1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "hw/sysbus.h" 33 #include "hw/arm/arm.h" 34 #include "hw/arm/primecell.h" 35 #include "hw/arm/virt.h" 36 #include "hw/devices.h" 37 #include "net/net.h" 38 #include "sysemu/block-backend.h" 39 #include "sysemu/device_tree.h" 40 #include "sysemu/sysemu.h" 41 #include "sysemu/kvm.h" 42 #include "hw/boards.h" 43 #include "hw/loader.h" 44 #include "exec/address-spaces.h" 45 #include "qemu/bitops.h" 46 #include "qemu/error-report.h" 47 #include "hw/pci-host/gpex.h" 48 #include "hw/arm/virt-acpi-build.h" 49 #include "hw/arm/sysbus-fdt.h" 50 #include "hw/platform-bus.h" 51 #include "hw/arm/fdt.h" 52 #include "hw/intc/arm_gic_common.h" 53 #include "kvm_arm.h" 54 #include "hw/smbios/smbios.h" 55 #include "qapi/visitor.h" 56 #include "standard-headers/linux/input.h" 57 58 /* Number of external interrupt lines to configure the GIC with */ 59 #define NUM_IRQS 256 60 61 #define PLATFORM_BUS_NUM_IRQS 64 62 63 static ARMPlatformBusSystemParams platform_bus_params; 64 65 typedef struct VirtBoardInfo { 66 struct arm_boot_info bootinfo; 67 const char *cpu_model; 68 const MemMapEntry *memmap; 69 const int *irqmap; 70 int smp_cpus; 71 void *fdt; 72 int fdt_size; 73 uint32_t clock_phandle; 74 uint32_t gic_phandle; 75 uint32_t v2m_phandle; 76 } VirtBoardInfo; 77 78 typedef struct { 79 MachineClass parent; 80 VirtBoardInfo *daughterboard; 81 } VirtMachineClass; 82 83 typedef struct { 84 MachineState parent; 85 bool secure; 86 bool highmem; 87 int32_t gic_version; 88 } VirtMachineState; 89 90 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt") 91 #define VIRT_MACHINE(obj) \ 92 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 93 #define VIRT_MACHINE_GET_CLASS(obj) \ 94 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 95 #define VIRT_MACHINE_CLASS(klass) \ 96 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 97 98 /* Addresses and sizes of our components. 99 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 100 * 128MB..256MB is used for miscellaneous device I/O. 101 * 256MB..1GB is reserved for possible future PCI support (ie where the 102 * PCI memory window will go if we add a PCI host controller). 103 * 1GB and up is RAM (which may happily spill over into the 104 * high memory region beyond 4GB). 105 * This represents a compromise between how much RAM can be given to 106 * a 32 bit VM and leaving space for expansion and in particular for PCI. 107 * Note that devices should generally be placed at multiples of 0x10000, 108 * to accommodate guests using 64K pages. 109 */ 110 static const MemMapEntry a15memmap[] = { 111 /* Space up to 0x8000000 is reserved for a boot ROM */ 112 [VIRT_FLASH] = { 0, 0x08000000 }, 113 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 114 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 115 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 116 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 117 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 118 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 119 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 120 /* This redistributor space allows up to 2*64kB*123 CPUs */ 121 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 122 [VIRT_UART] = { 0x09000000, 0x00001000 }, 123 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 124 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 125 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 126 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 127 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 128 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 129 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 130 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 131 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 132 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 133 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 134 /* Second PCIe window, 512GB wide at the 512GB boundary */ 135 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 136 }; 137 138 static const int a15irqmap[] = { 139 [VIRT_UART] = 1, 140 [VIRT_RTC] = 2, 141 [VIRT_PCIE] = 3, /* ... to 6 */ 142 [VIRT_GPIO] = 7, 143 [VIRT_SECURE_UART] = 8, 144 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 145 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 146 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 147 }; 148 149 static VirtBoardInfo machines[] = { 150 { 151 .cpu_model = "cortex-a15", 152 .memmap = a15memmap, 153 .irqmap = a15irqmap, 154 }, 155 { 156 .cpu_model = "cortex-a53", 157 .memmap = a15memmap, 158 .irqmap = a15irqmap, 159 }, 160 { 161 .cpu_model = "cortex-a57", 162 .memmap = a15memmap, 163 .irqmap = a15irqmap, 164 }, 165 { 166 .cpu_model = "host", 167 .memmap = a15memmap, 168 .irqmap = a15irqmap, 169 }, 170 }; 171 172 static VirtBoardInfo *find_machine_info(const char *cpu) 173 { 174 int i; 175 176 for (i = 0; i < ARRAY_SIZE(machines); i++) { 177 if (strcmp(cpu, machines[i].cpu_model) == 0) { 178 return &machines[i]; 179 } 180 } 181 return NULL; 182 } 183 184 static void create_fdt(VirtBoardInfo *vbi) 185 { 186 void *fdt = create_device_tree(&vbi->fdt_size); 187 188 if (!fdt) { 189 error_report("create_device_tree() failed"); 190 exit(1); 191 } 192 193 vbi->fdt = fdt; 194 195 /* Header */ 196 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 197 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 198 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 199 200 /* 201 * /chosen and /memory nodes must exist for load_dtb 202 * to fill in necessary properties later 203 */ 204 qemu_fdt_add_subnode(fdt, "/chosen"); 205 qemu_fdt_add_subnode(fdt, "/memory"); 206 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 207 208 /* Clock node, for the benefit of the UART. The kernel device tree 209 * binding documentation claims the PL011 node clock properties are 210 * optional but in practice if you omit them the kernel refuses to 211 * probe for the device. 212 */ 213 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 214 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 215 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 216 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 219 "clk24mhz"); 220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 221 222 } 223 224 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 225 { 226 uint32_t cpu_suspend_fn; 227 uint32_t cpu_off_fn; 228 uint32_t cpu_on_fn; 229 uint32_t migrate_fn; 230 void *fdt = vbi->fdt; 231 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 232 233 qemu_fdt_add_subnode(fdt, "/psci"); 234 if (armcpu->psci_version == 2) { 235 const char comp[] = "arm,psci-0.2\0arm,psci"; 236 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 237 238 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 239 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 240 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 241 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 242 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 243 } else { 244 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 245 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 246 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 247 } 248 } else { 249 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 250 251 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 252 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 253 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 254 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 255 } 256 257 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 258 * to the instruction that should be used to invoke PSCI functions. 259 * However, the device tree binding uses 'method' instead, so that is 260 * what we should use here. 261 */ 262 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 263 264 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 265 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 266 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 267 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 268 } 269 270 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype) 271 { 272 /* Note that on A15 h/w these interrupts are level-triggered, 273 * but for the GIC implementation provided by both QEMU and KVM 274 * they are edge-triggered. 275 */ 276 ARMCPU *armcpu; 277 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 278 279 if (gictype == 2) { 280 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 281 GIC_FDT_IRQ_PPI_CPU_WIDTH, 282 (1 << vbi->smp_cpus) - 1); 283 } 284 285 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 286 287 armcpu = ARM_CPU(qemu_get_cpu(0)); 288 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 289 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 290 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 291 compat, sizeof(compat)); 292 } else { 293 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 294 "arm,armv7-timer"); 295 } 296 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0); 297 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 299 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 300 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 301 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 302 } 303 304 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 305 { 306 int cpu; 307 int addr_cells = 1; 308 309 /* 310 * From Documentation/devicetree/bindings/arm/cpus.txt 311 * On ARM v8 64-bit systems value should be set to 2, 312 * that corresponds to the MPIDR_EL1 register size. 313 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 314 * in the system, #address-cells can be set to 1, since 315 * MPIDR_EL1[63:32] bits are not used for CPUs 316 * identification. 317 * 318 * Here we actually don't know whether our system is 32- or 64-bit one. 319 * The simplest way to go is to examine affinity IDs of all our CPUs. If 320 * at least one of them has Aff3 populated, we set #address-cells to 2. 321 */ 322 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 323 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 324 325 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 326 addr_cells = 2; 327 break; 328 } 329 } 330 331 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 332 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 333 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 334 335 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 336 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 337 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 338 339 qemu_fdt_add_subnode(vbi->fdt, nodename); 340 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 341 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 342 armcpu->dtb_compatible); 343 344 if (vbi->smp_cpus > 1) { 345 qemu_fdt_setprop_string(vbi->fdt, nodename, 346 "enable-method", "psci"); 347 } 348 349 if (addr_cells == 2) { 350 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 351 armcpu->mp_affinity); 352 } else { 353 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 354 armcpu->mp_affinity); 355 } 356 357 g_free(nodename); 358 } 359 } 360 361 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 362 { 363 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 364 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 365 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 366 "arm,gic-v2m-frame"); 367 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 368 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 369 2, vbi->memmap[VIRT_GIC_V2M].base, 370 2, vbi->memmap[VIRT_GIC_V2M].size); 371 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 372 } 373 374 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type) 375 { 376 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 377 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 378 379 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 380 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 381 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 382 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 383 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 384 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 385 if (type == 3) { 386 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 387 "arm,gic-v3"); 388 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 389 2, vbi->memmap[VIRT_GIC_DIST].base, 390 2, vbi->memmap[VIRT_GIC_DIST].size, 391 2, vbi->memmap[VIRT_GIC_REDIST].base, 392 2, vbi->memmap[VIRT_GIC_REDIST].size); 393 } else { 394 /* 'cortex-a15-gic' means 'GIC v2' */ 395 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 396 "arm,cortex-a15-gic"); 397 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 398 2, vbi->memmap[VIRT_GIC_DIST].base, 399 2, vbi->memmap[VIRT_GIC_DIST].size, 400 2, vbi->memmap[VIRT_GIC_CPU].base, 401 2, vbi->memmap[VIRT_GIC_CPU].size); 402 } 403 404 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 405 } 406 407 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 408 { 409 int i; 410 int irq = vbi->irqmap[VIRT_GIC_V2M]; 411 DeviceState *dev; 412 413 dev = qdev_create(NULL, "arm-gicv2m"); 414 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 415 qdev_prop_set_uint32(dev, "base-spi", irq); 416 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 417 qdev_init_nofail(dev); 418 419 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 420 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 421 } 422 423 fdt_add_v2m_gic_node(vbi); 424 } 425 426 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure) 427 { 428 /* We create a standalone GIC */ 429 DeviceState *gicdev; 430 SysBusDevice *gicbusdev; 431 const char *gictype; 432 int i; 433 434 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 435 436 gicdev = qdev_create(NULL, gictype); 437 qdev_prop_set_uint32(gicdev, "revision", type); 438 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 439 /* Note that the num-irq property counts both internal and external 440 * interrupts; there are always 32 of the former (mandated by GIC spec). 441 */ 442 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 443 if (!kvm_irqchip_in_kernel()) { 444 qdev_prop_set_bit(gicdev, "has-security-extensions", secure); 445 } 446 qdev_init_nofail(gicdev); 447 gicbusdev = SYS_BUS_DEVICE(gicdev); 448 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 449 if (type == 3) { 450 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base); 451 } else { 452 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 453 } 454 455 /* Wire the outputs from each CPU's generic timer to the 456 * appropriate GIC PPI inputs, and the GIC's IRQ output to 457 * the CPU's IRQ input. 458 */ 459 for (i = 0; i < smp_cpus; i++) { 460 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 461 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 462 int irq; 463 /* Mapping from the output timer irq lines from the CPU to the 464 * GIC PPI inputs we use for the virt board. 465 */ 466 const int timer_irq[] = { 467 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 468 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 469 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 470 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 471 }; 472 473 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 474 qdev_connect_gpio_out(cpudev, irq, 475 qdev_get_gpio_in(gicdev, 476 ppibase + timer_irq[irq])); 477 } 478 479 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 480 sysbus_connect_irq(gicbusdev, i + smp_cpus, 481 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 482 } 483 484 for (i = 0; i < NUM_IRQS; i++) { 485 pic[i] = qdev_get_gpio_in(gicdev, i); 486 } 487 488 fdt_add_gic_node(vbi, type); 489 490 if (type == 2) { 491 create_v2m(vbi, pic); 492 } 493 } 494 495 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart, 496 MemoryRegion *mem) 497 { 498 char *nodename; 499 hwaddr base = vbi->memmap[uart].base; 500 hwaddr size = vbi->memmap[uart].size; 501 int irq = vbi->irqmap[uart]; 502 const char compat[] = "arm,pl011\0arm,primecell"; 503 const char clocknames[] = "uartclk\0apb_pclk"; 504 DeviceState *dev = qdev_create(NULL, "pl011"); 505 SysBusDevice *s = SYS_BUS_DEVICE(dev); 506 507 qdev_init_nofail(dev); 508 memory_region_add_subregion(mem, base, 509 sysbus_mmio_get_region(s, 0)); 510 sysbus_connect_irq(s, 0, pic[irq]); 511 512 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 513 qemu_fdt_add_subnode(vbi->fdt, nodename); 514 /* Note that we can't use setprop_string because of the embedded NUL */ 515 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 516 compat, sizeof(compat)); 517 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 518 2, base, 2, size); 519 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 520 GIC_FDT_IRQ_TYPE_SPI, irq, 521 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 522 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 523 vbi->clock_phandle, vbi->clock_phandle); 524 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 525 clocknames, sizeof(clocknames)); 526 527 if (uart == VIRT_UART) { 528 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 529 } else { 530 /* Mark as not usable by the normal world */ 531 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 532 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 533 } 534 535 g_free(nodename); 536 } 537 538 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 539 { 540 char *nodename; 541 hwaddr base = vbi->memmap[VIRT_RTC].base; 542 hwaddr size = vbi->memmap[VIRT_RTC].size; 543 int irq = vbi->irqmap[VIRT_RTC]; 544 const char compat[] = "arm,pl031\0arm,primecell"; 545 546 sysbus_create_simple("pl031", base, pic[irq]); 547 548 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 549 qemu_fdt_add_subnode(vbi->fdt, nodename); 550 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 551 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 552 2, base, 2, size); 553 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 554 GIC_FDT_IRQ_TYPE_SPI, irq, 555 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 556 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 557 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 558 g_free(nodename); 559 } 560 561 static DeviceState *pl061_dev; 562 static void virt_powerdown_req(Notifier *n, void *opaque) 563 { 564 /* use gpio Pin 3 for power button event */ 565 qemu_set_irq(qdev_get_gpio_in(pl061_dev, 3), 1); 566 } 567 568 static Notifier virt_system_powerdown_notifier = { 569 .notify = virt_powerdown_req 570 }; 571 572 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic) 573 { 574 char *nodename; 575 hwaddr base = vbi->memmap[VIRT_GPIO].base; 576 hwaddr size = vbi->memmap[VIRT_GPIO].size; 577 int irq = vbi->irqmap[VIRT_GPIO]; 578 const char compat[] = "arm,pl061\0arm,primecell"; 579 580 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 581 582 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt); 583 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 584 qemu_fdt_add_subnode(vbi->fdt, nodename); 585 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 586 2, base, 2, size); 587 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 588 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2); 589 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0); 590 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 591 GIC_FDT_IRQ_TYPE_SPI, irq, 592 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 593 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 594 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 595 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle); 596 597 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys"); 598 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys"); 599 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0); 600 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1); 601 602 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff"); 603 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff", 604 "label", "GPIO Key Poweroff"); 605 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code", 606 KEY_POWER); 607 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff", 608 "gpios", phandle, 3, 0); 609 610 /* connect powerdown request */ 611 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 612 613 g_free(nodename); 614 } 615 616 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 617 { 618 int i; 619 hwaddr size = vbi->memmap[VIRT_MMIO].size; 620 621 /* We create the transports in forwards order. Since qbus_realize() 622 * prepends (not appends) new child buses, the incrementing loop below will 623 * create a list of virtio-mmio buses with decreasing base addresses. 624 * 625 * When a -device option is processed from the command line, 626 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 627 * order. The upshot is that -device options in increasing command line 628 * order are mapped to virtio-mmio buses with decreasing base addresses. 629 * 630 * When this code was originally written, that arrangement ensured that the 631 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 632 * the first -device on the command line. (The end-to-end order is a 633 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 634 * guest kernel's name-to-address assignment strategy.) 635 * 636 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 637 * the message, if not necessarily the code, of commit 70161ff336. 638 * Therefore the loop now establishes the inverse of the original intent. 639 * 640 * Unfortunately, we can't counteract the kernel change by reversing the 641 * loop; it would break existing command lines. 642 * 643 * In any case, the kernel makes no guarantee about the stability of 644 * enumeration order of virtio devices (as demonstrated by it changing 645 * between kernel versions). For reliable and stable identification 646 * of disks users must use UUIDs or similar mechanisms. 647 */ 648 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 649 int irq = vbi->irqmap[VIRT_MMIO] + i; 650 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 651 652 sysbus_create_simple("virtio-mmio", base, pic[irq]); 653 } 654 655 /* We add dtb nodes in reverse order so that they appear in the finished 656 * device tree lowest address first. 657 * 658 * Note that this mapping is independent of the loop above. The previous 659 * loop influences virtio device to virtio transport assignment, whereas 660 * this loop controls how virtio transports are laid out in the dtb. 661 */ 662 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 663 char *nodename; 664 int irq = vbi->irqmap[VIRT_MMIO] + i; 665 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 666 667 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 668 qemu_fdt_add_subnode(vbi->fdt, nodename); 669 qemu_fdt_setprop_string(vbi->fdt, nodename, 670 "compatible", "virtio,mmio"); 671 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 672 2, base, 2, size); 673 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 674 GIC_FDT_IRQ_TYPE_SPI, irq, 675 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 676 g_free(nodename); 677 } 678 } 679 680 static void create_one_flash(const char *name, hwaddr flashbase, 681 hwaddr flashsize) 682 { 683 /* Create and map a single flash device. We use the same 684 * parameters as the flash devices on the Versatile Express board. 685 */ 686 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 687 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 688 const uint64_t sectorlength = 256 * 1024; 689 690 if (dinfo) { 691 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 692 &error_abort); 693 } 694 695 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 696 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 697 qdev_prop_set_uint8(dev, "width", 4); 698 qdev_prop_set_uint8(dev, "device-width", 2); 699 qdev_prop_set_bit(dev, "big-endian", false); 700 qdev_prop_set_uint16(dev, "id0", 0x89); 701 qdev_prop_set_uint16(dev, "id1", 0x18); 702 qdev_prop_set_uint16(dev, "id2", 0x00); 703 qdev_prop_set_uint16(dev, "id3", 0x00); 704 qdev_prop_set_string(dev, "name", name); 705 qdev_init_nofail(dev); 706 707 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 708 } 709 710 static void create_flash(const VirtBoardInfo *vbi) 711 { 712 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 713 * Any file passed via -bios goes in the first of these. 714 */ 715 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 716 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 717 char *nodename; 718 719 if (bios_name) { 720 char *fn; 721 int image_size; 722 723 if (drive_get(IF_PFLASH, 0, 0)) { 724 error_report("The contents of the first flash device may be " 725 "specified with -bios or with -drive if=pflash... " 726 "but you cannot use both options at once"); 727 exit(1); 728 } 729 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 730 if (!fn) { 731 error_report("Could not find ROM image '%s'", bios_name); 732 exit(1); 733 } 734 image_size = load_image_targphys(fn, flashbase, flashsize); 735 g_free(fn); 736 if (image_size < 0) { 737 error_report("Could not load ROM image '%s'", bios_name); 738 exit(1); 739 } 740 } 741 742 create_one_flash("virt.flash0", flashbase, flashsize); 743 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 744 745 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 746 qemu_fdt_add_subnode(vbi->fdt, nodename); 747 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 748 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 749 2, flashbase, 2, flashsize, 750 2, flashbase + flashsize, 2, flashsize); 751 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 752 g_free(nodename); 753 } 754 755 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as) 756 { 757 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 758 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 759 char *nodename; 760 761 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 762 763 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 764 qemu_fdt_add_subnode(vbi->fdt, nodename); 765 qemu_fdt_setprop_string(vbi->fdt, nodename, 766 "compatible", "qemu,fw-cfg-mmio"); 767 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 768 2, base, 2, size); 769 g_free(nodename); 770 } 771 772 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 773 int first_irq, const char *nodename) 774 { 775 int devfn, pin; 776 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 777 uint32_t *irq_map = full_irq_map; 778 779 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 780 for (pin = 0; pin < 4; pin++) { 781 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 782 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 783 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 784 int i; 785 786 uint32_t map[] = { 787 devfn << 8, 0, 0, /* devfn */ 788 pin + 1, /* PCI pin */ 789 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 790 791 /* Convert map to big endian */ 792 for (i = 0; i < 10; i++) { 793 irq_map[i] = cpu_to_be32(map[i]); 794 } 795 irq_map += 10; 796 } 797 } 798 799 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 800 full_irq_map, sizeof(full_irq_map)); 801 802 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 803 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 804 0x7 /* PCI irq */); 805 } 806 807 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 808 bool use_highmem) 809 { 810 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 811 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 812 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 813 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 814 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 815 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 816 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 817 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 818 hwaddr base = base_mmio; 819 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 820 int irq = vbi->irqmap[VIRT_PCIE]; 821 MemoryRegion *mmio_alias; 822 MemoryRegion *mmio_reg; 823 MemoryRegion *ecam_alias; 824 MemoryRegion *ecam_reg; 825 DeviceState *dev; 826 char *nodename; 827 int i; 828 PCIHostState *pci; 829 830 dev = qdev_create(NULL, TYPE_GPEX_HOST); 831 qdev_init_nofail(dev); 832 833 /* Map only the first size_ecam bytes of ECAM space */ 834 ecam_alias = g_new0(MemoryRegion, 1); 835 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 836 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 837 ecam_reg, 0, size_ecam); 838 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 839 840 /* Map the MMIO window into system address space so as to expose 841 * the section of PCI MMIO space which starts at the same base address 842 * (ie 1:1 mapping for that part of PCI MMIO space visible through 843 * the window). 844 */ 845 mmio_alias = g_new0(MemoryRegion, 1); 846 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 847 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 848 mmio_reg, base_mmio, size_mmio); 849 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 850 851 if (use_highmem) { 852 /* Map high MMIO space */ 853 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 854 855 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 856 mmio_reg, base_mmio_high, size_mmio_high); 857 memory_region_add_subregion(get_system_memory(), base_mmio_high, 858 high_mmio_alias); 859 } 860 861 /* Map IO port space */ 862 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 863 864 for (i = 0; i < GPEX_NUM_IRQS; i++) { 865 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 866 } 867 868 pci = PCI_HOST_BRIDGE(dev); 869 if (pci->bus) { 870 for (i = 0; i < nb_nics; i++) { 871 NICInfo *nd = &nd_table[i]; 872 873 if (!nd->model) { 874 nd->model = g_strdup("virtio"); 875 } 876 877 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 878 } 879 } 880 881 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 882 qemu_fdt_add_subnode(vbi->fdt, nodename); 883 qemu_fdt_setprop_string(vbi->fdt, nodename, 884 "compatible", "pci-host-ecam-generic"); 885 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 886 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 887 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 888 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 889 nr_pcie_buses - 1); 890 891 if (vbi->v2m_phandle) { 892 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", 893 vbi->v2m_phandle); 894 } 895 896 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 897 2, base_ecam, 2, size_ecam); 898 899 if (use_highmem) { 900 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 901 1, FDT_PCI_RANGE_IOPORT, 2, 0, 902 2, base_pio, 2, size_pio, 903 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 904 2, base_mmio, 2, size_mmio, 905 1, FDT_PCI_RANGE_MMIO_64BIT, 906 2, base_mmio_high, 907 2, base_mmio_high, 2, size_mmio_high); 908 } else { 909 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 910 1, FDT_PCI_RANGE_IOPORT, 2, 0, 911 2, base_pio, 2, size_pio, 912 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 913 2, base_mmio, 2, size_mmio); 914 } 915 916 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 917 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 918 919 g_free(nodename); 920 } 921 922 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 923 { 924 DeviceState *dev; 925 SysBusDevice *s; 926 int i; 927 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 928 MemoryRegion *sysmem = get_system_memory(); 929 930 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 931 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 932 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 933 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 934 935 fdt_params->system_params = &platform_bus_params; 936 fdt_params->binfo = &vbi->bootinfo; 937 fdt_params->intc = "/intc"; 938 /* 939 * register a machine init done notifier that creates the device tree 940 * nodes of the platform bus and its children dynamic sysbus devices 941 */ 942 arm_register_platform_bus_fdt_creator(fdt_params); 943 944 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 945 dev->id = TYPE_PLATFORM_BUS_DEVICE; 946 qdev_prop_set_uint32(dev, "num_irqs", 947 platform_bus_params.platform_bus_num_irqs); 948 qdev_prop_set_uint32(dev, "mmio_size", 949 platform_bus_params.platform_bus_size); 950 qdev_init_nofail(dev); 951 s = SYS_BUS_DEVICE(dev); 952 953 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 954 int irqn = platform_bus_params.platform_bus_first_irq + i; 955 sysbus_connect_irq(s, i, pic[irqn]); 956 } 957 958 memory_region_add_subregion(sysmem, 959 platform_bus_params.platform_bus_base, 960 sysbus_mmio_get_region(s, 0)); 961 } 962 963 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 964 { 965 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 966 967 *fdt_size = board->fdt_size; 968 return board->fdt; 969 } 970 971 static void virt_build_smbios(VirtGuestInfo *guest_info) 972 { 973 FWCfgState *fw_cfg = guest_info->fw_cfg; 974 uint8_t *smbios_tables, *smbios_anchor; 975 size_t smbios_tables_len, smbios_anchor_len; 976 const char *product = "QEMU Virtual Machine"; 977 978 if (!fw_cfg) { 979 return; 980 } 981 982 if (kvm_enabled()) { 983 product = "KVM Virtual Machine"; 984 } 985 986 smbios_set_defaults("QEMU", product, 987 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 988 989 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 990 &smbios_anchor, &smbios_anchor_len); 991 992 if (smbios_anchor) { 993 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 994 smbios_tables, smbios_tables_len); 995 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 996 smbios_anchor, smbios_anchor_len); 997 } 998 } 999 1000 static 1001 void virt_guest_info_machine_done(Notifier *notifier, void *data) 1002 { 1003 VirtGuestInfoState *guest_info_state = container_of(notifier, 1004 VirtGuestInfoState, machine_done); 1005 virt_acpi_setup(&guest_info_state->info); 1006 virt_build_smbios(&guest_info_state->info); 1007 } 1008 1009 static void machvirt_init(MachineState *machine) 1010 { 1011 VirtMachineState *vms = VIRT_MACHINE(machine); 1012 qemu_irq pic[NUM_IRQS]; 1013 MemoryRegion *sysmem = get_system_memory(); 1014 MemoryRegion *secure_sysmem = NULL; 1015 int gic_version = vms->gic_version; 1016 int n, virt_max_cpus; 1017 MemoryRegion *ram = g_new(MemoryRegion, 1); 1018 const char *cpu_model = machine->cpu_model; 1019 VirtBoardInfo *vbi; 1020 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1021 VirtGuestInfo *guest_info = &guest_info_state->info; 1022 char **cpustr; 1023 1024 if (!cpu_model) { 1025 cpu_model = "cortex-a15"; 1026 } 1027 1028 /* We can probe only here because during property set 1029 * KVM is not available yet 1030 */ 1031 if (!gic_version) { 1032 gic_version = kvm_arm_vgic_probe(); 1033 if (!gic_version) { 1034 error_report("Unable to determine GIC version supported by host"); 1035 error_printf("KVM acceleration is probably not supported\n"); 1036 exit(1); 1037 } 1038 } 1039 1040 /* Separate the actual CPU model name from any appended features */ 1041 cpustr = g_strsplit(cpu_model, ",", 2); 1042 1043 vbi = find_machine_info(cpustr[0]); 1044 1045 if (!vbi) { 1046 error_report("mach-virt: CPU %s not supported", cpustr[0]); 1047 exit(1); 1048 } 1049 1050 /* The maximum number of CPUs depends on the GIC version, or on how 1051 * many redistributors we can fit into the memory map. 1052 */ 1053 if (gic_version == 3) { 1054 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000; 1055 } else { 1056 virt_max_cpus = GIC_NCPU; 1057 } 1058 1059 if (max_cpus > virt_max_cpus) { 1060 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1061 "supported by machine 'mach-virt' (%d)", 1062 max_cpus, virt_max_cpus); 1063 exit(1); 1064 } 1065 1066 vbi->smp_cpus = smp_cpus; 1067 1068 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 1069 error_report("mach-virt: cannot model more than 30GB RAM"); 1070 exit(1); 1071 } 1072 1073 if (vms->secure) { 1074 if (kvm_enabled()) { 1075 error_report("mach-virt: KVM does not support Security extensions"); 1076 exit(1); 1077 } 1078 1079 /* The Secure view of the world is the same as the NonSecure, 1080 * but with a few extra devices. Create it as a container region 1081 * containing the system memory at low priority; any secure-only 1082 * devices go in at higher priority and take precedence. 1083 */ 1084 secure_sysmem = g_new(MemoryRegion, 1); 1085 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1086 UINT64_MAX); 1087 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1088 } 1089 1090 create_fdt(vbi); 1091 1092 for (n = 0; n < smp_cpus; n++) { 1093 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 1094 CPUClass *cc = CPU_CLASS(oc); 1095 Object *cpuobj; 1096 Error *err = NULL; 1097 char *cpuopts = g_strdup(cpustr[1]); 1098 1099 if (!oc) { 1100 error_report("Unable to find CPU definition"); 1101 exit(1); 1102 } 1103 cpuobj = object_new(object_class_get_name(oc)); 1104 1105 /* Handle any CPU options specified by the user */ 1106 cc->parse_features(CPU(cpuobj), cpuopts, &err); 1107 g_free(cpuopts); 1108 if (err) { 1109 error_report_err(err); 1110 exit(1); 1111 } 1112 1113 if (!vms->secure) { 1114 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1115 } 1116 1117 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", 1118 NULL); 1119 1120 /* Secondary CPUs start in PSCI powered-down state */ 1121 if (n > 0) { 1122 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 1123 } 1124 1125 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1126 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 1127 "reset-cbar", &error_abort); 1128 } 1129 1130 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1131 &error_abort); 1132 if (vms->secure) { 1133 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1134 "secure-memory", &error_abort); 1135 } 1136 1137 object_property_set_bool(cpuobj, true, "realized", NULL); 1138 } 1139 g_strfreev(cpustr); 1140 fdt_add_timer_nodes(vbi, gic_version); 1141 fdt_add_cpu_nodes(vbi); 1142 fdt_add_psci_node(vbi); 1143 1144 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1145 machine->ram_size); 1146 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 1147 1148 create_flash(vbi); 1149 1150 create_gic(vbi, pic, gic_version, vms->secure); 1151 1152 create_uart(vbi, pic, VIRT_UART, sysmem); 1153 1154 if (vms->secure) { 1155 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem); 1156 } 1157 1158 create_rtc(vbi, pic); 1159 1160 create_pcie(vbi, pic, vms->highmem); 1161 1162 create_gpio(vbi, pic); 1163 1164 /* Create mmio transports, so the user can create virtio backends 1165 * (which will be automatically plugged in to the transports). If 1166 * no backend is created the transport will just sit harmlessly idle. 1167 */ 1168 create_virtio_devices(vbi, pic); 1169 1170 create_fw_cfg(vbi, &address_space_memory); 1171 rom_set_fw(fw_cfg_find()); 1172 1173 guest_info->smp_cpus = smp_cpus; 1174 guest_info->fw_cfg = fw_cfg_find(); 1175 guest_info->memmap = vbi->memmap; 1176 guest_info->irqmap = vbi->irqmap; 1177 guest_info->use_highmem = vms->highmem; 1178 guest_info->gic_version = gic_version; 1179 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 1180 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1181 1182 vbi->bootinfo.ram_size = machine->ram_size; 1183 vbi->bootinfo.kernel_filename = machine->kernel_filename; 1184 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1185 vbi->bootinfo.initrd_filename = machine->initrd_filename; 1186 vbi->bootinfo.nb_cpus = smp_cpus; 1187 vbi->bootinfo.board_id = -1; 1188 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1189 vbi->bootinfo.get_dtb = machvirt_dtb; 1190 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1191 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1192 1193 /* 1194 * arm_load_kernel machine init done notifier registration must 1195 * happen before the platform_bus_create call. In this latter, 1196 * another notifier is registered which adds platform bus nodes. 1197 * Notifiers are executed in registration reverse order. 1198 */ 1199 create_platform_bus(vbi, pic); 1200 } 1201 1202 static bool virt_get_secure(Object *obj, Error **errp) 1203 { 1204 VirtMachineState *vms = VIRT_MACHINE(obj); 1205 1206 return vms->secure; 1207 } 1208 1209 static void virt_set_secure(Object *obj, bool value, Error **errp) 1210 { 1211 VirtMachineState *vms = VIRT_MACHINE(obj); 1212 1213 vms->secure = value; 1214 } 1215 1216 static bool virt_get_highmem(Object *obj, Error **errp) 1217 { 1218 VirtMachineState *vms = VIRT_MACHINE(obj); 1219 1220 return vms->highmem; 1221 } 1222 1223 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1224 { 1225 VirtMachineState *vms = VIRT_MACHINE(obj); 1226 1227 vms->highmem = value; 1228 } 1229 1230 static char *virt_get_gic_version(Object *obj, Error **errp) 1231 { 1232 VirtMachineState *vms = VIRT_MACHINE(obj); 1233 const char *val = vms->gic_version == 3 ? "3" : "2"; 1234 1235 return g_strdup(val); 1236 } 1237 1238 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1239 { 1240 VirtMachineState *vms = VIRT_MACHINE(obj); 1241 1242 if (!strcmp(value, "3")) { 1243 vms->gic_version = 3; 1244 } else if (!strcmp(value, "2")) { 1245 vms->gic_version = 2; 1246 } else if (!strcmp(value, "host")) { 1247 vms->gic_version = 0; /* Will probe later */ 1248 } else { 1249 error_setg(errp, "Invalid gic-version value"); 1250 error_append_hint(errp, "Valid values are 3, 2, host.\n"); 1251 } 1252 } 1253 1254 static void virt_instance_init(Object *obj) 1255 { 1256 VirtMachineState *vms = VIRT_MACHINE(obj); 1257 1258 /* EL3 is disabled by default on virt: this makes us consistent 1259 * between KVM and TCG for this board, and it also allows us to 1260 * boot UEFI blobs which assume no TrustZone support. 1261 */ 1262 vms->secure = false; 1263 object_property_add_bool(obj, "secure", virt_get_secure, 1264 virt_set_secure, NULL); 1265 object_property_set_description(obj, "secure", 1266 "Set on/off to enable/disable the ARM " 1267 "Security Extensions (TrustZone)", 1268 NULL); 1269 1270 /* High memory is enabled by default */ 1271 vms->highmem = true; 1272 object_property_add_bool(obj, "highmem", virt_get_highmem, 1273 virt_set_highmem, NULL); 1274 object_property_set_description(obj, "highmem", 1275 "Set on/off to enable/disable using " 1276 "physical address space above 32 bits", 1277 NULL); 1278 /* Default GIC type is v2 */ 1279 vms->gic_version = 2; 1280 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1281 virt_set_gic_version, NULL); 1282 object_property_set_description(obj, "gic-version", 1283 "Set GIC version. " 1284 "Valid values are 2, 3 and host", NULL); 1285 } 1286 1287 static void virt_class_init(ObjectClass *oc, void *data) 1288 { 1289 MachineClass *mc = MACHINE_CLASS(oc); 1290 1291 mc->desc = "ARM Virtual Machine", 1292 mc->init = machvirt_init; 1293 /* Start max_cpus at the maximum QEMU supports. We'll further restrict 1294 * it later in machvirt_init, where we have more information about the 1295 * configuration of the particular instance. 1296 */ 1297 mc->max_cpus = MAX_CPUMASK_BITS; 1298 mc->has_dynamic_sysbus = true; 1299 mc->block_default_type = IF_VIRTIO; 1300 mc->no_cdrom = 1; 1301 mc->pci_allow_0_address = true; 1302 } 1303 1304 static const TypeInfo machvirt_info = { 1305 .name = TYPE_VIRT_MACHINE, 1306 .parent = TYPE_MACHINE, 1307 .instance_size = sizeof(VirtMachineState), 1308 .instance_init = virt_instance_init, 1309 .class_size = sizeof(VirtMachineClass), 1310 .class_init = virt_class_init, 1311 }; 1312 1313 static void machvirt_machine_init(void) 1314 { 1315 type_register_static(&machvirt_info); 1316 } 1317 1318 machine_init(machvirt_machine_init); 1319