1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/datadir.h" 34 #include "qemu/units.h" 35 #include "qemu/option.h" 36 #include "monitor/qdev.h" 37 #include "qapi/error.h" 38 #include "hw/sysbus.h" 39 #include "hw/arm/boot.h" 40 #include "hw/arm/primecell.h" 41 #include "hw/arm/virt.h" 42 #include "hw/block/flash.h" 43 #include "hw/vfio/vfio-calxeda-xgmac.h" 44 #include "hw/vfio/vfio-amd-xgbe.h" 45 #include "hw/display/ramfb.h" 46 #include "net/net.h" 47 #include "sysemu/device_tree.h" 48 #include "sysemu/numa.h" 49 #include "sysemu/runstate.h" 50 #include "sysemu/tpm.h" 51 #include "sysemu/kvm.h" 52 #include "hw/loader.h" 53 #include "qapi/error.h" 54 #include "qemu/bitops.h" 55 #include "qemu/error-report.h" 56 #include "qemu/module.h" 57 #include "hw/pci-host/gpex.h" 58 #include "hw/virtio/virtio-pci.h" 59 #include "hw/arm/sysbus-fdt.h" 60 #include "hw/platform-bus.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/arm/fdt.h" 63 #include "hw/intc/arm_gic.h" 64 #include "hw/intc/arm_gicv3_common.h" 65 #include "hw/irq.h" 66 #include "kvm_arm.h" 67 #include "hw/firmware/smbios.h" 68 #include "qapi/visitor.h" 69 #include "qapi/qapi-visit-common.h" 70 #include "standard-headers/linux/input.h" 71 #include "hw/arm/smmuv3.h" 72 #include "hw/acpi/acpi.h" 73 #include "target/arm/internals.h" 74 #include "hw/mem/pc-dimm.h" 75 #include "hw/mem/nvdimm.h" 76 #include "hw/acpi/generic_event_device.h" 77 #include "hw/virtio/virtio-iommu.h" 78 #include "hw/char/pl011.h" 79 #include "qemu/guest-random.h" 80 81 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 82 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 83 void *data) \ 84 { \ 85 MachineClass *mc = MACHINE_CLASS(oc); \ 86 virt_machine_##major##_##minor##_options(mc); \ 87 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 88 if (latest) { \ 89 mc->alias = "virt"; \ 90 } \ 91 } \ 92 static const TypeInfo machvirt_##major##_##minor##_info = { \ 93 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 94 .parent = TYPE_VIRT_MACHINE, \ 95 .class_init = virt_##major##_##minor##_class_init, \ 96 }; \ 97 static void machvirt_machine_##major##_##minor##_init(void) \ 98 { \ 99 type_register_static(&machvirt_##major##_##minor##_info); \ 100 } \ 101 type_init(machvirt_machine_##major##_##minor##_init); 102 103 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 104 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 105 #define DEFINE_VIRT_MACHINE(major, minor) \ 106 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 107 108 109 /* Number of external interrupt lines to configure the GIC with */ 110 #define NUM_IRQS 256 111 112 #define PLATFORM_BUS_NUM_IRQS 64 113 114 /* Legacy RAM limit in GB (< version 4.0) */ 115 #define LEGACY_RAMLIMIT_GB 255 116 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 117 118 /* Addresses and sizes of our components. 119 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 120 * 128MB..256MB is used for miscellaneous device I/O. 121 * 256MB..1GB is reserved for possible future PCI support (ie where the 122 * PCI memory window will go if we add a PCI host controller). 123 * 1GB and up is RAM (which may happily spill over into the 124 * high memory region beyond 4GB). 125 * This represents a compromise between how much RAM can be given to 126 * a 32 bit VM and leaving space for expansion and in particular for PCI. 127 * Note that devices should generally be placed at multiples of 0x10000, 128 * to accommodate guests using 64K pages. 129 */ 130 static const MemMapEntry base_memmap[] = { 131 /* Space up to 0x8000000 is reserved for a boot ROM */ 132 [VIRT_FLASH] = { 0, 0x08000000 }, 133 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 134 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 135 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 136 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 137 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 138 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 139 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 140 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 141 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 142 /* This redistributor space allows up to 2*64kB*123 CPUs */ 143 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 144 [VIRT_UART] = { 0x09000000, 0x00001000 }, 145 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 146 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 147 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 148 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 149 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 150 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 151 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 152 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 153 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 154 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 155 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 156 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 157 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 158 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 159 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 160 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 161 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 162 /* Actual RAM size depends on initial RAM and device memory settings */ 163 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 164 }; 165 166 /* 167 * Highmem IO Regions: This memory map is floating, located after the RAM. 168 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 169 * top of the RAM, so that its base get the same alignment as the size, 170 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 171 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 172 * Note the extended_memmap is sized so that it eventually also includes the 173 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 174 * index of base_memmap). 175 */ 176 static MemMapEntry extended_memmap[] = { 177 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 178 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 179 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 180 /* Second PCIe window */ 181 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 182 }; 183 184 static const int a15irqmap[] = { 185 [VIRT_UART] = 1, 186 [VIRT_RTC] = 2, 187 [VIRT_PCIE] = 3, /* ... to 6 */ 188 [VIRT_GPIO] = 7, 189 [VIRT_SECURE_UART] = 8, 190 [VIRT_ACPI_GED] = 9, 191 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 192 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 193 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 194 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 195 }; 196 197 static const char *valid_cpus[] = { 198 ARM_CPU_TYPE_NAME("cortex-a7"), 199 ARM_CPU_TYPE_NAME("cortex-a15"), 200 ARM_CPU_TYPE_NAME("cortex-a53"), 201 ARM_CPU_TYPE_NAME("cortex-a57"), 202 ARM_CPU_TYPE_NAME("cortex-a72"), 203 ARM_CPU_TYPE_NAME("a64fx"), 204 ARM_CPU_TYPE_NAME("host"), 205 ARM_CPU_TYPE_NAME("max"), 206 }; 207 208 static bool cpu_type_valid(const char *cpu) 209 { 210 int i; 211 212 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 213 if (strcmp(cpu, valid_cpus[i]) == 0) { 214 return true; 215 } 216 } 217 return false; 218 } 219 220 static void create_kaslr_seed(MachineState *ms, const char *node) 221 { 222 uint64_t seed; 223 224 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 225 return; 226 } 227 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed); 228 } 229 230 static void create_fdt(VirtMachineState *vms) 231 { 232 MachineState *ms = MACHINE(vms); 233 int nb_numa_nodes = ms->numa_state->num_nodes; 234 void *fdt = create_device_tree(&vms->fdt_size); 235 236 if (!fdt) { 237 error_report("create_device_tree() failed"); 238 exit(1); 239 } 240 241 ms->fdt = fdt; 242 243 /* Header */ 244 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 245 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 246 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 247 248 /* /chosen must exist for load_dtb to fill in necessary properties later */ 249 qemu_fdt_add_subnode(fdt, "/chosen"); 250 create_kaslr_seed(ms, "/chosen"); 251 252 if (vms->secure) { 253 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 254 create_kaslr_seed(ms, "/secure-chosen"); 255 } 256 257 /* Clock node, for the benefit of the UART. The kernel device tree 258 * binding documentation claims the PL011 node clock properties are 259 * optional but in practice if you omit them the kernel refuses to 260 * probe for the device. 261 */ 262 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 263 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 264 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 266 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 267 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 268 "clk24mhz"); 269 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 270 271 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 272 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 273 uint32_t *matrix = g_malloc0(size); 274 int idx, i, j; 275 276 for (i = 0; i < nb_numa_nodes; i++) { 277 for (j = 0; j < nb_numa_nodes; j++) { 278 idx = (i * nb_numa_nodes + j) * 3; 279 matrix[idx + 0] = cpu_to_be32(i); 280 matrix[idx + 1] = cpu_to_be32(j); 281 matrix[idx + 2] = 282 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 283 } 284 } 285 286 qemu_fdt_add_subnode(fdt, "/distance-map"); 287 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 288 "numa-distance-map-v1"); 289 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 290 matrix, size); 291 g_free(matrix); 292 } 293 } 294 295 static void fdt_add_timer_nodes(const VirtMachineState *vms) 296 { 297 /* On real hardware these interrupts are level-triggered. 298 * On KVM they were edge-triggered before host kernel version 4.4, 299 * and level-triggered afterwards. 300 * On emulated QEMU they are level-triggered. 301 * 302 * Getting the DTB info about them wrong is awkward for some 303 * guest kernels: 304 * pre-4.8 ignore the DT and leave the interrupt configured 305 * with whatever the GIC reset value (or the bootloader) left it at 306 * 4.8 before rc6 honour the incorrect data by programming it back 307 * into the GIC, causing problems 308 * 4.8rc6 and later ignore the DT and always write "level triggered" 309 * into the GIC 310 * 311 * For backwards-compatibility, virt-2.8 and earlier will continue 312 * to say these are edge-triggered, but later machines will report 313 * the correct information. 314 */ 315 ARMCPU *armcpu; 316 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 317 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 318 MachineState *ms = MACHINE(vms); 319 320 if (vmc->claim_edge_triggered_timers) { 321 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 322 } 323 324 if (vms->gic_version == VIRT_GIC_VERSION_2) { 325 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 326 GIC_FDT_IRQ_PPI_CPU_WIDTH, 327 (1 << MACHINE(vms)->smp.cpus) - 1); 328 } 329 330 qemu_fdt_add_subnode(ms->fdt, "/timer"); 331 332 armcpu = ARM_CPU(qemu_get_cpu(0)); 333 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 334 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 335 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 336 compat, sizeof(compat)); 337 } else { 338 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 339 "arm,armv7-timer"); 340 } 341 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 342 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 346 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 347 } 348 349 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 350 { 351 int cpu; 352 int addr_cells = 1; 353 const MachineState *ms = MACHINE(vms); 354 int smp_cpus = ms->smp.cpus; 355 356 /* 357 * From Documentation/devicetree/bindings/arm/cpus.txt 358 * On ARM v8 64-bit systems value should be set to 2, 359 * that corresponds to the MPIDR_EL1 register size. 360 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 361 * in the system, #address-cells can be set to 1, since 362 * MPIDR_EL1[63:32] bits are not used for CPUs 363 * identification. 364 * 365 * Here we actually don't know whether our system is 32- or 64-bit one. 366 * The simplest way to go is to examine affinity IDs of all our CPUs. If 367 * at least one of them has Aff3 populated, we set #address-cells to 2. 368 */ 369 for (cpu = 0; cpu < smp_cpus; cpu++) { 370 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 371 372 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 373 addr_cells = 2; 374 break; 375 } 376 } 377 378 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 379 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 380 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 381 382 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 383 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 384 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 385 CPUState *cs = CPU(armcpu); 386 387 qemu_fdt_add_subnode(ms->fdt, nodename); 388 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 389 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 390 armcpu->dtb_compatible); 391 392 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 393 qemu_fdt_setprop_string(ms->fdt, nodename, 394 "enable-method", "psci"); 395 } 396 397 if (addr_cells == 2) { 398 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 399 armcpu->mp_affinity); 400 } else { 401 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 402 armcpu->mp_affinity); 403 } 404 405 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 406 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 407 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 408 } 409 410 g_free(nodename); 411 } 412 } 413 414 static void fdt_add_its_gic_node(VirtMachineState *vms) 415 { 416 char *nodename; 417 MachineState *ms = MACHINE(vms); 418 419 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 420 nodename = g_strdup_printf("/intc/its@%" PRIx64, 421 vms->memmap[VIRT_GIC_ITS].base); 422 qemu_fdt_add_subnode(ms->fdt, nodename); 423 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 424 "arm,gic-v3-its"); 425 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 426 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 427 2, vms->memmap[VIRT_GIC_ITS].base, 428 2, vms->memmap[VIRT_GIC_ITS].size); 429 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 430 g_free(nodename); 431 } 432 433 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 434 { 435 MachineState *ms = MACHINE(vms); 436 char *nodename; 437 438 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 439 vms->memmap[VIRT_GIC_V2M].base); 440 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 441 qemu_fdt_add_subnode(ms->fdt, nodename); 442 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 443 "arm,gic-v2m-frame"); 444 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 445 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 446 2, vms->memmap[VIRT_GIC_V2M].base, 447 2, vms->memmap[VIRT_GIC_V2M].size); 448 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 449 g_free(nodename); 450 } 451 452 static void fdt_add_gic_node(VirtMachineState *vms) 453 { 454 MachineState *ms = MACHINE(vms); 455 char *nodename; 456 457 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 458 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 459 460 nodename = g_strdup_printf("/intc@%" PRIx64, 461 vms->memmap[VIRT_GIC_DIST].base); 462 qemu_fdt_add_subnode(ms->fdt, nodename); 463 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 464 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 465 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 466 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 467 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 468 if (vms->gic_version == VIRT_GIC_VERSION_3) { 469 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 470 471 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 472 "arm,gic-v3"); 473 474 qemu_fdt_setprop_cell(ms->fdt, nodename, 475 "#redistributor-regions", nb_redist_regions); 476 477 if (nb_redist_regions == 1) { 478 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 479 2, vms->memmap[VIRT_GIC_DIST].base, 480 2, vms->memmap[VIRT_GIC_DIST].size, 481 2, vms->memmap[VIRT_GIC_REDIST].base, 482 2, vms->memmap[VIRT_GIC_REDIST].size); 483 } else { 484 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 485 2, vms->memmap[VIRT_GIC_DIST].base, 486 2, vms->memmap[VIRT_GIC_DIST].size, 487 2, vms->memmap[VIRT_GIC_REDIST].base, 488 2, vms->memmap[VIRT_GIC_REDIST].size, 489 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 490 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 491 } 492 493 if (vms->virt) { 494 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 495 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 496 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 497 } 498 } else { 499 /* 'cortex-a15-gic' means 'GIC v2' */ 500 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 501 "arm,cortex-a15-gic"); 502 if (!vms->virt) { 503 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 504 2, vms->memmap[VIRT_GIC_DIST].base, 505 2, vms->memmap[VIRT_GIC_DIST].size, 506 2, vms->memmap[VIRT_GIC_CPU].base, 507 2, vms->memmap[VIRT_GIC_CPU].size); 508 } else { 509 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 510 2, vms->memmap[VIRT_GIC_DIST].base, 511 2, vms->memmap[VIRT_GIC_DIST].size, 512 2, vms->memmap[VIRT_GIC_CPU].base, 513 2, vms->memmap[VIRT_GIC_CPU].size, 514 2, vms->memmap[VIRT_GIC_HYP].base, 515 2, vms->memmap[VIRT_GIC_HYP].size, 516 2, vms->memmap[VIRT_GIC_VCPU].base, 517 2, vms->memmap[VIRT_GIC_VCPU].size); 518 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 519 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 520 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 521 } 522 } 523 524 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 525 g_free(nodename); 526 } 527 528 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 529 { 530 ARMCPU *armcpu = ARM_CPU(first_cpu); 531 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 532 MachineState *ms = MACHINE(vms); 533 534 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 535 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 536 return; 537 } 538 539 if (vms->gic_version == VIRT_GIC_VERSION_2) { 540 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 541 GIC_FDT_IRQ_PPI_CPU_WIDTH, 542 (1 << MACHINE(vms)->smp.cpus) - 1); 543 } 544 545 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 546 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 547 const char compat[] = "arm,armv8-pmuv3"; 548 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 549 compat, sizeof(compat)); 550 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 551 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 552 } 553 } 554 555 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 556 { 557 DeviceState *dev; 558 MachineState *ms = MACHINE(vms); 559 int irq = vms->irqmap[VIRT_ACPI_GED]; 560 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 561 562 if (ms->ram_slots) { 563 event |= ACPI_GED_MEM_HOTPLUG_EVT; 564 } 565 566 if (ms->nvdimms_state->is_enabled) { 567 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 568 } 569 570 dev = qdev_new(TYPE_ACPI_GED); 571 qdev_prop_set_uint32(dev, "ged-event", event); 572 573 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 574 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 575 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 576 577 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 578 579 return dev; 580 } 581 582 static void create_its(VirtMachineState *vms) 583 { 584 const char *itsclass = its_class_name(); 585 DeviceState *dev; 586 587 if (!strcmp(itsclass, "arm-gicv3-its")) { 588 if (!vms->tcg_its) { 589 itsclass = NULL; 590 } 591 } 592 593 if (!itsclass) { 594 /* Do nothing if not supported */ 595 return; 596 } 597 598 dev = qdev_new(itsclass); 599 600 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 601 &error_abort); 602 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 603 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 604 605 fdt_add_its_gic_node(vms); 606 vms->msi_controller = VIRT_MSI_CTRL_ITS; 607 } 608 609 static void create_v2m(VirtMachineState *vms) 610 { 611 int i; 612 int irq = vms->irqmap[VIRT_GIC_V2M]; 613 DeviceState *dev; 614 615 dev = qdev_new("arm-gicv2m"); 616 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 617 qdev_prop_set_uint32(dev, "base-spi", irq); 618 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 619 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 620 621 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 622 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 623 qdev_get_gpio_in(vms->gic, irq + i)); 624 } 625 626 fdt_add_v2m_gic_node(vms); 627 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 628 } 629 630 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 631 { 632 MachineState *ms = MACHINE(vms); 633 /* We create a standalone GIC */ 634 SysBusDevice *gicbusdev; 635 const char *gictype; 636 int type = vms->gic_version, i; 637 unsigned int smp_cpus = ms->smp.cpus; 638 uint32_t nb_redist_regions = 0; 639 640 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 641 642 vms->gic = qdev_new(gictype); 643 qdev_prop_set_uint32(vms->gic, "revision", type); 644 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 645 /* Note that the num-irq property counts both internal and external 646 * interrupts; there are always 32 of the former (mandated by GIC spec). 647 */ 648 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 649 if (!kvm_irqchip_in_kernel()) { 650 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 651 } 652 653 if (type == 3) { 654 uint32_t redist0_capacity = 655 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 656 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 657 658 nb_redist_regions = virt_gicv3_redist_region_count(vms); 659 660 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 661 nb_redist_regions); 662 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 663 664 if (!kvm_irqchip_in_kernel()) { 665 if (vms->tcg_its) { 666 object_property_set_link(OBJECT(vms->gic), "sysmem", 667 OBJECT(mem), &error_fatal); 668 qdev_prop_set_bit(vms->gic, "has-lpi", true); 669 } 670 } 671 672 if (nb_redist_regions == 2) { 673 uint32_t redist1_capacity = 674 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 675 676 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 677 MIN(smp_cpus - redist0_count, redist1_capacity)); 678 } 679 } else { 680 if (!kvm_irqchip_in_kernel()) { 681 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 682 vms->virt); 683 } 684 } 685 gicbusdev = SYS_BUS_DEVICE(vms->gic); 686 sysbus_realize_and_unref(gicbusdev, &error_fatal); 687 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 688 if (type == 3) { 689 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 690 if (nb_redist_regions == 2) { 691 sysbus_mmio_map(gicbusdev, 2, 692 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 693 } 694 } else { 695 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 696 if (vms->virt) { 697 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 698 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 699 } 700 } 701 702 /* Wire the outputs from each CPU's generic timer and the GICv3 703 * maintenance interrupt signal to the appropriate GIC PPI inputs, 704 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 705 */ 706 for (i = 0; i < smp_cpus; i++) { 707 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 708 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 709 int irq; 710 /* Mapping from the output timer irq lines from the CPU to the 711 * GIC PPI inputs we use for the virt board. 712 */ 713 const int timer_irq[] = { 714 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 715 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 716 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 717 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 718 }; 719 720 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 721 qdev_connect_gpio_out(cpudev, irq, 722 qdev_get_gpio_in(vms->gic, 723 ppibase + timer_irq[irq])); 724 } 725 726 if (type == 3) { 727 qemu_irq irq = qdev_get_gpio_in(vms->gic, 728 ppibase + ARCH_GIC_MAINT_IRQ); 729 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 730 0, irq); 731 } else if (vms->virt) { 732 qemu_irq irq = qdev_get_gpio_in(vms->gic, 733 ppibase + ARCH_GIC_MAINT_IRQ); 734 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 735 } 736 737 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 738 qdev_get_gpio_in(vms->gic, ppibase 739 + VIRTUAL_PMU_IRQ)); 740 741 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 742 sysbus_connect_irq(gicbusdev, i + smp_cpus, 743 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 744 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 745 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 746 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 747 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 748 } 749 750 fdt_add_gic_node(vms); 751 752 if (type == 3 && vms->its) { 753 create_its(vms); 754 } else if (type == 2) { 755 create_v2m(vms); 756 } 757 } 758 759 static void create_uart(const VirtMachineState *vms, int uart, 760 MemoryRegion *mem, Chardev *chr) 761 { 762 char *nodename; 763 hwaddr base = vms->memmap[uart].base; 764 hwaddr size = vms->memmap[uart].size; 765 int irq = vms->irqmap[uart]; 766 const char compat[] = "arm,pl011\0arm,primecell"; 767 const char clocknames[] = "uartclk\0apb_pclk"; 768 DeviceState *dev = qdev_new(TYPE_PL011); 769 SysBusDevice *s = SYS_BUS_DEVICE(dev); 770 MachineState *ms = MACHINE(vms); 771 772 qdev_prop_set_chr(dev, "chardev", chr); 773 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 774 memory_region_add_subregion(mem, base, 775 sysbus_mmio_get_region(s, 0)); 776 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 777 778 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 779 qemu_fdt_add_subnode(ms->fdt, nodename); 780 /* Note that we can't use setprop_string because of the embedded NUL */ 781 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 782 compat, sizeof(compat)); 783 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 784 2, base, 2, size); 785 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 786 GIC_FDT_IRQ_TYPE_SPI, irq, 787 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 788 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 789 vms->clock_phandle, vms->clock_phandle); 790 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 791 clocknames, sizeof(clocknames)); 792 793 if (uart == VIRT_UART) { 794 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 795 } else { 796 /* Mark as not usable by the normal world */ 797 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 798 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 799 800 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 801 nodename); 802 } 803 804 g_free(nodename); 805 } 806 807 static void create_rtc(const VirtMachineState *vms) 808 { 809 char *nodename; 810 hwaddr base = vms->memmap[VIRT_RTC].base; 811 hwaddr size = vms->memmap[VIRT_RTC].size; 812 int irq = vms->irqmap[VIRT_RTC]; 813 const char compat[] = "arm,pl031\0arm,primecell"; 814 MachineState *ms = MACHINE(vms); 815 816 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 817 818 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 819 qemu_fdt_add_subnode(ms->fdt, nodename); 820 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 821 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 822 2, base, 2, size); 823 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 824 GIC_FDT_IRQ_TYPE_SPI, irq, 825 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 826 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 827 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 828 g_free(nodename); 829 } 830 831 static DeviceState *gpio_key_dev; 832 static void virt_powerdown_req(Notifier *n, void *opaque) 833 { 834 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 835 836 if (s->acpi_dev) { 837 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 838 } else { 839 /* use gpio Pin 3 for power button event */ 840 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 841 } 842 } 843 844 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 845 uint32_t phandle) 846 { 847 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 848 qdev_get_gpio_in(pl061_dev, 3)); 849 850 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 851 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 852 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0); 853 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1); 854 855 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 856 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 857 "label", "GPIO Key Poweroff"); 858 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 859 KEY_POWER); 860 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 861 "gpios", phandle, 3, 0); 862 } 863 864 #define SECURE_GPIO_POWEROFF 0 865 #define SECURE_GPIO_RESET 1 866 867 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 868 uint32_t phandle) 869 { 870 DeviceState *gpio_pwr_dev; 871 872 /* gpio-pwr */ 873 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 874 875 /* connect secure pl061 to gpio-pwr */ 876 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 877 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 878 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 879 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 880 881 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 882 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 883 "gpio-poweroff"); 884 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 885 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 886 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 887 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 888 "okay"); 889 890 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 891 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 892 "gpio-restart"); 893 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 894 "gpios", phandle, SECURE_GPIO_RESET, 0); 895 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 896 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 897 "okay"); 898 } 899 900 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 901 MemoryRegion *mem) 902 { 903 char *nodename; 904 DeviceState *pl061_dev; 905 hwaddr base = vms->memmap[gpio].base; 906 hwaddr size = vms->memmap[gpio].size; 907 int irq = vms->irqmap[gpio]; 908 const char compat[] = "arm,pl061\0arm,primecell"; 909 SysBusDevice *s; 910 MachineState *ms = MACHINE(vms); 911 912 pl061_dev = qdev_new("pl061"); 913 /* Pull lines down to 0 if not driven by the PL061 */ 914 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 915 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 916 s = SYS_BUS_DEVICE(pl061_dev); 917 sysbus_realize_and_unref(s, &error_fatal); 918 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 919 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 920 921 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 922 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 923 qemu_fdt_add_subnode(ms->fdt, nodename); 924 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 925 2, base, 2, size); 926 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 927 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 928 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 929 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 930 GIC_FDT_IRQ_TYPE_SPI, irq, 931 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 932 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 933 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 934 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 935 936 if (gpio != VIRT_GPIO) { 937 /* Mark as not usable by the normal world */ 938 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 939 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 940 } 941 g_free(nodename); 942 943 /* Child gpio devices */ 944 if (gpio == VIRT_GPIO) { 945 create_gpio_keys(ms->fdt, pl061_dev, phandle); 946 } else { 947 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 948 } 949 } 950 951 static void create_virtio_devices(const VirtMachineState *vms) 952 { 953 int i; 954 hwaddr size = vms->memmap[VIRT_MMIO].size; 955 MachineState *ms = MACHINE(vms); 956 957 /* We create the transports in forwards order. Since qbus_realize() 958 * prepends (not appends) new child buses, the incrementing loop below will 959 * create a list of virtio-mmio buses with decreasing base addresses. 960 * 961 * When a -device option is processed from the command line, 962 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 963 * order. The upshot is that -device options in increasing command line 964 * order are mapped to virtio-mmio buses with decreasing base addresses. 965 * 966 * When this code was originally written, that arrangement ensured that the 967 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 968 * the first -device on the command line. (The end-to-end order is a 969 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 970 * guest kernel's name-to-address assignment strategy.) 971 * 972 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 973 * the message, if not necessarily the code, of commit 70161ff336. 974 * Therefore the loop now establishes the inverse of the original intent. 975 * 976 * Unfortunately, we can't counteract the kernel change by reversing the 977 * loop; it would break existing command lines. 978 * 979 * In any case, the kernel makes no guarantee about the stability of 980 * enumeration order of virtio devices (as demonstrated by it changing 981 * between kernel versions). For reliable and stable identification 982 * of disks users must use UUIDs or similar mechanisms. 983 */ 984 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 985 int irq = vms->irqmap[VIRT_MMIO] + i; 986 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 987 988 sysbus_create_simple("virtio-mmio", base, 989 qdev_get_gpio_in(vms->gic, irq)); 990 } 991 992 /* We add dtb nodes in reverse order so that they appear in the finished 993 * device tree lowest address first. 994 * 995 * Note that this mapping is independent of the loop above. The previous 996 * loop influences virtio device to virtio transport assignment, whereas 997 * this loop controls how virtio transports are laid out in the dtb. 998 */ 999 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1000 char *nodename; 1001 int irq = vms->irqmap[VIRT_MMIO] + i; 1002 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1003 1004 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1005 qemu_fdt_add_subnode(ms->fdt, nodename); 1006 qemu_fdt_setprop_string(ms->fdt, nodename, 1007 "compatible", "virtio,mmio"); 1008 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1009 2, base, 2, size); 1010 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1011 GIC_FDT_IRQ_TYPE_SPI, irq, 1012 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1013 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1014 g_free(nodename); 1015 } 1016 } 1017 1018 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1019 1020 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1021 const char *name, 1022 const char *alias_prop_name) 1023 { 1024 /* 1025 * Create a single flash device. We use the same parameters as 1026 * the flash devices on the Versatile Express board. 1027 */ 1028 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1029 1030 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1031 qdev_prop_set_uint8(dev, "width", 4); 1032 qdev_prop_set_uint8(dev, "device-width", 2); 1033 qdev_prop_set_bit(dev, "big-endian", false); 1034 qdev_prop_set_uint16(dev, "id0", 0x89); 1035 qdev_prop_set_uint16(dev, "id1", 0x18); 1036 qdev_prop_set_uint16(dev, "id2", 0x00); 1037 qdev_prop_set_uint16(dev, "id3", 0x00); 1038 qdev_prop_set_string(dev, "name", name); 1039 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1040 object_property_add_alias(OBJECT(vms), alias_prop_name, 1041 OBJECT(dev), "drive"); 1042 return PFLASH_CFI01(dev); 1043 } 1044 1045 static void virt_flash_create(VirtMachineState *vms) 1046 { 1047 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1048 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1049 } 1050 1051 static void virt_flash_map1(PFlashCFI01 *flash, 1052 hwaddr base, hwaddr size, 1053 MemoryRegion *sysmem) 1054 { 1055 DeviceState *dev = DEVICE(flash); 1056 1057 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1058 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1059 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1060 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1061 1062 memory_region_add_subregion(sysmem, base, 1063 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1064 0)); 1065 } 1066 1067 static void virt_flash_map(VirtMachineState *vms, 1068 MemoryRegion *sysmem, 1069 MemoryRegion *secure_sysmem) 1070 { 1071 /* 1072 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1073 * sysmem is the system memory space. secure_sysmem is the secure view 1074 * of the system, and the first flash device should be made visible only 1075 * there. The second flash device is visible to both secure and nonsecure. 1076 * If sysmem == secure_sysmem this means there is no separate Secure 1077 * address space and both flash devices are generally visible. 1078 */ 1079 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1080 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1081 1082 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1083 secure_sysmem); 1084 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1085 sysmem); 1086 } 1087 1088 static void virt_flash_fdt(VirtMachineState *vms, 1089 MemoryRegion *sysmem, 1090 MemoryRegion *secure_sysmem) 1091 { 1092 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1093 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1094 MachineState *ms = MACHINE(vms); 1095 char *nodename; 1096 1097 if (sysmem == secure_sysmem) { 1098 /* Report both flash devices as a single node in the DT */ 1099 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1100 qemu_fdt_add_subnode(ms->fdt, nodename); 1101 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1102 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1103 2, flashbase, 2, flashsize, 1104 2, flashbase + flashsize, 2, flashsize); 1105 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1106 g_free(nodename); 1107 } else { 1108 /* 1109 * Report the devices as separate nodes so we can mark one as 1110 * only visible to the secure world. 1111 */ 1112 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1113 qemu_fdt_add_subnode(ms->fdt, nodename); 1114 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1115 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1116 2, flashbase, 2, flashsize); 1117 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1118 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1119 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1120 g_free(nodename); 1121 1122 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1123 qemu_fdt_add_subnode(ms->fdt, nodename); 1124 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1125 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1126 2, flashbase + flashsize, 2, flashsize); 1127 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1128 g_free(nodename); 1129 } 1130 } 1131 1132 static bool virt_firmware_init(VirtMachineState *vms, 1133 MemoryRegion *sysmem, 1134 MemoryRegion *secure_sysmem) 1135 { 1136 int i; 1137 const char *bios_name; 1138 BlockBackend *pflash_blk0; 1139 1140 /* Map legacy -drive if=pflash to machine properties */ 1141 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1142 pflash_cfi01_legacy_drive(vms->flash[i], 1143 drive_get(IF_PFLASH, 0, i)); 1144 } 1145 1146 virt_flash_map(vms, sysmem, secure_sysmem); 1147 1148 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1149 1150 bios_name = MACHINE(vms)->firmware; 1151 if (bios_name) { 1152 char *fname; 1153 MemoryRegion *mr; 1154 int image_size; 1155 1156 if (pflash_blk0) { 1157 error_report("The contents of the first flash device may be " 1158 "specified with -bios or with -drive if=pflash... " 1159 "but you cannot use both options at once"); 1160 exit(1); 1161 } 1162 1163 /* Fall back to -bios */ 1164 1165 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1166 if (!fname) { 1167 error_report("Could not find ROM image '%s'", bios_name); 1168 exit(1); 1169 } 1170 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1171 image_size = load_image_mr(fname, mr); 1172 g_free(fname); 1173 if (image_size < 0) { 1174 error_report("Could not load ROM image '%s'", bios_name); 1175 exit(1); 1176 } 1177 } 1178 1179 return pflash_blk0 || bios_name; 1180 } 1181 1182 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1183 { 1184 MachineState *ms = MACHINE(vms); 1185 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1186 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1187 FWCfgState *fw_cfg; 1188 char *nodename; 1189 1190 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1191 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1192 1193 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1194 qemu_fdt_add_subnode(ms->fdt, nodename); 1195 qemu_fdt_setprop_string(ms->fdt, nodename, 1196 "compatible", "qemu,fw-cfg-mmio"); 1197 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1198 2, base, 2, size); 1199 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1200 g_free(nodename); 1201 return fw_cfg; 1202 } 1203 1204 static void create_pcie_irq_map(const MachineState *ms, 1205 uint32_t gic_phandle, 1206 int first_irq, const char *nodename) 1207 { 1208 int devfn, pin; 1209 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1210 uint32_t *irq_map = full_irq_map; 1211 1212 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1213 for (pin = 0; pin < 4; pin++) { 1214 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1215 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1216 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1217 int i; 1218 1219 uint32_t map[] = { 1220 devfn << 8, 0, 0, /* devfn */ 1221 pin + 1, /* PCI pin */ 1222 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1223 1224 /* Convert map to big endian */ 1225 for (i = 0; i < 10; i++) { 1226 irq_map[i] = cpu_to_be32(map[i]); 1227 } 1228 irq_map += 10; 1229 } 1230 } 1231 1232 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1233 full_irq_map, sizeof(full_irq_map)); 1234 1235 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1236 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1237 0, 0, 1238 0x7 /* PCI irq */); 1239 } 1240 1241 static void create_smmu(const VirtMachineState *vms, 1242 PCIBus *bus) 1243 { 1244 char *node; 1245 const char compat[] = "arm,smmu-v3"; 1246 int irq = vms->irqmap[VIRT_SMMU]; 1247 int i; 1248 hwaddr base = vms->memmap[VIRT_SMMU].base; 1249 hwaddr size = vms->memmap[VIRT_SMMU].size; 1250 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1251 DeviceState *dev; 1252 MachineState *ms = MACHINE(vms); 1253 1254 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1255 return; 1256 } 1257 1258 dev = qdev_new("arm-smmuv3"); 1259 1260 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1261 &error_abort); 1262 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1263 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1264 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1265 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1266 qdev_get_gpio_in(vms->gic, irq + i)); 1267 } 1268 1269 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1270 qemu_fdt_add_subnode(ms->fdt, node); 1271 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1272 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1273 1274 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1275 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1276 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1277 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1278 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1279 1280 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1281 sizeof(irq_names)); 1282 1283 qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle); 1284 qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk"); 1285 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1286 1287 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1288 1289 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1290 g_free(node); 1291 } 1292 1293 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1294 { 1295 const char compat[] = "virtio,pci-iommu"; 1296 uint16_t bdf = vms->virtio_iommu_bdf; 1297 MachineState *ms = MACHINE(vms); 1298 char *node; 1299 1300 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1301 1302 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf); 1303 qemu_fdt_add_subnode(ms->fdt, node); 1304 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1305 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1306 1, bdf << 8, 1, 0, 1, 0, 1307 1, 0, 1, 0); 1308 1309 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1310 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1311 g_free(node); 1312 1313 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1314 0x0, vms->iommu_phandle, 0x0, bdf, 1315 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1316 } 1317 1318 static void create_pcie(VirtMachineState *vms) 1319 { 1320 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1321 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1322 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1323 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1324 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1325 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1326 hwaddr base_ecam, size_ecam; 1327 hwaddr base = base_mmio; 1328 int nr_pcie_buses; 1329 int irq = vms->irqmap[VIRT_PCIE]; 1330 MemoryRegion *mmio_alias; 1331 MemoryRegion *mmio_reg; 1332 MemoryRegion *ecam_alias; 1333 MemoryRegion *ecam_reg; 1334 DeviceState *dev; 1335 char *nodename; 1336 int i, ecam_id; 1337 PCIHostState *pci; 1338 MachineState *ms = MACHINE(vms); 1339 1340 dev = qdev_new(TYPE_GPEX_HOST); 1341 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1342 1343 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1344 base_ecam = vms->memmap[ecam_id].base; 1345 size_ecam = vms->memmap[ecam_id].size; 1346 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1347 /* Map only the first size_ecam bytes of ECAM space */ 1348 ecam_alias = g_new0(MemoryRegion, 1); 1349 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1350 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1351 ecam_reg, 0, size_ecam); 1352 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1353 1354 /* Map the MMIO window into system address space so as to expose 1355 * the section of PCI MMIO space which starts at the same base address 1356 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1357 * the window). 1358 */ 1359 mmio_alias = g_new0(MemoryRegion, 1); 1360 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1361 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1362 mmio_reg, base_mmio, size_mmio); 1363 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1364 1365 if (vms->highmem) { 1366 /* Map high MMIO space */ 1367 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1368 1369 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1370 mmio_reg, base_mmio_high, size_mmio_high); 1371 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1372 high_mmio_alias); 1373 } 1374 1375 /* Map IO port space */ 1376 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1377 1378 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1379 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1380 qdev_get_gpio_in(vms->gic, irq + i)); 1381 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1382 } 1383 1384 pci = PCI_HOST_BRIDGE(dev); 1385 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1386 vms->bus = pci->bus; 1387 if (vms->bus) { 1388 for (i = 0; i < nb_nics; i++) { 1389 NICInfo *nd = &nd_table[i]; 1390 1391 if (!nd->model) { 1392 nd->model = g_strdup("virtio"); 1393 } 1394 1395 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1396 } 1397 } 1398 1399 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1400 qemu_fdt_add_subnode(ms->fdt, nodename); 1401 qemu_fdt_setprop_string(ms->fdt, nodename, 1402 "compatible", "pci-host-ecam-generic"); 1403 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1404 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1405 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1406 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1407 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1408 nr_pcie_buses - 1); 1409 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1410 1411 if (vms->msi_phandle) { 1412 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent", 1413 vms->msi_phandle); 1414 } 1415 1416 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1417 2, base_ecam, 2, size_ecam); 1418 1419 if (vms->highmem) { 1420 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1421 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1422 2, base_pio, 2, size_pio, 1423 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1424 2, base_mmio, 2, size_mmio, 1425 1, FDT_PCI_RANGE_MMIO_64BIT, 1426 2, base_mmio_high, 1427 2, base_mmio_high, 2, size_mmio_high); 1428 } else { 1429 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1430 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1431 2, base_pio, 2, size_pio, 1432 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1433 2, base_mmio, 2, size_mmio); 1434 } 1435 1436 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1437 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1438 1439 if (vms->iommu) { 1440 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1441 1442 switch (vms->iommu) { 1443 case VIRT_IOMMU_SMMUV3: 1444 create_smmu(vms, vms->bus); 1445 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1446 0x0, vms->iommu_phandle, 0x0, 0x10000); 1447 break; 1448 default: 1449 g_assert_not_reached(); 1450 } 1451 } 1452 } 1453 1454 static void create_platform_bus(VirtMachineState *vms) 1455 { 1456 DeviceState *dev; 1457 SysBusDevice *s; 1458 int i; 1459 MemoryRegion *sysmem = get_system_memory(); 1460 1461 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1462 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1463 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1464 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1465 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1466 vms->platform_bus_dev = dev; 1467 1468 s = SYS_BUS_DEVICE(dev); 1469 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1470 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1471 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1472 } 1473 1474 memory_region_add_subregion(sysmem, 1475 vms->memmap[VIRT_PLATFORM_BUS].base, 1476 sysbus_mmio_get_region(s, 0)); 1477 } 1478 1479 static void create_tag_ram(MemoryRegion *tag_sysmem, 1480 hwaddr base, hwaddr size, 1481 const char *name) 1482 { 1483 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1484 1485 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1486 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1487 } 1488 1489 static void create_secure_ram(VirtMachineState *vms, 1490 MemoryRegion *secure_sysmem, 1491 MemoryRegion *secure_tag_sysmem) 1492 { 1493 MemoryRegion *secram = g_new(MemoryRegion, 1); 1494 char *nodename; 1495 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1496 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1497 MachineState *ms = MACHINE(vms); 1498 1499 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1500 &error_fatal); 1501 memory_region_add_subregion(secure_sysmem, base, secram); 1502 1503 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1504 qemu_fdt_add_subnode(ms->fdt, nodename); 1505 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1506 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1507 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1508 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1509 1510 if (secure_tag_sysmem) { 1511 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1512 } 1513 1514 g_free(nodename); 1515 } 1516 1517 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1518 { 1519 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1520 bootinfo); 1521 MachineState *ms = MACHINE(board); 1522 1523 1524 *fdt_size = board->fdt_size; 1525 return ms->fdt; 1526 } 1527 1528 static void virt_build_smbios(VirtMachineState *vms) 1529 { 1530 MachineClass *mc = MACHINE_GET_CLASS(vms); 1531 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1532 uint8_t *smbios_tables, *smbios_anchor; 1533 size_t smbios_tables_len, smbios_anchor_len; 1534 const char *product = "QEMU Virtual Machine"; 1535 1536 if (kvm_enabled()) { 1537 product = "KVM Virtual Machine"; 1538 } 1539 1540 smbios_set_defaults("QEMU", product, 1541 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1542 true, SMBIOS_ENTRY_POINT_30); 1543 1544 smbios_get_tables(MACHINE(vms), NULL, 0, 1545 &smbios_tables, &smbios_tables_len, 1546 &smbios_anchor, &smbios_anchor_len, 1547 &error_fatal); 1548 1549 if (smbios_anchor) { 1550 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1551 smbios_tables, smbios_tables_len); 1552 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1553 smbios_anchor, smbios_anchor_len); 1554 } 1555 } 1556 1557 static 1558 void virt_machine_done(Notifier *notifier, void *data) 1559 { 1560 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1561 machine_done); 1562 MachineState *ms = MACHINE(vms); 1563 ARMCPU *cpu = ARM_CPU(first_cpu); 1564 struct arm_boot_info *info = &vms->bootinfo; 1565 AddressSpace *as = arm_boot_address_space(cpu, info); 1566 1567 /* 1568 * If the user provided a dtb, we assume the dynamic sysbus nodes 1569 * already are integrated there. This corresponds to a use case where 1570 * the dynamic sysbus nodes are complex and their generation is not yet 1571 * supported. In that case the user can take charge of the guest dt 1572 * while qemu takes charge of the qom stuff. 1573 */ 1574 if (info->dtb_filename == NULL) { 1575 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1576 vms->memmap[VIRT_PLATFORM_BUS].base, 1577 vms->memmap[VIRT_PLATFORM_BUS].size, 1578 vms->irqmap[VIRT_PLATFORM_BUS]); 1579 } 1580 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1581 exit(1); 1582 } 1583 1584 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1585 1586 virt_acpi_setup(vms); 1587 virt_build_smbios(vms); 1588 } 1589 1590 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1591 { 1592 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1593 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1594 1595 if (!vmc->disallow_affinity_adjustment) { 1596 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1597 * GIC's target-list limitations. 32-bit KVM hosts currently 1598 * always create clusters of 4 CPUs, but that is expected to 1599 * change when they gain support for gicv3. When KVM is enabled 1600 * it will override the changes we make here, therefore our 1601 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1602 * and to improve SGI efficiency. 1603 */ 1604 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1605 clustersz = GICV3_TARGETLIST_BITS; 1606 } else { 1607 clustersz = GIC_TARGETLIST_BITS; 1608 } 1609 } 1610 return arm_cpu_mp_affinity(idx, clustersz); 1611 } 1612 1613 static void virt_set_memmap(VirtMachineState *vms) 1614 { 1615 MachineState *ms = MACHINE(vms); 1616 hwaddr base, device_memory_base, device_memory_size; 1617 int i; 1618 1619 vms->memmap = extended_memmap; 1620 1621 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1622 vms->memmap[i] = base_memmap[i]; 1623 } 1624 1625 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1626 error_report("unsupported number of memory slots: %"PRIu64, 1627 ms->ram_slots); 1628 exit(EXIT_FAILURE); 1629 } 1630 1631 /* 1632 * We compute the base of the high IO region depending on the 1633 * amount of initial and device memory. The device memory start/size 1634 * is aligned on 1GiB. We never put the high IO region below 256GiB 1635 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1636 * The device region size assumes 1GiB page max alignment per slot. 1637 */ 1638 device_memory_base = 1639 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1640 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1641 1642 /* Base address of the high IO region */ 1643 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1644 if (base < device_memory_base) { 1645 error_report("maxmem/slots too huge"); 1646 exit(EXIT_FAILURE); 1647 } 1648 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1649 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1650 } 1651 1652 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1653 hwaddr size = extended_memmap[i].size; 1654 1655 base = ROUND_UP(base, size); 1656 vms->memmap[i].base = base; 1657 vms->memmap[i].size = size; 1658 base += size; 1659 } 1660 vms->highest_gpa = base - 1; 1661 if (device_memory_size > 0) { 1662 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1663 ms->device_memory->base = device_memory_base; 1664 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1665 "device-memory", device_memory_size); 1666 } 1667 } 1668 1669 /* 1670 * finalize_gic_version - Determines the final gic_version 1671 * according to the gic-version property 1672 * 1673 * Default GIC type is v2 1674 */ 1675 static void finalize_gic_version(VirtMachineState *vms) 1676 { 1677 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1678 1679 if (kvm_enabled()) { 1680 int probe_bitmap; 1681 1682 if (!kvm_irqchip_in_kernel()) { 1683 switch (vms->gic_version) { 1684 case VIRT_GIC_VERSION_HOST: 1685 warn_report( 1686 "gic-version=host not relevant with kernel-irqchip=off " 1687 "as only userspace GICv2 is supported. Using v2 ..."); 1688 return; 1689 case VIRT_GIC_VERSION_MAX: 1690 case VIRT_GIC_VERSION_NOSEL: 1691 vms->gic_version = VIRT_GIC_VERSION_2; 1692 return; 1693 case VIRT_GIC_VERSION_2: 1694 return; 1695 case VIRT_GIC_VERSION_3: 1696 error_report( 1697 "gic-version=3 is not supported with kernel-irqchip=off"); 1698 exit(1); 1699 } 1700 } 1701 1702 probe_bitmap = kvm_arm_vgic_probe(); 1703 if (!probe_bitmap) { 1704 error_report("Unable to determine GIC version supported by host"); 1705 exit(1); 1706 } 1707 1708 switch (vms->gic_version) { 1709 case VIRT_GIC_VERSION_HOST: 1710 case VIRT_GIC_VERSION_MAX: 1711 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1712 vms->gic_version = VIRT_GIC_VERSION_3; 1713 } else { 1714 vms->gic_version = VIRT_GIC_VERSION_2; 1715 } 1716 return; 1717 case VIRT_GIC_VERSION_NOSEL: 1718 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) { 1719 vms->gic_version = VIRT_GIC_VERSION_2; 1720 } else if (probe_bitmap & KVM_ARM_VGIC_V3) { 1721 /* 1722 * in case the host does not support v2 in-kernel emulation or 1723 * the end-user requested more than 8 VCPUs we now default 1724 * to v3. In any case defaulting to v2 would be broken. 1725 */ 1726 vms->gic_version = VIRT_GIC_VERSION_3; 1727 } else if (max_cpus > GIC_NCPU) { 1728 error_report("host only supports in-kernel GICv2 emulation " 1729 "but more than 8 vcpus are requested"); 1730 exit(1); 1731 } 1732 break; 1733 case VIRT_GIC_VERSION_2: 1734 case VIRT_GIC_VERSION_3: 1735 break; 1736 } 1737 1738 /* Check chosen version is effectively supported by the host */ 1739 if (vms->gic_version == VIRT_GIC_VERSION_2 && 1740 !(probe_bitmap & KVM_ARM_VGIC_V2)) { 1741 error_report("host does not support in-kernel GICv2 emulation"); 1742 exit(1); 1743 } else if (vms->gic_version == VIRT_GIC_VERSION_3 && 1744 !(probe_bitmap & KVM_ARM_VGIC_V3)) { 1745 error_report("host does not support in-kernel GICv3 emulation"); 1746 exit(1); 1747 } 1748 return; 1749 } 1750 1751 /* TCG mode */ 1752 switch (vms->gic_version) { 1753 case VIRT_GIC_VERSION_NOSEL: 1754 vms->gic_version = VIRT_GIC_VERSION_2; 1755 break; 1756 case VIRT_GIC_VERSION_MAX: 1757 vms->gic_version = VIRT_GIC_VERSION_3; 1758 break; 1759 case VIRT_GIC_VERSION_HOST: 1760 error_report("gic-version=host requires KVM"); 1761 exit(1); 1762 case VIRT_GIC_VERSION_2: 1763 case VIRT_GIC_VERSION_3: 1764 break; 1765 } 1766 } 1767 1768 /* 1769 * virt_cpu_post_init() must be called after the CPUs have 1770 * been realized and the GIC has been created. 1771 */ 1772 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 1773 { 1774 int max_cpus = MACHINE(vms)->smp.max_cpus; 1775 bool aarch64, pmu, steal_time; 1776 CPUState *cpu; 1777 1778 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 1779 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 1780 steal_time = object_property_get_bool(OBJECT(first_cpu), 1781 "kvm-steal-time", NULL); 1782 1783 if (kvm_enabled()) { 1784 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 1785 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 1786 1787 if (steal_time) { 1788 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 1789 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 1790 1791 /* The memory region size must be a multiple of host page size. */ 1792 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 1793 1794 if (pvtime_size > pvtime_reg_size) { 1795 error_report("pvtime requires a %" HWADDR_PRId 1796 " byte memory region for %d CPUs," 1797 " but only %" HWADDR_PRId " has been reserved", 1798 pvtime_size, max_cpus, pvtime_reg_size); 1799 exit(1); 1800 } 1801 1802 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 1803 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 1804 } 1805 1806 CPU_FOREACH(cpu) { 1807 if (pmu) { 1808 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 1809 if (kvm_irqchip_in_kernel()) { 1810 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 1811 } 1812 kvm_arm_pmu_init(cpu); 1813 } 1814 if (steal_time) { 1815 kvm_arm_pvtime_init(cpu, pvtime_reg_base + 1816 cpu->cpu_index * PVTIME_SIZE_PER_CPU); 1817 } 1818 } 1819 } else { 1820 if (aarch64 && vms->highmem) { 1821 int requested_pa_size = 64 - clz64(vms->highest_gpa); 1822 int pamax = arm_pamax(ARM_CPU(first_cpu)); 1823 1824 if (pamax < requested_pa_size) { 1825 error_report("VCPU supports less PA bits (%d) than " 1826 "requested by the memory map (%d)", 1827 pamax, requested_pa_size); 1828 exit(1); 1829 } 1830 } 1831 } 1832 } 1833 1834 static void machvirt_init(MachineState *machine) 1835 { 1836 VirtMachineState *vms = VIRT_MACHINE(machine); 1837 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1838 MachineClass *mc = MACHINE_GET_CLASS(machine); 1839 const CPUArchIdList *possible_cpus; 1840 MemoryRegion *sysmem = get_system_memory(); 1841 MemoryRegion *secure_sysmem = NULL; 1842 MemoryRegion *tag_sysmem = NULL; 1843 MemoryRegion *secure_tag_sysmem = NULL; 1844 int n, virt_max_cpus; 1845 bool firmware_loaded; 1846 bool aarch64 = true; 1847 bool has_ged = !vmc->no_ged; 1848 unsigned int smp_cpus = machine->smp.cpus; 1849 unsigned int max_cpus = machine->smp.max_cpus; 1850 1851 /* 1852 * In accelerated mode, the memory map is computed earlier in kvm_type() 1853 * to create a VM with the right number of IPA bits. 1854 */ 1855 if (!vms->memmap) { 1856 virt_set_memmap(vms); 1857 } 1858 1859 /* We can probe only here because during property set 1860 * KVM is not available yet 1861 */ 1862 finalize_gic_version(vms); 1863 1864 if (!cpu_type_valid(machine->cpu_type)) { 1865 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1866 exit(1); 1867 } 1868 1869 if (vms->secure) { 1870 /* 1871 * The Secure view of the world is the same as the NonSecure, 1872 * but with a few extra devices. Create it as a container region 1873 * containing the system memory at low priority; any secure-only 1874 * devices go in at higher priority and take precedence. 1875 */ 1876 secure_sysmem = g_new(MemoryRegion, 1); 1877 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1878 UINT64_MAX); 1879 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1880 } 1881 1882 firmware_loaded = virt_firmware_init(vms, sysmem, 1883 secure_sysmem ?: sysmem); 1884 1885 /* If we have an EL3 boot ROM then the assumption is that it will 1886 * implement PSCI itself, so disable QEMU's internal implementation 1887 * so it doesn't get in the way. Instead of starting secondary 1888 * CPUs in PSCI powerdown state we will start them all running and 1889 * let the boot ROM sort them out. 1890 * The usual case is that we do use QEMU's PSCI implementation; 1891 * if the guest has EL2 then we will use SMC as the conduit, 1892 * and otherwise we will use HVC (for backwards compatibility and 1893 * because if we're using KVM then we must use HVC). 1894 */ 1895 if (vms->secure && firmware_loaded) { 1896 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1897 } else if (vms->virt) { 1898 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1899 } else { 1900 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1901 } 1902 1903 /* The maximum number of CPUs depends on the GIC version, or on how 1904 * many redistributors we can fit into the memory map. 1905 */ 1906 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1907 virt_max_cpus = 1908 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1909 virt_max_cpus += 1910 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1911 } else { 1912 virt_max_cpus = GIC_NCPU; 1913 } 1914 1915 if (max_cpus > virt_max_cpus) { 1916 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1917 "supported by machine 'mach-virt' (%d)", 1918 max_cpus, virt_max_cpus); 1919 exit(1); 1920 } 1921 1922 if (vms->virt && kvm_enabled()) { 1923 error_report("mach-virt: KVM does not support providing " 1924 "Virtualization extensions to the guest CPU"); 1925 exit(1); 1926 } 1927 1928 if (vms->mte && kvm_enabled()) { 1929 error_report("mach-virt: KVM does not support providing " 1930 "MTE to the guest CPU"); 1931 exit(1); 1932 } 1933 1934 create_fdt(vms); 1935 1936 possible_cpus = mc->possible_cpu_arch_ids(machine); 1937 assert(possible_cpus->len == max_cpus); 1938 for (n = 0; n < possible_cpus->len; n++) { 1939 Object *cpuobj; 1940 CPUState *cs; 1941 1942 if (n >= smp_cpus) { 1943 break; 1944 } 1945 1946 cpuobj = object_new(possible_cpus->cpus[n].type); 1947 object_property_set_int(cpuobj, "mp-affinity", 1948 possible_cpus->cpus[n].arch_id, NULL); 1949 1950 cs = CPU(cpuobj); 1951 cs->cpu_index = n; 1952 1953 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1954 &error_fatal); 1955 1956 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1957 1958 if (!vms->secure) { 1959 object_property_set_bool(cpuobj, "has_el3", false, NULL); 1960 } 1961 1962 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 1963 object_property_set_bool(cpuobj, "has_el2", false, NULL); 1964 } 1965 1966 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1967 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit, 1968 NULL); 1969 1970 /* Secondary CPUs start in PSCI powered-down state */ 1971 if (n > 0) { 1972 object_property_set_bool(cpuobj, "start-powered-off", true, 1973 NULL); 1974 } 1975 } 1976 1977 if (vmc->kvm_no_adjvtime && 1978 object_property_find(cpuobj, "kvm-no-adjvtime")) { 1979 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 1980 } 1981 1982 if (vmc->no_kvm_steal_time && 1983 object_property_find(cpuobj, "kvm-steal-time")) { 1984 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 1985 } 1986 1987 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 1988 object_property_set_bool(cpuobj, "pmu", false, NULL); 1989 } 1990 1991 if (object_property_find(cpuobj, "reset-cbar")) { 1992 object_property_set_int(cpuobj, "reset-cbar", 1993 vms->memmap[VIRT_CPUPERIPHS].base, 1994 &error_abort); 1995 } 1996 1997 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 1998 &error_abort); 1999 if (vms->secure) { 2000 object_property_set_link(cpuobj, "secure-memory", 2001 OBJECT(secure_sysmem), &error_abort); 2002 } 2003 2004 if (vms->mte) { 2005 /* Create the memory region only once, but link to all cpus. */ 2006 if (!tag_sysmem) { 2007 /* 2008 * The property exists only if MemTag is supported. 2009 * If it is, we must allocate the ram to back that up. 2010 */ 2011 if (!object_property_find(cpuobj, "tag-memory")) { 2012 error_report("MTE requested, but not supported " 2013 "by the guest CPU"); 2014 exit(1); 2015 } 2016 2017 tag_sysmem = g_new(MemoryRegion, 1); 2018 memory_region_init(tag_sysmem, OBJECT(machine), 2019 "tag-memory", UINT64_MAX / 32); 2020 2021 if (vms->secure) { 2022 secure_tag_sysmem = g_new(MemoryRegion, 1); 2023 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2024 "secure-tag-memory", UINT64_MAX / 32); 2025 2026 /* As with ram, secure-tag takes precedence over tag. */ 2027 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2028 tag_sysmem, -1); 2029 } 2030 } 2031 2032 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2033 &error_abort); 2034 if (vms->secure) { 2035 object_property_set_link(cpuobj, "secure-tag-memory", 2036 OBJECT(secure_tag_sysmem), 2037 &error_abort); 2038 } 2039 } 2040 2041 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2042 object_unref(cpuobj); 2043 } 2044 fdt_add_timer_nodes(vms); 2045 fdt_add_cpu_nodes(vms); 2046 2047 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2048 machine->ram); 2049 if (machine->device_memory) { 2050 memory_region_add_subregion(sysmem, machine->device_memory->base, 2051 &machine->device_memory->mr); 2052 } 2053 2054 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2055 2056 create_gic(vms, sysmem); 2057 2058 virt_cpu_post_init(vms, sysmem); 2059 2060 fdt_add_pmu_nodes(vms); 2061 2062 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 2063 2064 if (vms->secure) { 2065 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2066 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 2067 } 2068 2069 if (tag_sysmem) { 2070 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2071 machine->ram_size, "mach-virt.tag"); 2072 } 2073 2074 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 2075 2076 create_rtc(vms); 2077 2078 create_pcie(vms); 2079 2080 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2081 vms->acpi_dev = create_acpi_ged(vms); 2082 } else { 2083 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2084 } 2085 2086 if (vms->secure && !vmc->no_secure_gpio) { 2087 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2088 } 2089 2090 /* connect powerdown request */ 2091 vms->powerdown_notifier.notify = virt_powerdown_req; 2092 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2093 2094 /* Create mmio transports, so the user can create virtio backends 2095 * (which will be automatically plugged in to the transports). If 2096 * no backend is created the transport will just sit harmlessly idle. 2097 */ 2098 create_virtio_devices(vms); 2099 2100 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2101 rom_set_fw(vms->fw_cfg); 2102 2103 create_platform_bus(vms); 2104 2105 if (machine->nvdimms_state->is_enabled) { 2106 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2107 .space_id = AML_AS_SYSTEM_MEMORY, 2108 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2109 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2110 }; 2111 2112 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2113 arm_virt_nvdimm_acpi_dsmio, 2114 vms->fw_cfg, OBJECT(vms)); 2115 } 2116 2117 vms->bootinfo.ram_size = machine->ram_size; 2118 vms->bootinfo.nb_cpus = smp_cpus; 2119 vms->bootinfo.board_id = -1; 2120 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2121 vms->bootinfo.get_dtb = machvirt_dtb; 2122 vms->bootinfo.skip_dtb_autoload = true; 2123 vms->bootinfo.firmware_loaded = firmware_loaded; 2124 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2125 2126 vms->machine_done.notify = virt_machine_done; 2127 qemu_add_machine_init_done_notifier(&vms->machine_done); 2128 } 2129 2130 static bool virt_get_secure(Object *obj, Error **errp) 2131 { 2132 VirtMachineState *vms = VIRT_MACHINE(obj); 2133 2134 return vms->secure; 2135 } 2136 2137 static void virt_set_secure(Object *obj, bool value, Error **errp) 2138 { 2139 VirtMachineState *vms = VIRT_MACHINE(obj); 2140 2141 vms->secure = value; 2142 } 2143 2144 static bool virt_get_virt(Object *obj, Error **errp) 2145 { 2146 VirtMachineState *vms = VIRT_MACHINE(obj); 2147 2148 return vms->virt; 2149 } 2150 2151 static void virt_set_virt(Object *obj, bool value, Error **errp) 2152 { 2153 VirtMachineState *vms = VIRT_MACHINE(obj); 2154 2155 vms->virt = value; 2156 } 2157 2158 static bool virt_get_highmem(Object *obj, Error **errp) 2159 { 2160 VirtMachineState *vms = VIRT_MACHINE(obj); 2161 2162 return vms->highmem; 2163 } 2164 2165 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2166 { 2167 VirtMachineState *vms = VIRT_MACHINE(obj); 2168 2169 vms->highmem = value; 2170 } 2171 2172 static bool virt_get_its(Object *obj, Error **errp) 2173 { 2174 VirtMachineState *vms = VIRT_MACHINE(obj); 2175 2176 return vms->its; 2177 } 2178 2179 static void virt_set_its(Object *obj, bool value, Error **errp) 2180 { 2181 VirtMachineState *vms = VIRT_MACHINE(obj); 2182 2183 vms->its = value; 2184 } 2185 2186 static char *virt_get_oem_id(Object *obj, Error **errp) 2187 { 2188 VirtMachineState *vms = VIRT_MACHINE(obj); 2189 2190 return g_strdup(vms->oem_id); 2191 } 2192 2193 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2194 { 2195 VirtMachineState *vms = VIRT_MACHINE(obj); 2196 size_t len = strlen(value); 2197 2198 if (len > 6) { 2199 error_setg(errp, 2200 "User specified oem-id value is bigger than 6 bytes in size"); 2201 return; 2202 } 2203 2204 strncpy(vms->oem_id, value, 6); 2205 } 2206 2207 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2208 { 2209 VirtMachineState *vms = VIRT_MACHINE(obj); 2210 2211 return g_strdup(vms->oem_table_id); 2212 } 2213 2214 static void virt_set_oem_table_id(Object *obj, const char *value, 2215 Error **errp) 2216 { 2217 VirtMachineState *vms = VIRT_MACHINE(obj); 2218 size_t len = strlen(value); 2219 2220 if (len > 8) { 2221 error_setg(errp, 2222 "User specified oem-table-id value is bigger than 8 bytes in size"); 2223 return; 2224 } 2225 strncpy(vms->oem_table_id, value, 8); 2226 } 2227 2228 2229 bool virt_is_acpi_enabled(VirtMachineState *vms) 2230 { 2231 if (vms->acpi == ON_OFF_AUTO_OFF) { 2232 return false; 2233 } 2234 return true; 2235 } 2236 2237 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2238 void *opaque, Error **errp) 2239 { 2240 VirtMachineState *vms = VIRT_MACHINE(obj); 2241 OnOffAuto acpi = vms->acpi; 2242 2243 visit_type_OnOffAuto(v, name, &acpi, errp); 2244 } 2245 2246 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2247 void *opaque, Error **errp) 2248 { 2249 VirtMachineState *vms = VIRT_MACHINE(obj); 2250 2251 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2252 } 2253 2254 static bool virt_get_ras(Object *obj, Error **errp) 2255 { 2256 VirtMachineState *vms = VIRT_MACHINE(obj); 2257 2258 return vms->ras; 2259 } 2260 2261 static void virt_set_ras(Object *obj, bool value, Error **errp) 2262 { 2263 VirtMachineState *vms = VIRT_MACHINE(obj); 2264 2265 vms->ras = value; 2266 } 2267 2268 static bool virt_get_mte(Object *obj, Error **errp) 2269 { 2270 VirtMachineState *vms = VIRT_MACHINE(obj); 2271 2272 return vms->mte; 2273 } 2274 2275 static void virt_set_mte(Object *obj, bool value, Error **errp) 2276 { 2277 VirtMachineState *vms = VIRT_MACHINE(obj); 2278 2279 vms->mte = value; 2280 } 2281 2282 static char *virt_get_gic_version(Object *obj, Error **errp) 2283 { 2284 VirtMachineState *vms = VIRT_MACHINE(obj); 2285 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2"; 2286 2287 return g_strdup(val); 2288 } 2289 2290 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2291 { 2292 VirtMachineState *vms = VIRT_MACHINE(obj); 2293 2294 if (!strcmp(value, "3")) { 2295 vms->gic_version = VIRT_GIC_VERSION_3; 2296 } else if (!strcmp(value, "2")) { 2297 vms->gic_version = VIRT_GIC_VERSION_2; 2298 } else if (!strcmp(value, "host")) { 2299 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2300 } else if (!strcmp(value, "max")) { 2301 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2302 } else { 2303 error_setg(errp, "Invalid gic-version value"); 2304 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2305 } 2306 } 2307 2308 static char *virt_get_iommu(Object *obj, Error **errp) 2309 { 2310 VirtMachineState *vms = VIRT_MACHINE(obj); 2311 2312 switch (vms->iommu) { 2313 case VIRT_IOMMU_NONE: 2314 return g_strdup("none"); 2315 case VIRT_IOMMU_SMMUV3: 2316 return g_strdup("smmuv3"); 2317 default: 2318 g_assert_not_reached(); 2319 } 2320 } 2321 2322 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2323 { 2324 VirtMachineState *vms = VIRT_MACHINE(obj); 2325 2326 if (!strcmp(value, "smmuv3")) { 2327 vms->iommu = VIRT_IOMMU_SMMUV3; 2328 } else if (!strcmp(value, "none")) { 2329 vms->iommu = VIRT_IOMMU_NONE; 2330 } else { 2331 error_setg(errp, "Invalid iommu value"); 2332 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2333 } 2334 } 2335 2336 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2337 { 2338 VirtMachineState *vms = VIRT_MACHINE(obj); 2339 2340 return vms->default_bus_bypass_iommu; 2341 } 2342 2343 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2344 Error **errp) 2345 { 2346 VirtMachineState *vms = VIRT_MACHINE(obj); 2347 2348 vms->default_bus_bypass_iommu = value; 2349 } 2350 2351 static CpuInstanceProperties 2352 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2353 { 2354 MachineClass *mc = MACHINE_GET_CLASS(ms); 2355 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2356 2357 assert(cpu_index < possible_cpus->len); 2358 return possible_cpus->cpus[cpu_index].props; 2359 } 2360 2361 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2362 { 2363 return idx % ms->numa_state->num_nodes; 2364 } 2365 2366 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2367 { 2368 int n; 2369 unsigned int max_cpus = ms->smp.max_cpus; 2370 VirtMachineState *vms = VIRT_MACHINE(ms); 2371 2372 if (ms->possible_cpus) { 2373 assert(ms->possible_cpus->len == max_cpus); 2374 return ms->possible_cpus; 2375 } 2376 2377 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2378 sizeof(CPUArchId) * max_cpus); 2379 ms->possible_cpus->len = max_cpus; 2380 for (n = 0; n < ms->possible_cpus->len; n++) { 2381 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2382 ms->possible_cpus->cpus[n].arch_id = 2383 virt_cpu_mp_affinity(vms, n); 2384 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2385 ms->possible_cpus->cpus[n].props.thread_id = n; 2386 } 2387 return ms->possible_cpus; 2388 } 2389 2390 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2391 Error **errp) 2392 { 2393 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2394 const MachineState *ms = MACHINE(hotplug_dev); 2395 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2396 2397 if (!vms->acpi_dev) { 2398 error_setg(errp, 2399 "memory hotplug is not enabled: missing acpi-ged device"); 2400 return; 2401 } 2402 2403 if (vms->mte) { 2404 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2405 return; 2406 } 2407 2408 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2409 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2410 return; 2411 } 2412 2413 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2414 } 2415 2416 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2417 DeviceState *dev, Error **errp) 2418 { 2419 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2420 MachineState *ms = MACHINE(hotplug_dev); 2421 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2422 2423 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2424 2425 if (is_nvdimm) { 2426 nvdimm_plug(ms->nvdimms_state); 2427 } 2428 2429 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2430 dev, &error_abort); 2431 } 2432 2433 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2434 DeviceState *dev, Error **errp) 2435 { 2436 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2437 2438 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2439 virt_memory_pre_plug(hotplug_dev, dev, errp); 2440 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2441 hwaddr db_start = 0, db_end = 0; 2442 char *resv_prop_str; 2443 2444 switch (vms->msi_controller) { 2445 case VIRT_MSI_CTRL_NONE: 2446 return; 2447 case VIRT_MSI_CTRL_ITS: 2448 /* GITS_TRANSLATER page */ 2449 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2450 db_end = base_memmap[VIRT_GIC_ITS].base + 2451 base_memmap[VIRT_GIC_ITS].size - 1; 2452 break; 2453 case VIRT_MSI_CTRL_GICV2M: 2454 /* MSI_SETSPI_NS page */ 2455 db_start = base_memmap[VIRT_GIC_V2M].base; 2456 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2457 break; 2458 } 2459 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2460 db_start, db_end, 2461 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2462 2463 qdev_prop_set_uint32(dev, "len-reserved-regions", 1); 2464 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str); 2465 g_free(resv_prop_str); 2466 } 2467 } 2468 2469 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2470 DeviceState *dev, Error **errp) 2471 { 2472 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2473 2474 if (vms->platform_bus_dev) { 2475 MachineClass *mc = MACHINE_GET_CLASS(vms); 2476 2477 if (device_is_dynamic_sysbus(mc, dev)) { 2478 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2479 SYS_BUS_DEVICE(dev)); 2480 } 2481 } 2482 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2483 virt_memory_plug(hotplug_dev, dev, errp); 2484 } 2485 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2486 PCIDevice *pdev = PCI_DEVICE(dev); 2487 2488 vms->iommu = VIRT_IOMMU_VIRTIO; 2489 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2490 create_virtio_iommu_dt_bindings(vms); 2491 } 2492 } 2493 2494 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2495 DeviceState *dev, Error **errp) 2496 { 2497 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2498 Error *local_err = NULL; 2499 2500 if (!vms->acpi_dev) { 2501 error_setg(&local_err, 2502 "memory hotplug is not enabled: missing acpi-ged device"); 2503 goto out; 2504 } 2505 2506 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2507 error_setg(&local_err, 2508 "nvdimm device hot unplug is not supported yet."); 2509 goto out; 2510 } 2511 2512 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2513 &local_err); 2514 out: 2515 error_propagate(errp, local_err); 2516 } 2517 2518 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2519 DeviceState *dev, Error **errp) 2520 { 2521 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2522 Error *local_err = NULL; 2523 2524 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2525 if (local_err) { 2526 goto out; 2527 } 2528 2529 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2530 qdev_unrealize(dev); 2531 2532 out: 2533 error_propagate(errp, local_err); 2534 } 2535 2536 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2537 DeviceState *dev, Error **errp) 2538 { 2539 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2540 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2541 } else { 2542 error_setg(errp, "device unplug request for unsupported device" 2543 " type: %s", object_get_typename(OBJECT(dev))); 2544 } 2545 } 2546 2547 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2548 DeviceState *dev, Error **errp) 2549 { 2550 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2551 virt_dimm_unplug(hotplug_dev, dev, errp); 2552 } else { 2553 error_setg(errp, "virt: device unplug for unsupported device" 2554 " type: %s", object_get_typename(OBJECT(dev))); 2555 } 2556 } 2557 2558 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2559 DeviceState *dev) 2560 { 2561 MachineClass *mc = MACHINE_GET_CLASS(machine); 2562 2563 if (device_is_dynamic_sysbus(mc, dev) || 2564 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { 2565 return HOTPLUG_HANDLER(machine); 2566 } 2567 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2568 VirtMachineState *vms = VIRT_MACHINE(machine); 2569 2570 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) { 2571 return HOTPLUG_HANDLER(machine); 2572 } 2573 } 2574 return NULL; 2575 } 2576 2577 /* 2578 * for arm64 kvm_type [7-0] encodes the requested number of bits 2579 * in the IPA address space 2580 */ 2581 static int virt_kvm_type(MachineState *ms, const char *type_str) 2582 { 2583 VirtMachineState *vms = VIRT_MACHINE(ms); 2584 int max_vm_pa_size, requested_pa_size; 2585 bool fixed_ipa; 2586 2587 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 2588 2589 /* we freeze the memory map to compute the highest gpa */ 2590 virt_set_memmap(vms); 2591 2592 requested_pa_size = 64 - clz64(vms->highest_gpa); 2593 2594 /* 2595 * KVM requires the IPA size to be at least 32 bits. 2596 */ 2597 if (requested_pa_size < 32) { 2598 requested_pa_size = 32; 2599 } 2600 2601 if (requested_pa_size > max_vm_pa_size) { 2602 error_report("-m and ,maxmem option values " 2603 "require an IPA range (%d bits) larger than " 2604 "the one supported by the host (%d bits)", 2605 requested_pa_size, max_vm_pa_size); 2606 exit(1); 2607 } 2608 /* 2609 * We return the requested PA log size, unless KVM only supports 2610 * the implicit legacy 40b IPA setting, in which case the kvm_type 2611 * must be 0. 2612 */ 2613 return fixed_ipa ? 0 : requested_pa_size; 2614 } 2615 2616 static void virt_machine_class_init(ObjectClass *oc, void *data) 2617 { 2618 MachineClass *mc = MACHINE_CLASS(oc); 2619 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2620 2621 mc->init = machvirt_init; 2622 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2623 * The value may be reduced later when we have more information about the 2624 * configuration of the particular instance. 2625 */ 2626 mc->max_cpus = 512; 2627 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2628 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2629 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2630 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2631 #ifdef CONFIG_TPM 2632 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2633 #endif 2634 mc->block_default_type = IF_VIRTIO; 2635 mc->no_cdrom = 1; 2636 mc->pci_allow_0_address = true; 2637 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2638 mc->minimum_page_bits = 12; 2639 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2640 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2641 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2642 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2643 mc->kvm_type = virt_kvm_type; 2644 assert(!mc->get_hotplug_handler); 2645 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2646 hc->pre_plug = virt_machine_device_pre_plug_cb; 2647 hc->plug = virt_machine_device_plug_cb; 2648 hc->unplug_request = virt_machine_device_unplug_request_cb; 2649 hc->unplug = virt_machine_device_unplug_cb; 2650 mc->nvdimm_supported = true; 2651 mc->auto_enable_numa_with_memhp = true; 2652 mc->auto_enable_numa_with_memdev = true; 2653 mc->default_ram_id = "mach-virt.ram"; 2654 2655 object_class_property_add(oc, "acpi", "OnOffAuto", 2656 virt_get_acpi, virt_set_acpi, 2657 NULL, NULL); 2658 object_class_property_set_description(oc, "acpi", 2659 "Enable ACPI"); 2660 object_class_property_add_bool(oc, "secure", virt_get_secure, 2661 virt_set_secure); 2662 object_class_property_set_description(oc, "secure", 2663 "Set on/off to enable/disable the ARM " 2664 "Security Extensions (TrustZone)"); 2665 2666 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 2667 virt_set_virt); 2668 object_class_property_set_description(oc, "virtualization", 2669 "Set on/off to enable/disable emulating a " 2670 "guest CPU which implements the ARM " 2671 "Virtualization Extensions"); 2672 2673 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 2674 virt_set_highmem); 2675 object_class_property_set_description(oc, "highmem", 2676 "Set on/off to enable/disable using " 2677 "physical address space above 32 bits"); 2678 2679 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 2680 virt_set_gic_version); 2681 object_class_property_set_description(oc, "gic-version", 2682 "Set GIC version. " 2683 "Valid values are 2, 3, host and max"); 2684 2685 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 2686 object_class_property_set_description(oc, "iommu", 2687 "Set the IOMMU type. " 2688 "Valid values are none and smmuv3"); 2689 2690 object_class_property_add_bool(oc, "default_bus_bypass_iommu", 2691 virt_get_default_bus_bypass_iommu, 2692 virt_set_default_bus_bypass_iommu); 2693 object_class_property_set_description(oc, "default_bus_bypass_iommu", 2694 "Set on/off to enable/disable " 2695 "bypass_iommu for default root bus"); 2696 2697 object_class_property_add_bool(oc, "ras", virt_get_ras, 2698 virt_set_ras); 2699 object_class_property_set_description(oc, "ras", 2700 "Set on/off to enable/disable reporting host memory errors " 2701 "to a KVM guest using ACPI and guest external abort exceptions"); 2702 2703 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 2704 object_class_property_set_description(oc, "mte", 2705 "Set on/off to enable/disable emulating a " 2706 "guest CPU which implements the ARM " 2707 "Memory Tagging Extension"); 2708 2709 object_class_property_add_bool(oc, "its", virt_get_its, 2710 virt_set_its); 2711 object_class_property_set_description(oc, "its", 2712 "Set on/off to enable/disable " 2713 "ITS instantiation"); 2714 2715 object_class_property_add_str(oc, "x-oem-id", 2716 virt_get_oem_id, 2717 virt_set_oem_id); 2718 object_class_property_set_description(oc, "x-oem-id", 2719 "Override the default value of field OEMID " 2720 "in ACPI table header." 2721 "The string may be up to 6 bytes in size"); 2722 2723 2724 object_class_property_add_str(oc, "x-oem-table-id", 2725 virt_get_oem_table_id, 2726 virt_set_oem_table_id); 2727 object_class_property_set_description(oc, "x-oem-table-id", 2728 "Override the default value of field OEM Table ID " 2729 "in ACPI table header." 2730 "The string may be up to 8 bytes in size"); 2731 2732 } 2733 2734 static void virt_instance_init(Object *obj) 2735 { 2736 VirtMachineState *vms = VIRT_MACHINE(obj); 2737 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 2738 2739 /* EL3 is disabled by default on virt: this makes us consistent 2740 * between KVM and TCG for this board, and it also allows us to 2741 * boot UEFI blobs which assume no TrustZone support. 2742 */ 2743 vms->secure = false; 2744 2745 /* EL2 is also disabled by default, for similar reasons */ 2746 vms->virt = false; 2747 2748 /* High memory is enabled by default */ 2749 vms->highmem = true; 2750 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 2751 2752 vms->highmem_ecam = !vmc->no_highmem_ecam; 2753 2754 if (vmc->no_its) { 2755 vms->its = false; 2756 } else { 2757 /* Default allows ITS instantiation */ 2758 vms->its = true; 2759 2760 if (vmc->no_tcg_its) { 2761 vms->tcg_its = false; 2762 } else { 2763 vms->tcg_its = true; 2764 } 2765 } 2766 2767 /* Default disallows iommu instantiation */ 2768 vms->iommu = VIRT_IOMMU_NONE; 2769 2770 /* The default root bus is attached to iommu by default */ 2771 vms->default_bus_bypass_iommu = false; 2772 2773 /* Default disallows RAS instantiation */ 2774 vms->ras = false; 2775 2776 /* MTE is disabled by default. */ 2777 vms->mte = false; 2778 2779 vms->irqmap = a15irqmap; 2780 2781 virt_flash_create(vms); 2782 2783 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 2784 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 2785 } 2786 2787 static const TypeInfo virt_machine_info = { 2788 .name = TYPE_VIRT_MACHINE, 2789 .parent = TYPE_MACHINE, 2790 .abstract = true, 2791 .instance_size = sizeof(VirtMachineState), 2792 .class_size = sizeof(VirtMachineClass), 2793 .class_init = virt_machine_class_init, 2794 .instance_init = virt_instance_init, 2795 .interfaces = (InterfaceInfo[]) { 2796 { TYPE_HOTPLUG_HANDLER }, 2797 { } 2798 }, 2799 }; 2800 2801 static void machvirt_machine_init(void) 2802 { 2803 type_register_static(&virt_machine_info); 2804 } 2805 type_init(machvirt_machine_init); 2806 2807 static void virt_machine_6_2_options(MachineClass *mc) 2808 { 2809 } 2810 DEFINE_VIRT_MACHINE_AS_LATEST(6, 2) 2811 2812 static void virt_machine_6_1_options(MachineClass *mc) 2813 { 2814 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2815 2816 virt_machine_6_2_options(mc); 2817 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 2818 mc->smp_props.prefer_sockets = true; 2819 2820 /* qemu ITS was introduced with 6.2 */ 2821 vmc->no_tcg_its = true; 2822 } 2823 DEFINE_VIRT_MACHINE(6, 1) 2824 2825 static void virt_machine_6_0_options(MachineClass *mc) 2826 { 2827 virt_machine_6_1_options(mc); 2828 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 2829 } 2830 DEFINE_VIRT_MACHINE(6, 0) 2831 2832 static void virt_machine_5_2_options(MachineClass *mc) 2833 { 2834 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2835 2836 virt_machine_6_0_options(mc); 2837 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 2838 vmc->no_secure_gpio = true; 2839 } 2840 DEFINE_VIRT_MACHINE(5, 2) 2841 2842 static void virt_machine_5_1_options(MachineClass *mc) 2843 { 2844 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2845 2846 virt_machine_5_2_options(mc); 2847 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 2848 vmc->no_kvm_steal_time = true; 2849 } 2850 DEFINE_VIRT_MACHINE(5, 1) 2851 2852 static void virt_machine_5_0_options(MachineClass *mc) 2853 { 2854 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2855 2856 virt_machine_5_1_options(mc); 2857 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 2858 mc->numa_mem_supported = true; 2859 vmc->acpi_expose_flash = true; 2860 mc->auto_enable_numa_with_memdev = false; 2861 } 2862 DEFINE_VIRT_MACHINE(5, 0) 2863 2864 static void virt_machine_4_2_options(MachineClass *mc) 2865 { 2866 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2867 2868 virt_machine_5_0_options(mc); 2869 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 2870 vmc->kvm_no_adjvtime = true; 2871 } 2872 DEFINE_VIRT_MACHINE(4, 2) 2873 2874 static void virt_machine_4_1_options(MachineClass *mc) 2875 { 2876 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2877 2878 virt_machine_4_2_options(mc); 2879 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2880 vmc->no_ged = true; 2881 mc->auto_enable_numa_with_memhp = false; 2882 } 2883 DEFINE_VIRT_MACHINE(4, 1) 2884 2885 static void virt_machine_4_0_options(MachineClass *mc) 2886 { 2887 virt_machine_4_1_options(mc); 2888 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2889 } 2890 DEFINE_VIRT_MACHINE(4, 0) 2891 2892 static void virt_machine_3_1_options(MachineClass *mc) 2893 { 2894 virt_machine_4_0_options(mc); 2895 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2896 } 2897 DEFINE_VIRT_MACHINE(3, 1) 2898 2899 static void virt_machine_3_0_options(MachineClass *mc) 2900 { 2901 virt_machine_3_1_options(mc); 2902 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2903 } 2904 DEFINE_VIRT_MACHINE(3, 0) 2905 2906 static void virt_machine_2_12_options(MachineClass *mc) 2907 { 2908 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2909 2910 virt_machine_3_0_options(mc); 2911 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2912 vmc->no_highmem_ecam = true; 2913 mc->max_cpus = 255; 2914 } 2915 DEFINE_VIRT_MACHINE(2, 12) 2916 2917 static void virt_machine_2_11_options(MachineClass *mc) 2918 { 2919 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2920 2921 virt_machine_2_12_options(mc); 2922 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2923 vmc->smbios_old_sys_ver = true; 2924 } 2925 DEFINE_VIRT_MACHINE(2, 11) 2926 2927 static void virt_machine_2_10_options(MachineClass *mc) 2928 { 2929 virt_machine_2_11_options(mc); 2930 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2931 /* before 2.11 we never faulted accesses to bad addresses */ 2932 mc->ignore_memory_transaction_failures = true; 2933 } 2934 DEFINE_VIRT_MACHINE(2, 10) 2935 2936 static void virt_machine_2_9_options(MachineClass *mc) 2937 { 2938 virt_machine_2_10_options(mc); 2939 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2940 } 2941 DEFINE_VIRT_MACHINE(2, 9) 2942 2943 static void virt_machine_2_8_options(MachineClass *mc) 2944 { 2945 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2946 2947 virt_machine_2_9_options(mc); 2948 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2949 /* For 2.8 and earlier we falsely claimed in the DT that 2950 * our timers were edge-triggered, not level-triggered. 2951 */ 2952 vmc->claim_edge_triggered_timers = true; 2953 } 2954 DEFINE_VIRT_MACHINE(2, 8) 2955 2956 static void virt_machine_2_7_options(MachineClass *mc) 2957 { 2958 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2959 2960 virt_machine_2_8_options(mc); 2961 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2962 /* ITS was introduced with 2.8 */ 2963 vmc->no_its = true; 2964 /* Stick with 1K pages for migration compatibility */ 2965 mc->minimum_page_bits = 0; 2966 } 2967 DEFINE_VIRT_MACHINE(2, 7) 2968 2969 static void virt_machine_2_6_options(MachineClass *mc) 2970 { 2971 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2972 2973 virt_machine_2_7_options(mc); 2974 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2975 vmc->disallow_affinity_adjustment = true; 2976 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2977 vmc->no_pmu = true; 2978 } 2979 DEFINE_VIRT_MACHINE(2, 6) 2980