1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/arm/virt.h" 35 #include "hw/devices.h" 36 #include "net/net.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/kvm.h" 41 #include "hw/boards.h" 42 #include "hw/loader.h" 43 #include "exec/address-spaces.h" 44 #include "qemu/bitops.h" 45 #include "qemu/error-report.h" 46 #include "hw/pci-host/gpex.h" 47 #include "hw/arm/virt-acpi-build.h" 48 #include "hw/arm/sysbus-fdt.h" 49 #include "hw/platform-bus.h" 50 #include "hw/arm/fdt.h" 51 #include "hw/intc/arm_gic_common.h" 52 #include "kvm_arm.h" 53 #include "hw/smbios/smbios.h" 54 55 /* Number of external interrupt lines to configure the GIC with */ 56 #define NUM_IRQS 256 57 58 #define PLATFORM_BUS_NUM_IRQS 64 59 60 static ARMPlatformBusSystemParams platform_bus_params; 61 62 typedef struct VirtBoardInfo { 63 struct arm_boot_info bootinfo; 64 const char *cpu_model; 65 const MemMapEntry *memmap; 66 const int *irqmap; 67 int smp_cpus; 68 void *fdt; 69 int fdt_size; 70 uint32_t clock_phandle; 71 uint32_t gic_phandle; 72 uint32_t v2m_phandle; 73 } VirtBoardInfo; 74 75 typedef struct { 76 MachineClass parent; 77 VirtBoardInfo *daughterboard; 78 } VirtMachineClass; 79 80 typedef struct { 81 MachineState parent; 82 bool secure; 83 bool highmem; 84 } VirtMachineState; 85 86 #define VIRT_MACHINE_NAME "virt" 87 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME(VIRT_MACHINE_NAME) 88 #define VIRT_MACHINE(obj) \ 89 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 90 #define VIRT_MACHINE_GET_CLASS(obj) \ 91 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 92 #define VIRT_MACHINE_CLASS(klass) \ 93 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 94 95 /* Addresses and sizes of our components. 96 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 97 * 128MB..256MB is used for miscellaneous device I/O. 98 * 256MB..1GB is reserved for possible future PCI support (ie where the 99 * PCI memory window will go if we add a PCI host controller). 100 * 1GB and up is RAM (which may happily spill over into the 101 * high memory region beyond 4GB). 102 * This represents a compromise between how much RAM can be given to 103 * a 32 bit VM and leaving space for expansion and in particular for PCI. 104 * Note that devices should generally be placed at multiples of 0x10000, 105 * to accommodate guests using 64K pages. 106 */ 107 static const MemMapEntry a15memmap[] = { 108 /* Space up to 0x8000000 is reserved for a boot ROM */ 109 [VIRT_FLASH] = { 0, 0x08000000 }, 110 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 111 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 112 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 113 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 114 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 115 [VIRT_UART] = { 0x09000000, 0x00001000 }, 116 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 117 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a }, 118 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 119 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 120 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 121 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 122 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 123 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 124 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 125 /* Second PCIe window, 512GB wide at the 512GB boundary */ 126 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 127 }; 128 129 static const int a15irqmap[] = { 130 [VIRT_UART] = 1, 131 [VIRT_RTC] = 2, 132 [VIRT_PCIE] = 3, /* ... to 6 */ 133 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 134 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 135 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 136 }; 137 138 static VirtBoardInfo machines[] = { 139 { 140 .cpu_model = "cortex-a15", 141 .memmap = a15memmap, 142 .irqmap = a15irqmap, 143 }, 144 { 145 .cpu_model = "cortex-a53", 146 .memmap = a15memmap, 147 .irqmap = a15irqmap, 148 }, 149 { 150 .cpu_model = "cortex-a57", 151 .memmap = a15memmap, 152 .irqmap = a15irqmap, 153 }, 154 { 155 .cpu_model = "host", 156 .memmap = a15memmap, 157 .irqmap = a15irqmap, 158 }, 159 }; 160 161 static VirtBoardInfo *find_machine_info(const char *cpu) 162 { 163 int i; 164 165 for (i = 0; i < ARRAY_SIZE(machines); i++) { 166 if (strcmp(cpu, machines[i].cpu_model) == 0) { 167 return &machines[i]; 168 } 169 } 170 return NULL; 171 } 172 173 static void create_fdt(VirtBoardInfo *vbi) 174 { 175 void *fdt = create_device_tree(&vbi->fdt_size); 176 177 if (!fdt) { 178 error_report("create_device_tree() failed"); 179 exit(1); 180 } 181 182 vbi->fdt = fdt; 183 184 /* Header */ 185 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 186 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 187 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 188 189 /* 190 * /chosen and /memory nodes must exist for load_dtb 191 * to fill in necessary properties later 192 */ 193 qemu_fdt_add_subnode(fdt, "/chosen"); 194 qemu_fdt_add_subnode(fdt, "/memory"); 195 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 196 197 /* Clock node, for the benefit of the UART. The kernel device tree 198 * binding documentation claims the PL011 node clock properties are 199 * optional but in practice if you omit them the kernel refuses to 200 * probe for the device. 201 */ 202 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 203 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 204 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 205 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 206 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 207 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 208 "clk24mhz"); 209 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 210 211 } 212 213 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 214 { 215 uint32_t cpu_suspend_fn; 216 uint32_t cpu_off_fn; 217 uint32_t cpu_on_fn; 218 uint32_t migrate_fn; 219 void *fdt = vbi->fdt; 220 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 221 222 qemu_fdt_add_subnode(fdt, "/psci"); 223 if (armcpu->psci_version == 2) { 224 const char comp[] = "arm,psci-0.2\0arm,psci"; 225 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 226 227 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 228 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 229 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 230 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 231 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 232 } else { 233 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 234 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 235 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 236 } 237 } else { 238 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 239 240 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 241 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 242 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 243 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 244 } 245 246 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 247 * to the instruction that should be used to invoke PSCI functions. 248 * However, the device tree binding uses 'method' instead, so that is 249 * what we should use here. 250 */ 251 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 252 253 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 254 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 255 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 256 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 257 } 258 259 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) 260 { 261 /* Note that on A15 h/w these interrupts are level-triggered, 262 * but for the GIC implementation provided by both QEMU and KVM 263 * they are edge-triggered. 264 */ 265 ARMCPU *armcpu; 266 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 267 268 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 269 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); 270 271 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 272 273 armcpu = ARM_CPU(qemu_get_cpu(0)); 274 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 275 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 276 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 277 compat, sizeof(compat)); 278 } else { 279 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 280 "arm,armv7-timer"); 281 } 282 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 283 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 284 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 285 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 286 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 287 } 288 289 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 290 { 291 int cpu; 292 int addr_cells = 1; 293 294 /* 295 * From Documentation/devicetree/bindings/arm/cpus.txt 296 * On ARM v8 64-bit systems value should be set to 2, 297 * that corresponds to the MPIDR_EL1 register size. 298 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 299 * in the system, #address-cells can be set to 1, since 300 * MPIDR_EL1[63:32] bits are not used for CPUs 301 * identification. 302 * 303 * Here we actually don't know whether our system is 32- or 64-bit one. 304 * The simplest way to go is to examine affinity IDs of all our CPUs. If 305 * at least one of them has Aff3 populated, we set #address-cells to 2. 306 */ 307 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 308 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 309 310 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 311 addr_cells = 2; 312 break; 313 } 314 } 315 316 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 317 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 318 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 319 320 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 321 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 322 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 323 324 qemu_fdt_add_subnode(vbi->fdt, nodename); 325 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 326 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 327 armcpu->dtb_compatible); 328 329 if (vbi->smp_cpus > 1) { 330 qemu_fdt_setprop_string(vbi->fdt, nodename, 331 "enable-method", "psci"); 332 } 333 334 if (addr_cells == 2) { 335 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 336 armcpu->mp_affinity); 337 } else { 338 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 339 armcpu->mp_affinity); 340 } 341 342 g_free(nodename); 343 } 344 } 345 346 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 347 { 348 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 349 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 350 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 351 "arm,gic-v2m-frame"); 352 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 353 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 354 2, vbi->memmap[VIRT_GIC_V2M].base, 355 2, vbi->memmap[VIRT_GIC_V2M].size); 356 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 357 } 358 359 static void fdt_add_gic_node(VirtBoardInfo *vbi) 360 { 361 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 362 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 363 364 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 365 /* 'cortex-a15-gic' means 'GIC v2' */ 366 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 367 "arm,cortex-a15-gic"); 368 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 369 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 370 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 371 2, vbi->memmap[VIRT_GIC_DIST].base, 372 2, vbi->memmap[VIRT_GIC_DIST].size, 373 2, vbi->memmap[VIRT_GIC_CPU].base, 374 2, vbi->memmap[VIRT_GIC_CPU].size); 375 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 376 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 377 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 378 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 379 } 380 381 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 382 { 383 int i; 384 int irq = vbi->irqmap[VIRT_GIC_V2M]; 385 DeviceState *dev; 386 387 dev = qdev_create(NULL, "arm-gicv2m"); 388 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 389 qdev_prop_set_uint32(dev, "base-spi", irq); 390 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 391 qdev_init_nofail(dev); 392 393 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 394 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 395 } 396 397 fdt_add_v2m_gic_node(vbi); 398 } 399 400 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, bool secure) 401 { 402 /* We create a standalone GIC v2 */ 403 DeviceState *gicdev; 404 SysBusDevice *gicbusdev; 405 const char *gictype; 406 int i; 407 408 gictype = gic_class_name(); 409 410 gicdev = qdev_create(NULL, gictype); 411 qdev_prop_set_uint32(gicdev, "revision", 2); 412 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 413 /* Note that the num-irq property counts both internal and external 414 * interrupts; there are always 32 of the former (mandated by GIC spec). 415 */ 416 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 417 if (!kvm_irqchip_in_kernel()) { 418 qdev_prop_set_bit(gicdev, "has-security-extensions", secure); 419 } 420 qdev_init_nofail(gicdev); 421 gicbusdev = SYS_BUS_DEVICE(gicdev); 422 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 423 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 424 425 /* Wire the outputs from each CPU's generic timer to the 426 * appropriate GIC PPI inputs, and the GIC's IRQ output to 427 * the CPU's IRQ input. 428 */ 429 for (i = 0; i < smp_cpus; i++) { 430 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 431 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 432 int irq; 433 /* Mapping from the output timer irq lines from the CPU to the 434 * GIC PPI inputs we use for the virt board. 435 */ 436 const int timer_irq[] = { 437 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 438 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 439 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 440 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 441 }; 442 443 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 444 qdev_connect_gpio_out(cpudev, irq, 445 qdev_get_gpio_in(gicdev, 446 ppibase + timer_irq[irq])); 447 } 448 449 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 450 sysbus_connect_irq(gicbusdev, i + smp_cpus, 451 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 452 } 453 454 for (i = 0; i < NUM_IRQS; i++) { 455 pic[i] = qdev_get_gpio_in(gicdev, i); 456 } 457 458 fdt_add_gic_node(vbi); 459 460 create_v2m(vbi, pic); 461 } 462 463 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 464 { 465 char *nodename; 466 hwaddr base = vbi->memmap[VIRT_UART].base; 467 hwaddr size = vbi->memmap[VIRT_UART].size; 468 int irq = vbi->irqmap[VIRT_UART]; 469 const char compat[] = "arm,pl011\0arm,primecell"; 470 const char clocknames[] = "uartclk\0apb_pclk"; 471 472 sysbus_create_simple("pl011", base, pic[irq]); 473 474 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 475 qemu_fdt_add_subnode(vbi->fdt, nodename); 476 /* Note that we can't use setprop_string because of the embedded NUL */ 477 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 478 compat, sizeof(compat)); 479 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 480 2, base, 2, size); 481 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 482 GIC_FDT_IRQ_TYPE_SPI, irq, 483 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 484 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 485 vbi->clock_phandle, vbi->clock_phandle); 486 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 487 clocknames, sizeof(clocknames)); 488 489 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 490 g_free(nodename); 491 } 492 493 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 494 { 495 char *nodename; 496 hwaddr base = vbi->memmap[VIRT_RTC].base; 497 hwaddr size = vbi->memmap[VIRT_RTC].size; 498 int irq = vbi->irqmap[VIRT_RTC]; 499 const char compat[] = "arm,pl031\0arm,primecell"; 500 501 sysbus_create_simple("pl031", base, pic[irq]); 502 503 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 504 qemu_fdt_add_subnode(vbi->fdt, nodename); 505 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 506 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 507 2, base, 2, size); 508 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 509 GIC_FDT_IRQ_TYPE_SPI, irq, 510 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 511 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 512 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 513 g_free(nodename); 514 } 515 516 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 517 { 518 int i; 519 hwaddr size = vbi->memmap[VIRT_MMIO].size; 520 521 /* We create the transports in forwards order. Since qbus_realize() 522 * prepends (not appends) new child buses, the incrementing loop below will 523 * create a list of virtio-mmio buses with decreasing base addresses. 524 * 525 * When a -device option is processed from the command line, 526 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 527 * order. The upshot is that -device options in increasing command line 528 * order are mapped to virtio-mmio buses with decreasing base addresses. 529 * 530 * When this code was originally written, that arrangement ensured that the 531 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 532 * the first -device on the command line. (The end-to-end order is a 533 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 534 * guest kernel's name-to-address assignment strategy.) 535 * 536 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 537 * the message, if not necessarily the code, of commit 70161ff336. 538 * Therefore the loop now establishes the inverse of the original intent. 539 * 540 * Unfortunately, we can't counteract the kernel change by reversing the 541 * loop; it would break existing command lines. 542 * 543 * In any case, the kernel makes no guarantee about the stability of 544 * enumeration order of virtio devices (as demonstrated by it changing 545 * between kernel versions). For reliable and stable identification 546 * of disks users must use UUIDs or similar mechanisms. 547 */ 548 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 549 int irq = vbi->irqmap[VIRT_MMIO] + i; 550 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 551 552 sysbus_create_simple("virtio-mmio", base, pic[irq]); 553 } 554 555 /* We add dtb nodes in reverse order so that they appear in the finished 556 * device tree lowest address first. 557 * 558 * Note that this mapping is independent of the loop above. The previous 559 * loop influences virtio device to virtio transport assignment, whereas 560 * this loop controls how virtio transports are laid out in the dtb. 561 */ 562 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 563 char *nodename; 564 int irq = vbi->irqmap[VIRT_MMIO] + i; 565 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 566 567 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 568 qemu_fdt_add_subnode(vbi->fdt, nodename); 569 qemu_fdt_setprop_string(vbi->fdt, nodename, 570 "compatible", "virtio,mmio"); 571 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 572 2, base, 2, size); 573 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 574 GIC_FDT_IRQ_TYPE_SPI, irq, 575 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 576 g_free(nodename); 577 } 578 } 579 580 static void create_one_flash(const char *name, hwaddr flashbase, 581 hwaddr flashsize) 582 { 583 /* Create and map a single flash device. We use the same 584 * parameters as the flash devices on the Versatile Express board. 585 */ 586 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 587 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 588 const uint64_t sectorlength = 256 * 1024; 589 590 if (dinfo) { 591 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 592 &error_abort); 593 } 594 595 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 596 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 597 qdev_prop_set_uint8(dev, "width", 4); 598 qdev_prop_set_uint8(dev, "device-width", 2); 599 qdev_prop_set_bit(dev, "big-endian", false); 600 qdev_prop_set_uint16(dev, "id0", 0x89); 601 qdev_prop_set_uint16(dev, "id1", 0x18); 602 qdev_prop_set_uint16(dev, "id2", 0x00); 603 qdev_prop_set_uint16(dev, "id3", 0x00); 604 qdev_prop_set_string(dev, "name", name); 605 qdev_init_nofail(dev); 606 607 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 608 } 609 610 static void create_flash(const VirtBoardInfo *vbi) 611 { 612 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 613 * Any file passed via -bios goes in the first of these. 614 */ 615 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 616 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 617 char *nodename; 618 619 if (bios_name) { 620 char *fn; 621 int image_size; 622 623 if (drive_get(IF_PFLASH, 0, 0)) { 624 error_report("The contents of the first flash device may be " 625 "specified with -bios or with -drive if=pflash... " 626 "but you cannot use both options at once"); 627 exit(1); 628 } 629 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 630 if (!fn) { 631 error_report("Could not find ROM image '%s'", bios_name); 632 exit(1); 633 } 634 image_size = load_image_targphys(fn, flashbase, flashsize); 635 g_free(fn); 636 if (image_size < 0) { 637 error_report("Could not load ROM image '%s'", bios_name); 638 exit(1); 639 } 640 } 641 642 create_one_flash("virt.flash0", flashbase, flashsize); 643 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 644 645 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 646 qemu_fdt_add_subnode(vbi->fdt, nodename); 647 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 648 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 649 2, flashbase, 2, flashsize, 650 2, flashbase + flashsize, 2, flashsize); 651 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 652 g_free(nodename); 653 } 654 655 static void create_fw_cfg(const VirtBoardInfo *vbi) 656 { 657 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 658 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 659 char *nodename; 660 661 fw_cfg_init_mem_wide(base + 8, base, 8); 662 663 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 664 qemu_fdt_add_subnode(vbi->fdt, nodename); 665 qemu_fdt_setprop_string(vbi->fdt, nodename, 666 "compatible", "qemu,fw-cfg-mmio"); 667 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 668 2, base, 2, size); 669 g_free(nodename); 670 } 671 672 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 673 int first_irq, const char *nodename) 674 { 675 int devfn, pin; 676 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 677 uint32_t *irq_map = full_irq_map; 678 679 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 680 for (pin = 0; pin < 4; pin++) { 681 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 682 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 683 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 684 int i; 685 686 uint32_t map[] = { 687 devfn << 8, 0, 0, /* devfn */ 688 pin + 1, /* PCI pin */ 689 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 690 691 /* Convert map to big endian */ 692 for (i = 0; i < 10; i++) { 693 irq_map[i] = cpu_to_be32(map[i]); 694 } 695 irq_map += 10; 696 } 697 } 698 699 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 700 full_irq_map, sizeof(full_irq_map)); 701 702 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 703 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 704 0x7 /* PCI irq */); 705 } 706 707 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 708 bool use_highmem) 709 { 710 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 711 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 712 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 713 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 714 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 715 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 716 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 717 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 718 hwaddr base = base_mmio; 719 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 720 int irq = vbi->irqmap[VIRT_PCIE]; 721 MemoryRegion *mmio_alias; 722 MemoryRegion *mmio_reg; 723 MemoryRegion *ecam_alias; 724 MemoryRegion *ecam_reg; 725 DeviceState *dev; 726 char *nodename; 727 int i; 728 729 dev = qdev_create(NULL, TYPE_GPEX_HOST); 730 qdev_init_nofail(dev); 731 732 /* Map only the first size_ecam bytes of ECAM space */ 733 ecam_alias = g_new0(MemoryRegion, 1); 734 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 735 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 736 ecam_reg, 0, size_ecam); 737 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 738 739 /* Map the MMIO window into system address space so as to expose 740 * the section of PCI MMIO space which starts at the same base address 741 * (ie 1:1 mapping for that part of PCI MMIO space visible through 742 * the window). 743 */ 744 mmio_alias = g_new0(MemoryRegion, 1); 745 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 746 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 747 mmio_reg, base_mmio, size_mmio); 748 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 749 750 if (use_highmem) { 751 /* Map high MMIO space */ 752 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 753 754 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 755 mmio_reg, base_mmio_high, size_mmio_high); 756 memory_region_add_subregion(get_system_memory(), base_mmio_high, 757 high_mmio_alias); 758 } 759 760 /* Map IO port space */ 761 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 762 763 for (i = 0; i < GPEX_NUM_IRQS; i++) { 764 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 765 } 766 767 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 768 qemu_fdt_add_subnode(vbi->fdt, nodename); 769 qemu_fdt_setprop_string(vbi->fdt, nodename, 770 "compatible", "pci-host-ecam-generic"); 771 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 772 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 773 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 774 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 775 nr_pcie_buses - 1); 776 777 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle); 778 779 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 780 2, base_ecam, 2, size_ecam); 781 782 if (use_highmem) { 783 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 784 1, FDT_PCI_RANGE_IOPORT, 2, 0, 785 2, base_pio, 2, size_pio, 786 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 787 2, base_mmio, 2, size_mmio, 788 1, FDT_PCI_RANGE_MMIO_64BIT, 789 2, base_mmio_high, 790 2, base_mmio_high, 2, size_mmio_high); 791 } else { 792 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 793 1, FDT_PCI_RANGE_IOPORT, 2, 0, 794 2, base_pio, 2, size_pio, 795 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 796 2, base_mmio, 2, size_mmio); 797 } 798 799 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 800 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 801 802 g_free(nodename); 803 } 804 805 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 806 { 807 DeviceState *dev; 808 SysBusDevice *s; 809 int i; 810 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 811 MemoryRegion *sysmem = get_system_memory(); 812 813 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 814 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 815 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 816 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 817 818 fdt_params->system_params = &platform_bus_params; 819 fdt_params->binfo = &vbi->bootinfo; 820 fdt_params->intc = "/intc"; 821 /* 822 * register a machine init done notifier that creates the device tree 823 * nodes of the platform bus and its children dynamic sysbus devices 824 */ 825 arm_register_platform_bus_fdt_creator(fdt_params); 826 827 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 828 dev->id = TYPE_PLATFORM_BUS_DEVICE; 829 qdev_prop_set_uint32(dev, "num_irqs", 830 platform_bus_params.platform_bus_num_irqs); 831 qdev_prop_set_uint32(dev, "mmio_size", 832 platform_bus_params.platform_bus_size); 833 qdev_init_nofail(dev); 834 s = SYS_BUS_DEVICE(dev); 835 836 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 837 int irqn = platform_bus_params.platform_bus_first_irq + i; 838 sysbus_connect_irq(s, i, pic[irqn]); 839 } 840 841 memory_region_add_subregion(sysmem, 842 platform_bus_params.platform_bus_base, 843 sysbus_mmio_get_region(s, 0)); 844 } 845 846 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 847 { 848 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 849 850 *fdt_size = board->fdt_size; 851 return board->fdt; 852 } 853 854 static void virt_build_smbios(VirtGuestInfo *guest_info) 855 { 856 FWCfgState *fw_cfg = guest_info->fw_cfg; 857 uint8_t *smbios_tables, *smbios_anchor; 858 size_t smbios_tables_len, smbios_anchor_len; 859 860 if (!fw_cfg) { 861 return; 862 } 863 864 smbios_set_defaults("QEMU", "QEMU Virtual Machine", 865 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 866 867 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 868 &smbios_anchor, &smbios_anchor_len); 869 870 if (smbios_anchor) { 871 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 872 smbios_tables, smbios_tables_len); 873 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 874 smbios_anchor, smbios_anchor_len); 875 } 876 } 877 878 static 879 void virt_guest_info_machine_done(Notifier *notifier, void *data) 880 { 881 VirtGuestInfoState *guest_info_state = container_of(notifier, 882 VirtGuestInfoState, machine_done); 883 virt_acpi_setup(&guest_info_state->info); 884 virt_build_smbios(&guest_info_state->info); 885 } 886 887 static void machvirt_init(MachineState *machine) 888 { 889 VirtMachineState *vms = VIRT_MACHINE(machine); 890 qemu_irq pic[NUM_IRQS]; 891 MemoryRegion *sysmem = get_system_memory(); 892 int n; 893 MemoryRegion *ram = g_new(MemoryRegion, 1); 894 const char *cpu_model = machine->cpu_model; 895 VirtBoardInfo *vbi; 896 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 897 VirtGuestInfo *guest_info = &guest_info_state->info; 898 char **cpustr; 899 900 if (!cpu_model) { 901 cpu_model = "cortex-a15"; 902 } 903 904 /* Separate the actual CPU model name from any appended features */ 905 cpustr = g_strsplit(cpu_model, ",", 2); 906 907 vbi = find_machine_info(cpustr[0]); 908 909 if (!vbi) { 910 error_report("mach-virt: CPU %s not supported", cpustr[0]); 911 exit(1); 912 } 913 914 vbi->smp_cpus = smp_cpus; 915 916 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 917 error_report("mach-virt: cannot model more than 30GB RAM"); 918 exit(1); 919 } 920 921 create_fdt(vbi); 922 923 for (n = 0; n < smp_cpus; n++) { 924 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 925 CPUClass *cc = CPU_CLASS(oc); 926 Object *cpuobj; 927 Error *err = NULL; 928 char *cpuopts = g_strdup(cpustr[1]); 929 930 if (!oc) { 931 fprintf(stderr, "Unable to find CPU definition\n"); 932 exit(1); 933 } 934 cpuobj = object_new(object_class_get_name(oc)); 935 936 /* Handle any CPU options specified by the user */ 937 cc->parse_features(CPU(cpuobj), cpuopts, &err); 938 g_free(cpuopts); 939 if (err) { 940 error_report_err(err); 941 exit(1); 942 } 943 944 if (!vms->secure) { 945 object_property_set_bool(cpuobj, false, "has_el3", NULL); 946 } 947 948 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", 949 NULL); 950 951 /* Secondary CPUs start in PSCI powered-down state */ 952 if (n > 0) { 953 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 954 } 955 956 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 957 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 958 "reset-cbar", &error_abort); 959 } 960 961 object_property_set_bool(cpuobj, true, "realized", NULL); 962 } 963 g_strfreev(cpustr); 964 fdt_add_timer_nodes(vbi); 965 fdt_add_cpu_nodes(vbi); 966 fdt_add_psci_node(vbi); 967 968 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 969 machine->ram_size); 970 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 971 972 create_flash(vbi); 973 974 create_gic(vbi, pic, vms->secure); 975 976 create_uart(vbi, pic); 977 978 create_rtc(vbi, pic); 979 980 create_pcie(vbi, pic, vms->highmem); 981 982 /* Create mmio transports, so the user can create virtio backends 983 * (which will be automatically plugged in to the transports). If 984 * no backend is created the transport will just sit harmlessly idle. 985 */ 986 create_virtio_devices(vbi, pic); 987 988 create_fw_cfg(vbi); 989 rom_set_fw(fw_cfg_find()); 990 991 guest_info->smp_cpus = smp_cpus; 992 guest_info->fw_cfg = fw_cfg_find(); 993 guest_info->memmap = vbi->memmap; 994 guest_info->irqmap = vbi->irqmap; 995 guest_info->use_highmem = vms->highmem; 996 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 997 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 998 999 vbi->bootinfo.ram_size = machine->ram_size; 1000 vbi->bootinfo.kernel_filename = machine->kernel_filename; 1001 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1002 vbi->bootinfo.initrd_filename = machine->initrd_filename; 1003 vbi->bootinfo.nb_cpus = smp_cpus; 1004 vbi->bootinfo.board_id = -1; 1005 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1006 vbi->bootinfo.get_dtb = machvirt_dtb; 1007 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1008 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1009 1010 /* 1011 * arm_load_kernel machine init done notifier registration must 1012 * happen before the platform_bus_create call. In this latter, 1013 * another notifier is registered which adds platform bus nodes. 1014 * Notifiers are executed in registration reverse order. 1015 */ 1016 create_platform_bus(vbi, pic); 1017 } 1018 1019 static bool virt_get_secure(Object *obj, Error **errp) 1020 { 1021 VirtMachineState *vms = VIRT_MACHINE(obj); 1022 1023 return vms->secure; 1024 } 1025 1026 static void virt_set_secure(Object *obj, bool value, Error **errp) 1027 { 1028 VirtMachineState *vms = VIRT_MACHINE(obj); 1029 1030 vms->secure = value; 1031 } 1032 1033 static bool virt_get_highmem(Object *obj, Error **errp) 1034 { 1035 VirtMachineState *vms = VIRT_MACHINE(obj); 1036 1037 return vms->highmem; 1038 } 1039 1040 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1041 { 1042 VirtMachineState *vms = VIRT_MACHINE(obj); 1043 1044 vms->highmem = value; 1045 } 1046 1047 static void virt_instance_init(Object *obj) 1048 { 1049 VirtMachineState *vms = VIRT_MACHINE(obj); 1050 1051 /* EL3 is disabled by default on virt: this makes us consistent 1052 * between KVM and TCG for this board, and it also allows us to 1053 * boot UEFI blobs which assume no TrustZone support. 1054 */ 1055 vms->secure = false; 1056 object_property_add_bool(obj, "secure", virt_get_secure, 1057 virt_set_secure, NULL); 1058 object_property_set_description(obj, "secure", 1059 "Set on/off to enable/disable the ARM " 1060 "Security Extensions (TrustZone)", 1061 NULL); 1062 1063 /* High memory is enabled by default */ 1064 vms->highmem = true; 1065 object_property_add_bool(obj, "highmem", virt_get_highmem, 1066 virt_set_highmem, NULL); 1067 object_property_set_description(obj, "highmem", 1068 "Set on/off to enable/disable using " 1069 "physical address space above 32 bits", 1070 NULL); 1071 } 1072 1073 static void virt_class_init(ObjectClass *oc, void *data) 1074 { 1075 MachineClass *mc = MACHINE_CLASS(oc); 1076 1077 mc->name = VIRT_MACHINE_NAME; 1078 mc->desc = "ARM Virtual Machine", 1079 mc->init = machvirt_init; 1080 mc->max_cpus = 8; 1081 mc->has_dynamic_sysbus = true; 1082 mc->block_default_type = IF_VIRTIO; 1083 mc->no_cdrom = 1; 1084 } 1085 1086 static const TypeInfo machvirt_info = { 1087 .name = TYPE_VIRT_MACHINE, 1088 .parent = TYPE_MACHINE, 1089 .instance_size = sizeof(VirtMachineState), 1090 .instance_init = virt_instance_init, 1091 .class_size = sizeof(VirtMachineClass), 1092 .class_init = virt_class_init, 1093 }; 1094 1095 static void machvirt_machine_init(void) 1096 { 1097 type_register_static(&machvirt_info); 1098 } 1099 1100 machine_init(machvirt_machine_init); 1101