xref: /openbmc/qemu/hw/arm/virt.c (revision cb764d06)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/display/ramfb.h"
40 #include "hw/devices.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 #include "hw/arm/smmuv3.h"
62 
63 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
64     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
65                                                     void *data) \
66     { \
67         MachineClass *mc = MACHINE_CLASS(oc); \
68         virt_machine_##major##_##minor##_options(mc); \
69         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
70         if (latest) { \
71             mc->alias = "virt"; \
72         } \
73     } \
74     static const TypeInfo machvirt_##major##_##minor##_info = { \
75         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
76         .parent = TYPE_VIRT_MACHINE, \
77         .instance_init = virt_##major##_##minor##_instance_init, \
78         .class_init = virt_##major##_##minor##_class_init, \
79     }; \
80     static void machvirt_machine_##major##_##minor##_init(void) \
81     { \
82         type_register_static(&machvirt_##major##_##minor##_info); \
83     } \
84     type_init(machvirt_machine_##major##_##minor##_init);
85 
86 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
87     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
88 #define DEFINE_VIRT_MACHINE(major, minor) \
89     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
90 
91 
92 /* Number of external interrupt lines to configure the GIC with */
93 #define NUM_IRQS 256
94 
95 #define PLATFORM_BUS_NUM_IRQS 64
96 
97 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
98  * RAM can go up to the 256GB mark, leaving 256GB of the physical
99  * address space unallocated and free for future use between 256G and 512G.
100  * If we need to provide more RAM to VMs in the future then we need to:
101  *  * allocate a second bank of RAM starting at 2TB and working up
102  *  * fix the DT and ACPI table generation code in QEMU to correctly
103  *    report two split lumps of RAM to the guest
104  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
105  * (We don't want to fill all the way up to 512GB with RAM because
106  * we might want it for non-RAM purposes later. Conversely it seems
107  * reasonable to assume that anybody configuring a VM with a quarter
108  * of a terabyte of RAM will be doing it on a host with more than a
109  * terabyte of physical address space.)
110  */
111 #define RAMLIMIT_GB 255
112 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113 
114 /* Addresses and sizes of our components.
115  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
116  * 128MB..256MB is used for miscellaneous device I/O.
117  * 256MB..1GB is reserved for possible future PCI support (ie where the
118  * PCI memory window will go if we add a PCI host controller).
119  * 1GB and up is RAM (which may happily spill over into the
120  * high memory region beyond 4GB).
121  * This represents a compromise between how much RAM can be given to
122  * a 32 bit VM and leaving space for expansion and in particular for PCI.
123  * Note that devices should generally be placed at multiples of 0x10000,
124  * to accommodate guests using 64K pages.
125  */
126 static const MemMapEntry a15memmap[] = {
127     /* Space up to 0x8000000 is reserved for a boot ROM */
128     [VIRT_FLASH] =              {          0, 0x08000000 },
129     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
130     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
131     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
132     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
133     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
134     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
135     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
136     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
137     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
138     /* This redistributor space allows up to 2*64kB*123 CPUs */
139     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
140     [VIRT_UART] =               { 0x09000000, 0x00001000 },
141     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
142     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
143     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
144     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
145     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
146     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
147     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
148     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
149     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
150     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
151     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
152     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
153     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
154     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
155     [VIRT_GIC_REDIST2] =        { 0x4000000000ULL, 0x4000000 },
156     [VIRT_PCIE_ECAM_HIGH] =     { 0x4010000000ULL, 0x10000000 },
157     /* Second PCIe window, 512GB wide at the 512GB boundary */
158     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
159 };
160 
161 static const int a15irqmap[] = {
162     [VIRT_UART] = 1,
163     [VIRT_RTC] = 2,
164     [VIRT_PCIE] = 3, /* ... to 6 */
165     [VIRT_GPIO] = 7,
166     [VIRT_SECURE_UART] = 8,
167     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
168     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
169     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
170     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
171 };
172 
173 static const char *valid_cpus[] = {
174     ARM_CPU_TYPE_NAME("cortex-a15"),
175     ARM_CPU_TYPE_NAME("cortex-a53"),
176     ARM_CPU_TYPE_NAME("cortex-a57"),
177     ARM_CPU_TYPE_NAME("host"),
178     ARM_CPU_TYPE_NAME("max"),
179 };
180 
181 static bool cpu_type_valid(const char *cpu)
182 {
183     int i;
184 
185     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
186         if (strcmp(cpu, valid_cpus[i]) == 0) {
187             return true;
188         }
189     }
190     return false;
191 }
192 
193 static void create_fdt(VirtMachineState *vms)
194 {
195     void *fdt = create_device_tree(&vms->fdt_size);
196 
197     if (!fdt) {
198         error_report("create_device_tree() failed");
199         exit(1);
200     }
201 
202     vms->fdt = fdt;
203 
204     /* Header */
205     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
206     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
207     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
208 
209     /* /chosen must exist for load_dtb to fill in necessary properties later */
210     qemu_fdt_add_subnode(fdt, "/chosen");
211 
212     /* Clock node, for the benefit of the UART. The kernel device tree
213      * binding documentation claims the PL011 node clock properties are
214      * optional but in practice if you omit them the kernel refuses to
215      * probe for the device.
216      */
217     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
218     qemu_fdt_add_subnode(fdt, "/apb-pclk");
219     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
220     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
221     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
222     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
223                                 "clk24mhz");
224     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
225 
226     if (have_numa_distance) {
227         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
228         uint32_t *matrix = g_malloc0(size);
229         int idx, i, j;
230 
231         for (i = 0; i < nb_numa_nodes; i++) {
232             for (j = 0; j < nb_numa_nodes; j++) {
233                 idx = (i * nb_numa_nodes + j) * 3;
234                 matrix[idx + 0] = cpu_to_be32(i);
235                 matrix[idx + 1] = cpu_to_be32(j);
236                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
237             }
238         }
239 
240         qemu_fdt_add_subnode(fdt, "/distance-map");
241         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
242                                 "numa-distance-map-v1");
243         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
244                          matrix, size);
245         g_free(matrix);
246     }
247 }
248 
249 static void fdt_add_timer_nodes(const VirtMachineState *vms)
250 {
251     /* On real hardware these interrupts are level-triggered.
252      * On KVM they were edge-triggered before host kernel version 4.4,
253      * and level-triggered afterwards.
254      * On emulated QEMU they are level-triggered.
255      *
256      * Getting the DTB info about them wrong is awkward for some
257      * guest kernels:
258      *  pre-4.8 ignore the DT and leave the interrupt configured
259      *   with whatever the GIC reset value (or the bootloader) left it at
260      *  4.8 before rc6 honour the incorrect data by programming it back
261      *   into the GIC, causing problems
262      *  4.8rc6 and later ignore the DT and always write "level triggered"
263      *   into the GIC
264      *
265      * For backwards-compatibility, virt-2.8 and earlier will continue
266      * to say these are edge-triggered, but later machines will report
267      * the correct information.
268      */
269     ARMCPU *armcpu;
270     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
271     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
272 
273     if (vmc->claim_edge_triggered_timers) {
274         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
275     }
276 
277     if (vms->gic_version == 2) {
278         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
279                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
280                              (1 << vms->smp_cpus) - 1);
281     }
282 
283     qemu_fdt_add_subnode(vms->fdt, "/timer");
284 
285     armcpu = ARM_CPU(qemu_get_cpu(0));
286     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
287         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
288         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
289                          compat, sizeof(compat));
290     } else {
291         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
292                                 "arm,armv7-timer");
293     }
294     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
295     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
296                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
297                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
298                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
299                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
300 }
301 
302 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
303 {
304     int cpu;
305     int addr_cells = 1;
306     const MachineState *ms = MACHINE(vms);
307 
308     /*
309      * From Documentation/devicetree/bindings/arm/cpus.txt
310      *  On ARM v8 64-bit systems value should be set to 2,
311      *  that corresponds to the MPIDR_EL1 register size.
312      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
313      *  in the system, #address-cells can be set to 1, since
314      *  MPIDR_EL1[63:32] bits are not used for CPUs
315      *  identification.
316      *
317      *  Here we actually don't know whether our system is 32- or 64-bit one.
318      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
319      *  at least one of them has Aff3 populated, we set #address-cells to 2.
320      */
321     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
322         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
323 
324         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
325             addr_cells = 2;
326             break;
327         }
328     }
329 
330     qemu_fdt_add_subnode(vms->fdt, "/cpus");
331     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
332     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
333 
334     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
335         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
336         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
337         CPUState *cs = CPU(armcpu);
338 
339         qemu_fdt_add_subnode(vms->fdt, nodename);
340         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
341         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
342                                     armcpu->dtb_compatible);
343 
344         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
345             && vms->smp_cpus > 1) {
346             qemu_fdt_setprop_string(vms->fdt, nodename,
347                                         "enable-method", "psci");
348         }
349 
350         if (addr_cells == 2) {
351             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
352                                  armcpu->mp_affinity);
353         } else {
354             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
355                                   armcpu->mp_affinity);
356         }
357 
358         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
359             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
360                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
361         }
362 
363         g_free(nodename);
364     }
365 }
366 
367 static void fdt_add_its_gic_node(VirtMachineState *vms)
368 {
369     char *nodename;
370 
371     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
372     nodename = g_strdup_printf("/intc/its@%" PRIx64,
373                                vms->memmap[VIRT_GIC_ITS].base);
374     qemu_fdt_add_subnode(vms->fdt, nodename);
375     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
376                             "arm,gic-v3-its");
377     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
378     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
379                                  2, vms->memmap[VIRT_GIC_ITS].base,
380                                  2, vms->memmap[VIRT_GIC_ITS].size);
381     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
382     g_free(nodename);
383 }
384 
385 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
386 {
387     char *nodename;
388 
389     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
390                                vms->memmap[VIRT_GIC_V2M].base);
391     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
392     qemu_fdt_add_subnode(vms->fdt, nodename);
393     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
394                             "arm,gic-v2m-frame");
395     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
396     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
397                                  2, vms->memmap[VIRT_GIC_V2M].base,
398                                  2, vms->memmap[VIRT_GIC_V2M].size);
399     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
400     g_free(nodename);
401 }
402 
403 static void fdt_add_gic_node(VirtMachineState *vms)
404 {
405     char *nodename;
406 
407     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
408     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
409 
410     nodename = g_strdup_printf("/intc@%" PRIx64,
411                                vms->memmap[VIRT_GIC_DIST].base);
412     qemu_fdt_add_subnode(vms->fdt, nodename);
413     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
414     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
415     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
416     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
417     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
418     if (vms->gic_version == 3) {
419         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
420 
421         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
422                                 "arm,gic-v3");
423 
424         qemu_fdt_setprop_cell(vms->fdt, nodename,
425                               "#redistributor-regions", nb_redist_regions);
426 
427         if (nb_redist_regions == 1) {
428             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
429                                          2, vms->memmap[VIRT_GIC_DIST].base,
430                                          2, vms->memmap[VIRT_GIC_DIST].size,
431                                          2, vms->memmap[VIRT_GIC_REDIST].base,
432                                          2, vms->memmap[VIRT_GIC_REDIST].size);
433         } else {
434             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
435                                          2, vms->memmap[VIRT_GIC_DIST].base,
436                                          2, vms->memmap[VIRT_GIC_DIST].size,
437                                          2, vms->memmap[VIRT_GIC_REDIST].base,
438                                          2, vms->memmap[VIRT_GIC_REDIST].size,
439                                          2, vms->memmap[VIRT_GIC_REDIST2].base,
440                                          2, vms->memmap[VIRT_GIC_REDIST2].size);
441         }
442 
443         if (vms->virt) {
444             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
445                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
446                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
447         }
448     } else {
449         /* 'cortex-a15-gic' means 'GIC v2' */
450         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
451                                 "arm,cortex-a15-gic");
452         if (!vms->virt) {
453             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
454                                          2, vms->memmap[VIRT_GIC_DIST].base,
455                                          2, vms->memmap[VIRT_GIC_DIST].size,
456                                          2, vms->memmap[VIRT_GIC_CPU].base,
457                                          2, vms->memmap[VIRT_GIC_CPU].size);
458         } else {
459             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
460                                          2, vms->memmap[VIRT_GIC_DIST].base,
461                                          2, vms->memmap[VIRT_GIC_DIST].size,
462                                          2, vms->memmap[VIRT_GIC_CPU].base,
463                                          2, vms->memmap[VIRT_GIC_CPU].size,
464                                          2, vms->memmap[VIRT_GIC_HYP].base,
465                                          2, vms->memmap[VIRT_GIC_HYP].size,
466                                          2, vms->memmap[VIRT_GIC_VCPU].base,
467                                          2, vms->memmap[VIRT_GIC_VCPU].size);
468             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
469                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
470                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
471         }
472     }
473 
474     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
475     g_free(nodename);
476 }
477 
478 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
479 {
480     CPUState *cpu;
481     ARMCPU *armcpu;
482     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
483 
484     CPU_FOREACH(cpu) {
485         armcpu = ARM_CPU(cpu);
486         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
487             return;
488         }
489         if (kvm_enabled()) {
490             if (kvm_irqchip_in_kernel()) {
491                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
492             }
493             kvm_arm_pmu_init(cpu);
494         }
495     }
496 
497     if (vms->gic_version == 2) {
498         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
499                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
500                              (1 << vms->smp_cpus) - 1);
501     }
502 
503     armcpu = ARM_CPU(qemu_get_cpu(0));
504     qemu_fdt_add_subnode(vms->fdt, "/pmu");
505     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
506         const char compat[] = "arm,armv8-pmuv3";
507         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
508                          compat, sizeof(compat));
509         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
510                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
511     }
512 }
513 
514 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
515 {
516     const char *itsclass = its_class_name();
517     DeviceState *dev;
518 
519     if (!itsclass) {
520         /* Do nothing if not supported */
521         return;
522     }
523 
524     dev = qdev_create(NULL, itsclass);
525 
526     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
527                              &error_abort);
528     qdev_init_nofail(dev);
529     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
530 
531     fdt_add_its_gic_node(vms);
532 }
533 
534 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
535 {
536     int i;
537     int irq = vms->irqmap[VIRT_GIC_V2M];
538     DeviceState *dev;
539 
540     dev = qdev_create(NULL, "arm-gicv2m");
541     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
542     qdev_prop_set_uint32(dev, "base-spi", irq);
543     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
544     qdev_init_nofail(dev);
545 
546     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
547         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
548     }
549 
550     fdt_add_v2m_gic_node(vms);
551 }
552 
553 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
554 {
555     /* We create a standalone GIC */
556     DeviceState *gicdev;
557     SysBusDevice *gicbusdev;
558     const char *gictype;
559     int type = vms->gic_version, i;
560     uint32_t nb_redist_regions = 0;
561 
562     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
563 
564     gicdev = qdev_create(NULL, gictype);
565     qdev_prop_set_uint32(gicdev, "revision", type);
566     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
567     /* Note that the num-irq property counts both internal and external
568      * interrupts; there are always 32 of the former (mandated by GIC spec).
569      */
570     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
571     if (!kvm_irqchip_in_kernel()) {
572         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
573     }
574 
575     if (type == 3) {
576         uint32_t redist0_capacity =
577                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
578         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
579 
580         nb_redist_regions = virt_gicv3_redist_region_count(vms);
581 
582         qdev_prop_set_uint32(gicdev, "len-redist-region-count",
583                              nb_redist_regions);
584         qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
585 
586         if (nb_redist_regions == 2) {
587             uint32_t redist1_capacity =
588                         vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
589 
590             qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
591                 MIN(smp_cpus - redist0_count, redist1_capacity));
592         }
593     } else {
594         if (!kvm_irqchip_in_kernel()) {
595             qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
596                               vms->virt);
597         }
598     }
599     qdev_init_nofail(gicdev);
600     gicbusdev = SYS_BUS_DEVICE(gicdev);
601     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
602     if (type == 3) {
603         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
604         if (nb_redist_regions == 2) {
605             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
606         }
607     } else {
608         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
609         if (vms->virt) {
610             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
611             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
612         }
613     }
614 
615     /* Wire the outputs from each CPU's generic timer and the GICv3
616      * maintenance interrupt signal to the appropriate GIC PPI inputs,
617      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
618      */
619     for (i = 0; i < smp_cpus; i++) {
620         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
621         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
622         int irq;
623         /* Mapping from the output timer irq lines from the CPU to the
624          * GIC PPI inputs we use for the virt board.
625          */
626         const int timer_irq[] = {
627             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
628             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
629             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
630             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
631         };
632 
633         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
634             qdev_connect_gpio_out(cpudev, irq,
635                                   qdev_get_gpio_in(gicdev,
636                                                    ppibase + timer_irq[irq]));
637         }
638 
639         if (type == 3) {
640             qemu_irq irq = qdev_get_gpio_in(gicdev,
641                                             ppibase + ARCH_GIC_MAINT_IRQ);
642             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
643                                         0, irq);
644         } else if (vms->virt) {
645             qemu_irq irq = qdev_get_gpio_in(gicdev,
646                                             ppibase + ARCH_GIC_MAINT_IRQ);
647             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
648         }
649 
650         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
651                                     qdev_get_gpio_in(gicdev, ppibase
652                                                      + VIRTUAL_PMU_IRQ));
653 
654         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
655         sysbus_connect_irq(gicbusdev, i + smp_cpus,
656                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
657         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
658                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
659         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
660                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
661     }
662 
663     for (i = 0; i < NUM_IRQS; i++) {
664         pic[i] = qdev_get_gpio_in(gicdev, i);
665     }
666 
667     fdt_add_gic_node(vms);
668 
669     if (type == 3 && vms->its) {
670         create_its(vms, gicdev);
671     } else if (type == 2) {
672         create_v2m(vms, pic);
673     }
674 }
675 
676 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
677                         MemoryRegion *mem, Chardev *chr)
678 {
679     char *nodename;
680     hwaddr base = vms->memmap[uart].base;
681     hwaddr size = vms->memmap[uart].size;
682     int irq = vms->irqmap[uart];
683     const char compat[] = "arm,pl011\0arm,primecell";
684     const char clocknames[] = "uartclk\0apb_pclk";
685     DeviceState *dev = qdev_create(NULL, "pl011");
686     SysBusDevice *s = SYS_BUS_DEVICE(dev);
687 
688     qdev_prop_set_chr(dev, "chardev", chr);
689     qdev_init_nofail(dev);
690     memory_region_add_subregion(mem, base,
691                                 sysbus_mmio_get_region(s, 0));
692     sysbus_connect_irq(s, 0, pic[irq]);
693 
694     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
695     qemu_fdt_add_subnode(vms->fdt, nodename);
696     /* Note that we can't use setprop_string because of the embedded NUL */
697     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
698                          compat, sizeof(compat));
699     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
700                                      2, base, 2, size);
701     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
702                                GIC_FDT_IRQ_TYPE_SPI, irq,
703                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
704     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
705                                vms->clock_phandle, vms->clock_phandle);
706     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
707                          clocknames, sizeof(clocknames));
708 
709     if (uart == VIRT_UART) {
710         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
711     } else {
712         /* Mark as not usable by the normal world */
713         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
714         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
715     }
716 
717     g_free(nodename);
718 }
719 
720 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
721 {
722     char *nodename;
723     hwaddr base = vms->memmap[VIRT_RTC].base;
724     hwaddr size = vms->memmap[VIRT_RTC].size;
725     int irq = vms->irqmap[VIRT_RTC];
726     const char compat[] = "arm,pl031\0arm,primecell";
727 
728     sysbus_create_simple("pl031", base, pic[irq]);
729 
730     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
731     qemu_fdt_add_subnode(vms->fdt, nodename);
732     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
733     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
734                                  2, base, 2, size);
735     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
736                            GIC_FDT_IRQ_TYPE_SPI, irq,
737                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
738     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
739     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
740     g_free(nodename);
741 }
742 
743 static DeviceState *gpio_key_dev;
744 static void virt_powerdown_req(Notifier *n, void *opaque)
745 {
746     /* use gpio Pin 3 for power button event */
747     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
748 }
749 
750 static Notifier virt_system_powerdown_notifier = {
751     .notify = virt_powerdown_req
752 };
753 
754 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
755 {
756     char *nodename;
757     DeviceState *pl061_dev;
758     hwaddr base = vms->memmap[VIRT_GPIO].base;
759     hwaddr size = vms->memmap[VIRT_GPIO].size;
760     int irq = vms->irqmap[VIRT_GPIO];
761     const char compat[] = "arm,pl061\0arm,primecell";
762 
763     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
764 
765     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
766     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
767     qemu_fdt_add_subnode(vms->fdt, nodename);
768     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
769                                  2, base, 2, size);
770     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
771     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
772     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
773     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
774                            GIC_FDT_IRQ_TYPE_SPI, irq,
775                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
776     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
777     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
778     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
779 
780     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
781                                         qdev_get_gpio_in(pl061_dev, 3));
782     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
783     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
784     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
785     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
786 
787     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
788     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
789                             "label", "GPIO Key Poweroff");
790     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
791                           KEY_POWER);
792     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
793                            "gpios", phandle, 3, 0);
794 
795     /* connect powerdown request */
796     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
797 
798     g_free(nodename);
799 }
800 
801 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
802 {
803     int i;
804     hwaddr size = vms->memmap[VIRT_MMIO].size;
805 
806     /* We create the transports in forwards order. Since qbus_realize()
807      * prepends (not appends) new child buses, the incrementing loop below will
808      * create a list of virtio-mmio buses with decreasing base addresses.
809      *
810      * When a -device option is processed from the command line,
811      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
812      * order. The upshot is that -device options in increasing command line
813      * order are mapped to virtio-mmio buses with decreasing base addresses.
814      *
815      * When this code was originally written, that arrangement ensured that the
816      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
817      * the first -device on the command line. (The end-to-end order is a
818      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
819      * guest kernel's name-to-address assignment strategy.)
820      *
821      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
822      * the message, if not necessarily the code, of commit 70161ff336.
823      * Therefore the loop now establishes the inverse of the original intent.
824      *
825      * Unfortunately, we can't counteract the kernel change by reversing the
826      * loop; it would break existing command lines.
827      *
828      * In any case, the kernel makes no guarantee about the stability of
829      * enumeration order of virtio devices (as demonstrated by it changing
830      * between kernel versions). For reliable and stable identification
831      * of disks users must use UUIDs or similar mechanisms.
832      */
833     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
834         int irq = vms->irqmap[VIRT_MMIO] + i;
835         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
836 
837         sysbus_create_simple("virtio-mmio", base, pic[irq]);
838     }
839 
840     /* We add dtb nodes in reverse order so that they appear in the finished
841      * device tree lowest address first.
842      *
843      * Note that this mapping is independent of the loop above. The previous
844      * loop influences virtio device to virtio transport assignment, whereas
845      * this loop controls how virtio transports are laid out in the dtb.
846      */
847     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
848         char *nodename;
849         int irq = vms->irqmap[VIRT_MMIO] + i;
850         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
851 
852         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
853         qemu_fdt_add_subnode(vms->fdt, nodename);
854         qemu_fdt_setprop_string(vms->fdt, nodename,
855                                 "compatible", "virtio,mmio");
856         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
857                                      2, base, 2, size);
858         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
859                                GIC_FDT_IRQ_TYPE_SPI, irq,
860                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
861         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
862         g_free(nodename);
863     }
864 }
865 
866 static void create_one_flash(const char *name, hwaddr flashbase,
867                              hwaddr flashsize, const char *file,
868                              MemoryRegion *sysmem)
869 {
870     /* Create and map a single flash device. We use the same
871      * parameters as the flash devices on the Versatile Express board.
872      */
873     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
874     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
875     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
876     const uint64_t sectorlength = 256 * 1024;
877 
878     if (dinfo) {
879         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
880                             &error_abort);
881     }
882 
883     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
884     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
885     qdev_prop_set_uint8(dev, "width", 4);
886     qdev_prop_set_uint8(dev, "device-width", 2);
887     qdev_prop_set_bit(dev, "big-endian", false);
888     qdev_prop_set_uint16(dev, "id0", 0x89);
889     qdev_prop_set_uint16(dev, "id1", 0x18);
890     qdev_prop_set_uint16(dev, "id2", 0x00);
891     qdev_prop_set_uint16(dev, "id3", 0x00);
892     qdev_prop_set_string(dev, "name", name);
893     qdev_init_nofail(dev);
894 
895     memory_region_add_subregion(sysmem, flashbase,
896                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
897 
898     if (file) {
899         char *fn;
900         int image_size;
901 
902         if (drive_get(IF_PFLASH, 0, 0)) {
903             error_report("The contents of the first flash device may be "
904                          "specified with -bios or with -drive if=pflash... "
905                          "but you cannot use both options at once");
906             exit(1);
907         }
908         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
909         if (!fn) {
910             error_report("Could not find ROM image '%s'", file);
911             exit(1);
912         }
913         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
914         g_free(fn);
915         if (image_size < 0) {
916             error_report("Could not load ROM image '%s'", file);
917             exit(1);
918         }
919     }
920 }
921 
922 static void create_flash(const VirtMachineState *vms,
923                          MemoryRegion *sysmem,
924                          MemoryRegion *secure_sysmem)
925 {
926     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
927      * Any file passed via -bios goes in the first of these.
928      * sysmem is the system memory space. secure_sysmem is the secure view
929      * of the system, and the first flash device should be made visible only
930      * there. The second flash device is visible to both secure and nonsecure.
931      * If sysmem == secure_sysmem this means there is no separate Secure
932      * address space and both flash devices are generally visible.
933      */
934     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
935     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
936     char *nodename;
937 
938     create_one_flash("virt.flash0", flashbase, flashsize,
939                      bios_name, secure_sysmem);
940     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
941                      NULL, sysmem);
942 
943     if (sysmem == secure_sysmem) {
944         /* Report both flash devices as a single node in the DT */
945         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
946         qemu_fdt_add_subnode(vms->fdt, nodename);
947         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
948         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
949                                      2, flashbase, 2, flashsize,
950                                      2, flashbase + flashsize, 2, flashsize);
951         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
952         g_free(nodename);
953     } else {
954         /* Report the devices as separate nodes so we can mark one as
955          * only visible to the secure world.
956          */
957         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
958         qemu_fdt_add_subnode(vms->fdt, nodename);
959         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
960         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
961                                      2, flashbase, 2, flashsize);
962         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
963         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
964         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
965         g_free(nodename);
966 
967         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
968         qemu_fdt_add_subnode(vms->fdt, nodename);
969         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
970         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
971                                      2, flashbase + flashsize, 2, flashsize);
972         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
973         g_free(nodename);
974     }
975 }
976 
977 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
978 {
979     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
980     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
981     FWCfgState *fw_cfg;
982     char *nodename;
983 
984     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
985     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
986 
987     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
988     qemu_fdt_add_subnode(vms->fdt, nodename);
989     qemu_fdt_setprop_string(vms->fdt, nodename,
990                             "compatible", "qemu,fw-cfg-mmio");
991     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
992                                  2, base, 2, size);
993     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
994     g_free(nodename);
995     return fw_cfg;
996 }
997 
998 static void create_pcie_irq_map(const VirtMachineState *vms,
999                                 uint32_t gic_phandle,
1000                                 int first_irq, const char *nodename)
1001 {
1002     int devfn, pin;
1003     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1004     uint32_t *irq_map = full_irq_map;
1005 
1006     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1007         for (pin = 0; pin < 4; pin++) {
1008             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1009             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1010             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1011             int i;
1012 
1013             uint32_t map[] = {
1014                 devfn << 8, 0, 0,                           /* devfn */
1015                 pin + 1,                                    /* PCI pin */
1016                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1017 
1018             /* Convert map to big endian */
1019             for (i = 0; i < 10; i++) {
1020                 irq_map[i] = cpu_to_be32(map[i]);
1021             }
1022             irq_map += 10;
1023         }
1024     }
1025 
1026     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1027                      full_irq_map, sizeof(full_irq_map));
1028 
1029     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1030                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1031                            0x7           /* PCI irq */);
1032 }
1033 
1034 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1035                         PCIBus *bus)
1036 {
1037     char *node;
1038     const char compat[] = "arm,smmu-v3";
1039     int irq =  vms->irqmap[VIRT_SMMU];
1040     int i;
1041     hwaddr base = vms->memmap[VIRT_SMMU].base;
1042     hwaddr size = vms->memmap[VIRT_SMMU].size;
1043     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1044     DeviceState *dev;
1045 
1046     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1047         return;
1048     }
1049 
1050     dev = qdev_create(NULL, "arm-smmuv3");
1051 
1052     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1053                              &error_abort);
1054     qdev_init_nofail(dev);
1055     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1056     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1057         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1058     }
1059 
1060     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1061     qemu_fdt_add_subnode(vms->fdt, node);
1062     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1063     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1064 
1065     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1066             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1067             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1068             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1069             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1070 
1071     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1072                      sizeof(irq_names));
1073 
1074     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1075     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1076     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1077 
1078     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1079 
1080     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1081     g_free(node);
1082 }
1083 
1084 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1085 {
1086     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1087     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1088     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1089     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1090     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1091     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1092     hwaddr base_ecam, size_ecam;
1093     hwaddr base = base_mmio;
1094     int nr_pcie_buses;
1095     int irq = vms->irqmap[VIRT_PCIE];
1096     MemoryRegion *mmio_alias;
1097     MemoryRegion *mmio_reg;
1098     MemoryRegion *ecam_alias;
1099     MemoryRegion *ecam_reg;
1100     DeviceState *dev;
1101     char *nodename;
1102     int i, ecam_id;
1103     PCIHostState *pci;
1104 
1105     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1106     qdev_init_nofail(dev);
1107 
1108     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1109     base_ecam = vms->memmap[ecam_id].base;
1110     size_ecam = vms->memmap[ecam_id].size;
1111     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1112     /* Map only the first size_ecam bytes of ECAM space */
1113     ecam_alias = g_new0(MemoryRegion, 1);
1114     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1115     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1116                              ecam_reg, 0, size_ecam);
1117     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1118 
1119     /* Map the MMIO window into system address space so as to expose
1120      * the section of PCI MMIO space which starts at the same base address
1121      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1122      * the window).
1123      */
1124     mmio_alias = g_new0(MemoryRegion, 1);
1125     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1126     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1127                              mmio_reg, base_mmio, size_mmio);
1128     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1129 
1130     if (vms->highmem) {
1131         /* Map high MMIO space */
1132         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1133 
1134         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1135                                  mmio_reg, base_mmio_high, size_mmio_high);
1136         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1137                                     high_mmio_alias);
1138     }
1139 
1140     /* Map IO port space */
1141     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1142 
1143     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1144         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1145         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1146     }
1147 
1148     pci = PCI_HOST_BRIDGE(dev);
1149     if (pci->bus) {
1150         for (i = 0; i < nb_nics; i++) {
1151             NICInfo *nd = &nd_table[i];
1152 
1153             if (!nd->model) {
1154                 nd->model = g_strdup("virtio");
1155             }
1156 
1157             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1158         }
1159     }
1160 
1161     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1162     qemu_fdt_add_subnode(vms->fdt, nodename);
1163     qemu_fdt_setprop_string(vms->fdt, nodename,
1164                             "compatible", "pci-host-ecam-generic");
1165     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1166     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1167     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1168     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1169     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1170                            nr_pcie_buses - 1);
1171     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1172 
1173     if (vms->msi_phandle) {
1174         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1175                                vms->msi_phandle);
1176     }
1177 
1178     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1179                                  2, base_ecam, 2, size_ecam);
1180 
1181     if (vms->highmem) {
1182         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1183                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1184                                      2, base_pio, 2, size_pio,
1185                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1186                                      2, base_mmio, 2, size_mmio,
1187                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1188                                      2, base_mmio_high,
1189                                      2, base_mmio_high, 2, size_mmio_high);
1190     } else {
1191         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1192                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1193                                      2, base_pio, 2, size_pio,
1194                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1195                                      2, base_mmio, 2, size_mmio);
1196     }
1197 
1198     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1199     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1200 
1201     if (vms->iommu) {
1202         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1203 
1204         create_smmu(vms, pic, pci->bus);
1205 
1206         qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1207                                0x0, vms->iommu_phandle, 0x0, 0x10000);
1208     }
1209 
1210     g_free(nodename);
1211 }
1212 
1213 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1214 {
1215     DeviceState *dev;
1216     SysBusDevice *s;
1217     int i;
1218     MemoryRegion *sysmem = get_system_memory();
1219 
1220     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1221     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1222     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1223     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1224     qdev_init_nofail(dev);
1225     vms->platform_bus_dev = dev;
1226 
1227     s = SYS_BUS_DEVICE(dev);
1228     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1229         int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1230         sysbus_connect_irq(s, i, pic[irqn]);
1231     }
1232 
1233     memory_region_add_subregion(sysmem,
1234                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1235                                 sysbus_mmio_get_region(s, 0));
1236 }
1237 
1238 static void create_secure_ram(VirtMachineState *vms,
1239                               MemoryRegion *secure_sysmem)
1240 {
1241     MemoryRegion *secram = g_new(MemoryRegion, 1);
1242     char *nodename;
1243     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1244     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1245 
1246     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1247                            &error_fatal);
1248     memory_region_add_subregion(secure_sysmem, base, secram);
1249 
1250     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1251     qemu_fdt_add_subnode(vms->fdt, nodename);
1252     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1253     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1254     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1255     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1256 
1257     g_free(nodename);
1258 }
1259 
1260 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1261 {
1262     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1263                                                  bootinfo);
1264 
1265     *fdt_size = board->fdt_size;
1266     return board->fdt;
1267 }
1268 
1269 static void virt_build_smbios(VirtMachineState *vms)
1270 {
1271     MachineClass *mc = MACHINE_GET_CLASS(vms);
1272     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1273     uint8_t *smbios_tables, *smbios_anchor;
1274     size_t smbios_tables_len, smbios_anchor_len;
1275     const char *product = "QEMU Virtual Machine";
1276 
1277     if (!vms->fw_cfg) {
1278         return;
1279     }
1280 
1281     if (kvm_enabled()) {
1282         product = "KVM Virtual Machine";
1283     }
1284 
1285     smbios_set_defaults("QEMU", product,
1286                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1287                         true, SMBIOS_ENTRY_POINT_30);
1288 
1289     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1290                       &smbios_anchor, &smbios_anchor_len);
1291 
1292     if (smbios_anchor) {
1293         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1294                         smbios_tables, smbios_tables_len);
1295         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1296                         smbios_anchor, smbios_anchor_len);
1297     }
1298 }
1299 
1300 static
1301 void virt_machine_done(Notifier *notifier, void *data)
1302 {
1303     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1304                                          machine_done);
1305     ARMCPU *cpu = ARM_CPU(first_cpu);
1306     struct arm_boot_info *info = &vms->bootinfo;
1307     AddressSpace *as = arm_boot_address_space(cpu, info);
1308 
1309     /*
1310      * If the user provided a dtb, we assume the dynamic sysbus nodes
1311      * already are integrated there. This corresponds to a use case where
1312      * the dynamic sysbus nodes are complex and their generation is not yet
1313      * supported. In that case the user can take charge of the guest dt
1314      * while qemu takes charge of the qom stuff.
1315      */
1316     if (info->dtb_filename == NULL) {
1317         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1318                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1319                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1320                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1321     }
1322     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1323         exit(1);
1324     }
1325 
1326     virt_acpi_setup(vms);
1327     virt_build_smbios(vms);
1328 }
1329 
1330 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1331 {
1332     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1333     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1334 
1335     if (!vmc->disallow_affinity_adjustment) {
1336         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1337          * GIC's target-list limitations. 32-bit KVM hosts currently
1338          * always create clusters of 4 CPUs, but that is expected to
1339          * change when they gain support for gicv3. When KVM is enabled
1340          * it will override the changes we make here, therefore our
1341          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1342          * and to improve SGI efficiency.
1343          */
1344         if (vms->gic_version == 3) {
1345             clustersz = GICV3_TARGETLIST_BITS;
1346         } else {
1347             clustersz = GIC_TARGETLIST_BITS;
1348         }
1349     }
1350     return arm_cpu_mp_affinity(idx, clustersz);
1351 }
1352 
1353 static void machvirt_init(MachineState *machine)
1354 {
1355     VirtMachineState *vms = VIRT_MACHINE(machine);
1356     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1357     MachineClass *mc = MACHINE_GET_CLASS(machine);
1358     const CPUArchIdList *possible_cpus;
1359     qemu_irq pic[NUM_IRQS];
1360     MemoryRegion *sysmem = get_system_memory();
1361     MemoryRegion *secure_sysmem = NULL;
1362     int n, virt_max_cpus;
1363     MemoryRegion *ram = g_new(MemoryRegion, 1);
1364     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1365     bool aarch64 = true;
1366 
1367     /* We can probe only here because during property set
1368      * KVM is not available yet
1369      */
1370     if (vms->gic_version <= 0) {
1371         /* "host" or "max" */
1372         if (!kvm_enabled()) {
1373             if (vms->gic_version == 0) {
1374                 error_report("gic-version=host requires KVM");
1375                 exit(1);
1376             } else {
1377                 /* "max": currently means 3 for TCG */
1378                 vms->gic_version = 3;
1379             }
1380         } else {
1381             vms->gic_version = kvm_arm_vgic_probe();
1382             if (!vms->gic_version) {
1383                 error_report(
1384                     "Unable to determine GIC version supported by host");
1385                 exit(1);
1386             }
1387         }
1388     }
1389 
1390     if (!cpu_type_valid(machine->cpu_type)) {
1391         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1392         exit(1);
1393     }
1394 
1395     /* If we have an EL3 boot ROM then the assumption is that it will
1396      * implement PSCI itself, so disable QEMU's internal implementation
1397      * so it doesn't get in the way. Instead of starting secondary
1398      * CPUs in PSCI powerdown state we will start them all running and
1399      * let the boot ROM sort them out.
1400      * The usual case is that we do use QEMU's PSCI implementation;
1401      * if the guest has EL2 then we will use SMC as the conduit,
1402      * and otherwise we will use HVC (for backwards compatibility and
1403      * because if we're using KVM then we must use HVC).
1404      */
1405     if (vms->secure && firmware_loaded) {
1406         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1407     } else if (vms->virt) {
1408         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1409     } else {
1410         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1411     }
1412 
1413     /* The maximum number of CPUs depends on the GIC version, or on how
1414      * many redistributors we can fit into the memory map.
1415      */
1416     if (vms->gic_version == 3) {
1417         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1418         virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1419     } else {
1420         virt_max_cpus = GIC_NCPU;
1421     }
1422 
1423     if (max_cpus > virt_max_cpus) {
1424         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1425                      "supported by machine 'mach-virt' (%d)",
1426                      max_cpus, virt_max_cpus);
1427         exit(1);
1428     }
1429 
1430     vms->smp_cpus = smp_cpus;
1431 
1432     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1433         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1434         exit(1);
1435     }
1436 
1437     if (vms->virt && kvm_enabled()) {
1438         error_report("mach-virt: KVM does not support providing "
1439                      "Virtualization extensions to the guest CPU");
1440         exit(1);
1441     }
1442 
1443     if (vms->secure) {
1444         if (kvm_enabled()) {
1445             error_report("mach-virt: KVM does not support Security extensions");
1446             exit(1);
1447         }
1448 
1449         /* The Secure view of the world is the same as the NonSecure,
1450          * but with a few extra devices. Create it as a container region
1451          * containing the system memory at low priority; any secure-only
1452          * devices go in at higher priority and take precedence.
1453          */
1454         secure_sysmem = g_new(MemoryRegion, 1);
1455         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1456                            UINT64_MAX);
1457         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1458     }
1459 
1460     create_fdt(vms);
1461 
1462     possible_cpus = mc->possible_cpu_arch_ids(machine);
1463     for (n = 0; n < possible_cpus->len; n++) {
1464         Object *cpuobj;
1465         CPUState *cs;
1466 
1467         if (n >= smp_cpus) {
1468             break;
1469         }
1470 
1471         cpuobj = object_new(possible_cpus->cpus[n].type);
1472         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1473                                 "mp-affinity", NULL);
1474 
1475         cs = CPU(cpuobj);
1476         cs->cpu_index = n;
1477 
1478         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1479                           &error_fatal);
1480 
1481         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1482 
1483         if (!vms->secure) {
1484             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1485         }
1486 
1487         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1488             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1489         }
1490 
1491         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1492             object_property_set_int(cpuobj, vms->psci_conduit,
1493                                     "psci-conduit", NULL);
1494 
1495             /* Secondary CPUs start in PSCI powered-down state */
1496             if (n > 0) {
1497                 object_property_set_bool(cpuobj, true,
1498                                          "start-powered-off", NULL);
1499             }
1500         }
1501 
1502         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1503             object_property_set_bool(cpuobj, false, "pmu", NULL);
1504         }
1505 
1506         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1507             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1508                                     "reset-cbar", &error_abort);
1509         }
1510 
1511         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1512                                  &error_abort);
1513         if (vms->secure) {
1514             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1515                                      "secure-memory", &error_abort);
1516         }
1517 
1518         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1519         object_unref(cpuobj);
1520     }
1521     fdt_add_timer_nodes(vms);
1522     fdt_add_cpu_nodes(vms);
1523 
1524     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1525                                          machine->ram_size);
1526     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1527 
1528     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1529 
1530     create_gic(vms, pic);
1531 
1532     fdt_add_pmu_nodes(vms);
1533 
1534     create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1535 
1536     if (vms->secure) {
1537         create_secure_ram(vms, secure_sysmem);
1538         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1539     }
1540 
1541     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1542 
1543     create_rtc(vms, pic);
1544 
1545     create_pcie(vms, pic);
1546 
1547     create_gpio(vms, pic);
1548 
1549     /* Create mmio transports, so the user can create virtio backends
1550      * (which will be automatically plugged in to the transports). If
1551      * no backend is created the transport will just sit harmlessly idle.
1552      */
1553     create_virtio_devices(vms, pic);
1554 
1555     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1556     rom_set_fw(vms->fw_cfg);
1557 
1558     create_platform_bus(vms, pic);
1559 
1560     vms->bootinfo.ram_size = machine->ram_size;
1561     vms->bootinfo.kernel_filename = machine->kernel_filename;
1562     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1563     vms->bootinfo.initrd_filename = machine->initrd_filename;
1564     vms->bootinfo.nb_cpus = smp_cpus;
1565     vms->bootinfo.board_id = -1;
1566     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1567     vms->bootinfo.get_dtb = machvirt_dtb;
1568     vms->bootinfo.skip_dtb_autoload = true;
1569     vms->bootinfo.firmware_loaded = firmware_loaded;
1570     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1571 
1572     vms->machine_done.notify = virt_machine_done;
1573     qemu_add_machine_init_done_notifier(&vms->machine_done);
1574 }
1575 
1576 static bool virt_get_secure(Object *obj, Error **errp)
1577 {
1578     VirtMachineState *vms = VIRT_MACHINE(obj);
1579 
1580     return vms->secure;
1581 }
1582 
1583 static void virt_set_secure(Object *obj, bool value, Error **errp)
1584 {
1585     VirtMachineState *vms = VIRT_MACHINE(obj);
1586 
1587     vms->secure = value;
1588 }
1589 
1590 static bool virt_get_virt(Object *obj, Error **errp)
1591 {
1592     VirtMachineState *vms = VIRT_MACHINE(obj);
1593 
1594     return vms->virt;
1595 }
1596 
1597 static void virt_set_virt(Object *obj, bool value, Error **errp)
1598 {
1599     VirtMachineState *vms = VIRT_MACHINE(obj);
1600 
1601     vms->virt = value;
1602 }
1603 
1604 static bool virt_get_highmem(Object *obj, Error **errp)
1605 {
1606     VirtMachineState *vms = VIRT_MACHINE(obj);
1607 
1608     return vms->highmem;
1609 }
1610 
1611 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1612 {
1613     VirtMachineState *vms = VIRT_MACHINE(obj);
1614 
1615     vms->highmem = value;
1616 }
1617 
1618 static bool virt_get_its(Object *obj, Error **errp)
1619 {
1620     VirtMachineState *vms = VIRT_MACHINE(obj);
1621 
1622     return vms->its;
1623 }
1624 
1625 static void virt_set_its(Object *obj, bool value, Error **errp)
1626 {
1627     VirtMachineState *vms = VIRT_MACHINE(obj);
1628 
1629     vms->its = value;
1630 }
1631 
1632 static char *virt_get_gic_version(Object *obj, Error **errp)
1633 {
1634     VirtMachineState *vms = VIRT_MACHINE(obj);
1635     const char *val = vms->gic_version == 3 ? "3" : "2";
1636 
1637     return g_strdup(val);
1638 }
1639 
1640 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1641 {
1642     VirtMachineState *vms = VIRT_MACHINE(obj);
1643 
1644     if (!strcmp(value, "3")) {
1645         vms->gic_version = 3;
1646     } else if (!strcmp(value, "2")) {
1647         vms->gic_version = 2;
1648     } else if (!strcmp(value, "host")) {
1649         vms->gic_version = 0; /* Will probe later */
1650     } else if (!strcmp(value, "max")) {
1651         vms->gic_version = -1; /* Will probe later */
1652     } else {
1653         error_setg(errp, "Invalid gic-version value");
1654         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1655     }
1656 }
1657 
1658 static char *virt_get_iommu(Object *obj, Error **errp)
1659 {
1660     VirtMachineState *vms = VIRT_MACHINE(obj);
1661 
1662     switch (vms->iommu) {
1663     case VIRT_IOMMU_NONE:
1664         return g_strdup("none");
1665     case VIRT_IOMMU_SMMUV3:
1666         return g_strdup("smmuv3");
1667     default:
1668         g_assert_not_reached();
1669     }
1670 }
1671 
1672 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1673 {
1674     VirtMachineState *vms = VIRT_MACHINE(obj);
1675 
1676     if (!strcmp(value, "smmuv3")) {
1677         vms->iommu = VIRT_IOMMU_SMMUV3;
1678     } else if (!strcmp(value, "none")) {
1679         vms->iommu = VIRT_IOMMU_NONE;
1680     } else {
1681         error_setg(errp, "Invalid iommu value");
1682         error_append_hint(errp, "Valid values are none, smmuv3.\n");
1683     }
1684 }
1685 
1686 static CpuInstanceProperties
1687 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1688 {
1689     MachineClass *mc = MACHINE_GET_CLASS(ms);
1690     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1691 
1692     assert(cpu_index < possible_cpus->len);
1693     return possible_cpus->cpus[cpu_index].props;
1694 }
1695 
1696 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1697 {
1698     return idx % nb_numa_nodes;
1699 }
1700 
1701 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1702 {
1703     int n;
1704     VirtMachineState *vms = VIRT_MACHINE(ms);
1705 
1706     if (ms->possible_cpus) {
1707         assert(ms->possible_cpus->len == max_cpus);
1708         return ms->possible_cpus;
1709     }
1710 
1711     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1712                                   sizeof(CPUArchId) * max_cpus);
1713     ms->possible_cpus->len = max_cpus;
1714     for (n = 0; n < ms->possible_cpus->len; n++) {
1715         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1716         ms->possible_cpus->cpus[n].arch_id =
1717             virt_cpu_mp_affinity(vms, n);
1718         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1719         ms->possible_cpus->cpus[n].props.thread_id = n;
1720     }
1721     return ms->possible_cpus;
1722 }
1723 
1724 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1725                                         DeviceState *dev, Error **errp)
1726 {
1727     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1728 
1729     if (vms->platform_bus_dev) {
1730         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1731             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1732                                      SYS_BUS_DEVICE(dev));
1733         }
1734     }
1735 }
1736 
1737 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1738                                                         DeviceState *dev)
1739 {
1740     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1741         return HOTPLUG_HANDLER(machine);
1742     }
1743 
1744     return NULL;
1745 }
1746 
1747 static void virt_machine_class_init(ObjectClass *oc, void *data)
1748 {
1749     MachineClass *mc = MACHINE_CLASS(oc);
1750     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1751 
1752     mc->init = machvirt_init;
1753     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1754      * The value may be reduced later when we have more information about the
1755      * configuration of the particular instance.
1756      */
1757     mc->max_cpus = 512;
1758     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1759     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1760     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1761     mc->block_default_type = IF_VIRTIO;
1762     mc->no_cdrom = 1;
1763     mc->pci_allow_0_address = true;
1764     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1765     mc->minimum_page_bits = 12;
1766     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1767     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1768     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1769     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1770     assert(!mc->get_hotplug_handler);
1771     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1772     hc->plug = virt_machine_device_plug_cb;
1773 }
1774 
1775 static const TypeInfo virt_machine_info = {
1776     .name          = TYPE_VIRT_MACHINE,
1777     .parent        = TYPE_MACHINE,
1778     .abstract      = true,
1779     .instance_size = sizeof(VirtMachineState),
1780     .class_size    = sizeof(VirtMachineClass),
1781     .class_init    = virt_machine_class_init,
1782     .interfaces = (InterfaceInfo[]) {
1783          { TYPE_HOTPLUG_HANDLER },
1784          { }
1785     },
1786 };
1787 
1788 static void machvirt_machine_init(void)
1789 {
1790     type_register_static(&virt_machine_info);
1791 }
1792 type_init(machvirt_machine_init);
1793 
1794 static void virt_3_1_instance_init(Object *obj)
1795 {
1796     VirtMachineState *vms = VIRT_MACHINE(obj);
1797     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1798 
1799     /* EL3 is disabled by default on virt: this makes us consistent
1800      * between KVM and TCG for this board, and it also allows us to
1801      * boot UEFI blobs which assume no TrustZone support.
1802      */
1803     vms->secure = false;
1804     object_property_add_bool(obj, "secure", virt_get_secure,
1805                              virt_set_secure, NULL);
1806     object_property_set_description(obj, "secure",
1807                                     "Set on/off to enable/disable the ARM "
1808                                     "Security Extensions (TrustZone)",
1809                                     NULL);
1810 
1811     /* EL2 is also disabled by default, for similar reasons */
1812     vms->virt = false;
1813     object_property_add_bool(obj, "virtualization", virt_get_virt,
1814                              virt_set_virt, NULL);
1815     object_property_set_description(obj, "virtualization",
1816                                     "Set on/off to enable/disable emulating a "
1817                                     "guest CPU which implements the ARM "
1818                                     "Virtualization Extensions",
1819                                     NULL);
1820 
1821     /* High memory is enabled by default */
1822     vms->highmem = true;
1823     object_property_add_bool(obj, "highmem", virt_get_highmem,
1824                              virt_set_highmem, NULL);
1825     object_property_set_description(obj, "highmem",
1826                                     "Set on/off to enable/disable using "
1827                                     "physical address space above 32 bits",
1828                                     NULL);
1829     /* Default GIC type is v2 */
1830     vms->gic_version = 2;
1831     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1832                         virt_set_gic_version, NULL);
1833     object_property_set_description(obj, "gic-version",
1834                                     "Set GIC version. "
1835                                     "Valid values are 2, 3 and host", NULL);
1836 
1837     vms->highmem_ecam = !vmc->no_highmem_ecam;
1838 
1839     if (vmc->no_its) {
1840         vms->its = false;
1841     } else {
1842         /* Default allows ITS instantiation */
1843         vms->its = true;
1844         object_property_add_bool(obj, "its", virt_get_its,
1845                                  virt_set_its, NULL);
1846         object_property_set_description(obj, "its",
1847                                         "Set on/off to enable/disable "
1848                                         "ITS instantiation",
1849                                         NULL);
1850     }
1851 
1852     /* Default disallows iommu instantiation */
1853     vms->iommu = VIRT_IOMMU_NONE;
1854     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1855     object_property_set_description(obj, "iommu",
1856                                     "Set the IOMMU type. "
1857                                     "Valid values are none and smmuv3",
1858                                     NULL);
1859 
1860     vms->memmap = a15memmap;
1861     vms->irqmap = a15irqmap;
1862 }
1863 
1864 static void virt_machine_3_1_options(MachineClass *mc)
1865 {
1866 }
1867 DEFINE_VIRT_MACHINE_AS_LATEST(3, 1)
1868 
1869 static void virt_3_0_instance_init(Object *obj)
1870 {
1871     virt_3_1_instance_init(obj);
1872 }
1873 
1874 static void virt_machine_3_0_options(MachineClass *mc)
1875 {
1876     virt_machine_3_1_options(mc);
1877 }
1878 DEFINE_VIRT_MACHINE(3, 0)
1879 
1880 #define VIRT_COMPAT_2_12 \
1881     HW_COMPAT_2_12
1882 
1883 static void virt_2_12_instance_init(Object *obj)
1884 {
1885     virt_3_0_instance_init(obj);
1886 }
1887 
1888 static void virt_machine_2_12_options(MachineClass *mc)
1889 {
1890     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1891 
1892     virt_machine_3_0_options(mc);
1893     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_12);
1894     vmc->no_highmem_ecam = true;
1895     mc->max_cpus = 255;
1896 }
1897 DEFINE_VIRT_MACHINE(2, 12)
1898 
1899 #define VIRT_COMPAT_2_11 \
1900     HW_COMPAT_2_11
1901 
1902 static void virt_2_11_instance_init(Object *obj)
1903 {
1904     virt_2_12_instance_init(obj);
1905 }
1906 
1907 static void virt_machine_2_11_options(MachineClass *mc)
1908 {
1909     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1910 
1911     virt_machine_2_12_options(mc);
1912     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1913     vmc->smbios_old_sys_ver = true;
1914 }
1915 DEFINE_VIRT_MACHINE(2, 11)
1916 
1917 #define VIRT_COMPAT_2_10 \
1918     HW_COMPAT_2_10
1919 
1920 static void virt_2_10_instance_init(Object *obj)
1921 {
1922     virt_2_11_instance_init(obj);
1923 }
1924 
1925 static void virt_machine_2_10_options(MachineClass *mc)
1926 {
1927     virt_machine_2_11_options(mc);
1928     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1929 }
1930 DEFINE_VIRT_MACHINE(2, 10)
1931 
1932 #define VIRT_COMPAT_2_9 \
1933     HW_COMPAT_2_9
1934 
1935 static void virt_2_9_instance_init(Object *obj)
1936 {
1937     virt_2_10_instance_init(obj);
1938 }
1939 
1940 static void virt_machine_2_9_options(MachineClass *mc)
1941 {
1942     virt_machine_2_10_options(mc);
1943     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1944 }
1945 DEFINE_VIRT_MACHINE(2, 9)
1946 
1947 #define VIRT_COMPAT_2_8 \
1948     HW_COMPAT_2_8
1949 
1950 static void virt_2_8_instance_init(Object *obj)
1951 {
1952     virt_2_9_instance_init(obj);
1953 }
1954 
1955 static void virt_machine_2_8_options(MachineClass *mc)
1956 {
1957     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1958 
1959     virt_machine_2_9_options(mc);
1960     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1961     /* For 2.8 and earlier we falsely claimed in the DT that
1962      * our timers were edge-triggered, not level-triggered.
1963      */
1964     vmc->claim_edge_triggered_timers = true;
1965 }
1966 DEFINE_VIRT_MACHINE(2, 8)
1967 
1968 #define VIRT_COMPAT_2_7 \
1969     HW_COMPAT_2_7
1970 
1971 static void virt_2_7_instance_init(Object *obj)
1972 {
1973     virt_2_8_instance_init(obj);
1974 }
1975 
1976 static void virt_machine_2_7_options(MachineClass *mc)
1977 {
1978     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1979 
1980     virt_machine_2_8_options(mc);
1981     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1982     /* ITS was introduced with 2.8 */
1983     vmc->no_its = true;
1984     /* Stick with 1K pages for migration compatibility */
1985     mc->minimum_page_bits = 0;
1986 }
1987 DEFINE_VIRT_MACHINE(2, 7)
1988 
1989 #define VIRT_COMPAT_2_6 \
1990     HW_COMPAT_2_6
1991 
1992 static void virt_2_6_instance_init(Object *obj)
1993 {
1994     virt_2_7_instance_init(obj);
1995 }
1996 
1997 static void virt_machine_2_6_options(MachineClass *mc)
1998 {
1999     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2000 
2001     virt_machine_2_7_options(mc);
2002     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
2003     vmc->disallow_affinity_adjustment = true;
2004     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2005     vmc->no_pmu = true;
2006 }
2007 DEFINE_VIRT_MACHINE(2, 6)
2008