xref: /openbmc/qemu/hw/arm/virt.c (revision dcb3d601115eed77aef543fe3a920adc17544e06)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 #include "hw/arm/fdt.h"
51 #include "hw/intc/arm_gic_common.h"
52 #include "kvm_arm.h"
53 #include "hw/smbios/smbios.h"
54 
55 /* Number of external interrupt lines to configure the GIC with */
56 #define NUM_IRQS 256
57 
58 #define PLATFORM_BUS_NUM_IRQS 64
59 
60 static ARMPlatformBusSystemParams platform_bus_params;
61 
62 typedef struct VirtBoardInfo {
63     struct arm_boot_info bootinfo;
64     const char *cpu_model;
65     const MemMapEntry *memmap;
66     const int *irqmap;
67     int smp_cpus;
68     void *fdt;
69     int fdt_size;
70     uint32_t clock_phandle;
71     uint32_t gic_phandle;
72     uint32_t v2m_phandle;
73 } VirtBoardInfo;
74 
75 typedef struct {
76     MachineClass parent;
77     VirtBoardInfo *daughterboard;
78 } VirtMachineClass;
79 
80 typedef struct {
81     MachineState parent;
82     bool secure;
83     bool highmem;
84 } VirtMachineState;
85 
86 #define VIRT_MACHINE_NAME   "virt"
87 #define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME(VIRT_MACHINE_NAME)
88 #define VIRT_MACHINE(obj) \
89     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
90 #define VIRT_MACHINE_GET_CLASS(obj) \
91     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
92 #define VIRT_MACHINE_CLASS(klass) \
93     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
94 
95 /* Addresses and sizes of our components.
96  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
97  * 128MB..256MB is used for miscellaneous device I/O.
98  * 256MB..1GB is reserved for possible future PCI support (ie where the
99  * PCI memory window will go if we add a PCI host controller).
100  * 1GB and up is RAM (which may happily spill over into the
101  * high memory region beyond 4GB).
102  * This represents a compromise between how much RAM can be given to
103  * a 32 bit VM and leaving space for expansion and in particular for PCI.
104  * Note that devices should generally be placed at multiples of 0x10000,
105  * to accommodate guests using 64K pages.
106  */
107 static const MemMapEntry a15memmap[] = {
108     /* Space up to 0x8000000 is reserved for a boot ROM */
109     [VIRT_FLASH] =              {          0, 0x08000000 },
110     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
111     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
112     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
113     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
114     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
115     [VIRT_UART] =               { 0x09000000, 0x00001000 },
116     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
117     [VIRT_FW_CFG] =             { 0x09020000, 0x0000000a },
118     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
119     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
120     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
121     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
122     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
123     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
124     [VIRT_MEM] =                { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
125     /* Second PCIe window, 512GB wide at the 512GB boundary */
126     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
127 };
128 
129 static const int a15irqmap[] = {
130     [VIRT_UART] = 1,
131     [VIRT_RTC] = 2,
132     [VIRT_PCIE] = 3, /* ... to 6 */
133     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
134     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
135     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
136 };
137 
138 static VirtBoardInfo machines[] = {
139     {
140         .cpu_model = "cortex-a15",
141         .memmap = a15memmap,
142         .irqmap = a15irqmap,
143     },
144     {
145         .cpu_model = "cortex-a53",
146         .memmap = a15memmap,
147         .irqmap = a15irqmap,
148     },
149     {
150         .cpu_model = "cortex-a57",
151         .memmap = a15memmap,
152         .irqmap = a15irqmap,
153     },
154     {
155         .cpu_model = "host",
156         .memmap = a15memmap,
157         .irqmap = a15irqmap,
158     },
159 };
160 
161 static VirtBoardInfo *find_machine_info(const char *cpu)
162 {
163     int i;
164 
165     for (i = 0; i < ARRAY_SIZE(machines); i++) {
166         if (strcmp(cpu, machines[i].cpu_model) == 0) {
167             return &machines[i];
168         }
169     }
170     return NULL;
171 }
172 
173 static void create_fdt(VirtBoardInfo *vbi)
174 {
175     void *fdt = create_device_tree(&vbi->fdt_size);
176 
177     if (!fdt) {
178         error_report("create_device_tree() failed");
179         exit(1);
180     }
181 
182     vbi->fdt = fdt;
183 
184     /* Header */
185     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
186     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
187     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
188 
189     /*
190      * /chosen and /memory nodes must exist for load_dtb
191      * to fill in necessary properties later
192      */
193     qemu_fdt_add_subnode(fdt, "/chosen");
194     qemu_fdt_add_subnode(fdt, "/memory");
195     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
196 
197     /* Clock node, for the benefit of the UART. The kernel device tree
198      * binding documentation claims the PL011 node clock properties are
199      * optional but in practice if you omit them the kernel refuses to
200      * probe for the device.
201      */
202     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
203     qemu_fdt_add_subnode(fdt, "/apb-pclk");
204     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
205     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
206     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
207     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
208                                 "clk24mhz");
209     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
210 
211 }
212 
213 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
214 {
215     uint32_t cpu_suspend_fn;
216     uint32_t cpu_off_fn;
217     uint32_t cpu_on_fn;
218     uint32_t migrate_fn;
219     void *fdt = vbi->fdt;
220     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
221 
222     qemu_fdt_add_subnode(fdt, "/psci");
223     if (armcpu->psci_version == 2) {
224         const char comp[] = "arm,psci-0.2\0arm,psci";
225         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
226 
227         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
228         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
229             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
230             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
231             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
232         } else {
233             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
234             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
235             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
236         }
237     } else {
238         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
239 
240         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
241         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
242         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
243         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
244     }
245 
246     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
247      * to the instruction that should be used to invoke PSCI functions.
248      * However, the device tree binding uses 'method' instead, so that is
249      * what we should use here.
250      */
251     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
252 
253     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
254     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
255     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
256     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
257 }
258 
259 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
260 {
261     /* Note that on A15 h/w these interrupts are level-triggered,
262      * but for the GIC implementation provided by both QEMU and KVM
263      * they are edge-triggered.
264      */
265     ARMCPU *armcpu;
266     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
267 
268     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
269                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
270 
271     qemu_fdt_add_subnode(vbi->fdt, "/timer");
272 
273     armcpu = ARM_CPU(qemu_get_cpu(0));
274     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
275         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
276         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
277                          compat, sizeof(compat));
278     } else {
279         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
280                                 "arm,armv7-timer");
281     }
282     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
283                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
284                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
285                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
286                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
287 }
288 
289 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
290 {
291     int cpu;
292     int addr_cells = 1;
293 
294     /*
295      * From Documentation/devicetree/bindings/arm/cpus.txt
296      *  On ARM v8 64-bit systems value should be set to 2,
297      *  that corresponds to the MPIDR_EL1 register size.
298      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
299      *  in the system, #address-cells can be set to 1, since
300      *  MPIDR_EL1[63:32] bits are not used for CPUs
301      *  identification.
302      *
303      *  Here we actually don't know whether our system is 32- or 64-bit one.
304      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
305      *  at least one of them has Aff3 populated, we set #address-cells to 2.
306      */
307     for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
308         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
309 
310         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
311             addr_cells = 2;
312             break;
313         }
314     }
315 
316     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
317     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
318     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
319 
320     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
321         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
322         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
323 
324         qemu_fdt_add_subnode(vbi->fdt, nodename);
325         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
326         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
327                                     armcpu->dtb_compatible);
328 
329         if (vbi->smp_cpus > 1) {
330             qemu_fdt_setprop_string(vbi->fdt, nodename,
331                                         "enable-method", "psci");
332         }
333 
334         if (addr_cells == 2) {
335             qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
336                                  armcpu->mp_affinity);
337         } else {
338             qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
339                                   armcpu->mp_affinity);
340         }
341 
342         g_free(nodename);
343     }
344 }
345 
346 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
347 {
348     vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
349     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
350     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
351                             "arm,gic-v2m-frame");
352     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
353     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
354                                  2, vbi->memmap[VIRT_GIC_V2M].base,
355                                  2, vbi->memmap[VIRT_GIC_V2M].size);
356     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
357 }
358 
359 static void fdt_add_gic_node(VirtBoardInfo *vbi)
360 {
361     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
362     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
363 
364     qemu_fdt_add_subnode(vbi->fdt, "/intc");
365     /* 'cortex-a15-gic' means 'GIC v2' */
366     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
367                             "arm,cortex-a15-gic");
368     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
369     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
370     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
371                                      2, vbi->memmap[VIRT_GIC_DIST].base,
372                                      2, vbi->memmap[VIRT_GIC_DIST].size,
373                                      2, vbi->memmap[VIRT_GIC_CPU].base,
374                                      2, vbi->memmap[VIRT_GIC_CPU].size);
375     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
376     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
377     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
378     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
379 }
380 
381 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
382 {
383     int i;
384     int irq = vbi->irqmap[VIRT_GIC_V2M];
385     DeviceState *dev;
386 
387     dev = qdev_create(NULL, "arm-gicv2m");
388     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
389     qdev_prop_set_uint32(dev, "base-spi", irq);
390     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
391     qdev_init_nofail(dev);
392 
393     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
394         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
395     }
396 
397     fdt_add_v2m_gic_node(vbi);
398 }
399 
400 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, bool secure)
401 {
402     /* We create a standalone GIC v2 */
403     DeviceState *gicdev;
404     SysBusDevice *gicbusdev;
405     const char *gictype;
406     int i;
407 
408     gictype = gic_class_name();
409 
410     gicdev = qdev_create(NULL, gictype);
411     qdev_prop_set_uint32(gicdev, "revision", 2);
412     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
413     /* Note that the num-irq property counts both internal and external
414      * interrupts; there are always 32 of the former (mandated by GIC spec).
415      */
416     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
417     if (!kvm_irqchip_in_kernel()) {
418         qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
419     }
420     qdev_init_nofail(gicdev);
421     gicbusdev = SYS_BUS_DEVICE(gicdev);
422     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
423     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
424 
425     /* Wire the outputs from each CPU's generic timer to the
426      * appropriate GIC PPI inputs, and the GIC's IRQ output to
427      * the CPU's IRQ input.
428      */
429     for (i = 0; i < smp_cpus; i++) {
430         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
431         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
432         int irq;
433         /* Mapping from the output timer irq lines from the CPU to the
434          * GIC PPI inputs we use for the virt board.
435          */
436         const int timer_irq[] = {
437             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
438             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
439             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
440             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
441         };
442 
443         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
444             qdev_connect_gpio_out(cpudev, irq,
445                                   qdev_get_gpio_in(gicdev,
446                                                    ppibase + timer_irq[irq]));
447         }
448 
449         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
450         sysbus_connect_irq(gicbusdev, i + smp_cpus,
451                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
452     }
453 
454     for (i = 0; i < NUM_IRQS; i++) {
455         pic[i] = qdev_get_gpio_in(gicdev, i);
456     }
457 
458     fdt_add_gic_node(vbi);
459 
460     create_v2m(vbi, pic);
461 }
462 
463 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
464 {
465     char *nodename;
466     hwaddr base = vbi->memmap[VIRT_UART].base;
467     hwaddr size = vbi->memmap[VIRT_UART].size;
468     int irq = vbi->irqmap[VIRT_UART];
469     const char compat[] = "arm,pl011\0arm,primecell";
470     const char clocknames[] = "uartclk\0apb_pclk";
471 
472     sysbus_create_simple("pl011", base, pic[irq]);
473 
474     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
475     qemu_fdt_add_subnode(vbi->fdt, nodename);
476     /* Note that we can't use setprop_string because of the embedded NUL */
477     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
478                          compat, sizeof(compat));
479     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
480                                      2, base, 2, size);
481     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
482                                GIC_FDT_IRQ_TYPE_SPI, irq,
483                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
484     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
485                                vbi->clock_phandle, vbi->clock_phandle);
486     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
487                          clocknames, sizeof(clocknames));
488 
489     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
490     g_free(nodename);
491 }
492 
493 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
494 {
495     char *nodename;
496     hwaddr base = vbi->memmap[VIRT_RTC].base;
497     hwaddr size = vbi->memmap[VIRT_RTC].size;
498     int irq = vbi->irqmap[VIRT_RTC];
499     const char compat[] = "arm,pl031\0arm,primecell";
500 
501     sysbus_create_simple("pl031", base, pic[irq]);
502 
503     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
504     qemu_fdt_add_subnode(vbi->fdt, nodename);
505     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
506     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
507                                  2, base, 2, size);
508     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
509                            GIC_FDT_IRQ_TYPE_SPI, irq,
510                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
511     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
512     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
513     g_free(nodename);
514 }
515 
516 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
517 {
518     int i;
519     hwaddr size = vbi->memmap[VIRT_MMIO].size;
520 
521     /* We create the transports in forwards order. Since qbus_realize()
522      * prepends (not appends) new child buses, the incrementing loop below will
523      * create a list of virtio-mmio buses with decreasing base addresses.
524      *
525      * When a -device option is processed from the command line,
526      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
527      * order. The upshot is that -device options in increasing command line
528      * order are mapped to virtio-mmio buses with decreasing base addresses.
529      *
530      * When this code was originally written, that arrangement ensured that the
531      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
532      * the first -device on the command line. (The end-to-end order is a
533      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
534      * guest kernel's name-to-address assignment strategy.)
535      *
536      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
537      * the message, if not necessarily the code, of commit 70161ff336.
538      * Therefore the loop now establishes the inverse of the original intent.
539      *
540      * Unfortunately, we can't counteract the kernel change by reversing the
541      * loop; it would break existing command lines.
542      *
543      * In any case, the kernel makes no guarantee about the stability of
544      * enumeration order of virtio devices (as demonstrated by it changing
545      * between kernel versions). For reliable and stable identification
546      * of disks users must use UUIDs or similar mechanisms.
547      */
548     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
549         int irq = vbi->irqmap[VIRT_MMIO] + i;
550         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
551 
552         sysbus_create_simple("virtio-mmio", base, pic[irq]);
553     }
554 
555     /* We add dtb nodes in reverse order so that they appear in the finished
556      * device tree lowest address first.
557      *
558      * Note that this mapping is independent of the loop above. The previous
559      * loop influences virtio device to virtio transport assignment, whereas
560      * this loop controls how virtio transports are laid out in the dtb.
561      */
562     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
563         char *nodename;
564         int irq = vbi->irqmap[VIRT_MMIO] + i;
565         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
566 
567         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
568         qemu_fdt_add_subnode(vbi->fdt, nodename);
569         qemu_fdt_setprop_string(vbi->fdt, nodename,
570                                 "compatible", "virtio,mmio");
571         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
572                                      2, base, 2, size);
573         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
574                                GIC_FDT_IRQ_TYPE_SPI, irq,
575                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
576         g_free(nodename);
577     }
578 }
579 
580 static void create_one_flash(const char *name, hwaddr flashbase,
581                              hwaddr flashsize)
582 {
583     /* Create and map a single flash device. We use the same
584      * parameters as the flash devices on the Versatile Express board.
585      */
586     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
587     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
588     const uint64_t sectorlength = 256 * 1024;
589 
590     if (dinfo) {
591         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
592                             &error_abort);
593     }
594 
595     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
596     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
597     qdev_prop_set_uint8(dev, "width", 4);
598     qdev_prop_set_uint8(dev, "device-width", 2);
599     qdev_prop_set_bit(dev, "big-endian", false);
600     qdev_prop_set_uint16(dev, "id0", 0x89);
601     qdev_prop_set_uint16(dev, "id1", 0x18);
602     qdev_prop_set_uint16(dev, "id2", 0x00);
603     qdev_prop_set_uint16(dev, "id3", 0x00);
604     qdev_prop_set_string(dev, "name", name);
605     qdev_init_nofail(dev);
606 
607     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
608 }
609 
610 static void create_flash(const VirtBoardInfo *vbi)
611 {
612     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
613      * Any file passed via -bios goes in the first of these.
614      */
615     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
616     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
617     char *nodename;
618 
619     if (bios_name) {
620         char *fn;
621         int image_size;
622 
623         if (drive_get(IF_PFLASH, 0, 0)) {
624             error_report("The contents of the first flash device may be "
625                          "specified with -bios or with -drive if=pflash... "
626                          "but you cannot use both options at once");
627             exit(1);
628         }
629         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
630         if (!fn) {
631             error_report("Could not find ROM image '%s'", bios_name);
632             exit(1);
633         }
634         image_size = load_image_targphys(fn, flashbase, flashsize);
635         g_free(fn);
636         if (image_size < 0) {
637             error_report("Could not load ROM image '%s'", bios_name);
638             exit(1);
639         }
640     }
641 
642     create_one_flash("virt.flash0", flashbase, flashsize);
643     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
644 
645     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
646     qemu_fdt_add_subnode(vbi->fdt, nodename);
647     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
648     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
649                                  2, flashbase, 2, flashsize,
650                                  2, flashbase + flashsize, 2, flashsize);
651     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
652     g_free(nodename);
653 }
654 
655 static void create_fw_cfg(const VirtBoardInfo *vbi)
656 {
657     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
658     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
659     char *nodename;
660 
661     fw_cfg_init_mem_wide(base + 8, base, 8);
662 
663     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
664     qemu_fdt_add_subnode(vbi->fdt, nodename);
665     qemu_fdt_setprop_string(vbi->fdt, nodename,
666                             "compatible", "qemu,fw-cfg-mmio");
667     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
668                                  2, base, 2, size);
669     g_free(nodename);
670 }
671 
672 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
673                                 int first_irq, const char *nodename)
674 {
675     int devfn, pin;
676     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
677     uint32_t *irq_map = full_irq_map;
678 
679     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
680         for (pin = 0; pin < 4; pin++) {
681             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
682             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
683             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
684             int i;
685 
686             uint32_t map[] = {
687                 devfn << 8, 0, 0,                           /* devfn */
688                 pin + 1,                                    /* PCI pin */
689                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
690 
691             /* Convert map to big endian */
692             for (i = 0; i < 10; i++) {
693                 irq_map[i] = cpu_to_be32(map[i]);
694             }
695             irq_map += 10;
696         }
697     }
698 
699     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
700                      full_irq_map, sizeof(full_irq_map));
701 
702     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
703                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
704                            0x7           /* PCI irq */);
705 }
706 
707 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
708                         bool use_highmem)
709 {
710     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
711     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
712     hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
713     hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
714     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
715     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
716     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
717     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
718     hwaddr base = base_mmio;
719     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
720     int irq = vbi->irqmap[VIRT_PCIE];
721     MemoryRegion *mmio_alias;
722     MemoryRegion *mmio_reg;
723     MemoryRegion *ecam_alias;
724     MemoryRegion *ecam_reg;
725     DeviceState *dev;
726     char *nodename;
727     int i;
728 
729     dev = qdev_create(NULL, TYPE_GPEX_HOST);
730     qdev_init_nofail(dev);
731 
732     /* Map only the first size_ecam bytes of ECAM space */
733     ecam_alias = g_new0(MemoryRegion, 1);
734     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
735     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
736                              ecam_reg, 0, size_ecam);
737     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
738 
739     /* Map the MMIO window into system address space so as to expose
740      * the section of PCI MMIO space which starts at the same base address
741      * (ie 1:1 mapping for that part of PCI MMIO space visible through
742      * the window).
743      */
744     mmio_alias = g_new0(MemoryRegion, 1);
745     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
746     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
747                              mmio_reg, base_mmio, size_mmio);
748     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
749 
750     if (use_highmem) {
751         /* Map high MMIO space */
752         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
753 
754         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
755                                  mmio_reg, base_mmio_high, size_mmio_high);
756         memory_region_add_subregion(get_system_memory(), base_mmio_high,
757                                     high_mmio_alias);
758     }
759 
760     /* Map IO port space */
761     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
762 
763     for (i = 0; i < GPEX_NUM_IRQS; i++) {
764         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
765     }
766 
767     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
768     qemu_fdt_add_subnode(vbi->fdt, nodename);
769     qemu_fdt_setprop_string(vbi->fdt, nodename,
770                             "compatible", "pci-host-ecam-generic");
771     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
772     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
773     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
774     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
775                            nr_pcie_buses - 1);
776 
777     qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle);
778 
779     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
780                                  2, base_ecam, 2, size_ecam);
781 
782     if (use_highmem) {
783         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
784                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
785                                      2, base_pio, 2, size_pio,
786                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
787                                      2, base_mmio, 2, size_mmio,
788                                      1, FDT_PCI_RANGE_MMIO_64BIT,
789                                      2, base_mmio_high,
790                                      2, base_mmio_high, 2, size_mmio_high);
791     } else {
792         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
793                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
794                                      2, base_pio, 2, size_pio,
795                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
796                                      2, base_mmio, 2, size_mmio);
797     }
798 
799     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
800     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
801 
802     g_free(nodename);
803 }
804 
805 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
806 {
807     DeviceState *dev;
808     SysBusDevice *s;
809     int i;
810     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
811     MemoryRegion *sysmem = get_system_memory();
812 
813     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
814     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
815     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
816     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
817 
818     fdt_params->system_params = &platform_bus_params;
819     fdt_params->binfo = &vbi->bootinfo;
820     fdt_params->intc = "/intc";
821     /*
822      * register a machine init done notifier that creates the device tree
823      * nodes of the platform bus and its children dynamic sysbus devices
824      */
825     arm_register_platform_bus_fdt_creator(fdt_params);
826 
827     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
828     dev->id = TYPE_PLATFORM_BUS_DEVICE;
829     qdev_prop_set_uint32(dev, "num_irqs",
830         platform_bus_params.platform_bus_num_irqs);
831     qdev_prop_set_uint32(dev, "mmio_size",
832         platform_bus_params.platform_bus_size);
833     qdev_init_nofail(dev);
834     s = SYS_BUS_DEVICE(dev);
835 
836     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
837         int irqn = platform_bus_params.platform_bus_first_irq + i;
838         sysbus_connect_irq(s, i, pic[irqn]);
839     }
840 
841     memory_region_add_subregion(sysmem,
842                                 platform_bus_params.platform_bus_base,
843                                 sysbus_mmio_get_region(s, 0));
844 }
845 
846 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
847 {
848     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
849 
850     *fdt_size = board->fdt_size;
851     return board->fdt;
852 }
853 
854 static void virt_build_smbios(VirtGuestInfo *guest_info)
855 {
856     FWCfgState *fw_cfg = guest_info->fw_cfg;
857     uint8_t *smbios_tables, *smbios_anchor;
858     size_t smbios_tables_len, smbios_anchor_len;
859 
860     if (!fw_cfg) {
861         return;
862     }
863 
864     smbios_set_defaults("QEMU", "QEMU Virtual Machine",
865                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
866 
867     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
868                       &smbios_anchor, &smbios_anchor_len);
869 
870     if (smbios_anchor) {
871         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
872                         smbios_tables, smbios_tables_len);
873         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
874                         smbios_anchor, smbios_anchor_len);
875     }
876 }
877 
878 static
879 void virt_guest_info_machine_done(Notifier *notifier, void *data)
880 {
881     VirtGuestInfoState *guest_info_state = container_of(notifier,
882                                               VirtGuestInfoState, machine_done);
883     virt_acpi_setup(&guest_info_state->info);
884     virt_build_smbios(&guest_info_state->info);
885 }
886 
887 static void machvirt_init(MachineState *machine)
888 {
889     VirtMachineState *vms = VIRT_MACHINE(machine);
890     qemu_irq pic[NUM_IRQS];
891     MemoryRegion *sysmem = get_system_memory();
892     int n;
893     MemoryRegion *ram = g_new(MemoryRegion, 1);
894     const char *cpu_model = machine->cpu_model;
895     VirtBoardInfo *vbi;
896     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
897     VirtGuestInfo *guest_info = &guest_info_state->info;
898     char **cpustr;
899 
900     if (!cpu_model) {
901         cpu_model = "cortex-a15";
902     }
903 
904     /* Separate the actual CPU model name from any appended features */
905     cpustr = g_strsplit(cpu_model, ",", 2);
906 
907     vbi = find_machine_info(cpustr[0]);
908 
909     if (!vbi) {
910         error_report("mach-virt: CPU %s not supported", cpustr[0]);
911         exit(1);
912     }
913 
914     vbi->smp_cpus = smp_cpus;
915 
916     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
917         error_report("mach-virt: cannot model more than 30GB RAM");
918         exit(1);
919     }
920 
921     create_fdt(vbi);
922 
923     for (n = 0; n < smp_cpus; n++) {
924         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
925         CPUClass *cc = CPU_CLASS(oc);
926         Object *cpuobj;
927         Error *err = NULL;
928         char *cpuopts = g_strdup(cpustr[1]);
929 
930         if (!oc) {
931             fprintf(stderr, "Unable to find CPU definition\n");
932             exit(1);
933         }
934         cpuobj = object_new(object_class_get_name(oc));
935 
936         /* Handle any CPU options specified by the user */
937         cc->parse_features(CPU(cpuobj), cpuopts, &err);
938         g_free(cpuopts);
939         if (err) {
940             error_report_err(err);
941             exit(1);
942         }
943 
944         if (!vms->secure) {
945             object_property_set_bool(cpuobj, false, "has_el3", NULL);
946         }
947 
948         object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
949                                 NULL);
950 
951         /* Secondary CPUs start in PSCI powered-down state */
952         if (n > 0) {
953             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
954         }
955 
956         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
957             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
958                                     "reset-cbar", &error_abort);
959         }
960 
961         object_property_set_bool(cpuobj, true, "realized", NULL);
962     }
963     g_strfreev(cpustr);
964     fdt_add_timer_nodes(vbi);
965     fdt_add_cpu_nodes(vbi);
966     fdt_add_psci_node(vbi);
967 
968     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
969                                          machine->ram_size);
970     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
971 
972     create_flash(vbi);
973 
974     create_gic(vbi, pic, vms->secure);
975 
976     create_uart(vbi, pic);
977 
978     create_rtc(vbi, pic);
979 
980     create_pcie(vbi, pic, vms->highmem);
981 
982     /* Create mmio transports, so the user can create virtio backends
983      * (which will be automatically plugged in to the transports). If
984      * no backend is created the transport will just sit harmlessly idle.
985      */
986     create_virtio_devices(vbi, pic);
987 
988     create_fw_cfg(vbi);
989     rom_set_fw(fw_cfg_find());
990 
991     guest_info->smp_cpus = smp_cpus;
992     guest_info->fw_cfg = fw_cfg_find();
993     guest_info->memmap = vbi->memmap;
994     guest_info->irqmap = vbi->irqmap;
995     guest_info->use_highmem = vms->highmem;
996     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
997     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
998 
999     vbi->bootinfo.ram_size = machine->ram_size;
1000     vbi->bootinfo.kernel_filename = machine->kernel_filename;
1001     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1002     vbi->bootinfo.initrd_filename = machine->initrd_filename;
1003     vbi->bootinfo.nb_cpus = smp_cpus;
1004     vbi->bootinfo.board_id = -1;
1005     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1006     vbi->bootinfo.get_dtb = machvirt_dtb;
1007     vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1008     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1009 
1010     /*
1011      * arm_load_kernel machine init done notifier registration must
1012      * happen before the platform_bus_create call. In this latter,
1013      * another notifier is registered which adds platform bus nodes.
1014      * Notifiers are executed in registration reverse order.
1015      */
1016     create_platform_bus(vbi, pic);
1017 }
1018 
1019 static bool virt_get_secure(Object *obj, Error **errp)
1020 {
1021     VirtMachineState *vms = VIRT_MACHINE(obj);
1022 
1023     return vms->secure;
1024 }
1025 
1026 static void virt_set_secure(Object *obj, bool value, Error **errp)
1027 {
1028     VirtMachineState *vms = VIRT_MACHINE(obj);
1029 
1030     vms->secure = value;
1031 }
1032 
1033 static bool virt_get_highmem(Object *obj, Error **errp)
1034 {
1035     VirtMachineState *vms = VIRT_MACHINE(obj);
1036 
1037     return vms->highmem;
1038 }
1039 
1040 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1041 {
1042     VirtMachineState *vms = VIRT_MACHINE(obj);
1043 
1044     vms->highmem = value;
1045 }
1046 
1047 static void virt_instance_init(Object *obj)
1048 {
1049     VirtMachineState *vms = VIRT_MACHINE(obj);
1050 
1051     /* EL3 is disabled by default on virt: this makes us consistent
1052      * between KVM and TCG for this board, and it also allows us to
1053      * boot UEFI blobs which assume no TrustZone support.
1054      */
1055     vms->secure = false;
1056     object_property_add_bool(obj, "secure", virt_get_secure,
1057                              virt_set_secure, NULL);
1058     object_property_set_description(obj, "secure",
1059                                     "Set on/off to enable/disable the ARM "
1060                                     "Security Extensions (TrustZone)",
1061                                     NULL);
1062 
1063     /* High memory is enabled by default */
1064     vms->highmem = true;
1065     object_property_add_bool(obj, "highmem", virt_get_highmem,
1066                              virt_set_highmem, NULL);
1067     object_property_set_description(obj, "highmem",
1068                                     "Set on/off to enable/disable using "
1069                                     "physical address space above 32 bits",
1070                                     NULL);
1071 }
1072 
1073 static void virt_class_init(ObjectClass *oc, void *data)
1074 {
1075     MachineClass *mc = MACHINE_CLASS(oc);
1076 
1077     mc->name = VIRT_MACHINE_NAME;
1078     mc->desc = "ARM Virtual Machine",
1079     mc->init = machvirt_init;
1080     mc->max_cpus = 8;
1081     mc->has_dynamic_sysbus = true;
1082     mc->block_default_type = IF_VIRTIO;
1083     mc->no_cdrom = 1;
1084 }
1085 
1086 static const TypeInfo machvirt_info = {
1087     .name = TYPE_VIRT_MACHINE,
1088     .parent = TYPE_MACHINE,
1089     .instance_size = sizeof(VirtMachineState),
1090     .instance_init = virt_instance_init,
1091     .class_size = sizeof(VirtMachineClass),
1092     .class_init = virt_class_init,
1093 };
1094 
1095 static void machvirt_machine_init(void)
1096 {
1097     type_register_static(&machvirt_info);
1098 }
1099 
1100 machine_init(machvirt_machine_init);
1101