xref: /openbmc/qemu/hw/arm/virt.c (revision cd4eb4c5)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/kvm.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "qemu/bitops.h"
42 #include "qemu/error-report.h"
43 
44 #define NUM_VIRTIO_TRANSPORTS 32
45 
46 /* Number of external interrupt lines to configure the GIC with */
47 #define NUM_IRQS 128
48 
49 #define GIC_FDT_IRQ_TYPE_SPI 0
50 #define GIC_FDT_IRQ_TYPE_PPI 1
51 
52 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
53 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
54 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
55 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
56 
57 #define GIC_FDT_IRQ_PPI_CPU_START 8
58 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
59 
60 enum {
61     VIRT_FLASH,
62     VIRT_MEM,
63     VIRT_CPUPERIPHS,
64     VIRT_GIC_DIST,
65     VIRT_GIC_CPU,
66     VIRT_UART,
67     VIRT_MMIO,
68 };
69 
70 typedef struct MemMapEntry {
71     hwaddr base;
72     hwaddr size;
73 } MemMapEntry;
74 
75 typedef struct VirtBoardInfo {
76     struct arm_boot_info bootinfo;
77     const char *cpu_model;
78     const char *qdevname;
79     const char *gic_compatible;
80     const MemMapEntry *memmap;
81     const int *irqmap;
82     int smp_cpus;
83     void *fdt;
84     int fdt_size;
85     uint32_t clock_phandle;
86 } VirtBoardInfo;
87 
88 /* Addresses and sizes of our components.
89  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
90  * 128MB..256MB is used for miscellaneous device I/O.
91  * 256MB..1GB is reserved for possible future PCI support (ie where the
92  * PCI memory window will go if we add a PCI host controller).
93  * 1GB and up is RAM (which may happily spill over into the
94  * high memory region beyond 4GB).
95  * This represents a compromise between how much RAM can be given to
96  * a 32 bit VM and leaving space for expansion and in particular for PCI.
97  */
98 static const MemMapEntry a15memmap[] = {
99     /* Space up to 0x8000000 is reserved for a boot ROM */
100     [VIRT_FLASH] = { 0, 0x8000000 },
101     [VIRT_CPUPERIPHS] = { 0x8000000, 0x8000 },
102     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
103     [VIRT_GIC_DIST] = { 0x8001000, 0x1000 },
104     [VIRT_GIC_CPU] = { 0x8002000, 0x1000 },
105     [VIRT_UART] = { 0x9000000, 0x1000 },
106     [VIRT_MMIO] = { 0xa000000, 0x200 },
107     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
108     /* 0x10000000 .. 0x40000000 reserved for PCI */
109     [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
110 };
111 
112 static const int a15irqmap[] = {
113     [VIRT_UART] = 1,
114     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
115 };
116 
117 static VirtBoardInfo machines[] = {
118     {
119         .cpu_model = "cortex-a15",
120         .qdevname = "a15mpcore_priv",
121         .gic_compatible = "arm,cortex-a15-gic",
122         .memmap = a15memmap,
123         .irqmap = a15irqmap,
124     },
125     {
126         .cpu_model = "host",
127         /* We use the A15 private peripheral model to get a V2 GIC */
128         .qdevname = "a15mpcore_priv",
129         .gic_compatible = "arm,cortex-a15-gic",
130         .memmap = a15memmap,
131         .irqmap = a15irqmap,
132     },
133 };
134 
135 static VirtBoardInfo *find_machine_info(const char *cpu)
136 {
137     int i;
138 
139     for (i = 0; i < ARRAY_SIZE(machines); i++) {
140         if (strcmp(cpu, machines[i].cpu_model) == 0) {
141             return &machines[i];
142         }
143     }
144     return NULL;
145 }
146 
147 static void create_fdt(VirtBoardInfo *vbi)
148 {
149     void *fdt = create_device_tree(&vbi->fdt_size);
150 
151     if (!fdt) {
152         error_report("create_device_tree() failed");
153         exit(1);
154     }
155 
156     vbi->fdt = fdt;
157 
158     /* Header */
159     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
160     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
161     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
162 
163     /*
164      * /chosen and /memory nodes must exist for load_dtb
165      * to fill in necessary properties later
166      */
167     qemu_fdt_add_subnode(fdt, "/chosen");
168     qemu_fdt_add_subnode(fdt, "/memory");
169     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
170 
171     /* Clock node, for the benefit of the UART. The kernel device tree
172      * binding documentation claims the PL011 node clock properties are
173      * optional but in practice if you omit them the kernel refuses to
174      * probe for the device.
175      */
176     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
177     qemu_fdt_add_subnode(fdt, "/apb-pclk");
178     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
179     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
180     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
181     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
182                                 "clk24mhz");
183     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
184 
185     /* No PSCI for TCG yet */
186     if (kvm_enabled()) {
187         qemu_fdt_add_subnode(fdt, "/psci");
188         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
189         qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
190         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend",
191                                   PSCI_FN_CPU_SUSPEND);
192         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF);
193         qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON);
194         qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE);
195     }
196 }
197 
198 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
199 {
200     /* Note that on A15 h/w these interrupts are level-triggered,
201      * but for the GIC implementation provided by both QEMU and KVM
202      * they are edge-triggered.
203      */
204     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
205 
206     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
207                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
208 
209     qemu_fdt_add_subnode(vbi->fdt, "/timer");
210     qemu_fdt_setprop_string(vbi->fdt, "/timer",
211                                 "compatible", "arm,armv7-timer");
212     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
213                                GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
214                                GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
215                                GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
216                                GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
217 }
218 
219 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
220 {
221     int cpu;
222 
223     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
224     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
225     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
226 
227     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
228         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
229         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
230 
231         qemu_fdt_add_subnode(vbi->fdt, nodename);
232         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
233         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
234                                     armcpu->dtb_compatible);
235 
236         if (vbi->smp_cpus > 1) {
237             qemu_fdt_setprop_string(vbi->fdt, nodename,
238                                         "enable-method", "psci");
239         }
240 
241         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
242         g_free(nodename);
243     }
244 }
245 
246 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
247 {
248     uint32_t gic_phandle;
249 
250     gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
251     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
252 
253     qemu_fdt_add_subnode(vbi->fdt, "/intc");
254     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
255                                 vbi->gic_compatible);
256     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
257     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
258     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
259                                      2, vbi->memmap[VIRT_GIC_DIST].base,
260                                      2, vbi->memmap[VIRT_GIC_DIST].size,
261                                      2, vbi->memmap[VIRT_GIC_CPU].base,
262                                      2, vbi->memmap[VIRT_GIC_CPU].size);
263     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
264 }
265 
266 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
267 {
268     char *nodename;
269     hwaddr base = vbi->memmap[VIRT_UART].base;
270     hwaddr size = vbi->memmap[VIRT_UART].size;
271     int irq = vbi->irqmap[VIRT_UART];
272     const char compat[] = "arm,pl011\0arm,primecell";
273     const char clocknames[] = "uartclk\0apb_pclk";
274 
275     sysbus_create_simple("pl011", base, pic[irq]);
276 
277     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
278     qemu_fdt_add_subnode(vbi->fdt, nodename);
279     /* Note that we can't use setprop_string because of the embedded NUL */
280     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
281                          compat, sizeof(compat));
282     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
283                                      2, base, 2, size);
284     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
285                                GIC_FDT_IRQ_TYPE_SPI, irq,
286                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
287     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
288                                vbi->clock_phandle, vbi->clock_phandle);
289     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
290                          clocknames, sizeof(clocknames));
291     g_free(nodename);
292 }
293 
294 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
295 {
296     int i;
297     hwaddr size = vbi->memmap[VIRT_MMIO].size;
298 
299     /* Note that we have to create the transports in forwards order
300      * so that command line devices are inserted lowest address first,
301      * and then add dtb nodes in reverse order so that they appear in
302      * the finished device tree lowest address first.
303      */
304     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
305         int irq = vbi->irqmap[VIRT_MMIO] + i;
306         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
307 
308         sysbus_create_simple("virtio-mmio", base, pic[irq]);
309     }
310 
311     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
312         char *nodename;
313         int irq = vbi->irqmap[VIRT_MMIO] + i;
314         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
315 
316         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
317         qemu_fdt_add_subnode(vbi->fdt, nodename);
318         qemu_fdt_setprop_string(vbi->fdt, nodename,
319                                 "compatible", "virtio,mmio");
320         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
321                                      2, base, 2, size);
322         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
323                                GIC_FDT_IRQ_TYPE_SPI, irq,
324                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
325         g_free(nodename);
326     }
327 }
328 
329 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
330 {
331     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
332 
333     *fdt_size = board->fdt_size;
334     return board->fdt;
335 }
336 
337 static void machvirt_init(QEMUMachineInitArgs *args)
338 {
339     qemu_irq pic[NUM_IRQS];
340     MemoryRegion *sysmem = get_system_memory();
341     int n;
342     MemoryRegion *ram = g_new(MemoryRegion, 1);
343     DeviceState *dev;
344     SysBusDevice *busdev;
345     const char *cpu_model = args->cpu_model;
346     VirtBoardInfo *vbi;
347 
348     if (!cpu_model) {
349         cpu_model = "cortex-a15";
350     }
351 
352     vbi = find_machine_info(cpu_model);
353 
354     if (!vbi) {
355         error_report("mach-virt: CPU %s not supported", cpu_model);
356         exit(1);
357     }
358 
359     vbi->smp_cpus = smp_cpus;
360 
361     /*
362      * Only supported method of starting secondary CPUs is PSCI and
363      * PSCI is not yet supported with TCG, so limit smp_cpus to 1
364      * if we're not using KVM.
365      */
366     if (!kvm_enabled() && smp_cpus > 1) {
367         error_report("mach-virt: must enable KVM to use multiple CPUs");
368         exit(1);
369     }
370 
371     if (args->ram_size > vbi->memmap[VIRT_MEM].size) {
372         error_report("mach-virt: cannot model more than 30GB RAM");
373         exit(1);
374     }
375 
376     create_fdt(vbi);
377     fdt_add_timer_nodes(vbi);
378 
379     for (n = 0; n < smp_cpus; n++) {
380         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
381         Object *cpuobj;
382 
383         if (!oc) {
384             fprintf(stderr, "Unable to find CPU definition\n");
385             exit(1);
386         }
387         cpuobj = object_new(object_class_get_name(oc));
388 
389         /* Secondary CPUs start in PSCI powered-down state */
390         if (n > 0) {
391             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
392         }
393         object_property_set_bool(cpuobj, true, "realized", NULL);
394     }
395     fdt_add_cpu_nodes(vbi);
396 
397     memory_region_init_ram(ram, NULL, "mach-virt.ram", args->ram_size);
398     vmstate_register_ram_global(ram);
399     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
400 
401     dev = qdev_create(NULL, vbi->qdevname);
402     qdev_prop_set_uint32(dev, "num-cpu", smp_cpus);
403     /* Note that the num-irq property counts both internal and external
404      * interrupts; there are always 32 of the former (mandated by GIC spec).
405      */
406     qdev_prop_set_uint32(dev, "num-irq", NUM_IRQS + 32);
407     qdev_init_nofail(dev);
408     busdev = SYS_BUS_DEVICE(dev);
409     sysbus_mmio_map(busdev, 0, vbi->memmap[VIRT_CPUPERIPHS].base);
410     fdt_add_gic_node(vbi);
411     for (n = 0; n < smp_cpus; n++) {
412         DeviceState *cpudev = DEVICE(qemu_get_cpu(n));
413 
414         sysbus_connect_irq(busdev, n, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
415     }
416 
417     for (n = 0; n < NUM_IRQS; n++) {
418         pic[n] = qdev_get_gpio_in(dev, n);
419     }
420 
421     create_uart(vbi, pic);
422 
423     /* Create mmio transports, so the user can create virtio backends
424      * (which will be automatically plugged in to the transports). If
425      * no backend is created the transport will just sit harmlessly idle.
426      */
427     create_virtio_devices(vbi, pic);
428 
429     vbi->bootinfo.ram_size = args->ram_size;
430     vbi->bootinfo.kernel_filename = args->kernel_filename;
431     vbi->bootinfo.kernel_cmdline = args->kernel_cmdline;
432     vbi->bootinfo.initrd_filename = args->initrd_filename;
433     vbi->bootinfo.nb_cpus = smp_cpus;
434     vbi->bootinfo.board_id = -1;
435     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
436     vbi->bootinfo.get_dtb = machvirt_dtb;
437     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
438 }
439 
440 static QEMUMachine machvirt_a15_machine = {
441     .name = "virt",
442     .desc = "ARM Virtual Machine",
443     .init = machvirt_init,
444     .max_cpus = 4,
445 };
446 
447 static void machvirt_machine_init(void)
448 {
449     qemu_register_machine(&machvirt_a15_machine);
450 }
451 
452 machine_init(machvirt_machine_init);
453