286 
1287     node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1288     qemu_fdt_add_subnode(ms->fdt, node);
1289     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1290     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1291                                  1, bdf << 8, 1, 0, 1, 0,
1292                                  1, 0, 1, 0);
1293 
1294     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1295     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1296     g_free(node);
1297 
1298     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1299                            0x0, vms->iommu_phandle, 0x0, bdf,
1300                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1301 }
1302 
1303 static void create_pcie(VirtMachineState *vms)
1304 {
1305     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1306     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1307     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1308     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1309     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1310     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1311     hwaddr base_ecam, size_ecam;
1312     hwaddr base = base_mmio;
1313     int nr_pcie_buses;
1314     int irq = vms->irqmap[VIRT_PCIE];
1315     MemoryRegion *mmio_alias;
1316     MemoryRegion *mmio_reg;
1317     MemoryRegion *ecam_alias;
1318     MemoryRegion *ecam_reg;
1319     DeviceState *dev;
1320     char *nodename;
1321     int i, ecam_id;
1322     PCIHostState *pci;
1323     MachineState *ms = MACHINE(vms);
1324 
1325     dev = qdev_new(TYPE_GPEX_HOST);
1326     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1327 
1328     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1329     base_ecam = vms->memmap[ecam_id].base;
1330     size_ecam = vms->memmap[ecam_id].size;
1331     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1332     /* Map only the first size_ecam bytes of ECAM space */
1333     ecam_alias = g_new0(MemoryRegion, 1);
1334     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1335     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1336                              ecam_reg, 0, size_ecam);
1337     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1338 
1339     /* Map the MMIO window into system address space so as to expose
1340      * the section of PCI MMIO space which starts at the same base address
1341      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1342      * the window).
1343      */
1344     mmio_alias = g_new0(MemoryRegion, 1);
1345     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1346     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1347                              mmio_reg, base_mmio, size_mmio);
1348     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1349 
1350     if (vms->highmem) {
1351         /* Map high MMIO space */
1352         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1353 
1354         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1355                                  mmio_reg, base_mmio_high, size_mmio_high);
1356         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1357                                     high_mmio_alias);
1358     }
1359 
1360     /* Map IO port space */
1361     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1362 
1363     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1364         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1365                            qdev_get_gpio_in(vms->gic, irq + i));
1366         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1367     }
1368 
1369     pci = PCI_HOST_BRIDGE(dev);
1370     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1371     vms->bus = pci->bus;
1372     if (vms->bus) {
1373         for (i = 0; i < nb_nics; i++) {
1374             NICInfo *nd = &nd_table[i];
1375 
1376             if (!nd->model) {
1377                 nd->model = g_strdup("virtio");
1378             }
1379 
1380             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1381         }
1382     }
1383 
1384     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1385     qemu_fdt_add_subnode(ms->fdt, nodename);
1386     qemu_fdt_setprop_string(ms->fdt, nodename,
1387                             "compatible", "pci-host-ecam-generic");
1388     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1389     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1390     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1391     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1392     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1393                            nr_pcie_buses - 1);
1394     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1395 
1396     if (vms->msi_phandle) {
1397         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1398                                vms->msi_phandle);
1399     }
1400 
1401     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1402                                  2, base_ecam, 2, size_ecam);
1403 
1404     if (vms->highmem) {
1405         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1406                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1407                                      2, base_pio, 2, size_pio,
1408                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1409                                      2, base_mmio, 2, size_mmio,
1410                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1411                                      2, base_mmio_high,
1412                                      2, base_mmio_high, 2, size_mmio_high);
1413     } else {
1414         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1415                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1416                                      2, base_pio, 2, size_pio,
1417                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1418                                      2, base_mmio, 2, size_mmio);
1419     }
1420 
1421     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1422     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1423 
1424     if (vms->iommu) {
1425         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1426 
1427         switch (vms->iommu) {
1428         case VIRT_IOMMU_SMMUV3:
1429             create_smmu(vms, vms->bus);
1430             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1431                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1432             break;
1433         default:
1434             g_assert_not_reached();
1435         }
1436     }
1437 }
1438 
1439 static void create_platform_bus(VirtMachineState *vms)
1440 {
1441     DeviceState *dev;
1442     SysBusDevice *s;
1443     int i;
1444     MemoryRegion *sysmem = get_system_memory();
1445 
1446     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1447     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1448     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1449     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1450     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1451     vms->platform_bus_dev = dev;
1452 
1453     s = SYS_BUS_DEVICE(dev);
1454     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1455         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1456         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1457     }
1458 
1459     memory_region_add_subregion(sysmem,
1460                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1461                                 sysbus_mmio_get_region(s, 0));
1462 }
1463 
1464 static void create_tag_ram(MemoryRegion *tag_sysmem,
1465                            hwaddr base, hwaddr size,
1466                            const char *name)
1467 {
1468     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1469 
1470     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1471     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1472 }
1473 
1474 static void create_secure_ram(VirtMachineState *vms,
1475                               MemoryRegion *secure_sysmem,
1476                               MemoryRegion *secure_tag_sysmem)
1477 {
1478     MemoryRegion *secram = g_new(MemoryRegion, 1);
1479     char *nodename;
1480     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1481     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1482     MachineState *ms = MACHINE(vms);
1483 
1484     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1485                            &error_fatal);
1486     memory_region_add_subregion(secure_sysmem, base, secram);
1487 
1488     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1489     qemu_fdt_add_subnode(ms->fdt, nodename);
1490     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1491     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1492     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1493     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1494 
1495     if (secure_tag_sysmem) {
1496         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1497     }
1498 
1499     g_free(nodename);
1500 }
1501 
1502 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1503 {
1504     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1505                                                  bootinfo);
1506     MachineState *ms = MACHINE(board);
1507 
1508 
1509     *fdt_size = board->fdt_size;
1510     return ms->fdt;
1511 }
1512 
1513 static void virt_build_smbios(VirtMachineState *vms)
1514 {
1515     MachineClass *mc = MACHINE_GET_CLASS(vms);
1516     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1517     uint8_t *smbios_tables, *smbios_anchor;
1518     size_t smbios_tables_len, smbios_anchor_len;
1519     const char *product = "QEMU Virtual Machine";
1520 
1521     if (kvm_enabled()) {
1522         product = "KVM Virtual Machine";
1523     }
1524 
1525     smbios_set_defaults("QEMU", product,
1526                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1527                         true, SMBIOS_ENTRY_POINT_30);
1528 
1529     smbios_get_tables(MACHINE(vms), NULL, 0,
1530                       &smbios_tables, &smbios_tables_len,
1531                       &smbios_anchor, &smbios_anchor_len,
1532                       &error_fatal);
1533 
1534     if (smbios_anchor) {
1535         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1536                         smbios_tables, smbios_tables_len);
1537         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1538                         smbios_anchor, smbios_anchor_len);
1539     }
1540 }
1541 
1542 static
1543 void virt_machine_done(Notifier *notifier, void *data)
1544 {
1545     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1546                                          machine_done);
1547     MachineState *ms = MACHINE(vms);
1548     ARMCPU *cpu = ARM_CPU(first_cpu);
1549     struct arm_boot_info *info = &vms->bootinfo;
1550     AddressSpace *as = arm_boot_address_space(cpu, info);
1551 
1552     /*
1553      * If the user provided a dtb, we assume the dynamic sysbus nodes
1554      * already are integrated there. This corresponds to a use case where
1555      * the dynamic sysbus nodes are complex and their generation is not yet
1556      * supported. In that case the user can take charge of the guest dt
1557      * while qemu takes charge of the qom stuff.
1558      */
1559     if (info->dtb_filename == NULL) {
1560         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1561                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1562                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1563                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1564     }
1565     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1566         exit(1);
1567     }
1568 
1569     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1570 
1571     virt_acpi_setup(vms);
1572     virt_build_smbios(vms);
1573 }
1574 
1575 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1576 {
1577     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1578     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1579 
1580     if (!vmc->disallow_affinity_adjustment) {
1581         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1582          * GIC's target-list limitations. 32-bit KVM hosts currently
1583          * always create clusters of 4 CPUs, but that is expected to
1584          * change when they gain support for gicv3. When KVM is enabled
1585          * it will override the changes we make here, therefore our
1586          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1587          * and to improve SGI efficiency.
1588          */
1589         if (vms->gic_version == VIRT_GIC_VERSION_3) {
1590             clustersz = GICV3_TARGETLIST_BITS;
1591         } else {
1592             clustersz = GIC_TARGETLIST_BITS;
1593         }
1594     }
1595     return arm_cpu_mp_affinity(idx, clustersz);
1596 }
1597 
1598 static void virt_set_memmap(VirtMachineState *vms)
1599 {
1600     MachineState *ms = MACHINE(vms);
1601     hwaddr base, device_memory_base, device_memory_size;
1602     int i;
1603 
1604     vms->memmap = extended_memmap;
1605 
1606     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1607         vms->memmap[i] = base_memmap[i];
1608     }
1609 
1610     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1611         error_report("unsupported number of memory slots: %"PRIu64,
1612                      ms->ram_slots);
1613         exit(EXIT_FAILURE);
1614     }
1615 
1616     /*
1617      * We compute the base of the high IO region depending on the
1618      * amount of initial and device memory. The device memory start/size
1619      * is aligned on 1GiB. We never put the high IO region below 256GiB
1620      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1621      * The device region size assumes 1GiB page max alignment per slot.
1622      */
1623     device_memory_base =
1624         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1625     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1626 
1627     /* Base address of the high IO region */
1628     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1629     if (base < device_memory_base) {
1630         error_report("maxmem/slots too huge");
1631         exit(EXIT_FAILURE);
1632     }
1633     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1634         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1635     }
1636 
1637     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1638         hwaddr size = extended_memmap[i].size;
1639 
1640         base = ROUND_UP(base, size);
1641         vms->memmap[i].base = base;
1642         vms->memmap[i].size = size;
1643         base += size;
1644     }
1645     vms->highest_gpa = base - 1;
1646     if (device_memory_size > 0) {
1647         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1648         ms->device_memory->base = device_memory_base;
1649         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1650                            "device-memory", device_memory_size);
1651     }
1652 }
1653 
1654 /*
1655  * finalize_gic_version - Determines the final gic_version
1656  * according to the gic-version property
1657  *
1658  * Default GIC type is v2
1659  */
1660 static void finalize_gic_version(VirtMachineState *vms)
1661 {
1662     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1663 
1664     if (kvm_enabled()) {
1665         int probe_bitmap;
1666 
1667         if (!kvm_irqchip_in_kernel()) {
1668             switch (vms->gic_version) {
1669             case VIRT_GIC_VERSION_HOST:
1670                 warn_report(
1671                     "gic-version=host not relevant with kernel-irqchip=off "
1672                      "as only userspace GICv2 is supported. Using v2 ...");
1673                 return;
1674             case VIRT_GIC_VERSION_MAX:
1675             case VIRT_GIC_VERSION_NOSEL:
1676                 vms->gic_version = VIRT_GIC_VERSION_2;
1677                 return;
1678             case VIRT_GIC_VERSION_2:
1679                 return;
1680             case VIRT_GIC_VERSION_3:
1681                 error_report(
1682                     "gic-version=3 is not supported with kernel-irqchip=off");
1683                 exit(1);
1684             }
1685         }
1686 
1687         probe_bitmap = kvm_arm_vgic_probe();
1688         if (!probe_bitmap) {
1689             error_report("Unable to determine GIC version supported by host");
1690             exit(1);
1691         }
1692 
1693         switch (vms->gic_version) {
1694         case VIRT_GIC_VERSION_HOST:
1695         case VIRT_GIC_VERSION_MAX:
1696             if (probe_bitmap & KVM_ARM_VGIC_V3) {
1697                 vms->gic_version = VIRT_GIC_VERSION_3;
1698             } else {
1699                 vms->gic_version = VIRT_GIC_VERSION_2;
1700             }
1701             return;
1702         case VIRT_GIC_VERSION_NOSEL:
1703             if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1704                 vms->gic_version = VIRT_GIC_VERSION_2;
1705             } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1706                 /*
1707                  * in case the host does not support v2 in-kernel emulation or
1708                  * the end-user requested more than 8 VCPUs we now default
1709                  * to v3. In any case defaulting to v2 would be broken.
1710                  */
1711                 vms->gic_version = VIRT_GIC_VERSION_3;
1712             } else if (max_cpus > GIC_NCPU) {
1713                 error_report("host only supports in-kernel GICv2 emulation "
1714                              "but more than 8 vcpus are requested");
1715                 exit(1);
1716             }
1717             break;
1718         case VIRT_GIC_VERSION_2:
1719         case VIRT_GIC_VERSION_3:
1720             break;
1721         }
1722 
1723         /* Check chosen version is effectively supported by the host */
1724         if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1725             !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1726             error_report("host does not support in-kernel GICv2 emulation");
1727             exit(1);
1728         } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1729                    !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1730             error_report("host does not support in-kernel GICv3 emulation");
1731             exit(1);
1732         }
1733         return;
1734     }
1735 
1736     /* TCG mode */
1737     switch (vms->gic_version) {
1738     case VIRT_GIC_VERSION_NOSEL:
1739         vms->gic_version = VIRT_GIC_VERSION_2;
1740         break;
1741     case VIRT_GIC_VERSION_MAX:
1742         vms->gic_version = VIRT_GIC_VERSION_3;
1743         break;
1744     case VIRT_GIC_VERSION_HOST:
1745         error_report("gic-version=host requires KVM");
1746         exit(1);
1747     case VIRT_GIC_VERSION_2:
1748     case VIRT_GIC_VERSION_3:
1749         break;
1750     }
1751 }
1752 
1753 /*
1754  * virt_cpu_post_init() must be called after the CPUs have
1755  * been realized and the GIC has been created.
1756  */
1757 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1758 {
1759     int max_cpus = MACHINE(vms)->smp.max_cpus;
1760     bool aarch64, pmu, steal_time;
1761     CPUState *cpu;
1762 
1763     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1764     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1765     steal_time = object_property_get_bool(OBJECT(first_cpu),
1766                                           "kvm-steal-time", NULL);
1767 
1768     if (kvm_enabled()) {
1769         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1770         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1771 
1772         if (steal_time) {
1773             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1774             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1775 
1776             /* The memory region size must be a multiple of host page size. */
1777             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1778 
1779             if (pvtime_size > pvtime_reg_size) {
1780                 error_report("pvtime requires a %" HWADDR_PRId
1781                              " byte memory region for %d CPUs,"
1782                              " but only %" HWADDR_PRId " has been reserved",
1783                              pvtime_size, max_cpus, pvtime_reg_size);
1784                 exit(1);
1785             }
1786 
1787             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1788             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1789         }
1790 
1791         CPU_FOREACH(cpu) {
1792             if (pmu) {
1793                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1794                 if (kvm_irqchip_in_kernel()) {
1795                     kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1796                 }
1797                 kvm_arm_pmu_init(cpu);
1798             }
1799             if (steal_time) {
1800                 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1801                                          cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1802             }
1803         }
1804     } else {
1805         if (aarch64 && vms->highmem) {
1806             int requested_pa_size = 64 - clz64(vms->highest_gpa);
1807             int pamax = arm_pamax(ARM_CPU(first_cpu));
1808 
1809             if (pamax < requested_pa_size) {
1810                 error_report("VCPU supports less PA bits (%d) than "
1811                              "requested by the memory map (%d)",
1812                              pamax, requested_pa_size);
1813                 exit(1);
1814             }
1815         }
1816     }
1817 }
1818 
1819 static void machvirt_init(MachineState *machine)
1820 {
1821     VirtMachineState *vms = VIRT_MACHINE(machine);
1822     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1823     MachineClass *mc = MACHINE_GET_CLASS(machine);
1824     const CPUArchIdList *possible_cpus;
1825     MemoryRegion *sysmem = get_system_memory();
1826     MemoryRegion *secure_sysmem = NULL;
1827     MemoryRegion *tag_sysmem = NULL;
1828     MemoryRegion *secure_tag_sysmem = NULL;
1829     int n, virt_max_cpus;
1830     bool firmware_loaded;
1831     bool aarch64 = true;
1832     bool has_ged = !vmc->no_ged;
1833     unsigned int smp_cpus = machine->smp.cpus;
1834     unsigned int max_cpus = machine->smp.max_cpus;
1835 
1836     /*
1837      * In accelerated mode, the memory map is computed earlier in kvm_type()
1838      * to create a VM with the right number of IPA bits.
1839      */
1840     if (!vms->memmap) {
1841         virt_set_memmap(vms);
1842     }
1843 
1844     /* We can probe only here because during property set
1845      * KVM is not available yet
1846      */
1847     finalize_gic_version(vms);
1848 
1849     if (!cpu_type_valid(machine->cpu_type)) {
1850         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1851         exit(1);
1852     }
1853 
1854     if (vms->secure) {
1855         /*
1856          * The Secure view of the world is the same as the NonSecure,
1857          * but with a few extra devices. Create it as a container region
1858          * containing the system memory at low priority; any secure-only
1859          * devices go in at higher priority and take precedence.
1860          */
1861         secure_sysmem = g_new(MemoryRegion, 1);
1862         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1863                            UINT64_MAX);
1864         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1865     }
1866 
1867     firmware_loaded = virt_firmware_init(vms, sysmem,
1868                                          secure_sysmem ?: sysmem);
1869 
1870     /* If we have an EL3 boot ROM then the assumption is that it will
1871      * implement PSCI itself, so disable QEMU's internal implementation
1872      * so it doesn't get in the way. Instead of starting secondary
1873      * CPUs in PSCI powerdown state we will start them all running and
1874      * let the boot ROM sort them out.
1875      * The usual case is that we do use QEMU's PSCI implementation;
1876      * if the guest has EL2 then we will use SMC as the conduit,
1877      * and otherwise we will use HVC (for backwards compatibility and
1878      * because if we're using KVM then we must use HVC).
1879      */
1880     if (vms->secure && firmware_loaded) {
1881         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1882     } else if (vms->virt) {
1883         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1884     } else {
1885         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1886     }
1887 
1888     /* The maximum number of CPUs depends on the GIC version, or on how
1889      * many redistributors we can fit into the memory map.
1890      */
1891     if (vms->gic_version == VIRT_GIC_VERSION_3) {
1892         virt_max_cpus =
1893             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1894         virt_max_cpus +=
1895             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1896     } else {
1897         virt_max_cpus = GIC_NCPU;
1898     }
1899 
1900     if (max_cpus > virt_max_cpus) {
1901         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1902                      "supported by machine 'mach-virt' (%d)",
1903                      max_cpus, virt_max_cpus);
1904         exit(1);
1905     }
1906 
1907     if (vms->virt && kvm_enabled()) {
1908         error_report("mach-virt: KVM does not support providing "
1909                      "Virtualization extensions to the guest CPU");
1910         exit(1);
1911     }
1912 
1913     if (vms->mte && kvm_enabled()) {
1914         error_report("mach-virt: KVM does not support providing "
1915                      "MTE to the guest CPU");
1916         exit(1);
1917     }
1918 
1919     create_fdt(vms);
1920 
1921     possible_cpus = mc->possible_cpu_arch_ids(machine);
1922     assert(possible_cpus->len == max_cpus);
1923     for (n = 0; n < possible_cpus->len; n++) {
1924         Object *cpuobj;
1925         CPUState *cs;
1926 
1927         if (n >= smp_cpus) {
1928             break;
1929         }
1930 
1931         cpuobj = object_new(possible_cpus->cpus[n].type);
1932         object_property_set_int(cpuobj, "mp-affinity",
1933                                 possible_cpus->cpus[n].arch_id, NULL);
1934 
1935         cs = CPU(cpuobj);
1936         cs->cpu_index = n;
1937 
1938         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1939                           &error_fatal);
1940 
1941         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1942 
1943         if (!vms->secure) {
1944             object_property_set_bool(cpuobj, "has_el3", false, NULL);
1945         }
1946 
1947         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1948             object_property_set_bool(cpuobj, "has_el2", false, NULL);
1949         }
1950 
1951         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1952             object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1953                                     NULL);
1954 
1955             /* Secondary CPUs start in PSCI powered-down state */
1956             if (n > 0) {
1957                 object_property_set_bool(cpuobj, "start-powered-off", true,
1958                                          NULL);
1959             }
1960         }
1961 
1962         if (vmc->kvm_no_adjvtime &&
1963             object_property_find(cpuobj, "kvm-no-adjvtime")) {
1964             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1965         }
1966 
1967         if (vmc->no_kvm_steal_time &&
1968             object_property_find(cpuobj, "kvm-steal-time")) {
1969             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1970         }
1971 
1972         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1973             object_property_set_bool(cpuobj, "pmu", false, NULL);
1974         }
1975 
1976         if (object_property_find(cpuobj, "reset-cbar")) {
1977             object_property_set_int(cpuobj, "reset-cbar",
1978                                     vms->memmap[VIRT_CPUPERIPHS].base,
1979                                     &error_abort);
1980         }
1981 
1982         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1983                                  &error_abort);
1984         if (vms->secure) {
1985             object_property_set_link(cpuobj, "secure-memory",
1986                                      OBJECT(secure_sysmem), &error_abort);
1987         }
1988 
1989         if (vms->mte) {
1990             /* Create the memory region only once, but link to all cpus. */
1991             if (!tag_sysmem) {
1992                 /*
1993                  * The property exists only if MemTag is supported.
1994                  * If it is, we must allocate the ram to back that up.
1995                  */
1996                 if (!object_property_find(cpuobj, "tag-memory")) {
1997                     error_report("MTE requested, but not supported "
1998                                  "by the guest CPU");
1999                     exit(1);
2000                 }
2001 
2002                 tag_sysmem = g_new(MemoryRegion, 1);
2003                 memory_region_init(tag_sysmem, OBJECT(machine),
2004                                    "tag-memory", UINT64_MAX / 32);
2005 
2006                 if (vms->secure) {
2007                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2008                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2009                                        "secure-tag-memory", UINT64_MAX / 32);
2010 
2011                     /* As with ram, secure-tag takes precedence over tag.  */
2012                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2013                                                         tag_sysmem, -1);
2014                 }
2015             }
2016 
2017             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2018                                      &error_abort);
2019             if (vms->secure) {
2020                 object_property_set_link(cpuobj, "secure-tag-memory",
2021                                          OBJECT(secure_tag_sysmem),
2022                                          &error_abort);
2023             }
2024         }
2025 
2026         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2027         object_unref(cpuobj);
2028     }
2029     fdt_add_timer_nodes(vms);
2030     fdt_add_cpu_nodes(vms);
2031 
2032     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2033                                 machine->ram);
2034     if (machine->device_memory) {
2035         memory_region_add_subregion(sysmem, machine->device_memory->base,
2036                                     &machine->device_memory->mr);
2037     }
2038 
2039     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2040 
2041     create_gic(vms);
2042 
2043     virt_cpu_post_init(vms, sysmem);
2044 
2045     fdt_add_pmu_nodes(vms);
2046 
2047     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2048 
2049     if (vms->secure) {
2050         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2051         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2052     }
2053 
2054     if (tag_sysmem) {
2055         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2056                        machine->ram_size, "mach-virt.tag");
2057     }
2058 
2059     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
2060 
2061     create_rtc(vms);
2062 
2063     create_pcie(vms);
2064 
2065     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2066         vms->acpi_dev = create_acpi_ged(vms);
2067     } else {
2068         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2069     }
2070 
2071     if (vms->secure && !vmc->no_secure_gpio) {
2072         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2073     }
2074 
2075      /* connect powerdown request */
2076      vms->powerdown_notifier.notify = virt_powerdown_req;
2077      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2078 
2079     /* Create mmio transports, so the user can create virtio backends
2080      * (which will be automatically plugged in to the transports). If
2081      * no backend is created the transport will just sit harmlessly idle.
2082      */
2083     create_virtio_devices(vms);
2084 
2085     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2086     rom_set_fw(vms->fw_cfg);
2087 
2088     create_platform_bus(vms);
2089 
2090     if (machine->nvdimms_state->is_enabled) {
2091         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2092             .space_id = AML_AS_SYSTEM_MEMORY,
2093             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2094             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2095         };
2096 
2097         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2098                                arm_virt_nvdimm_acpi_dsmio,
2099                                vms->fw_cfg, OBJECT(vms));
2100     }
2101 
2102     vms->bootinfo.ram_size = machine->ram_size;
2103     vms->bootinfo.nb_cpus = smp_cpus;
2104     vms->bootinfo.board_id = -1;
2105     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2106     vms->bootinfo.get_dtb = machvirt_dtb;
2107     vms->bootinfo.skip_dtb_autoload = true;
2108     vms->bootinfo.firmware_loaded = firmware_loaded;
2109     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2110 
2111     vms->machine_done.notify = virt_machine_done;
2112     qemu_add_machine_init_done_notifier(&vms->machine_done);
2113 }
2114 
2115 static bool virt_get_secure(Object *obj, Error **errp)
2116 {
2117     VirtMachineState *vms = VIRT_MACHINE(obj);
2118 
2119     return vms->secure;
2120 }
2121 
2122 static void virt_set_secure(Object *obj, bool value, Error **errp)
2123 {
2124     VirtMachineState *vms = VIRT_MACHINE(obj);
2125 
2126     vms->secure = value;
2127 }
2128 
2129 static bool virt_get_virt(Object *obj, Error **errp)
2130 {
2131     VirtMachineState *vms = VIRT_MACHINE(obj);
2132 
2133     return vms->virt;
2134 }
2135 
2136 static void virt_set_virt(Object *obj, bool value, Error **errp)
2137 {
2138     VirtMachineState *vms = VIRT_MACHINE(obj);
2139 
2140     vms->virt = value;
2141 }
2142 
2143 static bool virt_get_highmem(Object *obj, Error **errp)
2144 {
2145     VirtMachineState *vms = VIRT_MACHINE(obj);
2146 
2147     return vms->highmem;
2148 }
2149 
2150 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2151 {
2152     VirtMachineState *vms = VIRT_MACHINE(obj);
2153 
2154     vms->highmem = value;
2155 }
2156 
2157 static bool virt_get_its(Object *obj, Error **errp)
2158 {
2159     VirtMachineState *vms = VIRT_MACHINE(obj);
2160 
2161     return vms->its;
2162 }
2163 
2164 static void virt_set_its(Object *obj, bool value, Error **errp)
2165 {
2166     VirtMachineState *vms = VIRT_MACHINE(obj);
2167 
2168     vms->its = value;
2169 }
2170 
2171 static char *virt_get_oem_id(Object *obj, Error **errp)
2172 {
2173     VirtMachineState *vms = VIRT_MACHINE(obj);
2174 
2175     return g_strdup(vms->oem_id);
2176 }
2177 
2178 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2179 {
2180     VirtMachineState *vms = VIRT_MACHINE(obj);
2181     size_t len = strlen(value);
2182 
2183     if (len > 6) {
2184         error_setg(errp,
2185                    "User specified oem-id value is bigger than 6 bytes in size");
2186         return;
2187     }
2188 
2189     strncpy(vms->oem_id, value, 6);
2190 }
2191 
2192 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2193 {
2194     VirtMachineState *vms = VIRT_MACHINE(obj);
2195 
2196     return g_strdup(vms->oem_table_id);
2197 }
2198 
2199 static void virt_set_oem_table_id(Object *obj, const char *value,
2200                                   Error **errp)
2201 {
2202     VirtMachineState *vms = VIRT_MACHINE(obj);
2203     size_t len = strlen(value);
2204 
2205     if (len > 8) {
2206         error_setg(errp,
2207                    "User specified oem-table-id value is bigger than 8 bytes in size");
2208         return;
2209     }
2210     strncpy(vms->oem_table_id, value, 8);
2211 }
2212 
2213 
2214 bool virt_is_acpi_enabled(VirtMachineState *vms)
2215 {
2216     if (vms->acpi == ON_OFF_AUTO_OFF) {
2217         return false;
2218     }
2219     return true;
2220 }
2221 
2222 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2223                           void *opaque, Error **errp)
2224 {
2225     VirtMachineState *vms = VIRT_MACHINE(obj);
2226     OnOffAuto acpi = vms->acpi;
2227 
2228     visit_type_OnOffAuto(v, name, &acpi, errp);
2229 }
2230 
2231 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2232                           void *opaque, Error **errp)
2233 {
2234     VirtMachineState *vms = VIRT_MACHINE(obj);
2235 
2236     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2237 }
2238 
2239 static bool virt_get_ras(Object *obj, Error **errp)
2240 {
2241     VirtMachineState *vms = VIRT_MACHINE(obj);
2242 
2243     return vms->ras;
2244 }
2245 
2246 static void virt_set_ras(Object *obj, bool value, Error **errp)
2247 {
2248     VirtMachineState *vms = VIRT_MACHINE(obj);
2249 
2250     vms->ras = value;
2251 }
2252 
2253 static bool virt_get_mte(Object *obj, Error **errp)
2254 {
2255     VirtMachineState *vms = VIRT_MACHINE(obj);
2256 
2257     return vms->mte;
2258 }
2259 
2260 static void virt_set_mte(Object *obj, bool value, Error **errp)
2261 {
2262     VirtMachineState *vms = VIRT_MACHINE(obj);
2263 
2264     vms->mte = value;
2265 }
2266 
2267 static char *virt_get_gic_version(Object *obj, Error **errp)
2268 {
2269     VirtMachineState *vms = VIRT_MACHINE(obj);
2270     const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2271 
2272     return g_strdup(val);
2273 }
2274 
2275 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2276 {
2277     VirtMachineState *vms = VIRT_MACHINE(obj);
2278 
2279     if (!strcmp(value, "3")) {
2280         vms->gic_version = VIRT_GIC_VERSION_3;
2281     } else if (!strcmp(value, "2")) {
2282         vms->gic_version = VIRT_GIC_VERSION_2;
2283     } else if (!strcmp(value, "host")) {
2284         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2285     } else if (!strcmp(value, "max")) {
2286         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2287     } else {
2288         error_setg(errp, "Invalid gic-version value");
2289         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2290     }
2291 }
2292 
2293 static char *virt_get_iommu(Object *obj, Error **errp)
2294 {
2295     VirtMachineState *vms = VIRT_MACHINE(obj);
2296 
2297     switch (vms->iommu) {
2298     case VIRT_IOMMU_NONE:
2299         return g_strdup("none");
2300     case VIRT_IOMMU_SMMUV3:
2301         return g_strdup("smmuv3");
2302     default:
2303         g_assert_not_reached();
2304     }
2305 }
2306 
2307 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2308 {
2309     VirtMachineState *vms = VIRT_MACHINE(obj);
2310 
2311     if (!strcmp(value, "smmuv3")) {
2312         vms->iommu = VIRT_IOMMU_SMMUV3;
2313     } else if (!strcmp(value, "none")) {
2314         vms->iommu = VIRT_IOMMU_NONE;
2315     } else {
2316         error_setg(errp, "Invalid iommu value");
2317         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2318     }
2319 }
2320 
2321 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2322 {
2323     VirtMachineState *vms = VIRT_MACHINE(obj);
2324 
2325     return vms->default_bus_bypass_iommu;
2326 }
2327 
2328 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2329                                               Error **errp)
2330 {
2331     VirtMachineState *vms = VIRT_MACHINE(obj);
2332 
2333     vms->default_bus_bypass_iommu = value;
2334 }
2335 
2336 static CpuInstanceProperties
2337 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2338 {
2339     MachineClass *mc = MACHINE_GET_CLASS(ms);
2340     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2341 
2342     assert(cpu_index < possible_cpus->len);
2343     return possible_cpus->cpus[cpu_index].props;
2344 }
2345 
2346 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2347 {
2348     return idx % ms->numa_state->num_nodes;
2349 }
2350 
2351 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2352 {
2353     int n;
2354     unsigned int max_cpus = ms->smp.max_cpus;
2355     VirtMachineState *vms = VIRT_MACHINE(ms);
2356 
2357     if (ms->possible_cpus) {
2358         assert(ms->possible_cpus->len == max_cpus);
2359         return ms->possible_cpus;
2360     }
2361 
2362     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2363                                   sizeof(CPUArchId) * max_cpus);
2364     ms->possible_cpus->len = max_cpus;
2365     for (n = 0; n < ms->possible_cpus->len; n++) {
2366         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2367         ms->possible_cpus->cpus[n].arch_id =
2368             virt_cpu_mp_affinity(vms, n);
2369         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2370         ms->possible_cpus->cpus[n].props.thread_id = n;
2371     }
2372     return ms->possible_cpus;
2373 }
2374 
2375 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2376                                  Error **errp)
2377 {
2378     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2379     const MachineState *ms = MACHINE(hotplug_dev);
2380     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2381 
2382     if (!vms->acpi_dev) {
2383         error_setg(errp,
2384                    "memory hotplug is not enabled: missing acpi-ged device");
2385         return;
2386     }
2387 
2388     if (vms->mte) {
2389         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2390         return;
2391     }
2392 
2393     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2394         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2395         return;
2396     }
2397 
2398     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2399 }
2400 
2401 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2402                              DeviceState *dev, Error **errp)
2403 {
2404     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2405     MachineState *ms = MACHINE(hotplug_dev);
2406     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2407 
2408     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2409 
2410     if (is_nvdimm) {
2411         nvdimm_plug(ms->nvdimms_state);
2412     }
2413 
2414     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2415                          dev, &error_abort);
2416 }
2417 
2418 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2419                                             DeviceState *dev, Error **errp)
2420 {
2421     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2422 
2423     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2424         virt_memory_pre_plug(hotplug_dev, dev, errp);
2425     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2426         hwaddr db_start = 0, db_end = 0;
2427         char *resv_prop_str;
2428 
2429         switch (vms->msi_controller) {
2430         case VIRT_MSI_CTRL_NONE:
2431             return;
2432         case VIRT_MSI_CTRL_ITS:
2433             /* GITS_TRANSLATER page */
2434             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2435             db_end = base_memmap[VIRT_GIC_ITS].base +
2436                      base_memmap[VIRT_GIC_ITS].size - 1;
2437             break;
2438         case VIRT_MSI_CTRL_GICV2M:
2439             /* MSI_SETSPI_NS page */
2440             db_start = base_memmap[VIRT_GIC_V2M].base;
2441             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2442             break;
2443         }
2444         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2445                                         db_start, db_end,
2446                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2447 
2448         qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2449         qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2450         g_free(resv_prop_str);
2451     }
2452 }
2453 
2454 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2455                                         DeviceState *dev, Error **errp)
2456 {
2457     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2458 
2459     if (vms->platform_bus_dev) {
2460         MachineClass *mc = MACHINE_GET_CLASS(vms);
2461 
2462         if (device_is_dynamic_sysbus(mc, dev)) {
2463             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2464                                      SYS_BUS_DEVICE(dev));
2465         }
2466     }
2467     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2468         virt_memory_plug(hotplug_dev, dev, errp);
2469     }
2470     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2471         PCIDevice *pdev = PCI_DEVICE(dev);
2472 
2473         vms->iommu = VIRT_IOMMU_VIRTIO;
2474         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2475         create_virtio_iommu_dt_bindings(vms);
2476     }
2477 }
2478 
2479 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2480                                      DeviceState *dev, Error **errp)
2481 {
2482     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2483     Error *local_err = NULL;
2484 
2485     if (!vms->acpi_dev) {
2486         error_setg(&local_err,
2487                    "memory hotplug is not enabled: missing acpi-ged device");
2488         goto out;
2489     }
2490 
2491     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2492         error_setg(&local_err,
2493                    "nvdimm device hot unplug is not supported yet.");
2494         goto out;
2495     }
2496 
2497     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2498                                    &local_err);
2499 out:
2500     error_propagate(errp, local_err);
2501 }
2502 
2503 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2504                              DeviceState *dev, Error **errp)
2505 {
2506     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2507     Error *local_err = NULL;
2508 
2509     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2510     if (local_err) {
2511         goto out;
2512     }
2513 
2514     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2515     qdev_unrealize(dev);
2516 
2517 out:
2518     error_propagate(errp, local_err);
2519 }
2520 
2521 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2522                                           DeviceState *dev, Error **errp)
2523 {
2524     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2525         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2526     } else {
2527         error_setg(errp, "device unplug request for unsupported device"
2528                    " type: %s", object_get_typename(OBJECT(dev)));
2529     }
2530 }
2531 
2532 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2533                                           DeviceState *dev, Error **errp)
2534 {
2535     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2536         virt_dimm_unplug(hotplug_dev, dev, errp);
2537     } else {
2538         error_setg(errp, "virt: device unplug for unsupported device"
2539                    " type: %s", object_get_typename(OBJECT(dev)));
2540     }
2541 }
2542 
2543 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2544                                                         DeviceState *dev)
2545 {
2546     MachineClass *mc = MACHINE_GET_CLASS(machine);
2547 
2548     if (device_is_dynamic_sysbus(mc, dev) ||
2549        (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2550         return HOTPLUG_HANDLER(machine);
2551     }
2552     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2553         VirtMachineState *vms = VIRT_MACHINE(machine);
2554 
2555         if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2556             return HOTPLUG_HANDLER(machine);
2557         }
2558     }
2559     return NULL;
2560 }
2561 
2562 /*
2563  * for arm64 kvm_type [7-0] encodes the requested number of bits
2564  * in the IPA address space
2565  */
2566 static int virt_kvm_type(MachineState *ms, const char *type_str)
2567 {
2568     VirtMachineState *vms = VIRT_MACHINE(ms);
2569     int max_vm_pa_size, requested_pa_size;
2570     bool fixed_ipa;
2571 
2572     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2573 
2574     /* we freeze the memory map to compute the highest gpa */
2575     virt_set_memmap(vms);
2576 
2577     requested_pa_size = 64 - clz64(vms->highest_gpa);
2578 
2579     /*
2580      * KVM requires the IPA size to be at least 32 bits.
2581      */
2582     if (requested_pa_size < 32) {
2583         requested_pa_size = 32;
2584     }
2585 
2586     if (requested_pa_size > max_vm_pa_size) {
2587         error_report("-m and ,maxmem option values "
2588                      "require an IPA range (%d bits) larger than "
2589                      "the one supported by the host (%d bits)",
2590                      requested_pa_size, max_vm_pa_size);
2591         exit(1);
2592     }
2593     /*
2594      * We return the requested PA log size, unless KVM only supports
2595      * the implicit legacy 40b IPA setting, in which case the kvm_type
2596      * must be 0.
2597      */
2598     return fixed_ipa ? 0 : requested_pa_size;
2599 }
2600 
2601 static void virt_machine_class_init(ObjectClass *oc, void *data)
2602 {
2603     MachineClass *mc = MACHINE_CLASS(oc);
2604     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2605 
2606     mc->init = machvirt_init;
2607     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2608      * The value may be reduced later when we have more information about the
2609      * configuration of the particular instance.
2610      */
2611     mc->max_cpus = 512;
2612     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2613     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2614     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2615     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2616 #ifdef CONFIG_TPM
2617     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2618 #endif
2619     mc->block_default_type = IF_VIRTIO;
2620     mc->no_cdrom = 1;
2621     mc->pci_allow_0_address = true;
2622     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2623     mc->minimum_page_bits = 12;
2624     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2625     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2626     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2627     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2628     mc->kvm_type = virt_kvm_type;
2629     assert(!mc->get_hotplug_handler);
2630     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2631     hc->pre_plug = virt_machine_device_pre_plug_cb;
2632     hc->plug = virt_machine_device_plug_cb;
2633     hc->unplug_request = virt_machine_device_unplug_request_cb;
2634     hc->unplug = virt_machine_device_unplug_cb;
2635     mc->nvdimm_supported = true;
2636     mc->auto_enable_numa_with_memhp = true;
2637     mc->auto_enable_numa_with_memdev = true;
2638     mc->default_ram_id = "mach-virt.ram";
2639 
2640     object_class_property_add(oc, "acpi", "OnOffAuto",
2641         virt_get_acpi, virt_set_acpi,
2642         NULL, NULL);
2643     object_class_property_set_description(oc, "acpi",
2644         "Enable ACPI");
2645     object_class_property_add_bool(oc, "secure", virt_get_secure,
2646                                    virt_set_secure);
2647     object_class_property_set_description(oc, "secure",
2648                                                 "Set on/off to enable/disable the ARM "
2649                                                 "Security Extensions (TrustZone)");
2650 
2651     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2652                                    virt_set_virt);
2653     object_class_property_set_description(oc, "virtualization",
2654                                           "Set on/off to enable/disable emulating a "
2655                                           "guest CPU which implements the ARM "
2656                                           "Virtualization Extensions");
2657 
2658     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2659                                    virt_set_highmem);
2660     object_class_property_set_description(oc, "highmem",
2661                                           "Set on/off to enable/disable using "
2662                                           "physical address space above 32 bits");
2663 
2664     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2665                                   virt_set_gic_version);
2666     object_class_property_set_description(oc, "gic-version",
2667                                           "Set GIC version. "
2668                                           "Valid values are 2, 3, host and max");
2669 
2670     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2671     object_class_property_set_description(oc, "iommu",
2672                                           "Set the IOMMU type. "
2673                                           "Valid values are none and smmuv3");
2674 
2675     object_class_property_add_bool(oc, "default_bus_bypass_iommu",
2676                                    virt_get_default_bus_bypass_iommu,
2677                                    virt_set_default_bus_bypass_iommu);
2678     object_class_property_set_description(oc, "default_bus_bypass_iommu",
2679                                           "Set on/off to enable/disable "
2680                                           "bypass_iommu for default root bus");
2681 
2682     object_class_property_add_bool(oc, "ras", virt_get_ras,
2683                                    virt_set_ras);
2684     object_class_property_set_description(oc, "ras",
2685                                           "Set on/off to enable/disable reporting host memory errors "
2686                                           "to a KVM guest using ACPI and guest external abort exceptions");
2687 
2688     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2689     object_class_property_set_description(oc, "mte",
2690                                           "Set on/off to enable/disable emulating a "
2691                                           "guest CPU which implements the ARM "
2692                                           "Memory Tagging Extension");
2693 
2694     object_class_property_add_bool(oc, "its", virt_get_its,
2695                                    virt_set_its);
2696     object_class_property_set_description(oc, "its",
2697                                           "Set on/off to enable/disable "
2698                                           "ITS instantiation");
2699 
2700     object_class_property_add_str(oc, "x-oem-id",
2701                                   virt_get_oem_id,
2702                                   virt_set_oem_id);
2703     object_class_property_set_description(oc, "x-oem-id",
2704                                           "Override the default value of field OEMID "
2705                                           "in ACPI table header."
2706                                           "The string may be up to 6 bytes in size");
2707 
2708 
2709     object_class_property_add_str(oc, "x-oem-table-id",
2710                                   virt_get_oem_table_id,
2711                                   virt_set_oem_table_id);
2712     object_class_property_set_description(oc, "x-oem-table-id",
2713                                           "Override the default value of field OEM Table ID "
2714                                           "in ACPI table header."
2715                                           "The string may be up to 8 bytes in size");
2716 
2717 }
2718 
2719 static void virt_instance_init(Object *obj)
2720 {
2721     VirtMachineState *vms = VIRT_MACHINE(obj);
2722     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2723 
2724     /* EL3 is disabled by default on virt: this makes us consistent
2725      * between KVM and TCG for this board, and it also allows us to
2726      * boot UEFI blobs which assume no TrustZone support.
2727      */
2728     vms->secure = false;
2729 
2730     /* EL2 is also disabled by default, for similar reasons */
2731     vms->virt = false;
2732 
2733     /* High memory is enabled by default */
2734     vms->highmem = true;
2735     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2736 
2737     vms->highmem_ecam = !vmc->no_highmem_ecam;
2738 
2739     if (vmc->no_its) {
2740         vms->its = false;
2741     } else {
2742         /* Default allows ITS instantiation */
2743         vms->its = true;
2744     }
2745 
2746     /* Default disallows iommu instantiation */
2747     vms->iommu = VIRT_IOMMU_NONE;
2748 
2749     /* The default root bus is attached to iommu by default */
2750     vms->default_bus_bypass_iommu = false;
2751 
2752     /* Default disallows RAS instantiation */
2753     vms->ras = false;
2754 
2755     /* MTE is disabled by default.  */
2756     vms->mte = false;
2757 
2758     vms->irqmap = a15irqmap;
2759 
2760     virt_flash_create(vms);
2761 
2762     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
2763     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
2764 }
2765 
2766 static const TypeInfo virt_machine_info = {
2767     .name          = TYPE_VIRT_MACHINE,
2768     .parent        = TYPE_MACHINE,
2769     .abstract      = true,
2770     .instance_size = sizeof(VirtMachineState),
2771     .class_size    = sizeof(VirtMachineClass),
2772     .class_init    = virt_machine_class_init,
2773     .instance_init = virt_instance_init,
2774     .interfaces = (InterfaceInfo[]) {
2775          { TYPE_HOTPLUG_HANDLER },
2776          { }
2777     },
2778 };
2779 
2780 static void machvirt_machine_init(void)
2781 {
2782     type_register_static(&virt_machine_info);
2783 }
2784 type_init(machvirt_machine_init);
2785 
2786 static void virt_machine_6_1_options(MachineClass *mc)
2787 {
2788 }
2789 DEFINE_VIRT_MACHINE_AS_LATEST(6, 1)
2790 
2791 static void virt_machine_6_0_options(MachineClass *mc)
2792 {
2793     virt_machine_6_1_options(mc);
2794     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
2795 }
2796 DEFINE_VIRT_MACHINE(6, 0)
2797 
2798 static void virt_machine_5_2_options(MachineClass *mc)
2799 {
2800     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2801 
2802     virt_machine_6_0_options(mc);
2803     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2804     vmc->no_secure_gpio = true;
2805 }
2806 DEFINE_VIRT_MACHINE(5, 2)
2807 
2808 static void virt_machine_5_1_options(MachineClass *mc)
2809 {
2810     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2811 
2812     virt_machine_5_2_options(mc);
2813     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2814     vmc->no_kvm_steal_time = true;
2815 }
2816 DEFINE_VIRT_MACHINE(5, 1)
2817 
2818 static void virt_machine_5_0_options(MachineClass *mc)
2819 {
2820     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2821 
2822     virt_machine_5_1_options(mc);
2823     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2824     mc->numa_mem_supported = true;
2825     vmc->acpi_expose_flash = true;
2826     mc->auto_enable_numa_with_memdev = false;
2827 }
2828 DEFINE_VIRT_MACHINE(5, 0)
2829 
2830 static void virt_machine_4_2_options(MachineClass *mc)
2831 {
2832     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2833 
2834     virt_machine_5_0_options(mc);
2835     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2836     vmc->kvm_no_adjvtime = true;
2837 }
2838 DEFINE_VIRT_MACHINE(4, 2)
2839 
2840 static void virt_machine_4_1_options(MachineClass *mc)
2841 {
2842     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2843 
2844     virt_machine_4_2_options(mc);
2845     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2846     vmc->no_ged = true;
2847     mc->auto_enable_numa_with_memhp = false;
2848 }
2849 DEFINE_VIRT_MACHINE(4, 1)
2850 
2851 static void virt_machine_4_0_options(MachineClass *mc)
2852 {
2853     virt_machine_4_1_options(mc);
2854     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2855 }
2856 DEFINE_VIRT_MACHINE(4, 0)
2857 
2858 static void virt_machine_3_1_options(MachineClass *mc)
2859 {
2860     virt_machine_4_0_options(mc);
2861     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2862 }
2863 DEFINE_VIRT_MACHINE(3, 1)
2864 
2865 static void virt_machine_3_0_options(MachineClass *mc)
2866 {
2867     virt_machine_3_1_options(mc);
2868     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2869 }
2870 DEFINE_VIRT_MACHINE(3, 0)
2871 
2872 static void virt_machine_2_12_options(MachineClass *mc)
2873 {
2874     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2875 
2876     virt_machine_3_0_options(mc);
2877     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2878     vmc->no_highmem_ecam = true;
2879     mc->max_cpus = 255;
2880 }
2881 DEFINE_VIRT_MACHINE(2, 12)
2882 
2883 static void virt_machine_2_11_options(MachineClass *mc)
2884 {
2885     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2886 
2887     virt_machine_2_12_options(mc);
2888     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2889     vmc->smbios_old_sys_ver = true;
2890 }
2891 DEFINE_VIRT_MACHINE(2, 11)
2892 
2893 static void virt_machine_2_10_options(MachineClass *mc)
2894 {
2895     virt_machine_2_11_options(mc);
2896     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2897     /* before 2.11 we never faulted accesses to bad addresses */
2898     mc->ignore_memory_transaction_failures = true;
2899 }
2900 DEFINE_VIRT_MACHINE(2, 10)
2901 
2902 static void virt_machine_2_9_options(MachineClass *mc)
2903 {
2904     virt_machine_2_10_options(mc);
2905     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2906 }
2907 DEFINE_VIRT_MACHINE(2, 9)
2908 
2909 static void virt_machine_2_8_options(MachineClass *mc)
2910 {
2911     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2912 
2913     virt_machine_2_9_options(mc);
2914     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2915     /* For 2.8 and earlier we falsely claimed in the DT that
2916      * our timers were edge-triggered, not level-triggered.
2917      */
2918     vmc->claim_edge_triggered_timers = true;
2919 }
2920 DEFINE_VIRT_MACHINE(2, 8)
2921 
2922 static void virt_machine_2_7_options(MachineClass *mc)
2923 {
2924     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2925 
2926     virt_machine_2_8_options(mc);
2927     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2928     /* ITS was introduced with 2.8 */
2929     vmc->no_its = true;
2930     /* Stick with 1K pages for migration compatibility */
2931     mc->minimum_page_bits = 0;
2932 }
2933 DEFINE_VIRT_MACHINE(2, 7)
2934 
2935 static void virt_machine_2_6_options(MachineClass *mc)
2936 {
2937     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2938 
2939     virt_machine_2_7_options(mc);
2940     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2941     vmc->disallow_affinity_adjustment = true;
2942     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2943     vmc->no_pmu = true;
2944 }
2945 DEFINE_VIRT_MACHINE(2, 6)
2946