1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/arm/virt.h" 35 #include "hw/devices.h" 36 #include "net/net.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/kvm.h" 41 #include "hw/boards.h" 42 #include "hw/loader.h" 43 #include "exec/address-spaces.h" 44 #include "qemu/bitops.h" 45 #include "qemu/error-report.h" 46 #include "hw/pci-host/gpex.h" 47 #include "hw/arm/virt-acpi-build.h" 48 #include "hw/arm/sysbus-fdt.h" 49 #include "hw/platform-bus.h" 50 #include "hw/arm/fdt.h" 51 52 /* Number of external interrupt lines to configure the GIC with */ 53 #define NUM_IRQS 256 54 55 #define PLATFORM_BUS_NUM_IRQS 64 56 57 static ARMPlatformBusSystemParams platform_bus_params; 58 59 typedef struct VirtBoardInfo { 60 struct arm_boot_info bootinfo; 61 const char *cpu_model; 62 const MemMapEntry *memmap; 63 const int *irqmap; 64 int smp_cpus; 65 void *fdt; 66 int fdt_size; 67 uint32_t clock_phandle; 68 uint32_t gic_phandle; 69 uint32_t v2m_phandle; 70 } VirtBoardInfo; 71 72 typedef struct { 73 MachineClass parent; 74 VirtBoardInfo *daughterboard; 75 } VirtMachineClass; 76 77 typedef struct { 78 MachineState parent; 79 bool secure; 80 } VirtMachineState; 81 82 #define TYPE_VIRT_MACHINE "virt" 83 #define VIRT_MACHINE(obj) \ 84 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 85 #define VIRT_MACHINE_GET_CLASS(obj) \ 86 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 87 #define VIRT_MACHINE_CLASS(klass) \ 88 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 89 90 /* Addresses and sizes of our components. 91 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 92 * 128MB..256MB is used for miscellaneous device I/O. 93 * 256MB..1GB is reserved for possible future PCI support (ie where the 94 * PCI memory window will go if we add a PCI host controller). 95 * 1GB and up is RAM (which may happily spill over into the 96 * high memory region beyond 4GB). 97 * This represents a compromise between how much RAM can be given to 98 * a 32 bit VM and leaving space for expansion and in particular for PCI. 99 * Note that devices should generally be placed at multiples of 0x10000, 100 * to accommodate guests using 64K pages. 101 */ 102 static const MemMapEntry a15memmap[] = { 103 /* Space up to 0x8000000 is reserved for a boot ROM */ 104 [VIRT_FLASH] = { 0, 0x08000000 }, 105 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 106 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 107 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 108 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 109 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 110 [VIRT_UART] = { 0x09000000, 0x00001000 }, 111 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 112 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a }, 113 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 114 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 115 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 116 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 117 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 118 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 119 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 120 }; 121 122 static const int a15irqmap[] = { 123 [VIRT_UART] = 1, 124 [VIRT_RTC] = 2, 125 [VIRT_PCIE] = 3, /* ... to 6 */ 126 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 127 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 128 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 129 }; 130 131 static VirtBoardInfo machines[] = { 132 { 133 .cpu_model = "cortex-a15", 134 .memmap = a15memmap, 135 .irqmap = a15irqmap, 136 }, 137 { 138 .cpu_model = "cortex-a53", 139 .memmap = a15memmap, 140 .irqmap = a15irqmap, 141 }, 142 { 143 .cpu_model = "cortex-a57", 144 .memmap = a15memmap, 145 .irqmap = a15irqmap, 146 }, 147 { 148 .cpu_model = "host", 149 .memmap = a15memmap, 150 .irqmap = a15irqmap, 151 }, 152 }; 153 154 static VirtBoardInfo *find_machine_info(const char *cpu) 155 { 156 int i; 157 158 for (i = 0; i < ARRAY_SIZE(machines); i++) { 159 if (strcmp(cpu, machines[i].cpu_model) == 0) { 160 return &machines[i]; 161 } 162 } 163 return NULL; 164 } 165 166 static void create_fdt(VirtBoardInfo *vbi) 167 { 168 void *fdt = create_device_tree(&vbi->fdt_size); 169 170 if (!fdt) { 171 error_report("create_device_tree() failed"); 172 exit(1); 173 } 174 175 vbi->fdt = fdt; 176 177 /* Header */ 178 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 179 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 180 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 181 182 /* 183 * /chosen and /memory nodes must exist for load_dtb 184 * to fill in necessary properties later 185 */ 186 qemu_fdt_add_subnode(fdt, "/chosen"); 187 qemu_fdt_add_subnode(fdt, "/memory"); 188 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 189 190 /* Clock node, for the benefit of the UART. The kernel device tree 191 * binding documentation claims the PL011 node clock properties are 192 * optional but in practice if you omit them the kernel refuses to 193 * probe for the device. 194 */ 195 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 196 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 197 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 198 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 199 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 200 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 201 "clk24mhz"); 202 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 203 204 } 205 206 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 207 { 208 uint32_t cpu_suspend_fn; 209 uint32_t cpu_off_fn; 210 uint32_t cpu_on_fn; 211 uint32_t migrate_fn; 212 void *fdt = vbi->fdt; 213 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 214 215 qemu_fdt_add_subnode(fdt, "/psci"); 216 if (armcpu->psci_version == 2) { 217 const char comp[] = "arm,psci-0.2\0arm,psci"; 218 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 219 220 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 221 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 222 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 223 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 224 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 225 } else { 226 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 227 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 228 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 229 } 230 } else { 231 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 232 233 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 234 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 235 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 236 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 237 } 238 239 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 240 * to the instruction that should be used to invoke PSCI functions. 241 * However, the device tree binding uses 'method' instead, so that is 242 * what we should use here. 243 */ 244 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 245 246 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 247 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 248 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 249 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 250 } 251 252 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) 253 { 254 /* Note that on A15 h/w these interrupts are level-triggered, 255 * but for the GIC implementation provided by both QEMU and KVM 256 * they are edge-triggered. 257 */ 258 ARMCPU *armcpu; 259 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 260 261 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 262 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); 263 264 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 265 266 armcpu = ARM_CPU(qemu_get_cpu(0)); 267 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 268 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 269 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 270 compat, sizeof(compat)); 271 } else { 272 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 273 "arm,armv7-timer"); 274 } 275 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 276 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 277 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 278 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 279 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 280 } 281 282 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 283 { 284 int cpu; 285 286 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 287 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); 288 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 289 290 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 291 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 292 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 293 294 qemu_fdt_add_subnode(vbi->fdt, nodename); 295 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 296 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 297 armcpu->dtb_compatible); 298 299 if (vbi->smp_cpus > 1) { 300 qemu_fdt_setprop_string(vbi->fdt, nodename, 301 "enable-method", "psci"); 302 } 303 304 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", armcpu->mp_affinity); 305 g_free(nodename); 306 } 307 } 308 309 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 310 { 311 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 312 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 313 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 314 "arm,gic-v2m-frame"); 315 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 316 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 317 2, vbi->memmap[VIRT_GIC_V2M].base, 318 2, vbi->memmap[VIRT_GIC_V2M].size); 319 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 320 } 321 322 static void fdt_add_gic_node(VirtBoardInfo *vbi) 323 { 324 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 325 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 326 327 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 328 /* 'cortex-a15-gic' means 'GIC v2' */ 329 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 330 "arm,cortex-a15-gic"); 331 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 332 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 333 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 334 2, vbi->memmap[VIRT_GIC_DIST].base, 335 2, vbi->memmap[VIRT_GIC_DIST].size, 336 2, vbi->memmap[VIRT_GIC_CPU].base, 337 2, vbi->memmap[VIRT_GIC_CPU].size); 338 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 339 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 340 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 341 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 342 } 343 344 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 345 { 346 int i; 347 int irq = vbi->irqmap[VIRT_GIC_V2M]; 348 DeviceState *dev; 349 350 dev = qdev_create(NULL, "arm-gicv2m"); 351 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 352 qdev_prop_set_uint32(dev, "base-spi", irq); 353 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 354 qdev_init_nofail(dev); 355 356 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 357 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 358 } 359 360 fdt_add_v2m_gic_node(vbi); 361 } 362 363 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic) 364 { 365 /* We create a standalone GIC v2 */ 366 DeviceState *gicdev; 367 SysBusDevice *gicbusdev; 368 const char *gictype = "arm_gic"; 369 int i; 370 371 if (kvm_irqchip_in_kernel()) { 372 gictype = "kvm-arm-gic"; 373 } 374 375 gicdev = qdev_create(NULL, gictype); 376 qdev_prop_set_uint32(gicdev, "revision", 2); 377 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 378 /* Note that the num-irq property counts both internal and external 379 * interrupts; there are always 32 of the former (mandated by GIC spec). 380 */ 381 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 382 qdev_init_nofail(gicdev); 383 gicbusdev = SYS_BUS_DEVICE(gicdev); 384 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 385 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 386 387 /* Wire the outputs from each CPU's generic timer to the 388 * appropriate GIC PPI inputs, and the GIC's IRQ output to 389 * the CPU's IRQ input. 390 */ 391 for (i = 0; i < smp_cpus; i++) { 392 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 393 int ppibase = NUM_IRQS + i * 32; 394 /* physical timer; we wire it up to the non-secure timer's ID, 395 * since a real A15 always has TrustZone but QEMU doesn't. 396 */ 397 qdev_connect_gpio_out(cpudev, 0, 398 qdev_get_gpio_in(gicdev, ppibase + 30)); 399 /* virtual timer */ 400 qdev_connect_gpio_out(cpudev, 1, 401 qdev_get_gpio_in(gicdev, ppibase + 27)); 402 403 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 404 sysbus_connect_irq(gicbusdev, i + smp_cpus, 405 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 406 } 407 408 for (i = 0; i < NUM_IRQS; i++) { 409 pic[i] = qdev_get_gpio_in(gicdev, i); 410 } 411 412 fdt_add_gic_node(vbi); 413 414 create_v2m(vbi, pic); 415 } 416 417 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 418 { 419 char *nodename; 420 hwaddr base = vbi->memmap[VIRT_UART].base; 421 hwaddr size = vbi->memmap[VIRT_UART].size; 422 int irq = vbi->irqmap[VIRT_UART]; 423 const char compat[] = "arm,pl011\0arm,primecell"; 424 const char clocknames[] = "uartclk\0apb_pclk"; 425 426 sysbus_create_simple("pl011", base, pic[irq]); 427 428 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 429 qemu_fdt_add_subnode(vbi->fdt, nodename); 430 /* Note that we can't use setprop_string because of the embedded NUL */ 431 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 432 compat, sizeof(compat)); 433 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 434 2, base, 2, size); 435 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 436 GIC_FDT_IRQ_TYPE_SPI, irq, 437 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 438 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 439 vbi->clock_phandle, vbi->clock_phandle); 440 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 441 clocknames, sizeof(clocknames)); 442 443 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 444 g_free(nodename); 445 } 446 447 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 448 { 449 char *nodename; 450 hwaddr base = vbi->memmap[VIRT_RTC].base; 451 hwaddr size = vbi->memmap[VIRT_RTC].size; 452 int irq = vbi->irqmap[VIRT_RTC]; 453 const char compat[] = "arm,pl031\0arm,primecell"; 454 455 sysbus_create_simple("pl031", base, pic[irq]); 456 457 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 458 qemu_fdt_add_subnode(vbi->fdt, nodename); 459 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 460 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 461 2, base, 2, size); 462 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 463 GIC_FDT_IRQ_TYPE_SPI, irq, 464 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 465 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 466 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 467 g_free(nodename); 468 } 469 470 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 471 { 472 int i; 473 hwaddr size = vbi->memmap[VIRT_MMIO].size; 474 475 /* We create the transports in forwards order. Since qbus_realize() 476 * prepends (not appends) new child buses, the incrementing loop below will 477 * create a list of virtio-mmio buses with decreasing base addresses. 478 * 479 * When a -device option is processed from the command line, 480 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 481 * order. The upshot is that -device options in increasing command line 482 * order are mapped to virtio-mmio buses with decreasing base addresses. 483 * 484 * When this code was originally written, that arrangement ensured that the 485 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 486 * the first -device on the command line. (The end-to-end order is a 487 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 488 * guest kernel's name-to-address assignment strategy.) 489 * 490 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 491 * the message, if not necessarily the code, of commit 70161ff336. 492 * Therefore the loop now establishes the inverse of the original intent. 493 * 494 * Unfortunately, we can't counteract the kernel change by reversing the 495 * loop; it would break existing command lines. 496 * 497 * In any case, the kernel makes no guarantee about the stability of 498 * enumeration order of virtio devices (as demonstrated by it changing 499 * between kernel versions). For reliable and stable identification 500 * of disks users must use UUIDs or similar mechanisms. 501 */ 502 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 503 int irq = vbi->irqmap[VIRT_MMIO] + i; 504 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 505 506 sysbus_create_simple("virtio-mmio", base, pic[irq]); 507 } 508 509 /* We add dtb nodes in reverse order so that they appear in the finished 510 * device tree lowest address first. 511 * 512 * Note that this mapping is independent of the loop above. The previous 513 * loop influences virtio device to virtio transport assignment, whereas 514 * this loop controls how virtio transports are laid out in the dtb. 515 */ 516 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 517 char *nodename; 518 int irq = vbi->irqmap[VIRT_MMIO] + i; 519 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 520 521 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 522 qemu_fdt_add_subnode(vbi->fdt, nodename); 523 qemu_fdt_setprop_string(vbi->fdt, nodename, 524 "compatible", "virtio,mmio"); 525 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 526 2, base, 2, size); 527 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 528 GIC_FDT_IRQ_TYPE_SPI, irq, 529 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 530 g_free(nodename); 531 } 532 } 533 534 static void create_one_flash(const char *name, hwaddr flashbase, 535 hwaddr flashsize) 536 { 537 /* Create and map a single flash device. We use the same 538 * parameters as the flash devices on the Versatile Express board. 539 */ 540 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 541 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 542 const uint64_t sectorlength = 256 * 1024; 543 544 if (dinfo) { 545 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 546 &error_abort); 547 } 548 549 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 550 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 551 qdev_prop_set_uint8(dev, "width", 4); 552 qdev_prop_set_uint8(dev, "device-width", 2); 553 qdev_prop_set_bit(dev, "big-endian", false); 554 qdev_prop_set_uint16(dev, "id0", 0x89); 555 qdev_prop_set_uint16(dev, "id1", 0x18); 556 qdev_prop_set_uint16(dev, "id2", 0x00); 557 qdev_prop_set_uint16(dev, "id3", 0x00); 558 qdev_prop_set_string(dev, "name", name); 559 qdev_init_nofail(dev); 560 561 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 562 } 563 564 static void create_flash(const VirtBoardInfo *vbi) 565 { 566 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 567 * Any file passed via -bios goes in the first of these. 568 */ 569 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 570 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 571 char *nodename; 572 573 if (bios_name) { 574 char *fn; 575 int image_size; 576 577 if (drive_get(IF_PFLASH, 0, 0)) { 578 error_report("The contents of the first flash device may be " 579 "specified with -bios or with -drive if=pflash... " 580 "but you cannot use both options at once"); 581 exit(1); 582 } 583 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 584 if (!fn) { 585 error_report("Could not find ROM image '%s'", bios_name); 586 exit(1); 587 } 588 image_size = load_image_targphys(fn, flashbase, flashsize); 589 g_free(fn); 590 if (image_size < 0) { 591 error_report("Could not load ROM image '%s'", bios_name); 592 exit(1); 593 } 594 } 595 596 create_one_flash("virt.flash0", flashbase, flashsize); 597 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 598 599 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 600 qemu_fdt_add_subnode(vbi->fdt, nodename); 601 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 602 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 603 2, flashbase, 2, flashsize, 604 2, flashbase + flashsize, 2, flashsize); 605 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 606 g_free(nodename); 607 } 608 609 static void create_fw_cfg(const VirtBoardInfo *vbi) 610 { 611 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 612 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 613 char *nodename; 614 615 fw_cfg_init_mem_wide(base + 8, base, 8); 616 617 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 618 qemu_fdt_add_subnode(vbi->fdt, nodename); 619 qemu_fdt_setprop_string(vbi->fdt, nodename, 620 "compatible", "qemu,fw-cfg-mmio"); 621 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 622 2, base, 2, size); 623 g_free(nodename); 624 } 625 626 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 627 int first_irq, const char *nodename) 628 { 629 int devfn, pin; 630 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 631 uint32_t *irq_map = full_irq_map; 632 633 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 634 for (pin = 0; pin < 4; pin++) { 635 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 636 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 637 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 638 int i; 639 640 uint32_t map[] = { 641 devfn << 8, 0, 0, /* devfn */ 642 pin + 1, /* PCI pin */ 643 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 644 645 /* Convert map to big endian */ 646 for (i = 0; i < 10; i++) { 647 irq_map[i] = cpu_to_be32(map[i]); 648 } 649 irq_map += 10; 650 } 651 } 652 653 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 654 full_irq_map, sizeof(full_irq_map)); 655 656 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 657 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 658 0x7 /* PCI irq */); 659 } 660 661 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic) 662 { 663 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 664 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 665 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 666 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 667 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 668 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 669 hwaddr base = base_mmio; 670 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 671 int irq = vbi->irqmap[VIRT_PCIE]; 672 MemoryRegion *mmio_alias; 673 MemoryRegion *mmio_reg; 674 MemoryRegion *ecam_alias; 675 MemoryRegion *ecam_reg; 676 DeviceState *dev; 677 char *nodename; 678 int i; 679 680 dev = qdev_create(NULL, TYPE_GPEX_HOST); 681 qdev_init_nofail(dev); 682 683 /* Map only the first size_ecam bytes of ECAM space */ 684 ecam_alias = g_new0(MemoryRegion, 1); 685 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 686 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 687 ecam_reg, 0, size_ecam); 688 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 689 690 /* Map the MMIO window into system address space so as to expose 691 * the section of PCI MMIO space which starts at the same base address 692 * (ie 1:1 mapping for that part of PCI MMIO space visible through 693 * the window). 694 */ 695 mmio_alias = g_new0(MemoryRegion, 1); 696 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 697 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 698 mmio_reg, base_mmio, size_mmio); 699 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 700 701 /* Map IO port space */ 702 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 703 704 for (i = 0; i < GPEX_NUM_IRQS; i++) { 705 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 706 } 707 708 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 709 qemu_fdt_add_subnode(vbi->fdt, nodename); 710 qemu_fdt_setprop_string(vbi->fdt, nodename, 711 "compatible", "pci-host-ecam-generic"); 712 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 713 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 714 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 715 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 716 nr_pcie_buses - 1); 717 718 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle); 719 720 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 721 2, base_ecam, 2, size_ecam); 722 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 723 1, FDT_PCI_RANGE_IOPORT, 2, 0, 724 2, base_pio, 2, size_pio, 725 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 726 2, base_mmio, 2, size_mmio); 727 728 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 729 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 730 731 g_free(nodename); 732 } 733 734 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 735 { 736 DeviceState *dev; 737 SysBusDevice *s; 738 int i; 739 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 740 MemoryRegion *sysmem = get_system_memory(); 741 742 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 743 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 744 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 745 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 746 747 fdt_params->system_params = &platform_bus_params; 748 fdt_params->binfo = &vbi->bootinfo; 749 fdt_params->intc = "/intc"; 750 /* 751 * register a machine init done notifier that creates the device tree 752 * nodes of the platform bus and its children dynamic sysbus devices 753 */ 754 arm_register_platform_bus_fdt_creator(fdt_params); 755 756 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 757 dev->id = TYPE_PLATFORM_BUS_DEVICE; 758 qdev_prop_set_uint32(dev, "num_irqs", 759 platform_bus_params.platform_bus_num_irqs); 760 qdev_prop_set_uint32(dev, "mmio_size", 761 platform_bus_params.platform_bus_size); 762 qdev_init_nofail(dev); 763 s = SYS_BUS_DEVICE(dev); 764 765 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 766 int irqn = platform_bus_params.platform_bus_first_irq + i; 767 sysbus_connect_irq(s, i, pic[irqn]); 768 } 769 770 memory_region_add_subregion(sysmem, 771 platform_bus_params.platform_bus_base, 772 sysbus_mmio_get_region(s, 0)); 773 } 774 775 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 776 { 777 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 778 779 *fdt_size = board->fdt_size; 780 return board->fdt; 781 } 782 783 static 784 void virt_guest_info_machine_done(Notifier *notifier, void *data) 785 { 786 VirtGuestInfoState *guest_info_state = container_of(notifier, 787 VirtGuestInfoState, machine_done); 788 virt_acpi_setup(&guest_info_state->info); 789 } 790 791 static void machvirt_init(MachineState *machine) 792 { 793 VirtMachineState *vms = VIRT_MACHINE(machine); 794 qemu_irq pic[NUM_IRQS]; 795 MemoryRegion *sysmem = get_system_memory(); 796 int n; 797 MemoryRegion *ram = g_new(MemoryRegion, 1); 798 const char *cpu_model = machine->cpu_model; 799 VirtBoardInfo *vbi; 800 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 801 VirtGuestInfo *guest_info = &guest_info_state->info; 802 char **cpustr; 803 804 if (!cpu_model) { 805 cpu_model = "cortex-a15"; 806 } 807 808 /* Separate the actual CPU model name from any appended features */ 809 cpustr = g_strsplit(cpu_model, ",", 2); 810 811 vbi = find_machine_info(cpustr[0]); 812 813 if (!vbi) { 814 error_report("mach-virt: CPU %s not supported", cpustr[0]); 815 exit(1); 816 } 817 818 vbi->smp_cpus = smp_cpus; 819 820 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 821 error_report("mach-virt: cannot model more than 30GB RAM"); 822 exit(1); 823 } 824 825 create_fdt(vbi); 826 827 for (n = 0; n < smp_cpus; n++) { 828 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 829 CPUClass *cc = CPU_CLASS(oc); 830 Object *cpuobj; 831 Error *err = NULL; 832 char *cpuopts = g_strdup(cpustr[1]); 833 834 if (!oc) { 835 fprintf(stderr, "Unable to find CPU definition\n"); 836 exit(1); 837 } 838 cpuobj = object_new(object_class_get_name(oc)); 839 840 /* Handle any CPU options specified by the user */ 841 cc->parse_features(CPU(cpuobj), cpuopts, &err); 842 g_free(cpuopts); 843 if (err) { 844 error_report_err(err); 845 exit(1); 846 } 847 848 if (!vms->secure) { 849 object_property_set_bool(cpuobj, false, "has_el3", NULL); 850 } 851 852 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", 853 NULL); 854 855 /* Secondary CPUs start in PSCI powered-down state */ 856 if (n > 0) { 857 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 858 } 859 860 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 861 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 862 "reset-cbar", &error_abort); 863 } 864 865 object_property_set_bool(cpuobj, true, "realized", NULL); 866 } 867 g_strfreev(cpustr); 868 fdt_add_timer_nodes(vbi); 869 fdt_add_cpu_nodes(vbi); 870 fdt_add_psci_node(vbi); 871 872 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 873 machine->ram_size); 874 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 875 876 create_flash(vbi); 877 878 create_gic(vbi, pic); 879 880 create_uart(vbi, pic); 881 882 create_rtc(vbi, pic); 883 884 create_pcie(vbi, pic); 885 886 /* Create mmio transports, so the user can create virtio backends 887 * (which will be automatically plugged in to the transports). If 888 * no backend is created the transport will just sit harmlessly idle. 889 */ 890 create_virtio_devices(vbi, pic); 891 892 create_fw_cfg(vbi); 893 rom_set_fw(fw_cfg_find()); 894 895 guest_info->smp_cpus = smp_cpus; 896 guest_info->fw_cfg = fw_cfg_find(); 897 guest_info->memmap = vbi->memmap; 898 guest_info->irqmap = vbi->irqmap; 899 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 900 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 901 902 vbi->bootinfo.ram_size = machine->ram_size; 903 vbi->bootinfo.kernel_filename = machine->kernel_filename; 904 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 905 vbi->bootinfo.initrd_filename = machine->initrd_filename; 906 vbi->bootinfo.nb_cpus = smp_cpus; 907 vbi->bootinfo.board_id = -1; 908 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 909 vbi->bootinfo.get_dtb = machvirt_dtb; 910 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 911 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 912 913 /* 914 * arm_load_kernel machine init done notifier registration must 915 * happen before the platform_bus_create call. In this latter, 916 * another notifier is registered which adds platform bus nodes. 917 * Notifiers are executed in registration reverse order. 918 */ 919 create_platform_bus(vbi, pic); 920 } 921 922 static bool virt_get_secure(Object *obj, Error **errp) 923 { 924 VirtMachineState *vms = VIRT_MACHINE(obj); 925 926 return vms->secure; 927 } 928 929 static void virt_set_secure(Object *obj, bool value, Error **errp) 930 { 931 VirtMachineState *vms = VIRT_MACHINE(obj); 932 933 vms->secure = value; 934 } 935 936 static void virt_instance_init(Object *obj) 937 { 938 VirtMachineState *vms = VIRT_MACHINE(obj); 939 940 /* EL3 is enabled by default on virt */ 941 vms->secure = true; 942 object_property_add_bool(obj, "secure", virt_get_secure, 943 virt_set_secure, NULL); 944 object_property_set_description(obj, "secure", 945 "Set on/off to enable/disable the ARM " 946 "Security Extensions (TrustZone)", 947 NULL); 948 } 949 950 static void virt_class_init(ObjectClass *oc, void *data) 951 { 952 MachineClass *mc = MACHINE_CLASS(oc); 953 954 mc->name = TYPE_VIRT_MACHINE; 955 mc->desc = "ARM Virtual Machine", 956 mc->init = machvirt_init; 957 mc->max_cpus = 8; 958 mc->has_dynamic_sysbus = true; 959 mc->block_default_type = IF_VIRTIO; 960 mc->no_cdrom = 1; 961 } 962 963 static const TypeInfo machvirt_info = { 964 .name = TYPE_VIRT_MACHINE, 965 .parent = TYPE_MACHINE, 966 .instance_size = sizeof(VirtMachineState), 967 .instance_init = virt_instance_init, 968 .class_size = sizeof(VirtMachineClass), 969 .class_init = virt_class_init, 970 }; 971 972 static void machvirt_machine_init(void) 973 { 974 type_register_static(&machvirt_info); 975 } 976 977 machine_init(machvirt_machine_init); 978