1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qapi/error.h" 33 #include "hw/sysbus.h" 34 #include "hw/arm/arm.h" 35 #include "hw/arm/primecell.h" 36 #include "hw/arm/virt.h" 37 #include "hw/devices.h" 38 #include "net/net.h" 39 #include "sysemu/block-backend.h" 40 #include "sysemu/device_tree.h" 41 #include "sysemu/sysemu.h" 42 #include "sysemu/kvm.h" 43 #include "hw/boards.h" 44 #include "hw/loader.h" 45 #include "exec/address-spaces.h" 46 #include "qemu/bitops.h" 47 #include "qemu/error-report.h" 48 #include "hw/pci-host/gpex.h" 49 #include "hw/arm/virt-acpi-build.h" 50 #include "hw/arm/sysbus-fdt.h" 51 #include "hw/platform-bus.h" 52 #include "hw/arm/fdt.h" 53 #include "hw/intc/arm_gic_common.h" 54 #include "kvm_arm.h" 55 #include "hw/smbios/smbios.h" 56 #include "qapi/visitor.h" 57 #include "standard-headers/linux/input.h" 58 59 /* Number of external interrupt lines to configure the GIC with */ 60 #define NUM_IRQS 256 61 62 #define PLATFORM_BUS_NUM_IRQS 64 63 64 static ARMPlatformBusSystemParams platform_bus_params; 65 66 typedef struct VirtBoardInfo { 67 struct arm_boot_info bootinfo; 68 const char *cpu_model; 69 const MemMapEntry *memmap; 70 const int *irqmap; 71 int smp_cpus; 72 void *fdt; 73 int fdt_size; 74 uint32_t clock_phandle; 75 uint32_t gic_phandle; 76 uint32_t v2m_phandle; 77 bool using_psci; 78 } VirtBoardInfo; 79 80 typedef struct { 81 MachineClass parent; 82 VirtBoardInfo *daughterboard; 83 } VirtMachineClass; 84 85 typedef struct { 86 MachineState parent; 87 bool secure; 88 bool highmem; 89 int32_t gic_version; 90 } VirtMachineState; 91 92 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt") 93 #define VIRT_MACHINE(obj) \ 94 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 95 #define VIRT_MACHINE_GET_CLASS(obj) \ 96 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 97 #define VIRT_MACHINE_CLASS(klass) \ 98 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 99 100 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means 101 * RAM can go up to the 256GB mark, leaving 256GB of the physical 102 * address space unallocated and free for future use between 256G and 512G. 103 * If we need to provide more RAM to VMs in the future then we need to: 104 * * allocate a second bank of RAM starting at 2TB and working up 105 * * fix the DT and ACPI table generation code in QEMU to correctly 106 * report two split lumps of RAM to the guest 107 * * fix KVM in the host kernel to allow guests with >40 bit address spaces 108 * (We don't want to fill all the way up to 512GB with RAM because 109 * we might want it for non-RAM purposes later. Conversely it seems 110 * reasonable to assume that anybody configuring a VM with a quarter 111 * of a terabyte of RAM will be doing it on a host with more than a 112 * terabyte of physical address space.) 113 */ 114 #define RAMLIMIT_GB 255 115 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024) 116 117 /* Addresses and sizes of our components. 118 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 119 * 128MB..256MB is used for miscellaneous device I/O. 120 * 256MB..1GB is reserved for possible future PCI support (ie where the 121 * PCI memory window will go if we add a PCI host controller). 122 * 1GB and up is RAM (which may happily spill over into the 123 * high memory region beyond 4GB). 124 * This represents a compromise between how much RAM can be given to 125 * a 32 bit VM and leaving space for expansion and in particular for PCI. 126 * Note that devices should generally be placed at multiples of 0x10000, 127 * to accommodate guests using 64K pages. 128 */ 129 static const MemMapEntry a15memmap[] = { 130 /* Space up to 0x8000000 is reserved for a boot ROM */ 131 [VIRT_FLASH] = { 0, 0x08000000 }, 132 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 133 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 134 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 135 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 136 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 137 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 138 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 139 /* This redistributor space allows up to 2*64kB*123 CPUs */ 140 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 141 [VIRT_UART] = { 0x09000000, 0x00001000 }, 142 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 143 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 144 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 145 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 153 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES }, 154 /* Second PCIe window, 512GB wide at the 512GB boundary */ 155 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 156 }; 157 158 static const int a15irqmap[] = { 159 [VIRT_UART] = 1, 160 [VIRT_RTC] = 2, 161 [VIRT_PCIE] = 3, /* ... to 6 */ 162 [VIRT_GPIO] = 7, 163 [VIRT_SECURE_UART] = 8, 164 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 165 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 166 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 167 }; 168 169 static VirtBoardInfo machines[] = { 170 { 171 .cpu_model = "cortex-a15", 172 .memmap = a15memmap, 173 .irqmap = a15irqmap, 174 }, 175 { 176 .cpu_model = "cortex-a53", 177 .memmap = a15memmap, 178 .irqmap = a15irqmap, 179 }, 180 { 181 .cpu_model = "cortex-a57", 182 .memmap = a15memmap, 183 .irqmap = a15irqmap, 184 }, 185 { 186 .cpu_model = "host", 187 .memmap = a15memmap, 188 .irqmap = a15irqmap, 189 }, 190 }; 191 192 static VirtBoardInfo *find_machine_info(const char *cpu) 193 { 194 int i; 195 196 for (i = 0; i < ARRAY_SIZE(machines); i++) { 197 if (strcmp(cpu, machines[i].cpu_model) == 0) { 198 return &machines[i]; 199 } 200 } 201 return NULL; 202 } 203 204 static void create_fdt(VirtBoardInfo *vbi) 205 { 206 void *fdt = create_device_tree(&vbi->fdt_size); 207 208 if (!fdt) { 209 error_report("create_device_tree() failed"); 210 exit(1); 211 } 212 213 vbi->fdt = fdt; 214 215 /* Header */ 216 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 217 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 218 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 219 220 /* 221 * /chosen and /memory nodes must exist for load_dtb 222 * to fill in necessary properties later 223 */ 224 qemu_fdt_add_subnode(fdt, "/chosen"); 225 qemu_fdt_add_subnode(fdt, "/memory"); 226 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 227 228 /* Clock node, for the benefit of the UART. The kernel device tree 229 * binding documentation claims the PL011 node clock properties are 230 * optional but in practice if you omit them the kernel refuses to 231 * probe for the device. 232 */ 233 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 234 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 235 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 236 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 237 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 238 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 239 "clk24mhz"); 240 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 241 242 } 243 244 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 245 { 246 uint32_t cpu_suspend_fn; 247 uint32_t cpu_off_fn; 248 uint32_t cpu_on_fn; 249 uint32_t migrate_fn; 250 void *fdt = vbi->fdt; 251 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 252 253 if (!vbi->using_psci) { 254 return; 255 } 256 257 qemu_fdt_add_subnode(fdt, "/psci"); 258 if (armcpu->psci_version == 2) { 259 const char comp[] = "arm,psci-0.2\0arm,psci"; 260 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 261 262 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 263 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 264 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 265 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 266 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 267 } else { 268 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 269 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 270 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 271 } 272 } else { 273 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 274 275 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 276 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 277 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 278 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 279 } 280 281 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 282 * to the instruction that should be used to invoke PSCI functions. 283 * However, the device tree binding uses 'method' instead, so that is 284 * what we should use here. 285 */ 286 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 287 288 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 289 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 290 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 291 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 292 } 293 294 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype) 295 { 296 /* Note that on A15 h/w these interrupts are level-triggered, 297 * but for the GIC implementation provided by both QEMU and KVM 298 * they are edge-triggered. 299 */ 300 ARMCPU *armcpu; 301 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 302 303 if (gictype == 2) { 304 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 305 GIC_FDT_IRQ_PPI_CPU_WIDTH, 306 (1 << vbi->smp_cpus) - 1); 307 } 308 309 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 310 311 armcpu = ARM_CPU(qemu_get_cpu(0)); 312 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 313 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 314 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 315 compat, sizeof(compat)); 316 } else { 317 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 318 "arm,armv7-timer"); 319 } 320 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0); 321 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 322 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 323 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 324 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 325 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 326 } 327 328 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 329 { 330 int cpu; 331 int addr_cells = 1; 332 333 /* 334 * From Documentation/devicetree/bindings/arm/cpus.txt 335 * On ARM v8 64-bit systems value should be set to 2, 336 * that corresponds to the MPIDR_EL1 register size. 337 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 338 * in the system, #address-cells can be set to 1, since 339 * MPIDR_EL1[63:32] bits are not used for CPUs 340 * identification. 341 * 342 * Here we actually don't know whether our system is 32- or 64-bit one. 343 * The simplest way to go is to examine affinity IDs of all our CPUs. If 344 * at least one of them has Aff3 populated, we set #address-cells to 2. 345 */ 346 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 347 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 348 349 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 350 addr_cells = 2; 351 break; 352 } 353 } 354 355 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 356 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 357 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 358 359 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 360 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 361 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 362 363 qemu_fdt_add_subnode(vbi->fdt, nodename); 364 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 365 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 366 armcpu->dtb_compatible); 367 368 if (vbi->using_psci && vbi->smp_cpus > 1) { 369 qemu_fdt_setprop_string(vbi->fdt, nodename, 370 "enable-method", "psci"); 371 } 372 373 if (addr_cells == 2) { 374 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 375 armcpu->mp_affinity); 376 } else { 377 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 378 armcpu->mp_affinity); 379 } 380 381 g_free(nodename); 382 } 383 } 384 385 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 386 { 387 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 388 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 389 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 390 "arm,gic-v2m-frame"); 391 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 392 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 393 2, vbi->memmap[VIRT_GIC_V2M].base, 394 2, vbi->memmap[VIRT_GIC_V2M].size); 395 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 396 } 397 398 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type) 399 { 400 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 401 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 402 403 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 404 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 405 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 406 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 407 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 408 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 409 if (type == 3) { 410 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 411 "arm,gic-v3"); 412 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 413 2, vbi->memmap[VIRT_GIC_DIST].base, 414 2, vbi->memmap[VIRT_GIC_DIST].size, 415 2, vbi->memmap[VIRT_GIC_REDIST].base, 416 2, vbi->memmap[VIRT_GIC_REDIST].size); 417 } else { 418 /* 'cortex-a15-gic' means 'GIC v2' */ 419 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 420 "arm,cortex-a15-gic"); 421 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 422 2, vbi->memmap[VIRT_GIC_DIST].base, 423 2, vbi->memmap[VIRT_GIC_DIST].size, 424 2, vbi->memmap[VIRT_GIC_CPU].base, 425 2, vbi->memmap[VIRT_GIC_CPU].size); 426 } 427 428 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 429 } 430 431 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 432 { 433 int i; 434 int irq = vbi->irqmap[VIRT_GIC_V2M]; 435 DeviceState *dev; 436 437 dev = qdev_create(NULL, "arm-gicv2m"); 438 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 439 qdev_prop_set_uint32(dev, "base-spi", irq); 440 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 441 qdev_init_nofail(dev); 442 443 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 444 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 445 } 446 447 fdt_add_v2m_gic_node(vbi); 448 } 449 450 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure) 451 { 452 /* We create a standalone GIC */ 453 DeviceState *gicdev; 454 SysBusDevice *gicbusdev; 455 const char *gictype; 456 int i; 457 458 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 459 460 gicdev = qdev_create(NULL, gictype); 461 qdev_prop_set_uint32(gicdev, "revision", type); 462 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 463 /* Note that the num-irq property counts both internal and external 464 * interrupts; there are always 32 of the former (mandated by GIC spec). 465 */ 466 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 467 if (!kvm_irqchip_in_kernel()) { 468 qdev_prop_set_bit(gicdev, "has-security-extensions", secure); 469 } 470 qdev_init_nofail(gicdev); 471 gicbusdev = SYS_BUS_DEVICE(gicdev); 472 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 473 if (type == 3) { 474 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base); 475 } else { 476 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 477 } 478 479 /* Wire the outputs from each CPU's generic timer to the 480 * appropriate GIC PPI inputs, and the GIC's IRQ output to 481 * the CPU's IRQ input. 482 */ 483 for (i = 0; i < smp_cpus; i++) { 484 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 485 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 486 int irq; 487 /* Mapping from the output timer irq lines from the CPU to the 488 * GIC PPI inputs we use for the virt board. 489 */ 490 const int timer_irq[] = { 491 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 492 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 493 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 494 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 495 }; 496 497 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 498 qdev_connect_gpio_out(cpudev, irq, 499 qdev_get_gpio_in(gicdev, 500 ppibase + timer_irq[irq])); 501 } 502 503 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 504 sysbus_connect_irq(gicbusdev, i + smp_cpus, 505 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 506 } 507 508 for (i = 0; i < NUM_IRQS; i++) { 509 pic[i] = qdev_get_gpio_in(gicdev, i); 510 } 511 512 fdt_add_gic_node(vbi, type); 513 514 if (type == 2) { 515 create_v2m(vbi, pic); 516 } 517 } 518 519 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart, 520 MemoryRegion *mem) 521 { 522 char *nodename; 523 hwaddr base = vbi->memmap[uart].base; 524 hwaddr size = vbi->memmap[uart].size; 525 int irq = vbi->irqmap[uart]; 526 const char compat[] = "arm,pl011\0arm,primecell"; 527 const char clocknames[] = "uartclk\0apb_pclk"; 528 DeviceState *dev = qdev_create(NULL, "pl011"); 529 SysBusDevice *s = SYS_BUS_DEVICE(dev); 530 531 qdev_init_nofail(dev); 532 memory_region_add_subregion(mem, base, 533 sysbus_mmio_get_region(s, 0)); 534 sysbus_connect_irq(s, 0, pic[irq]); 535 536 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 537 qemu_fdt_add_subnode(vbi->fdt, nodename); 538 /* Note that we can't use setprop_string because of the embedded NUL */ 539 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 540 compat, sizeof(compat)); 541 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 542 2, base, 2, size); 543 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 544 GIC_FDT_IRQ_TYPE_SPI, irq, 545 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 546 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 547 vbi->clock_phandle, vbi->clock_phandle); 548 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 549 clocknames, sizeof(clocknames)); 550 551 if (uart == VIRT_UART) { 552 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 553 } else { 554 /* Mark as not usable by the normal world */ 555 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 556 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 557 } 558 559 g_free(nodename); 560 } 561 562 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 563 { 564 char *nodename; 565 hwaddr base = vbi->memmap[VIRT_RTC].base; 566 hwaddr size = vbi->memmap[VIRT_RTC].size; 567 int irq = vbi->irqmap[VIRT_RTC]; 568 const char compat[] = "arm,pl031\0arm,primecell"; 569 570 sysbus_create_simple("pl031", base, pic[irq]); 571 572 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 573 qemu_fdt_add_subnode(vbi->fdt, nodename); 574 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 575 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 576 2, base, 2, size); 577 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 578 GIC_FDT_IRQ_TYPE_SPI, irq, 579 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 580 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 581 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 582 g_free(nodename); 583 } 584 585 static DeviceState *gpio_key_dev; 586 static void virt_powerdown_req(Notifier *n, void *opaque) 587 { 588 /* use gpio Pin 3 for power button event */ 589 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 590 } 591 592 static Notifier virt_system_powerdown_notifier = { 593 .notify = virt_powerdown_req 594 }; 595 596 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic) 597 { 598 char *nodename; 599 DeviceState *pl061_dev; 600 hwaddr base = vbi->memmap[VIRT_GPIO].base; 601 hwaddr size = vbi->memmap[VIRT_GPIO].size; 602 int irq = vbi->irqmap[VIRT_GPIO]; 603 const char compat[] = "arm,pl061\0arm,primecell"; 604 605 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 606 607 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt); 608 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 609 qemu_fdt_add_subnode(vbi->fdt, nodename); 610 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 611 2, base, 2, size); 612 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 613 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2); 614 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0); 615 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 616 GIC_FDT_IRQ_TYPE_SPI, irq, 617 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 618 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 619 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 620 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle); 621 622 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 623 qdev_get_gpio_in(pl061_dev, 3)); 624 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys"); 625 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys"); 626 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0); 627 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1); 628 629 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff"); 630 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff", 631 "label", "GPIO Key Poweroff"); 632 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code", 633 KEY_POWER); 634 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff", 635 "gpios", phandle, 3, 0); 636 637 /* connect powerdown request */ 638 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 639 640 g_free(nodename); 641 } 642 643 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 644 { 645 int i; 646 hwaddr size = vbi->memmap[VIRT_MMIO].size; 647 648 /* We create the transports in forwards order. Since qbus_realize() 649 * prepends (not appends) new child buses, the incrementing loop below will 650 * create a list of virtio-mmio buses with decreasing base addresses. 651 * 652 * When a -device option is processed from the command line, 653 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 654 * order. The upshot is that -device options in increasing command line 655 * order are mapped to virtio-mmio buses with decreasing base addresses. 656 * 657 * When this code was originally written, that arrangement ensured that the 658 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 659 * the first -device on the command line. (The end-to-end order is a 660 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 661 * guest kernel's name-to-address assignment strategy.) 662 * 663 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 664 * the message, if not necessarily the code, of commit 70161ff336. 665 * Therefore the loop now establishes the inverse of the original intent. 666 * 667 * Unfortunately, we can't counteract the kernel change by reversing the 668 * loop; it would break existing command lines. 669 * 670 * In any case, the kernel makes no guarantee about the stability of 671 * enumeration order of virtio devices (as demonstrated by it changing 672 * between kernel versions). For reliable and stable identification 673 * of disks users must use UUIDs or similar mechanisms. 674 */ 675 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 676 int irq = vbi->irqmap[VIRT_MMIO] + i; 677 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 678 679 sysbus_create_simple("virtio-mmio", base, pic[irq]); 680 } 681 682 /* We add dtb nodes in reverse order so that they appear in the finished 683 * device tree lowest address first. 684 * 685 * Note that this mapping is independent of the loop above. The previous 686 * loop influences virtio device to virtio transport assignment, whereas 687 * this loop controls how virtio transports are laid out in the dtb. 688 */ 689 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 690 char *nodename; 691 int irq = vbi->irqmap[VIRT_MMIO] + i; 692 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 693 694 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 695 qemu_fdt_add_subnode(vbi->fdt, nodename); 696 qemu_fdt_setprop_string(vbi->fdt, nodename, 697 "compatible", "virtio,mmio"); 698 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 699 2, base, 2, size); 700 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 701 GIC_FDT_IRQ_TYPE_SPI, irq, 702 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 703 g_free(nodename); 704 } 705 } 706 707 static void create_one_flash(const char *name, hwaddr flashbase, 708 hwaddr flashsize, const char *file, 709 MemoryRegion *sysmem) 710 { 711 /* Create and map a single flash device. We use the same 712 * parameters as the flash devices on the Versatile Express board. 713 */ 714 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 715 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 716 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 717 const uint64_t sectorlength = 256 * 1024; 718 719 if (dinfo) { 720 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 721 &error_abort); 722 } 723 724 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 725 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 726 qdev_prop_set_uint8(dev, "width", 4); 727 qdev_prop_set_uint8(dev, "device-width", 2); 728 qdev_prop_set_bit(dev, "big-endian", false); 729 qdev_prop_set_uint16(dev, "id0", 0x89); 730 qdev_prop_set_uint16(dev, "id1", 0x18); 731 qdev_prop_set_uint16(dev, "id2", 0x00); 732 qdev_prop_set_uint16(dev, "id3", 0x00); 733 qdev_prop_set_string(dev, "name", name); 734 qdev_init_nofail(dev); 735 736 memory_region_add_subregion(sysmem, flashbase, 737 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); 738 739 if (file) { 740 char *fn; 741 int image_size; 742 743 if (drive_get(IF_PFLASH, 0, 0)) { 744 error_report("The contents of the first flash device may be " 745 "specified with -bios or with -drive if=pflash... " 746 "but you cannot use both options at once"); 747 exit(1); 748 } 749 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file); 750 if (!fn) { 751 error_report("Could not find ROM image '%s'", file); 752 exit(1); 753 } 754 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0)); 755 g_free(fn); 756 if (image_size < 0) { 757 error_report("Could not load ROM image '%s'", file); 758 exit(1); 759 } 760 } 761 } 762 763 static void create_flash(const VirtBoardInfo *vbi, 764 MemoryRegion *sysmem, 765 MemoryRegion *secure_sysmem) 766 { 767 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 768 * Any file passed via -bios goes in the first of these. 769 * sysmem is the system memory space. secure_sysmem is the secure view 770 * of the system, and the first flash device should be made visible only 771 * there. The second flash device is visible to both secure and nonsecure. 772 * If sysmem == secure_sysmem this means there is no separate Secure 773 * address space and both flash devices are generally visible. 774 */ 775 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 776 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 777 char *nodename; 778 779 create_one_flash("virt.flash0", flashbase, flashsize, 780 bios_name, secure_sysmem); 781 create_one_flash("virt.flash1", flashbase + flashsize, flashsize, 782 NULL, sysmem); 783 784 if (sysmem == secure_sysmem) { 785 /* Report both flash devices as a single node in the DT */ 786 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 787 qemu_fdt_add_subnode(vbi->fdt, nodename); 788 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 789 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 790 2, flashbase, 2, flashsize, 791 2, flashbase + flashsize, 2, flashsize); 792 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 793 g_free(nodename); 794 } else { 795 /* Report the devices as separate nodes so we can mark one as 796 * only visible to the secure world. 797 */ 798 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 799 qemu_fdt_add_subnode(vbi->fdt, nodename); 800 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 801 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 802 2, flashbase, 2, flashsize); 803 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 804 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 805 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 806 g_free(nodename); 807 808 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 809 qemu_fdt_add_subnode(vbi->fdt, nodename); 810 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 811 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 812 2, flashbase + flashsize, 2, flashsize); 813 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 814 g_free(nodename); 815 } 816 } 817 818 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as) 819 { 820 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 821 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 822 char *nodename; 823 824 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 825 826 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 827 qemu_fdt_add_subnode(vbi->fdt, nodename); 828 qemu_fdt_setprop_string(vbi->fdt, nodename, 829 "compatible", "qemu,fw-cfg-mmio"); 830 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 831 2, base, 2, size); 832 g_free(nodename); 833 } 834 835 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 836 int first_irq, const char *nodename) 837 { 838 int devfn, pin; 839 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 840 uint32_t *irq_map = full_irq_map; 841 842 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 843 for (pin = 0; pin < 4; pin++) { 844 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 845 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 846 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 847 int i; 848 849 uint32_t map[] = { 850 devfn << 8, 0, 0, /* devfn */ 851 pin + 1, /* PCI pin */ 852 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 853 854 /* Convert map to big endian */ 855 for (i = 0; i < 10; i++) { 856 irq_map[i] = cpu_to_be32(map[i]); 857 } 858 irq_map += 10; 859 } 860 } 861 862 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 863 full_irq_map, sizeof(full_irq_map)); 864 865 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 866 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 867 0x7 /* PCI irq */); 868 } 869 870 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 871 bool use_highmem) 872 { 873 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 874 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 875 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 876 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 877 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 878 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 879 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 880 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 881 hwaddr base = base_mmio; 882 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 883 int irq = vbi->irqmap[VIRT_PCIE]; 884 MemoryRegion *mmio_alias; 885 MemoryRegion *mmio_reg; 886 MemoryRegion *ecam_alias; 887 MemoryRegion *ecam_reg; 888 DeviceState *dev; 889 char *nodename; 890 int i; 891 PCIHostState *pci; 892 893 dev = qdev_create(NULL, TYPE_GPEX_HOST); 894 qdev_init_nofail(dev); 895 896 /* Map only the first size_ecam bytes of ECAM space */ 897 ecam_alias = g_new0(MemoryRegion, 1); 898 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 899 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 900 ecam_reg, 0, size_ecam); 901 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 902 903 /* Map the MMIO window into system address space so as to expose 904 * the section of PCI MMIO space which starts at the same base address 905 * (ie 1:1 mapping for that part of PCI MMIO space visible through 906 * the window). 907 */ 908 mmio_alias = g_new0(MemoryRegion, 1); 909 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 910 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 911 mmio_reg, base_mmio, size_mmio); 912 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 913 914 if (use_highmem) { 915 /* Map high MMIO space */ 916 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 917 918 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 919 mmio_reg, base_mmio_high, size_mmio_high); 920 memory_region_add_subregion(get_system_memory(), base_mmio_high, 921 high_mmio_alias); 922 } 923 924 /* Map IO port space */ 925 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 926 927 for (i = 0; i < GPEX_NUM_IRQS; i++) { 928 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 929 } 930 931 pci = PCI_HOST_BRIDGE(dev); 932 if (pci->bus) { 933 for (i = 0; i < nb_nics; i++) { 934 NICInfo *nd = &nd_table[i]; 935 936 if (!nd->model) { 937 nd->model = g_strdup("virtio"); 938 } 939 940 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 941 } 942 } 943 944 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 945 qemu_fdt_add_subnode(vbi->fdt, nodename); 946 qemu_fdt_setprop_string(vbi->fdt, nodename, 947 "compatible", "pci-host-ecam-generic"); 948 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 949 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 950 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 951 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 952 nr_pcie_buses - 1); 953 954 if (vbi->v2m_phandle) { 955 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", 956 vbi->v2m_phandle); 957 } 958 959 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 960 2, base_ecam, 2, size_ecam); 961 962 if (use_highmem) { 963 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 964 1, FDT_PCI_RANGE_IOPORT, 2, 0, 965 2, base_pio, 2, size_pio, 966 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 967 2, base_mmio, 2, size_mmio, 968 1, FDT_PCI_RANGE_MMIO_64BIT, 969 2, base_mmio_high, 970 2, base_mmio_high, 2, size_mmio_high); 971 } else { 972 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 973 1, FDT_PCI_RANGE_IOPORT, 2, 0, 974 2, base_pio, 2, size_pio, 975 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 976 2, base_mmio, 2, size_mmio); 977 } 978 979 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 980 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 981 982 g_free(nodename); 983 } 984 985 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 986 { 987 DeviceState *dev; 988 SysBusDevice *s; 989 int i; 990 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 991 MemoryRegion *sysmem = get_system_memory(); 992 993 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 994 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 995 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 996 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 997 998 fdt_params->system_params = &platform_bus_params; 999 fdt_params->binfo = &vbi->bootinfo; 1000 fdt_params->intc = "/intc"; 1001 /* 1002 * register a machine init done notifier that creates the device tree 1003 * nodes of the platform bus and its children dynamic sysbus devices 1004 */ 1005 arm_register_platform_bus_fdt_creator(fdt_params); 1006 1007 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1008 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1009 qdev_prop_set_uint32(dev, "num_irqs", 1010 platform_bus_params.platform_bus_num_irqs); 1011 qdev_prop_set_uint32(dev, "mmio_size", 1012 platform_bus_params.platform_bus_size); 1013 qdev_init_nofail(dev); 1014 s = SYS_BUS_DEVICE(dev); 1015 1016 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 1017 int irqn = platform_bus_params.platform_bus_first_irq + i; 1018 sysbus_connect_irq(s, i, pic[irqn]); 1019 } 1020 1021 memory_region_add_subregion(sysmem, 1022 platform_bus_params.platform_bus_base, 1023 sysbus_mmio_get_region(s, 0)); 1024 } 1025 1026 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem) 1027 { 1028 MemoryRegion *secram = g_new(MemoryRegion, 1); 1029 char *nodename; 1030 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base; 1031 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size; 1032 1033 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal); 1034 vmstate_register_ram_global(secram); 1035 memory_region_add_subregion(secure_sysmem, base, secram); 1036 1037 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1038 qemu_fdt_add_subnode(vbi->fdt, nodename); 1039 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory"); 1040 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size); 1041 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 1042 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 1043 1044 g_free(nodename); 1045 } 1046 1047 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1048 { 1049 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 1050 1051 *fdt_size = board->fdt_size; 1052 return board->fdt; 1053 } 1054 1055 static void virt_build_smbios(VirtGuestInfo *guest_info) 1056 { 1057 FWCfgState *fw_cfg = guest_info->fw_cfg; 1058 uint8_t *smbios_tables, *smbios_anchor; 1059 size_t smbios_tables_len, smbios_anchor_len; 1060 const char *product = "QEMU Virtual Machine"; 1061 1062 if (!fw_cfg) { 1063 return; 1064 } 1065 1066 if (kvm_enabled()) { 1067 product = "KVM Virtual Machine"; 1068 } 1069 1070 smbios_set_defaults("QEMU", product, 1071 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 1072 1073 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 1074 &smbios_anchor, &smbios_anchor_len); 1075 1076 if (smbios_anchor) { 1077 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 1078 smbios_tables, smbios_tables_len); 1079 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 1080 smbios_anchor, smbios_anchor_len); 1081 } 1082 } 1083 1084 static 1085 void virt_guest_info_machine_done(Notifier *notifier, void *data) 1086 { 1087 VirtGuestInfoState *guest_info_state = container_of(notifier, 1088 VirtGuestInfoState, machine_done); 1089 virt_acpi_setup(&guest_info_state->info); 1090 virt_build_smbios(&guest_info_state->info); 1091 } 1092 1093 static void machvirt_init(MachineState *machine) 1094 { 1095 VirtMachineState *vms = VIRT_MACHINE(machine); 1096 qemu_irq pic[NUM_IRQS]; 1097 MemoryRegion *sysmem = get_system_memory(); 1098 MemoryRegion *secure_sysmem = NULL; 1099 int gic_version = vms->gic_version; 1100 int n, virt_max_cpus; 1101 MemoryRegion *ram = g_new(MemoryRegion, 1); 1102 const char *cpu_model = machine->cpu_model; 1103 VirtBoardInfo *vbi; 1104 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1105 VirtGuestInfo *guest_info = &guest_info_state->info; 1106 char **cpustr; 1107 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1108 1109 if (!cpu_model) { 1110 cpu_model = "cortex-a15"; 1111 } 1112 1113 /* We can probe only here because during property set 1114 * KVM is not available yet 1115 */ 1116 if (!gic_version) { 1117 gic_version = kvm_arm_vgic_probe(); 1118 if (!gic_version) { 1119 error_report("Unable to determine GIC version supported by host"); 1120 error_printf("KVM acceleration is probably not supported\n"); 1121 exit(1); 1122 } 1123 } 1124 1125 /* Separate the actual CPU model name from any appended features */ 1126 cpustr = g_strsplit(cpu_model, ",", 2); 1127 1128 vbi = find_machine_info(cpustr[0]); 1129 1130 if (!vbi) { 1131 error_report("mach-virt: CPU %s not supported", cpustr[0]); 1132 exit(1); 1133 } 1134 1135 /* If we have an EL3 boot ROM then the assumption is that it will 1136 * implement PSCI itself, so disable QEMU's internal implementation 1137 * so it doesn't get in the way. Instead of starting secondary 1138 * CPUs in PSCI powerdown state we will start them all running and 1139 * let the boot ROM sort them out. 1140 * The usual case is that we do use QEMU's PSCI implementation. 1141 */ 1142 vbi->using_psci = !(vms->secure && firmware_loaded); 1143 1144 /* The maximum number of CPUs depends on the GIC version, or on how 1145 * many redistributors we can fit into the memory map. 1146 */ 1147 if (gic_version == 3) { 1148 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000; 1149 } else { 1150 virt_max_cpus = GIC_NCPU; 1151 } 1152 1153 if (max_cpus > virt_max_cpus) { 1154 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1155 "supported by machine 'mach-virt' (%d)", 1156 max_cpus, virt_max_cpus); 1157 exit(1); 1158 } 1159 1160 vbi->smp_cpus = smp_cpus; 1161 1162 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 1163 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB); 1164 exit(1); 1165 } 1166 1167 if (vms->secure) { 1168 if (kvm_enabled()) { 1169 error_report("mach-virt: KVM does not support Security extensions"); 1170 exit(1); 1171 } 1172 1173 /* The Secure view of the world is the same as the NonSecure, 1174 * but with a few extra devices. Create it as a container region 1175 * containing the system memory at low priority; any secure-only 1176 * devices go in at higher priority and take precedence. 1177 */ 1178 secure_sysmem = g_new(MemoryRegion, 1); 1179 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1180 UINT64_MAX); 1181 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1182 } 1183 1184 create_fdt(vbi); 1185 1186 for (n = 0; n < smp_cpus; n++) { 1187 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 1188 CPUClass *cc = CPU_CLASS(oc); 1189 Object *cpuobj; 1190 Error *err = NULL; 1191 char *cpuopts = g_strdup(cpustr[1]); 1192 1193 if (!oc) { 1194 error_report("Unable to find CPU definition"); 1195 exit(1); 1196 } 1197 cpuobj = object_new(object_class_get_name(oc)); 1198 1199 /* Handle any CPU options specified by the user */ 1200 cc->parse_features(CPU(cpuobj), cpuopts, &err); 1201 g_free(cpuopts); 1202 if (err) { 1203 error_report_err(err); 1204 exit(1); 1205 } 1206 1207 if (!vms->secure) { 1208 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1209 } 1210 1211 if (vbi->using_psci) { 1212 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, 1213 "psci-conduit", NULL); 1214 1215 /* Secondary CPUs start in PSCI powered-down state */ 1216 if (n > 0) { 1217 object_property_set_bool(cpuobj, true, 1218 "start-powered-off", NULL); 1219 } 1220 } 1221 1222 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1223 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 1224 "reset-cbar", &error_abort); 1225 } 1226 1227 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1228 &error_abort); 1229 if (vms->secure) { 1230 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1231 "secure-memory", &error_abort); 1232 } 1233 1234 object_property_set_bool(cpuobj, true, "realized", NULL); 1235 } 1236 g_strfreev(cpustr); 1237 fdt_add_timer_nodes(vbi, gic_version); 1238 fdt_add_cpu_nodes(vbi); 1239 fdt_add_psci_node(vbi); 1240 1241 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1242 machine->ram_size); 1243 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 1244 1245 create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem); 1246 1247 create_gic(vbi, pic, gic_version, vms->secure); 1248 1249 create_uart(vbi, pic, VIRT_UART, sysmem); 1250 1251 if (vms->secure) { 1252 create_secure_ram(vbi, secure_sysmem); 1253 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem); 1254 } 1255 1256 create_rtc(vbi, pic); 1257 1258 create_pcie(vbi, pic, vms->highmem); 1259 1260 create_gpio(vbi, pic); 1261 1262 /* Create mmio transports, so the user can create virtio backends 1263 * (which will be automatically plugged in to the transports). If 1264 * no backend is created the transport will just sit harmlessly idle. 1265 */ 1266 create_virtio_devices(vbi, pic); 1267 1268 create_fw_cfg(vbi, &address_space_memory); 1269 rom_set_fw(fw_cfg_find()); 1270 1271 guest_info->smp_cpus = smp_cpus; 1272 guest_info->fw_cfg = fw_cfg_find(); 1273 guest_info->memmap = vbi->memmap; 1274 guest_info->irqmap = vbi->irqmap; 1275 guest_info->use_highmem = vms->highmem; 1276 guest_info->gic_version = gic_version; 1277 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 1278 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1279 1280 vbi->bootinfo.ram_size = machine->ram_size; 1281 vbi->bootinfo.kernel_filename = machine->kernel_filename; 1282 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1283 vbi->bootinfo.initrd_filename = machine->initrd_filename; 1284 vbi->bootinfo.nb_cpus = smp_cpus; 1285 vbi->bootinfo.board_id = -1; 1286 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1287 vbi->bootinfo.get_dtb = machvirt_dtb; 1288 vbi->bootinfo.firmware_loaded = firmware_loaded; 1289 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1290 1291 /* 1292 * arm_load_kernel machine init done notifier registration must 1293 * happen before the platform_bus_create call. In this latter, 1294 * another notifier is registered which adds platform bus nodes. 1295 * Notifiers are executed in registration reverse order. 1296 */ 1297 create_platform_bus(vbi, pic); 1298 } 1299 1300 static bool virt_get_secure(Object *obj, Error **errp) 1301 { 1302 VirtMachineState *vms = VIRT_MACHINE(obj); 1303 1304 return vms->secure; 1305 } 1306 1307 static void virt_set_secure(Object *obj, bool value, Error **errp) 1308 { 1309 VirtMachineState *vms = VIRT_MACHINE(obj); 1310 1311 vms->secure = value; 1312 } 1313 1314 static bool virt_get_highmem(Object *obj, Error **errp) 1315 { 1316 VirtMachineState *vms = VIRT_MACHINE(obj); 1317 1318 return vms->highmem; 1319 } 1320 1321 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1322 { 1323 VirtMachineState *vms = VIRT_MACHINE(obj); 1324 1325 vms->highmem = value; 1326 } 1327 1328 static char *virt_get_gic_version(Object *obj, Error **errp) 1329 { 1330 VirtMachineState *vms = VIRT_MACHINE(obj); 1331 const char *val = vms->gic_version == 3 ? "3" : "2"; 1332 1333 return g_strdup(val); 1334 } 1335 1336 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1337 { 1338 VirtMachineState *vms = VIRT_MACHINE(obj); 1339 1340 if (!strcmp(value, "3")) { 1341 vms->gic_version = 3; 1342 } else if (!strcmp(value, "2")) { 1343 vms->gic_version = 2; 1344 } else if (!strcmp(value, "host")) { 1345 vms->gic_version = 0; /* Will probe later */ 1346 } else { 1347 error_setg(errp, "Invalid gic-version value"); 1348 error_append_hint(errp, "Valid values are 3, 2, host.\n"); 1349 } 1350 } 1351 1352 static void virt_machine_class_init(ObjectClass *oc, void *data) 1353 { 1354 MachineClass *mc = MACHINE_CLASS(oc); 1355 1356 mc->init = machvirt_init; 1357 /* Start max_cpus at the maximum QEMU supports. We'll further restrict 1358 * it later in machvirt_init, where we have more information about the 1359 * configuration of the particular instance. 1360 */ 1361 mc->max_cpus = MAX_CPUMASK_BITS; 1362 mc->has_dynamic_sysbus = true; 1363 mc->block_default_type = IF_VIRTIO; 1364 mc->no_cdrom = 1; 1365 mc->pci_allow_0_address = true; 1366 } 1367 1368 static const TypeInfo virt_machine_info = { 1369 .name = TYPE_VIRT_MACHINE, 1370 .parent = TYPE_MACHINE, 1371 .abstract = true, 1372 .instance_size = sizeof(VirtMachineState), 1373 .class_size = sizeof(VirtMachineClass), 1374 .class_init = virt_machine_class_init, 1375 }; 1376 1377 static void virt_2_6_instance_init(Object *obj) 1378 { 1379 VirtMachineState *vms = VIRT_MACHINE(obj); 1380 1381 /* EL3 is disabled by default on virt: this makes us consistent 1382 * between KVM and TCG for this board, and it also allows us to 1383 * boot UEFI blobs which assume no TrustZone support. 1384 */ 1385 vms->secure = false; 1386 object_property_add_bool(obj, "secure", virt_get_secure, 1387 virt_set_secure, NULL); 1388 object_property_set_description(obj, "secure", 1389 "Set on/off to enable/disable the ARM " 1390 "Security Extensions (TrustZone)", 1391 NULL); 1392 1393 /* High memory is enabled by default */ 1394 vms->highmem = true; 1395 object_property_add_bool(obj, "highmem", virt_get_highmem, 1396 virt_set_highmem, NULL); 1397 object_property_set_description(obj, "highmem", 1398 "Set on/off to enable/disable using " 1399 "physical address space above 32 bits", 1400 NULL); 1401 /* Default GIC type is v2 */ 1402 vms->gic_version = 2; 1403 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1404 virt_set_gic_version, NULL); 1405 object_property_set_description(obj, "gic-version", 1406 "Set GIC version. " 1407 "Valid values are 2, 3 and host", NULL); 1408 } 1409 1410 static void virt_2_6_class_init(ObjectClass *oc, void *data) 1411 { 1412 MachineClass *mc = MACHINE_CLASS(oc); 1413 static GlobalProperty compat_props[] = { 1414 { /* end of list */ } 1415 }; 1416 1417 mc->desc = "QEMU 2.6 ARM Virtual Machine"; 1418 mc->alias = "virt"; 1419 mc->compat_props = compat_props; 1420 } 1421 1422 static const TypeInfo machvirt_info = { 1423 .name = MACHINE_TYPE_NAME("virt-2.6"), 1424 .parent = TYPE_VIRT_MACHINE, 1425 .instance_init = virt_2_6_instance_init, 1426 .class_init = virt_2_6_class_init, 1427 }; 1428 1429 static void machvirt_machine_init(void) 1430 { 1431 type_register_static(&virt_machine_info); 1432 type_register_static(&machvirt_info); 1433 } 1434 1435 type_init(machvirt_machine_init); 1436