xref: /openbmc/qemu/hw/arm/virt.c (revision c80e2251)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/cpu-qom.h"
77 #include "target/arm/internals.h"
78 #include "target/arm/multiprocessing.h"
79 #include "target/arm/gtimer.h"
80 #include "hw/mem/pc-dimm.h"
81 #include "hw/mem/nvdimm.h"
82 #include "hw/acpi/generic_event_device.h"
83 #include "hw/virtio/virtio-md-pci.h"
84 #include "hw/virtio/virtio-iommu.h"
85 #include "hw/char/pl011.h"
86 #include "qemu/guest-random.h"
87 
88 static GlobalProperty arm_virt_compat[] = {
89     { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" },
90 };
91 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat);
92 
93 /*
94  * This cannot be called from the virt_machine_class_init() because
95  * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new()
96  * only is called on virt non abstract class init.
97  */
98 static void arm_virt_compat_set(MachineClass *mc)
99 {
100     compat_props_add(mc->compat_props, arm_virt_compat,
101                      arm_virt_compat_len);
102 }
103 
104 #define DEFINE_VIRT_MACHINE_IMPL(latest, ...) \
105     static void MACHINE_VER_SYM(class_init, virt, __VA_ARGS__)( \
106         ObjectClass *oc, \
107         void *data) \
108     { \
109         MachineClass *mc = MACHINE_CLASS(oc); \
110         arm_virt_compat_set(mc); \
111         MACHINE_VER_SYM(options, virt, __VA_ARGS__)(mc); \
112         mc->desc = "QEMU " MACHINE_VER_STR(__VA_ARGS__) " ARM Virtual Machine"; \
113         MACHINE_VER_DEPRECATION(__VA_ARGS__); \
114         if (latest) { \
115             mc->alias = "virt"; \
116         } \
117     } \
118     static const TypeInfo MACHINE_VER_SYM(info, virt, __VA_ARGS__) = \
119     { \
120         .name = MACHINE_VER_TYPE_NAME("virt", __VA_ARGS__), \
121         .parent = TYPE_VIRT_MACHINE, \
122         .class_init = MACHINE_VER_SYM(class_init, virt, __VA_ARGS__), \
123     }; \
124     static void MACHINE_VER_SYM(register, virt, __VA_ARGS__)(void) \
125     { \
126         MACHINE_VER_DELETION(__VA_ARGS__); \
127         type_register_static(&MACHINE_VER_SYM(info, virt, __VA_ARGS__)); \
128     } \
129     type_init(MACHINE_VER_SYM(register, virt, __VA_ARGS__));
130 
131 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
132     DEFINE_VIRT_MACHINE_IMPL(true, major, minor)
133 #define DEFINE_VIRT_MACHINE(major, minor) \
134     DEFINE_VIRT_MACHINE_IMPL(false, major, minor)
135 
136 
137 /* Number of external interrupt lines to configure the GIC with */
138 #define NUM_IRQS 256
139 
140 #define PLATFORM_BUS_NUM_IRQS 64
141 
142 /* Legacy RAM limit in GB (< version 4.0) */
143 #define LEGACY_RAMLIMIT_GB 255
144 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
145 
146 /* Addresses and sizes of our components.
147  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
148  * 128MB..256MB is used for miscellaneous device I/O.
149  * 256MB..1GB is reserved for possible future PCI support (ie where the
150  * PCI memory window will go if we add a PCI host controller).
151  * 1GB and up is RAM (which may happily spill over into the
152  * high memory region beyond 4GB).
153  * This represents a compromise between how much RAM can be given to
154  * a 32 bit VM and leaving space for expansion and in particular for PCI.
155  * Note that devices should generally be placed at multiples of 0x10000,
156  * to accommodate guests using 64K pages.
157  */
158 static const MemMapEntry base_memmap[] = {
159     /* Space up to 0x8000000 is reserved for a boot ROM */
160     [VIRT_FLASH] =              {          0, 0x08000000 },
161     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
162     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
163     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
164     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
165     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
166     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
167     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
168     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
169     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
170     /* This redistributor space allows up to 2*64kB*123 CPUs */
171     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
172     [VIRT_UART0] =              { 0x09000000, 0x00001000 },
173     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
174     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
175     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
176     [VIRT_UART1] =              { 0x09040000, 0x00001000 },
177     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
178     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
179     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
180     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
181     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
182     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
183     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
184     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
185     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
186     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
187     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
188     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
189     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
190     /* Actual RAM size depends on initial RAM and device memory settings */
191     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
192 };
193 
194 /*
195  * Highmem IO Regions: This memory map is floating, located after the RAM.
196  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
197  * top of the RAM, so that its base get the same alignment as the size,
198  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
199  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
200  * Note the extended_memmap is sized so that it eventually also includes the
201  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
202  * index of base_memmap).
203  *
204  * The memory map for these Highmem IO Regions can be in legacy or compact
205  * layout, depending on 'compact-highmem' property. With legacy layout, the
206  * PA space for one specific region is always reserved, even if the region
207  * has been disabled or doesn't fit into the PA space. However, the PA space
208  * for the region won't be reserved in these circumstances with compact layout.
209  */
210 static MemMapEntry extended_memmap[] = {
211     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
212     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
213     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
214     /* Second PCIe window */
215     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
216 };
217 
218 static const int a15irqmap[] = {
219     [VIRT_UART0] = 1,
220     [VIRT_RTC] = 2,
221     [VIRT_PCIE] = 3, /* ... to 6 */
222     [VIRT_GPIO] = 7,
223     [VIRT_UART1] = 8,
224     [VIRT_ACPI_GED] = 9,
225     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
226     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
227     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
228     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
229 };
230 
231 static void create_randomness(MachineState *ms, const char *node)
232 {
233     struct {
234         uint64_t kaslr;
235         uint8_t rng[32];
236     } seed;
237 
238     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
239         return;
240     }
241     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
242     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
243 }
244 
245 /*
246  * The CPU object always exposes the NS EL2 virt timer IRQ line,
247  * but we don't want to advertise it to the guest in the dtb or ACPI
248  * table unless it's really going to do something.
249  */
250 static bool ns_el2_virt_timer_present(void)
251 {
252     ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
253     CPUARMState *env = &cpu->env;
254 
255     return arm_feature(env, ARM_FEATURE_AARCH64) &&
256         arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu);
257 }
258 
259 static void create_fdt(VirtMachineState *vms)
260 {
261     MachineState *ms = MACHINE(vms);
262     int nb_numa_nodes = ms->numa_state->num_nodes;
263     void *fdt = create_device_tree(&vms->fdt_size);
264 
265     if (!fdt) {
266         error_report("create_device_tree() failed");
267         exit(1);
268     }
269 
270     ms->fdt = fdt;
271 
272     /* Header */
273     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
274     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
275     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
276     qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
277 
278     /*
279      * For QEMU, all DMA is coherent. Advertising this in the root node
280      * has two benefits:
281      *
282      * - It avoids potential bugs where we forget to mark a DMA
283      *   capable device as being dma-coherent
284      * - It avoids spurious warnings from the Linux kernel about
285      *   devices which can't do DMA at all
286      */
287     qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0);
288 
289     /* /chosen must exist for load_dtb to fill in necessary properties later */
290     qemu_fdt_add_subnode(fdt, "/chosen");
291     if (vms->dtb_randomness) {
292         create_randomness(ms, "/chosen");
293     }
294 
295     if (vms->secure) {
296         qemu_fdt_add_subnode(fdt, "/secure-chosen");
297         if (vms->dtb_randomness) {
298             create_randomness(ms, "/secure-chosen");
299         }
300     }
301 
302     qemu_fdt_add_subnode(fdt, "/aliases");
303 
304     /* Clock node, for the benefit of the UART. The kernel device tree
305      * binding documentation claims the PL011 node clock properties are
306      * optional but in practice if you omit them the kernel refuses to
307      * probe for the device.
308      */
309     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
310     qemu_fdt_add_subnode(fdt, "/apb-pclk");
311     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
312     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
313     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
314     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
315                                 "clk24mhz");
316     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
317 
318     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
319         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
320         uint32_t *matrix = g_malloc0(size);
321         int idx, i, j;
322 
323         for (i = 0; i < nb_numa_nodes; i++) {
324             for (j = 0; j < nb_numa_nodes; j++) {
325                 idx = (i * nb_numa_nodes + j) * 3;
326                 matrix[idx + 0] = cpu_to_be32(i);
327                 matrix[idx + 1] = cpu_to_be32(j);
328                 matrix[idx + 2] =
329                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
330             }
331         }
332 
333         qemu_fdt_add_subnode(fdt, "/distance-map");
334         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
335                                 "numa-distance-map-v1");
336         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
337                          matrix, size);
338         g_free(matrix);
339     }
340 }
341 
342 static void fdt_add_timer_nodes(const VirtMachineState *vms)
343 {
344     /* On real hardware these interrupts are level-triggered.
345      * On KVM they were edge-triggered before host kernel version 4.4,
346      * and level-triggered afterwards.
347      * On emulated QEMU they are level-triggered.
348      *
349      * Getting the DTB info about them wrong is awkward for some
350      * guest kernels:
351      *  pre-4.8 ignore the DT and leave the interrupt configured
352      *   with whatever the GIC reset value (or the bootloader) left it at
353      *  4.8 before rc6 honour the incorrect data by programming it back
354      *   into the GIC, causing problems
355      *  4.8rc6 and later ignore the DT and always write "level triggered"
356      *   into the GIC
357      *
358      * For backwards-compatibility, virt-2.8 and earlier will continue
359      * to say these are edge-triggered, but later machines will report
360      * the correct information.
361      */
362     ARMCPU *armcpu;
363     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
364     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
365     MachineState *ms = MACHINE(vms);
366 
367     if (vmc->claim_edge_triggered_timers) {
368         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
369     }
370 
371     if (vms->gic_version == VIRT_GIC_VERSION_2) {
372         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
373                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
374                              (1 << MACHINE(vms)->smp.cpus) - 1);
375     }
376 
377     qemu_fdt_add_subnode(ms->fdt, "/timer");
378 
379     armcpu = ARM_CPU(qemu_get_cpu(0));
380     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
381         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
382         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
383                          compat, sizeof(compat));
384     } else {
385         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
386                                 "arm,armv7-timer");
387     }
388     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
389     if (vms->ns_el2_virt_timer_irq) {
390         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
391                                GIC_FDT_IRQ_TYPE_PPI,
392                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
393                                GIC_FDT_IRQ_TYPE_PPI,
394                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
395                                GIC_FDT_IRQ_TYPE_PPI,
396                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
397                                GIC_FDT_IRQ_TYPE_PPI,
398                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags,
399                                GIC_FDT_IRQ_TYPE_PPI,
400                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags);
401     } else {
402         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
403                                GIC_FDT_IRQ_TYPE_PPI,
404                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
405                                GIC_FDT_IRQ_TYPE_PPI,
406                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
407                                GIC_FDT_IRQ_TYPE_PPI,
408                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
409                                GIC_FDT_IRQ_TYPE_PPI,
410                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
411     }
412 }
413 
414 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
415 {
416     int cpu;
417     int addr_cells = 1;
418     const MachineState *ms = MACHINE(vms);
419     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
420     int smp_cpus = ms->smp.cpus;
421 
422     /*
423      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
424      * On ARM v8 64-bit systems value should be set to 2,
425      * that corresponds to the MPIDR_EL1 register size.
426      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
427      * in the system, #address-cells can be set to 1, since
428      * MPIDR_EL1[63:32] bits are not used for CPUs
429      * identification.
430      *
431      * Here we actually don't know whether our system is 32- or 64-bit one.
432      * The simplest way to go is to examine affinity IDs of all our CPUs. If
433      * at least one of them has Aff3 populated, we set #address-cells to 2.
434      */
435     for (cpu = 0; cpu < smp_cpus; cpu++) {
436         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
437 
438         if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
439             addr_cells = 2;
440             break;
441         }
442     }
443 
444     qemu_fdt_add_subnode(ms->fdt, "/cpus");
445     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
446     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
447 
448     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
449         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
450         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
451         CPUState *cs = CPU(armcpu);
452 
453         qemu_fdt_add_subnode(ms->fdt, nodename);
454         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
455         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
456                                     armcpu->dtb_compatible);
457 
458         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
459             qemu_fdt_setprop_string(ms->fdt, nodename,
460                                         "enable-method", "psci");
461         }
462 
463         if (addr_cells == 2) {
464             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
465                                  arm_cpu_mp_affinity(armcpu));
466         } else {
467             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
468                                   arm_cpu_mp_affinity(armcpu));
469         }
470 
471         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
472             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
473                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
474         }
475 
476         if (!vmc->no_cpu_topology) {
477             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
478                                   qemu_fdt_alloc_phandle(ms->fdt));
479         }
480 
481         g_free(nodename);
482     }
483 
484     if (!vmc->no_cpu_topology) {
485         /*
486          * Add vCPU topology description through fdt node cpu-map.
487          *
488          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
489          * In a SMP system, the hierarchy of CPUs can be defined through
490          * four entities that are used to describe the layout of CPUs in
491          * the system: socket/cluster/core/thread.
492          *
493          * A socket node represents the boundary of system physical package
494          * and its child nodes must be one or more cluster nodes. A system
495          * can contain several layers of clustering within a single physical
496          * package and cluster nodes can be contained in parent cluster nodes.
497          *
498          * Note: currently we only support one layer of clustering within
499          * each physical package.
500          */
501         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
502 
503         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
504             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
505             char *map_path;
506 
507             if (ms->smp.threads > 1) {
508                 map_path = g_strdup_printf(
509                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
510                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
511                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
512                     (cpu / ms->smp.threads) % ms->smp.cores,
513                     cpu % ms->smp.threads);
514             } else {
515                 map_path = g_strdup_printf(
516                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
517                     cpu / (ms->smp.clusters * ms->smp.cores),
518                     (cpu / ms->smp.cores) % ms->smp.clusters,
519                     cpu % ms->smp.cores);
520             }
521             qemu_fdt_add_path(ms->fdt, map_path);
522             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
523 
524             g_free(map_path);
525             g_free(cpu_path);
526         }
527     }
528 }
529 
530 static void fdt_add_its_gic_node(VirtMachineState *vms)
531 {
532     char *nodename;
533     MachineState *ms = MACHINE(vms);
534 
535     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
536     nodename = g_strdup_printf("/intc/its@%" PRIx64,
537                                vms->memmap[VIRT_GIC_ITS].base);
538     qemu_fdt_add_subnode(ms->fdt, nodename);
539     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
540                             "arm,gic-v3-its");
541     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
542     qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
543     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
544                                  2, vms->memmap[VIRT_GIC_ITS].base,
545                                  2, vms->memmap[VIRT_GIC_ITS].size);
546     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
547     g_free(nodename);
548 }
549 
550 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
551 {
552     MachineState *ms = MACHINE(vms);
553     char *nodename;
554 
555     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
556                                vms->memmap[VIRT_GIC_V2M].base);
557     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
558     qemu_fdt_add_subnode(ms->fdt, nodename);
559     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
560                             "arm,gic-v2m-frame");
561     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
562     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
563                                  2, vms->memmap[VIRT_GIC_V2M].base,
564                                  2, vms->memmap[VIRT_GIC_V2M].size);
565     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
566     g_free(nodename);
567 }
568 
569 static void fdt_add_gic_node(VirtMachineState *vms)
570 {
571     MachineState *ms = MACHINE(vms);
572     char *nodename;
573 
574     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
575     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
576 
577     nodename = g_strdup_printf("/intc@%" PRIx64,
578                                vms->memmap[VIRT_GIC_DIST].base);
579     qemu_fdt_add_subnode(ms->fdt, nodename);
580     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
581     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
582     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
583     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
584     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
585     if (vms->gic_version != VIRT_GIC_VERSION_2) {
586         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
587 
588         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
589                                 "arm,gic-v3");
590 
591         qemu_fdt_setprop_cell(ms->fdt, nodename,
592                               "#redistributor-regions", nb_redist_regions);
593 
594         if (nb_redist_regions == 1) {
595             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
596                                          2, vms->memmap[VIRT_GIC_DIST].base,
597                                          2, vms->memmap[VIRT_GIC_DIST].size,
598                                          2, vms->memmap[VIRT_GIC_REDIST].base,
599                                          2, vms->memmap[VIRT_GIC_REDIST].size);
600         } else {
601             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
602                                  2, vms->memmap[VIRT_GIC_DIST].base,
603                                  2, vms->memmap[VIRT_GIC_DIST].size,
604                                  2, vms->memmap[VIRT_GIC_REDIST].base,
605                                  2, vms->memmap[VIRT_GIC_REDIST].size,
606                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
607                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
608         }
609 
610         if (vms->virt) {
611             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
612                                    GIC_FDT_IRQ_TYPE_PPI,
613                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
614                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
615         }
616     } else {
617         /* 'cortex-a15-gic' means 'GIC v2' */
618         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
619                                 "arm,cortex-a15-gic");
620         if (!vms->virt) {
621             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
622                                          2, vms->memmap[VIRT_GIC_DIST].base,
623                                          2, vms->memmap[VIRT_GIC_DIST].size,
624                                          2, vms->memmap[VIRT_GIC_CPU].base,
625                                          2, vms->memmap[VIRT_GIC_CPU].size);
626         } else {
627             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
628                                          2, vms->memmap[VIRT_GIC_DIST].base,
629                                          2, vms->memmap[VIRT_GIC_DIST].size,
630                                          2, vms->memmap[VIRT_GIC_CPU].base,
631                                          2, vms->memmap[VIRT_GIC_CPU].size,
632                                          2, vms->memmap[VIRT_GIC_HYP].base,
633                                          2, vms->memmap[VIRT_GIC_HYP].size,
634                                          2, vms->memmap[VIRT_GIC_VCPU].base,
635                                          2, vms->memmap[VIRT_GIC_VCPU].size);
636             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
637                                    GIC_FDT_IRQ_TYPE_PPI,
638                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
639                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
640         }
641     }
642 
643     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
644     g_free(nodename);
645 }
646 
647 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
648 {
649     ARMCPU *armcpu = ARM_CPU(first_cpu);
650     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
651     MachineState *ms = MACHINE(vms);
652 
653     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
654         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
655         return;
656     }
657 
658     if (vms->gic_version == VIRT_GIC_VERSION_2) {
659         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
660                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
661                              (1 << MACHINE(vms)->smp.cpus) - 1);
662     }
663 
664     qemu_fdt_add_subnode(ms->fdt, "/pmu");
665     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
666         const char compat[] = "arm,armv8-pmuv3";
667         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
668                          compat, sizeof(compat));
669         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
670                                GIC_FDT_IRQ_TYPE_PPI,
671                                INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
672     }
673 }
674 
675 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
676 {
677     DeviceState *dev;
678     MachineState *ms = MACHINE(vms);
679     int irq = vms->irqmap[VIRT_ACPI_GED];
680     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
681 
682     if (ms->ram_slots) {
683         event |= ACPI_GED_MEM_HOTPLUG_EVT;
684     }
685 
686     if (ms->nvdimms_state->is_enabled) {
687         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
688     }
689 
690     dev = qdev_new(TYPE_ACPI_GED);
691     qdev_prop_set_uint32(dev, "ged-event", event);
692     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
693 
694     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
695     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
696     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
697 
698     return dev;
699 }
700 
701 static void create_its(VirtMachineState *vms)
702 {
703     const char *itsclass = its_class_name();
704     DeviceState *dev;
705 
706     if (!strcmp(itsclass, "arm-gicv3-its")) {
707         if (!vms->tcg_its) {
708             itsclass = NULL;
709         }
710     }
711 
712     if (!itsclass) {
713         /* Do nothing if not supported */
714         return;
715     }
716 
717     dev = qdev_new(itsclass);
718 
719     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
720                              &error_abort);
721     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
722     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
723 
724     fdt_add_its_gic_node(vms);
725     vms->msi_controller = VIRT_MSI_CTRL_ITS;
726 }
727 
728 static void create_v2m(VirtMachineState *vms)
729 {
730     int i;
731     int irq = vms->irqmap[VIRT_GIC_V2M];
732     DeviceState *dev;
733 
734     dev = qdev_new("arm-gicv2m");
735     qdev_prop_set_uint32(dev, "base-spi", irq);
736     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
737     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
738     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
739 
740     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
741         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
742                            qdev_get_gpio_in(vms->gic, irq + i));
743     }
744 
745     fdt_add_v2m_gic_node(vms);
746     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
747 }
748 
749 /*
750  * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too.
751  * It's permitted to have a configuration with NMI in the CPU (and thus the
752  * GICv3 CPU interface) but not in the distributor/redistributors, but it's
753  * not very useful.
754  */
755 static bool gicv3_nmi_present(VirtMachineState *vms)
756 {
757     ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
758 
759     return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) &&
760            (vms->gic_version != VIRT_GIC_VERSION_2);
761 }
762 
763 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
764 {
765     MachineState *ms = MACHINE(vms);
766     /* We create a standalone GIC */
767     SysBusDevice *gicbusdev;
768     const char *gictype;
769     int i;
770     unsigned int smp_cpus = ms->smp.cpus;
771     uint32_t nb_redist_regions = 0;
772     int revision;
773 
774     if (vms->gic_version == VIRT_GIC_VERSION_2) {
775         gictype = gic_class_name();
776     } else {
777         gictype = gicv3_class_name();
778     }
779 
780     switch (vms->gic_version) {
781     case VIRT_GIC_VERSION_2:
782         revision = 2;
783         break;
784     case VIRT_GIC_VERSION_3:
785         revision = 3;
786         break;
787     case VIRT_GIC_VERSION_4:
788         revision = 4;
789         break;
790     default:
791         g_assert_not_reached();
792     }
793     vms->gic = qdev_new(gictype);
794     qdev_prop_set_uint32(vms->gic, "revision", revision);
795     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
796     /* Note that the num-irq property counts both internal and external
797      * interrupts; there are always 32 of the former (mandated by GIC spec).
798      */
799     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
800     if (!kvm_irqchip_in_kernel()) {
801         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
802     }
803 
804     if (vms->gic_version != VIRT_GIC_VERSION_2) {
805         QList *redist_region_count;
806         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
807         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
808 
809         nb_redist_regions = virt_gicv3_redist_region_count(vms);
810 
811         redist_region_count = qlist_new();
812         qlist_append_int(redist_region_count, redist0_count);
813         if (nb_redist_regions == 2) {
814             uint32_t redist1_capacity =
815                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
816 
817             qlist_append_int(redist_region_count,
818                 MIN(smp_cpus - redist0_count, redist1_capacity));
819         }
820         qdev_prop_set_array(vms->gic, "redist-region-count",
821                             redist_region_count);
822 
823         if (!kvm_irqchip_in_kernel()) {
824             if (vms->tcg_its) {
825                 object_property_set_link(OBJECT(vms->gic), "sysmem",
826                                          OBJECT(mem), &error_fatal);
827                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
828             }
829         }
830     } else {
831         if (!kvm_irqchip_in_kernel()) {
832             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
833                               vms->virt);
834         }
835     }
836 
837     if (gicv3_nmi_present(vms)) {
838         qdev_prop_set_bit(vms->gic, "has-nmi", true);
839     }
840 
841     gicbusdev = SYS_BUS_DEVICE(vms->gic);
842     sysbus_realize_and_unref(gicbusdev, &error_fatal);
843     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
844     if (vms->gic_version != VIRT_GIC_VERSION_2) {
845         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
846         if (nb_redist_regions == 2) {
847             sysbus_mmio_map(gicbusdev, 2,
848                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
849         }
850     } else {
851         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
852         if (vms->virt) {
853             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
854             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
855         }
856     }
857 
858     /* Wire the outputs from each CPU's generic timer and the GICv3
859      * maintenance interrupt signal to the appropriate GIC PPI inputs,
860      * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the
861      * CPU's inputs.
862      */
863     for (i = 0; i < smp_cpus; i++) {
864         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
865         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
866         /* Mapping from the output timer irq lines from the CPU to the
867          * GIC PPI inputs we use for the virt board.
868          */
869         const int timer_irq[] = {
870             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
871             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
872             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
873             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
874             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
875         };
876 
877         for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
878             qdev_connect_gpio_out(cpudev, irq,
879                                   qdev_get_gpio_in(vms->gic,
880                                                    intidbase + timer_irq[irq]));
881         }
882 
883         if (vms->gic_version != VIRT_GIC_VERSION_2) {
884             qemu_irq irq = qdev_get_gpio_in(vms->gic,
885                                             intidbase + ARCH_GIC_MAINT_IRQ);
886             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
887                                         0, irq);
888         } else if (vms->virt) {
889             qemu_irq irq = qdev_get_gpio_in(vms->gic,
890                                             intidbase + ARCH_GIC_MAINT_IRQ);
891             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
892         }
893 
894         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
895                                     qdev_get_gpio_in(vms->gic, intidbase
896                                                      + VIRTUAL_PMU_IRQ));
897 
898         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
899         sysbus_connect_irq(gicbusdev, i + smp_cpus,
900                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
901         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
902                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
903         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
904                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
905 
906         if (vms->gic_version != VIRT_GIC_VERSION_2) {
907             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus,
908                                qdev_get_gpio_in(cpudev, ARM_CPU_NMI));
909             sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus,
910                                qdev_get_gpio_in(cpudev, ARM_CPU_VINMI));
911         }
912     }
913 
914     fdt_add_gic_node(vms);
915 
916     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
917         create_its(vms);
918     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
919         create_v2m(vms);
920     }
921 }
922 
923 static void create_uart(const VirtMachineState *vms, int uart,
924                         MemoryRegion *mem, Chardev *chr, bool secure)
925 {
926     char *nodename;
927     hwaddr base = vms->memmap[uart].base;
928     hwaddr size = vms->memmap[uart].size;
929     int irq = vms->irqmap[uart];
930     const char compat[] = "arm,pl011\0arm,primecell";
931     const char clocknames[] = "uartclk\0apb_pclk";
932     DeviceState *dev = qdev_new(TYPE_PL011);
933     SysBusDevice *s = SYS_BUS_DEVICE(dev);
934     MachineState *ms = MACHINE(vms);
935 
936     qdev_prop_set_chr(dev, "chardev", chr);
937     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
938     memory_region_add_subregion(mem, base,
939                                 sysbus_mmio_get_region(s, 0));
940     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
941 
942     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
943     qemu_fdt_add_subnode(ms->fdt, nodename);
944     /* Note that we can't use setprop_string because of the embedded NUL */
945     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
946                          compat, sizeof(compat));
947     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
948                                      2, base, 2, size);
949     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
950                                GIC_FDT_IRQ_TYPE_SPI, irq,
951                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
952     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
953                                vms->clock_phandle, vms->clock_phandle);
954     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
955                          clocknames, sizeof(clocknames));
956 
957     if (uart == VIRT_UART0) {
958         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
959         qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename);
960     } else {
961         qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename);
962     }
963     if (secure) {
964         /* Mark as not usable by the normal world */
965         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
966         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
967 
968         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
969                                 nodename);
970     }
971 
972     g_free(nodename);
973 }
974 
975 static void create_rtc(const VirtMachineState *vms)
976 {
977     char *nodename;
978     hwaddr base = vms->memmap[VIRT_RTC].base;
979     hwaddr size = vms->memmap[VIRT_RTC].size;
980     int irq = vms->irqmap[VIRT_RTC];
981     const char compat[] = "arm,pl031\0arm,primecell";
982     MachineState *ms = MACHINE(vms);
983 
984     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
985 
986     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
987     qemu_fdt_add_subnode(ms->fdt, nodename);
988     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
989     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
990                                  2, base, 2, size);
991     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
992                            GIC_FDT_IRQ_TYPE_SPI, irq,
993                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
994     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
995     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
996     g_free(nodename);
997 }
998 
999 static DeviceState *gpio_key_dev;
1000 static void virt_powerdown_req(Notifier *n, void *opaque)
1001 {
1002     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
1003 
1004     if (s->acpi_dev) {
1005         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
1006     } else {
1007         /* use gpio Pin 3 for power button event */
1008         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
1009     }
1010 }
1011 
1012 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
1013                              uint32_t phandle)
1014 {
1015     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
1016                                         qdev_get_gpio_in(pl061_dev, 3));
1017 
1018     qemu_fdt_add_subnode(fdt, "/gpio-keys");
1019     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
1020 
1021     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
1022     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
1023                             "label", "GPIO Key Poweroff");
1024     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
1025                           KEY_POWER);
1026     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
1027                            "gpios", phandle, 3, 0);
1028 }
1029 
1030 #define SECURE_GPIO_POWEROFF 0
1031 #define SECURE_GPIO_RESET    1
1032 
1033 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
1034                                    uint32_t phandle)
1035 {
1036     DeviceState *gpio_pwr_dev;
1037 
1038     /* gpio-pwr */
1039     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
1040 
1041     /* connect secure pl061 to gpio-pwr */
1042     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
1043                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
1044     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
1045                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
1046 
1047     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
1048     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
1049                             "gpio-poweroff");
1050     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
1051                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
1052     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
1053     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
1054                             "okay");
1055 
1056     qemu_fdt_add_subnode(fdt, "/gpio-restart");
1057     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
1058                             "gpio-restart");
1059     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
1060                            "gpios", phandle, SECURE_GPIO_RESET, 0);
1061     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
1062     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
1063                             "okay");
1064 }
1065 
1066 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
1067                                 MemoryRegion *mem)
1068 {
1069     char *nodename;
1070     DeviceState *pl061_dev;
1071     hwaddr base = vms->memmap[gpio].base;
1072     hwaddr size = vms->memmap[gpio].size;
1073     int irq = vms->irqmap[gpio];
1074     const char compat[] = "arm,pl061\0arm,primecell";
1075     SysBusDevice *s;
1076     MachineState *ms = MACHINE(vms);
1077 
1078     pl061_dev = qdev_new("pl061");
1079     /* Pull lines down to 0 if not driven by the PL061 */
1080     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1081     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1082     s = SYS_BUS_DEVICE(pl061_dev);
1083     sysbus_realize_and_unref(s, &error_fatal);
1084     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1085     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1086 
1087     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1088     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1089     qemu_fdt_add_subnode(ms->fdt, nodename);
1090     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1091                                  2, base, 2, size);
1092     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1093     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1094     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1095     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1096                            GIC_FDT_IRQ_TYPE_SPI, irq,
1097                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1098     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1099     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1100     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1101 
1102     if (gpio != VIRT_GPIO) {
1103         /* Mark as not usable by the normal world */
1104         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1105         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1106     }
1107     g_free(nodename);
1108 
1109     /* Child gpio devices */
1110     if (gpio == VIRT_GPIO) {
1111         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1112     } else {
1113         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1114     }
1115 }
1116 
1117 static void create_virtio_devices(const VirtMachineState *vms)
1118 {
1119     int i;
1120     hwaddr size = vms->memmap[VIRT_MMIO].size;
1121     MachineState *ms = MACHINE(vms);
1122 
1123     /* We create the transports in forwards order. Since qbus_realize()
1124      * prepends (not appends) new child buses, the incrementing loop below will
1125      * create a list of virtio-mmio buses with decreasing base addresses.
1126      *
1127      * When a -device option is processed from the command line,
1128      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1129      * order. The upshot is that -device options in increasing command line
1130      * order are mapped to virtio-mmio buses with decreasing base addresses.
1131      *
1132      * When this code was originally written, that arrangement ensured that the
1133      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1134      * the first -device on the command line. (The end-to-end order is a
1135      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1136      * guest kernel's name-to-address assignment strategy.)
1137      *
1138      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1139      * the message, if not necessarily the code, of commit 70161ff336.
1140      * Therefore the loop now establishes the inverse of the original intent.
1141      *
1142      * Unfortunately, we can't counteract the kernel change by reversing the
1143      * loop; it would break existing command lines.
1144      *
1145      * In any case, the kernel makes no guarantee about the stability of
1146      * enumeration order of virtio devices (as demonstrated by it changing
1147      * between kernel versions). For reliable and stable identification
1148      * of disks users must use UUIDs or similar mechanisms.
1149      */
1150     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1151         int irq = vms->irqmap[VIRT_MMIO] + i;
1152         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1153 
1154         sysbus_create_simple("virtio-mmio", base,
1155                              qdev_get_gpio_in(vms->gic, irq));
1156     }
1157 
1158     /* We add dtb nodes in reverse order so that they appear in the finished
1159      * device tree lowest address first.
1160      *
1161      * Note that this mapping is independent of the loop above. The previous
1162      * loop influences virtio device to virtio transport assignment, whereas
1163      * this loop controls how virtio transports are laid out in the dtb.
1164      */
1165     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1166         char *nodename;
1167         int irq = vms->irqmap[VIRT_MMIO] + i;
1168         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1169 
1170         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1171         qemu_fdt_add_subnode(ms->fdt, nodename);
1172         qemu_fdt_setprop_string(ms->fdt, nodename,
1173                                 "compatible", "virtio,mmio");
1174         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1175                                      2, base, 2, size);
1176         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1177                                GIC_FDT_IRQ_TYPE_SPI, irq,
1178                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1179         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1180         g_free(nodename);
1181     }
1182 }
1183 
1184 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1185 
1186 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1187                                         const char *name,
1188                                         const char *alias_prop_name)
1189 {
1190     /*
1191      * Create a single flash device.  We use the same parameters as
1192      * the flash devices on the Versatile Express board.
1193      */
1194     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1195 
1196     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1197     qdev_prop_set_uint8(dev, "width", 4);
1198     qdev_prop_set_uint8(dev, "device-width", 2);
1199     qdev_prop_set_bit(dev, "big-endian", false);
1200     qdev_prop_set_uint16(dev, "id0", 0x89);
1201     qdev_prop_set_uint16(dev, "id1", 0x18);
1202     qdev_prop_set_uint16(dev, "id2", 0x00);
1203     qdev_prop_set_uint16(dev, "id3", 0x00);
1204     qdev_prop_set_string(dev, "name", name);
1205     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1206     object_property_add_alias(OBJECT(vms), alias_prop_name,
1207                               OBJECT(dev), "drive");
1208     return PFLASH_CFI01(dev);
1209 }
1210 
1211 static void virt_flash_create(VirtMachineState *vms)
1212 {
1213     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1214     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1215 }
1216 
1217 static void virt_flash_map1(PFlashCFI01 *flash,
1218                             hwaddr base, hwaddr size,
1219                             MemoryRegion *sysmem)
1220 {
1221     DeviceState *dev = DEVICE(flash);
1222 
1223     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1224     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1225     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1226     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1227 
1228     memory_region_add_subregion(sysmem, base,
1229                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1230                                                        0));
1231 }
1232 
1233 static void virt_flash_map(VirtMachineState *vms,
1234                            MemoryRegion *sysmem,
1235                            MemoryRegion *secure_sysmem)
1236 {
1237     /*
1238      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1239      * sysmem is the system memory space. secure_sysmem is the secure view
1240      * of the system, and the first flash device should be made visible only
1241      * there. The second flash device is visible to both secure and nonsecure.
1242      * If sysmem == secure_sysmem this means there is no separate Secure
1243      * address space and both flash devices are generally visible.
1244      */
1245     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1246     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1247 
1248     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1249                     secure_sysmem);
1250     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1251                     sysmem);
1252 }
1253 
1254 static void virt_flash_fdt(VirtMachineState *vms,
1255                            MemoryRegion *sysmem,
1256                            MemoryRegion *secure_sysmem)
1257 {
1258     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1259     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1260     MachineState *ms = MACHINE(vms);
1261     char *nodename;
1262 
1263     if (sysmem == secure_sysmem) {
1264         /* Report both flash devices as a single node in the DT */
1265         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1266         qemu_fdt_add_subnode(ms->fdt, nodename);
1267         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1268         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1269                                      2, flashbase, 2, flashsize,
1270                                      2, flashbase + flashsize, 2, flashsize);
1271         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1272         g_free(nodename);
1273     } else {
1274         /*
1275          * Report the devices as separate nodes so we can mark one as
1276          * only visible to the secure world.
1277          */
1278         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1279         qemu_fdt_add_subnode(ms->fdt, nodename);
1280         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1281         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1282                                      2, flashbase, 2, flashsize);
1283         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1284         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1285         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1286         g_free(nodename);
1287 
1288         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1289         qemu_fdt_add_subnode(ms->fdt, nodename);
1290         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1291         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1292                                      2, flashbase + flashsize, 2, flashsize);
1293         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1294         g_free(nodename);
1295     }
1296 }
1297 
1298 static bool virt_firmware_init(VirtMachineState *vms,
1299                                MemoryRegion *sysmem,
1300                                MemoryRegion *secure_sysmem)
1301 {
1302     int i;
1303     const char *bios_name;
1304     BlockBackend *pflash_blk0;
1305 
1306     /* Map legacy -drive if=pflash to machine properties */
1307     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1308         pflash_cfi01_legacy_drive(vms->flash[i],
1309                                   drive_get(IF_PFLASH, 0, i));
1310     }
1311 
1312     virt_flash_map(vms, sysmem, secure_sysmem);
1313 
1314     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1315 
1316     bios_name = MACHINE(vms)->firmware;
1317     if (bios_name) {
1318         char *fname;
1319         MemoryRegion *mr;
1320         int image_size;
1321 
1322         if (pflash_blk0) {
1323             error_report("The contents of the first flash device may be "
1324                          "specified with -bios or with -drive if=pflash... "
1325                          "but you cannot use both options at once");
1326             exit(1);
1327         }
1328 
1329         /* Fall back to -bios */
1330 
1331         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1332         if (!fname) {
1333             error_report("Could not find ROM image '%s'", bios_name);
1334             exit(1);
1335         }
1336         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1337         image_size = load_image_mr(fname, mr);
1338         g_free(fname);
1339         if (image_size < 0) {
1340             error_report("Could not load ROM image '%s'", bios_name);
1341             exit(1);
1342         }
1343     }
1344 
1345     return pflash_blk0 || bios_name;
1346 }
1347 
1348 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1349 {
1350     MachineState *ms = MACHINE(vms);
1351     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1352     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1353     FWCfgState *fw_cfg;
1354     char *nodename;
1355 
1356     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1357     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1358 
1359     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1360     qemu_fdt_add_subnode(ms->fdt, nodename);
1361     qemu_fdt_setprop_string(ms->fdt, nodename,
1362                             "compatible", "qemu,fw-cfg-mmio");
1363     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1364                                  2, base, 2, size);
1365     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1366     g_free(nodename);
1367     return fw_cfg;
1368 }
1369 
1370 static void create_pcie_irq_map(const MachineState *ms,
1371                                 uint32_t gic_phandle,
1372                                 int first_irq, const char *nodename)
1373 {
1374     int devfn, pin;
1375     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1376     uint32_t *irq_map = full_irq_map;
1377 
1378     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1379         for (pin = 0; pin < 4; pin++) {
1380             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1381             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1382             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1383             int i;
1384 
1385             uint32_t map[] = {
1386                 devfn << 8, 0, 0,                           /* devfn */
1387                 pin + 1,                                    /* PCI pin */
1388                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1389 
1390             /* Convert map to big endian */
1391             for (i = 0; i < 10; i++) {
1392                 irq_map[i] = cpu_to_be32(map[i]);
1393             }
1394             irq_map += 10;
1395         }
1396     }
1397 
1398     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1399                      full_irq_map, sizeof(full_irq_map));
1400 
1401     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1402                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1403                            0, 0,
1404                            0x7           /* PCI irq */);
1405 }
1406 
1407 static void create_smmu(const VirtMachineState *vms,
1408                         PCIBus *bus)
1409 {
1410     char *node;
1411     const char compat[] = "arm,smmu-v3";
1412     int irq =  vms->irqmap[VIRT_SMMU];
1413     int i;
1414     hwaddr base = vms->memmap[VIRT_SMMU].base;
1415     hwaddr size = vms->memmap[VIRT_SMMU].size;
1416     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1417     DeviceState *dev;
1418     MachineState *ms = MACHINE(vms);
1419 
1420     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1421         return;
1422     }
1423 
1424     dev = qdev_new(TYPE_ARM_SMMUV3);
1425 
1426     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1427                              &error_abort);
1428     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1429     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1430     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1431         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1432                            qdev_get_gpio_in(vms->gic, irq + i));
1433     }
1434 
1435     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1436     qemu_fdt_add_subnode(ms->fdt, node);
1437     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1438     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1439 
1440     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1441             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1442             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1443             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1444             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1445 
1446     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1447                      sizeof(irq_names));
1448 
1449     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1450 
1451     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1452 
1453     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1454     g_free(node);
1455 }
1456 
1457 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1458 {
1459     const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1460     uint16_t bdf = vms->virtio_iommu_bdf;
1461     MachineState *ms = MACHINE(vms);
1462     char *node;
1463 
1464     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1465 
1466     node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1467                            PCI_SLOT(bdf), PCI_FUNC(bdf));
1468     qemu_fdt_add_subnode(ms->fdt, node);
1469     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1470     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1471                                  1, bdf << 8, 1, 0, 1, 0,
1472                                  1, 0, 1, 0);
1473 
1474     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1475     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1476     g_free(node);
1477 
1478     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1479                            0x0, vms->iommu_phandle, 0x0, bdf,
1480                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1481 }
1482 
1483 static void create_pcie(VirtMachineState *vms)
1484 {
1485     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1486     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1487     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1488     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1489     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1490     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1491     hwaddr base_ecam, size_ecam;
1492     hwaddr base = base_mmio;
1493     int nr_pcie_buses;
1494     int irq = vms->irqmap[VIRT_PCIE];
1495     MemoryRegion *mmio_alias;
1496     MemoryRegion *mmio_reg;
1497     MemoryRegion *ecam_alias;
1498     MemoryRegion *ecam_reg;
1499     DeviceState *dev;
1500     char *nodename;
1501     int i, ecam_id;
1502     PCIHostState *pci;
1503     MachineState *ms = MACHINE(vms);
1504     MachineClass *mc = MACHINE_GET_CLASS(ms);
1505 
1506     dev = qdev_new(TYPE_GPEX_HOST);
1507     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1508 
1509     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1510     base_ecam = vms->memmap[ecam_id].base;
1511     size_ecam = vms->memmap[ecam_id].size;
1512     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1513     /* Map only the first size_ecam bytes of ECAM space */
1514     ecam_alias = g_new0(MemoryRegion, 1);
1515     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1516     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1517                              ecam_reg, 0, size_ecam);
1518     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1519 
1520     /* Map the MMIO window into system address space so as to expose
1521      * the section of PCI MMIO space which starts at the same base address
1522      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1523      * the window).
1524      */
1525     mmio_alias = g_new0(MemoryRegion, 1);
1526     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1527     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1528                              mmio_reg, base_mmio, size_mmio);
1529     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1530 
1531     if (vms->highmem_mmio) {
1532         /* Map high MMIO space */
1533         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1534 
1535         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1536                                  mmio_reg, base_mmio_high, size_mmio_high);
1537         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1538                                     high_mmio_alias);
1539     }
1540 
1541     /* Map IO port space */
1542     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1543 
1544     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1545         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1546                            qdev_get_gpio_in(vms->gic, irq + i));
1547         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1548     }
1549 
1550     pci = PCI_HOST_BRIDGE(dev);
1551     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1552     vms->bus = pci->bus;
1553     if (vms->bus) {
1554         pci_init_nic_devices(pci->bus, mc->default_nic);
1555     }
1556 
1557     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1558     qemu_fdt_add_subnode(ms->fdt, nodename);
1559     qemu_fdt_setprop_string(ms->fdt, nodename,
1560                             "compatible", "pci-host-ecam-generic");
1561     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1562     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1563     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1564     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1565     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1566                            nr_pcie_buses - 1);
1567     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1568 
1569     if (vms->msi_phandle) {
1570         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1571                                0, vms->msi_phandle, 0, 0x10000);
1572     }
1573 
1574     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1575                                  2, base_ecam, 2, size_ecam);
1576 
1577     if (vms->highmem_mmio) {
1578         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1579                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1580                                      2, base_pio, 2, size_pio,
1581                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1582                                      2, base_mmio, 2, size_mmio,
1583                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1584                                      2, base_mmio_high,
1585                                      2, base_mmio_high, 2, size_mmio_high);
1586     } else {
1587         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1588                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1589                                      2, base_pio, 2, size_pio,
1590                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1591                                      2, base_mmio, 2, size_mmio);
1592     }
1593 
1594     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1595     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1596 
1597     if (vms->iommu) {
1598         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1599 
1600         switch (vms->iommu) {
1601         case VIRT_IOMMU_SMMUV3:
1602             create_smmu(vms, vms->bus);
1603             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1604                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1605             break;
1606         default:
1607             g_assert_not_reached();
1608         }
1609     }
1610 }
1611 
1612 static void create_platform_bus(VirtMachineState *vms)
1613 {
1614     DeviceState *dev;
1615     SysBusDevice *s;
1616     int i;
1617     MemoryRegion *sysmem = get_system_memory();
1618 
1619     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1620     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1621     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1622     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1623     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1624     vms->platform_bus_dev = dev;
1625 
1626     s = SYS_BUS_DEVICE(dev);
1627     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1628         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1629         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1630     }
1631 
1632     memory_region_add_subregion(sysmem,
1633                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1634                                 sysbus_mmio_get_region(s, 0));
1635 }
1636 
1637 static void create_tag_ram(MemoryRegion *tag_sysmem,
1638                            hwaddr base, hwaddr size,
1639                            const char *name)
1640 {
1641     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1642 
1643     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1644     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1645 }
1646 
1647 static void create_secure_ram(VirtMachineState *vms,
1648                               MemoryRegion *secure_sysmem,
1649                               MemoryRegion *secure_tag_sysmem)
1650 {
1651     MemoryRegion *secram = g_new(MemoryRegion, 1);
1652     char *nodename;
1653     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1654     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1655     MachineState *ms = MACHINE(vms);
1656 
1657     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1658                            &error_fatal);
1659     memory_region_add_subregion(secure_sysmem, base, secram);
1660 
1661     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1662     qemu_fdt_add_subnode(ms->fdt, nodename);
1663     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1664     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1665     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1666     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1667 
1668     if (secure_tag_sysmem) {
1669         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1670     }
1671 
1672     g_free(nodename);
1673 }
1674 
1675 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1676 {
1677     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1678                                                  bootinfo);
1679     MachineState *ms = MACHINE(board);
1680 
1681 
1682     *fdt_size = board->fdt_size;
1683     return ms->fdt;
1684 }
1685 
1686 static void virt_build_smbios(VirtMachineState *vms)
1687 {
1688     MachineClass *mc = MACHINE_GET_CLASS(vms);
1689     MachineState *ms = MACHINE(vms);
1690     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1691     uint8_t *smbios_tables, *smbios_anchor;
1692     size_t smbios_tables_len, smbios_anchor_len;
1693     struct smbios_phys_mem_area mem_array;
1694     const char *product = "QEMU Virtual Machine";
1695 
1696     if (kvm_enabled()) {
1697         product = "KVM Virtual Machine";
1698     }
1699 
1700     smbios_set_defaults("QEMU", product,
1701                         vmc->smbios_old_sys_ver ? "1.0" : mc->name);
1702 
1703     /* build the array of physical mem area from base_memmap */
1704     mem_array.address = vms->memmap[VIRT_MEM].base;
1705     mem_array.length = ms->ram_size;
1706 
1707     smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1,
1708                       &smbios_tables, &smbios_tables_len,
1709                       &smbios_anchor, &smbios_anchor_len,
1710                       &error_fatal);
1711 
1712     if (smbios_anchor) {
1713         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1714                         smbios_tables, smbios_tables_len);
1715         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1716                         smbios_anchor, smbios_anchor_len);
1717     }
1718 }
1719 
1720 static
1721 void virt_machine_done(Notifier *notifier, void *data)
1722 {
1723     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1724                                          machine_done);
1725     MachineState *ms = MACHINE(vms);
1726     ARMCPU *cpu = ARM_CPU(first_cpu);
1727     struct arm_boot_info *info = &vms->bootinfo;
1728     AddressSpace *as = arm_boot_address_space(cpu, info);
1729 
1730     /*
1731      * If the user provided a dtb, we assume the dynamic sysbus nodes
1732      * already are integrated there. This corresponds to a use case where
1733      * the dynamic sysbus nodes are complex and their generation is not yet
1734      * supported. In that case the user can take charge of the guest dt
1735      * while qemu takes charge of the qom stuff.
1736      */
1737     if (info->dtb_filename == NULL) {
1738         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1739                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1740                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1741                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1742     }
1743     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1744         exit(1);
1745     }
1746 
1747     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1748 
1749     virt_acpi_setup(vms);
1750     virt_build_smbios(vms);
1751 }
1752 
1753 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1754 {
1755     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1756     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1757 
1758     if (!vmc->disallow_affinity_adjustment) {
1759         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1760          * GIC's target-list limitations. 32-bit KVM hosts currently
1761          * always create clusters of 4 CPUs, but that is expected to
1762          * change when they gain support for gicv3. When KVM is enabled
1763          * it will override the changes we make here, therefore our
1764          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1765          * and to improve SGI efficiency.
1766          */
1767         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1768             clustersz = GIC_TARGETLIST_BITS;
1769         } else {
1770             clustersz = GICV3_TARGETLIST_BITS;
1771         }
1772     }
1773     return arm_build_mp_affinity(idx, clustersz);
1774 }
1775 
1776 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1777                                                  int index)
1778 {
1779     bool *enabled_array[] = {
1780         &vms->highmem_redists,
1781         &vms->highmem_ecam,
1782         &vms->highmem_mmio,
1783     };
1784 
1785     assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1786            ARRAY_SIZE(enabled_array));
1787     assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1788 
1789     return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1790 }
1791 
1792 static void virt_set_high_memmap(VirtMachineState *vms,
1793                                  hwaddr base, int pa_bits)
1794 {
1795     hwaddr region_base, region_size;
1796     bool *region_enabled, fits;
1797     int i;
1798 
1799     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1800         region_enabled = virt_get_high_memmap_enabled(vms, i);
1801         region_base = ROUND_UP(base, extended_memmap[i].size);
1802         region_size = extended_memmap[i].size;
1803 
1804         vms->memmap[i].base = region_base;
1805         vms->memmap[i].size = region_size;
1806 
1807         /*
1808          * Check each device to see if it fits in the PA space,
1809          * moving highest_gpa as we go. For compatibility, move
1810          * highest_gpa for disabled fitting devices as well, if
1811          * the compact layout has been disabled.
1812          *
1813          * For each device that doesn't fit, disable it.
1814          */
1815         fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1816         *region_enabled &= fits;
1817         if (vms->highmem_compact && !*region_enabled) {
1818             continue;
1819         }
1820 
1821         base = region_base + region_size;
1822         if (fits) {
1823             vms->highest_gpa = base - 1;
1824         }
1825     }
1826 }
1827 
1828 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1829 {
1830     MachineState *ms = MACHINE(vms);
1831     hwaddr base, device_memory_base, device_memory_size, memtop;
1832     int i;
1833 
1834     vms->memmap = extended_memmap;
1835 
1836     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1837         vms->memmap[i] = base_memmap[i];
1838     }
1839 
1840     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1841         error_report("unsupported number of memory slots: %"PRIu64,
1842                      ms->ram_slots);
1843         exit(EXIT_FAILURE);
1844     }
1845 
1846     /*
1847      * !highmem is exactly the same as limiting the PA space to 32bit,
1848      * irrespective of the underlying capabilities of the HW.
1849      */
1850     if (!vms->highmem) {
1851         pa_bits = 32;
1852     }
1853 
1854     /*
1855      * We compute the base of the high IO region depending on the
1856      * amount of initial and device memory. The device memory start/size
1857      * is aligned on 1GiB. We never put the high IO region below 256GiB
1858      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1859      * The device region size assumes 1GiB page max alignment per slot.
1860      */
1861     device_memory_base =
1862         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1863     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1864 
1865     /* Base address of the high IO region */
1866     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1867     if (memtop > BIT_ULL(pa_bits)) {
1868         error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
1869                      pa_bits, memtop - BIT_ULL(pa_bits));
1870         exit(EXIT_FAILURE);
1871     }
1872     if (base < device_memory_base) {
1873         error_report("maxmem/slots too huge");
1874         exit(EXIT_FAILURE);
1875     }
1876     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1877         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1878     }
1879 
1880     /* We know for sure that at least the memory fits in the PA space */
1881     vms->highest_gpa = memtop - 1;
1882 
1883     virt_set_high_memmap(vms, base, pa_bits);
1884 
1885     if (device_memory_size > 0) {
1886         machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1887     }
1888 }
1889 
1890 static VirtGICType finalize_gic_version_do(const char *accel_name,
1891                                            VirtGICType gic_version,
1892                                            int gics_supported,
1893                                            unsigned int max_cpus)
1894 {
1895     /* Convert host/max/nosel to GIC version number */
1896     switch (gic_version) {
1897     case VIRT_GIC_VERSION_HOST:
1898         if (!kvm_enabled()) {
1899             error_report("gic-version=host requires KVM");
1900             exit(1);
1901         }
1902 
1903         /* For KVM, gic-version=host means gic-version=max */
1904         return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1905                                        gics_supported, max_cpus);
1906     case VIRT_GIC_VERSION_MAX:
1907         if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1908             gic_version = VIRT_GIC_VERSION_4;
1909         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1910             gic_version = VIRT_GIC_VERSION_3;
1911         } else {
1912             gic_version = VIRT_GIC_VERSION_2;
1913         }
1914         break;
1915     case VIRT_GIC_VERSION_NOSEL:
1916         if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1917             max_cpus <= GIC_NCPU) {
1918             gic_version = VIRT_GIC_VERSION_2;
1919         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1920             /*
1921              * in case the host does not support v2 emulation or
1922              * the end-user requested more than 8 VCPUs we now default
1923              * to v3. In any case defaulting to v2 would be broken.
1924              */
1925             gic_version = VIRT_GIC_VERSION_3;
1926         } else if (max_cpus > GIC_NCPU) {
1927             error_report("%s only supports GICv2 emulation but more than 8 "
1928                          "vcpus are requested", accel_name);
1929             exit(1);
1930         }
1931         break;
1932     case VIRT_GIC_VERSION_2:
1933     case VIRT_GIC_VERSION_3:
1934     case VIRT_GIC_VERSION_4:
1935         break;
1936     }
1937 
1938     /* Check chosen version is effectively supported */
1939     switch (gic_version) {
1940     case VIRT_GIC_VERSION_2:
1941         if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1942             error_report("%s does not support GICv2 emulation", accel_name);
1943             exit(1);
1944         }
1945         break;
1946     case VIRT_GIC_VERSION_3:
1947         if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1948             error_report("%s does not support GICv3 emulation", accel_name);
1949             exit(1);
1950         }
1951         break;
1952     case VIRT_GIC_VERSION_4:
1953         if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1954             error_report("%s does not support GICv4 emulation, is virtualization=on?",
1955                          accel_name);
1956             exit(1);
1957         }
1958         break;
1959     default:
1960         error_report("logic error in finalize_gic_version");
1961         exit(1);
1962         break;
1963     }
1964 
1965     return gic_version;
1966 }
1967 
1968 /*
1969  * finalize_gic_version - Determines the final gic_version
1970  * according to the gic-version property
1971  *
1972  * Default GIC type is v2
1973  */
1974 static void finalize_gic_version(VirtMachineState *vms)
1975 {
1976     const char *accel_name = current_accel_name();
1977     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1978     int gics_supported = 0;
1979 
1980     /* Determine which GIC versions the current environment supports */
1981     if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1982         int probe_bitmap = kvm_arm_vgic_probe();
1983 
1984         if (!probe_bitmap) {
1985             error_report("Unable to determine GIC version supported by host");
1986             exit(1);
1987         }
1988 
1989         if (probe_bitmap & KVM_ARM_VGIC_V2) {
1990             gics_supported |= VIRT_GIC_VERSION_2_MASK;
1991         }
1992         if (probe_bitmap & KVM_ARM_VGIC_V3) {
1993             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1994         }
1995     } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1996         /* KVM w/o kernel irqchip can only deal with GICv2 */
1997         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1998         accel_name = "KVM with kernel-irqchip=off";
1999     } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
2000         gics_supported |= VIRT_GIC_VERSION_2_MASK;
2001         if (module_object_class_by_name("arm-gicv3")) {
2002             gics_supported |= VIRT_GIC_VERSION_3_MASK;
2003             if (vms->virt) {
2004                 /* GICv4 only makes sense if CPU has EL2 */
2005                 gics_supported |= VIRT_GIC_VERSION_4_MASK;
2006             }
2007         }
2008     } else {
2009         error_report("Unsupported accelerator, can not determine GIC support");
2010         exit(1);
2011     }
2012 
2013     /*
2014      * Then convert helpers like host/max to concrete GIC versions and ensure
2015      * the desired version is supported
2016      */
2017     vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
2018                                                gics_supported, max_cpus);
2019 }
2020 
2021 /*
2022  * virt_cpu_post_init() must be called after the CPUs have
2023  * been realized and the GIC has been created.
2024  */
2025 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
2026 {
2027     int max_cpus = MACHINE(vms)->smp.max_cpus;
2028     bool aarch64, pmu, steal_time;
2029     CPUState *cpu;
2030 
2031     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
2032     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
2033     steal_time = object_property_get_bool(OBJECT(first_cpu),
2034                                           "kvm-steal-time", NULL);
2035 
2036     if (kvm_enabled()) {
2037         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
2038         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
2039 
2040         if (steal_time) {
2041             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
2042             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
2043 
2044             /* The memory region size must be a multiple of host page size. */
2045             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
2046 
2047             if (pvtime_size > pvtime_reg_size) {
2048                 error_report("pvtime requires a %" HWADDR_PRId
2049                              " byte memory region for %d CPUs,"
2050                              " but only %" HWADDR_PRId " has been reserved",
2051                              pvtime_size, max_cpus, pvtime_reg_size);
2052                 exit(1);
2053             }
2054 
2055             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
2056             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
2057         }
2058 
2059         CPU_FOREACH(cpu) {
2060             if (pmu) {
2061                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
2062                 if (kvm_irqchip_in_kernel()) {
2063                     kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
2064                 }
2065                 kvm_arm_pmu_init(ARM_CPU(cpu));
2066             }
2067             if (steal_time) {
2068                 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
2069                                                   + cpu->cpu_index
2070                                                     * PVTIME_SIZE_PER_CPU);
2071             }
2072         }
2073     } else {
2074         if (aarch64 && vms->highmem) {
2075             int requested_pa_size = 64 - clz64(vms->highest_gpa);
2076             int pamax = arm_pamax(ARM_CPU(first_cpu));
2077 
2078             if (pamax < requested_pa_size) {
2079                 error_report("VCPU supports less PA bits (%d) than "
2080                              "requested by the memory map (%d)",
2081                              pamax, requested_pa_size);
2082                 exit(1);
2083             }
2084         }
2085     }
2086 }
2087 
2088 static void machvirt_init(MachineState *machine)
2089 {
2090     VirtMachineState *vms = VIRT_MACHINE(machine);
2091     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2092     MachineClass *mc = MACHINE_GET_CLASS(machine);
2093     const CPUArchIdList *possible_cpus;
2094     MemoryRegion *sysmem = get_system_memory();
2095     MemoryRegion *secure_sysmem = NULL;
2096     MemoryRegion *tag_sysmem = NULL;
2097     MemoryRegion *secure_tag_sysmem = NULL;
2098     int n, virt_max_cpus;
2099     bool firmware_loaded;
2100     bool aarch64 = true;
2101     bool has_ged = !vmc->no_ged;
2102     unsigned int smp_cpus = machine->smp.cpus;
2103     unsigned int max_cpus = machine->smp.max_cpus;
2104 
2105     possible_cpus = mc->possible_cpu_arch_ids(machine);
2106 
2107     /*
2108      * In accelerated mode, the memory map is computed earlier in kvm_type()
2109      * to create a VM with the right number of IPA bits.
2110      */
2111     if (!vms->memmap) {
2112         Object *cpuobj;
2113         ARMCPU *armcpu;
2114         int pa_bits;
2115 
2116         /*
2117          * Instantiate a temporary CPU object to find out about what
2118          * we are about to deal with. Once this is done, get rid of
2119          * the object.
2120          */
2121         cpuobj = object_new(possible_cpus->cpus[0].type);
2122         armcpu = ARM_CPU(cpuobj);
2123 
2124         pa_bits = arm_pamax(armcpu);
2125 
2126         object_unref(cpuobj);
2127 
2128         virt_set_memmap(vms, pa_bits);
2129     }
2130 
2131     /* We can probe only here because during property set
2132      * KVM is not available yet
2133      */
2134     finalize_gic_version(vms);
2135 
2136     if (vms->secure) {
2137         /*
2138          * The Secure view of the world is the same as the NonSecure,
2139          * but with a few extra devices. Create it as a container region
2140          * containing the system memory at low priority; any secure-only
2141          * devices go in at higher priority and take precedence.
2142          */
2143         secure_sysmem = g_new(MemoryRegion, 1);
2144         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2145                            UINT64_MAX);
2146         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2147     }
2148 
2149     firmware_loaded = virt_firmware_init(vms, sysmem,
2150                                          secure_sysmem ?: sysmem);
2151 
2152     /* If we have an EL3 boot ROM then the assumption is that it will
2153      * implement PSCI itself, so disable QEMU's internal implementation
2154      * so it doesn't get in the way. Instead of starting secondary
2155      * CPUs in PSCI powerdown state we will start them all running and
2156      * let the boot ROM sort them out.
2157      * The usual case is that we do use QEMU's PSCI implementation;
2158      * if the guest has EL2 then we will use SMC as the conduit,
2159      * and otherwise we will use HVC (for backwards compatibility and
2160      * because if we're using KVM then we must use HVC).
2161      */
2162     if (vms->secure && firmware_loaded) {
2163         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2164     } else if (vms->virt) {
2165         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2166     } else {
2167         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2168     }
2169 
2170     /*
2171      * The maximum number of CPUs depends on the GIC version, or on how
2172      * many redistributors we can fit into the memory map (which in turn
2173      * depends on whether this is a GICv3 or v4).
2174      */
2175     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2176         virt_max_cpus = GIC_NCPU;
2177     } else {
2178         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2179         if (vms->highmem_redists) {
2180             virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2181         }
2182     }
2183 
2184     if (max_cpus > virt_max_cpus) {
2185         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2186                      "supported by machine 'mach-virt' (%d)",
2187                      max_cpus, virt_max_cpus);
2188         if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2189             error_printf("Try 'highmem-redists=on' for more CPUs\n");
2190         }
2191 
2192         exit(1);
2193     }
2194 
2195     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2196         error_report("mach-virt: %s does not support providing "
2197                      "Security extensions (TrustZone) to the guest CPU",
2198                      current_accel_name());
2199         exit(1);
2200     }
2201 
2202     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2203         error_report("mach-virt: %s does not support providing "
2204                      "Virtualization extensions to the guest CPU",
2205                      current_accel_name());
2206         exit(1);
2207     }
2208 
2209     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2210         error_report("mach-virt: %s does not support providing "
2211                      "MTE to the guest CPU",
2212                      current_accel_name());
2213         exit(1);
2214     }
2215 
2216     create_fdt(vms);
2217 
2218     assert(possible_cpus->len == max_cpus);
2219     for (n = 0; n < possible_cpus->len; n++) {
2220         Object *cpuobj;
2221         CPUState *cs;
2222 
2223         if (n >= smp_cpus) {
2224             break;
2225         }
2226 
2227         cpuobj = object_new(possible_cpus->cpus[n].type);
2228         object_property_set_int(cpuobj, "mp-affinity",
2229                                 possible_cpus->cpus[n].arch_id, NULL);
2230 
2231         cs = CPU(cpuobj);
2232         cs->cpu_index = n;
2233 
2234         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2235                           &error_fatal);
2236 
2237         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2238 
2239         if (!vms->secure) {
2240             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2241         }
2242 
2243         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2244             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2245         }
2246 
2247         if (vmc->kvm_no_adjvtime &&
2248             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2249             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2250         }
2251 
2252         if (vmc->no_kvm_steal_time &&
2253             object_property_find(cpuobj, "kvm-steal-time")) {
2254             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2255         }
2256 
2257         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2258             object_property_set_bool(cpuobj, "pmu", false, NULL);
2259         }
2260 
2261         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2262             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2263         }
2264 
2265         if (object_property_find(cpuobj, "reset-cbar")) {
2266             object_property_set_int(cpuobj, "reset-cbar",
2267                                     vms->memmap[VIRT_CPUPERIPHS].base,
2268                                     &error_abort);
2269         }
2270 
2271         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2272                                  &error_abort);
2273         if (vms->secure) {
2274             object_property_set_link(cpuobj, "secure-memory",
2275                                      OBJECT(secure_sysmem), &error_abort);
2276         }
2277 
2278         if (vms->mte) {
2279             /* Create the memory region only once, but link to all cpus. */
2280             if (!tag_sysmem) {
2281                 /*
2282                  * The property exists only if MemTag is supported.
2283                  * If it is, we must allocate the ram to back that up.
2284                  */
2285                 if (!object_property_find(cpuobj, "tag-memory")) {
2286                     error_report("MTE requested, but not supported "
2287                                  "by the guest CPU");
2288                     exit(1);
2289                 }
2290 
2291                 tag_sysmem = g_new(MemoryRegion, 1);
2292                 memory_region_init(tag_sysmem, OBJECT(machine),
2293                                    "tag-memory", UINT64_MAX / 32);
2294 
2295                 if (vms->secure) {
2296                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2297                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2298                                        "secure-tag-memory", UINT64_MAX / 32);
2299 
2300                     /* As with ram, secure-tag takes precedence over tag.  */
2301                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2302                                                         tag_sysmem, -1);
2303                 }
2304             }
2305 
2306             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2307                                      &error_abort);
2308             if (vms->secure) {
2309                 object_property_set_link(cpuobj, "secure-tag-memory",
2310                                          OBJECT(secure_tag_sysmem),
2311                                          &error_abort);
2312             }
2313         }
2314 
2315         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2316         object_unref(cpuobj);
2317     }
2318 
2319     /* Now we've created the CPUs we can see if they have the hypvirt timer */
2320     vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() &&
2321         !vmc->no_ns_el2_virt_timer_irq;
2322 
2323     fdt_add_timer_nodes(vms);
2324     fdt_add_cpu_nodes(vms);
2325 
2326     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2327                                 machine->ram);
2328 
2329     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2330 
2331     create_gic(vms, sysmem);
2332 
2333     virt_cpu_post_init(vms, sysmem);
2334 
2335     fdt_add_pmu_nodes(vms);
2336 
2337     /*
2338      * The first UART always exists. If the security extensions are
2339      * enabled, the second UART also always exists. Otherwise, it only exists
2340      * if a backend is configured explicitly via '-serial <backend>'.
2341      * This avoids potentially breaking existing user setups that expect
2342      * only one NonSecure UART to be present (for instance, older EDK2
2343      * binaries).
2344      *
2345      * The nodes end up in the DTB in reverse order of creation, so we must
2346      * create UART0 last to ensure it appears as the first node in the DTB,
2347      * for compatibility with guest software that just iterates through the
2348      * DTB to find the first UART, as older versions of EDK2 do.
2349      * DTB readers that follow the spec, as Linux does, should honour the
2350      * aliases node information and /chosen/stdout-path regardless of
2351      * the order that nodes appear in the DTB.
2352      *
2353      * For similar back-compatibility reasons, if UART1 is the secure UART
2354      * we create it second (and so it appears first in the DTB), because
2355      * that's what QEMU has always done.
2356      */
2357     if (!vms->secure) {
2358         Chardev *serial1 = serial_hd(1);
2359 
2360         if (serial1) {
2361             vms->second_ns_uart_present = true;
2362             create_uart(vms, VIRT_UART1, sysmem, serial1, false);
2363         }
2364     }
2365     create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false);
2366     if (vms->secure) {
2367         create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true);
2368     }
2369 
2370     if (vms->secure) {
2371         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2372     }
2373 
2374     if (tag_sysmem) {
2375         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2376                        machine->ram_size, "mach-virt.tag");
2377     }
2378 
2379     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2380 
2381     create_rtc(vms);
2382 
2383     create_pcie(vms);
2384 
2385     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2386         vms->acpi_dev = create_acpi_ged(vms);
2387     } else {
2388         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2389     }
2390 
2391     if (vms->secure && !vmc->no_secure_gpio) {
2392         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2393     }
2394 
2395      /* connect powerdown request */
2396      vms->powerdown_notifier.notify = virt_powerdown_req;
2397      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2398 
2399     /* Create mmio transports, so the user can create virtio backends
2400      * (which will be automatically plugged in to the transports). If
2401      * no backend is created the transport will just sit harmlessly idle.
2402      */
2403     create_virtio_devices(vms);
2404 
2405     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2406     rom_set_fw(vms->fw_cfg);
2407 
2408     create_platform_bus(vms);
2409 
2410     if (machine->nvdimms_state->is_enabled) {
2411         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2412             .space_id = AML_AS_SYSTEM_MEMORY,
2413             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2414             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2415         };
2416 
2417         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2418                                arm_virt_nvdimm_acpi_dsmio,
2419                                vms->fw_cfg, OBJECT(vms));
2420     }
2421 
2422     vms->bootinfo.ram_size = machine->ram_size;
2423     vms->bootinfo.board_id = -1;
2424     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2425     vms->bootinfo.get_dtb = machvirt_dtb;
2426     vms->bootinfo.skip_dtb_autoload = true;
2427     vms->bootinfo.firmware_loaded = firmware_loaded;
2428     vms->bootinfo.psci_conduit = vms->psci_conduit;
2429     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2430 
2431     vms->machine_done.notify = virt_machine_done;
2432     qemu_add_machine_init_done_notifier(&vms->machine_done);
2433 }
2434 
2435 static bool virt_get_secure(Object *obj, Error **errp)
2436 {
2437     VirtMachineState *vms = VIRT_MACHINE(obj);
2438 
2439     return vms->secure;
2440 }
2441 
2442 static void virt_set_secure(Object *obj, bool value, Error **errp)
2443 {
2444     VirtMachineState *vms = VIRT_MACHINE(obj);
2445 
2446     vms->secure = value;
2447 }
2448 
2449 static bool virt_get_virt(Object *obj, Error **errp)
2450 {
2451     VirtMachineState *vms = VIRT_MACHINE(obj);
2452 
2453     return vms->virt;
2454 }
2455 
2456 static void virt_set_virt(Object *obj, bool value, Error **errp)
2457 {
2458     VirtMachineState *vms = VIRT_MACHINE(obj);
2459 
2460     vms->virt = value;
2461 }
2462 
2463 static bool virt_get_highmem(Object *obj, Error **errp)
2464 {
2465     VirtMachineState *vms = VIRT_MACHINE(obj);
2466 
2467     return vms->highmem;
2468 }
2469 
2470 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2471 {
2472     VirtMachineState *vms = VIRT_MACHINE(obj);
2473 
2474     vms->highmem = value;
2475 }
2476 
2477 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2478 {
2479     VirtMachineState *vms = VIRT_MACHINE(obj);
2480 
2481     return vms->highmem_compact;
2482 }
2483 
2484 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2485 {
2486     VirtMachineState *vms = VIRT_MACHINE(obj);
2487 
2488     vms->highmem_compact = value;
2489 }
2490 
2491 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2492 {
2493     VirtMachineState *vms = VIRT_MACHINE(obj);
2494 
2495     return vms->highmem_redists;
2496 }
2497 
2498 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2499 {
2500     VirtMachineState *vms = VIRT_MACHINE(obj);
2501 
2502     vms->highmem_redists = value;
2503 }
2504 
2505 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2506 {
2507     VirtMachineState *vms = VIRT_MACHINE(obj);
2508 
2509     return vms->highmem_ecam;
2510 }
2511 
2512 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2513 {
2514     VirtMachineState *vms = VIRT_MACHINE(obj);
2515 
2516     vms->highmem_ecam = value;
2517 }
2518 
2519 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2520 {
2521     VirtMachineState *vms = VIRT_MACHINE(obj);
2522 
2523     return vms->highmem_mmio;
2524 }
2525 
2526 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2527 {
2528     VirtMachineState *vms = VIRT_MACHINE(obj);
2529 
2530     vms->highmem_mmio = value;
2531 }
2532 
2533 
2534 static bool virt_get_its(Object *obj, Error **errp)
2535 {
2536     VirtMachineState *vms = VIRT_MACHINE(obj);
2537 
2538     return vms->its;
2539 }
2540 
2541 static void virt_set_its(Object *obj, bool value, Error **errp)
2542 {
2543     VirtMachineState *vms = VIRT_MACHINE(obj);
2544 
2545     vms->its = value;
2546 }
2547 
2548 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2549 {
2550     VirtMachineState *vms = VIRT_MACHINE(obj);
2551 
2552     return vms->dtb_randomness;
2553 }
2554 
2555 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2556 {
2557     VirtMachineState *vms = VIRT_MACHINE(obj);
2558 
2559     vms->dtb_randomness = value;
2560 }
2561 
2562 static char *virt_get_oem_id(Object *obj, Error **errp)
2563 {
2564     VirtMachineState *vms = VIRT_MACHINE(obj);
2565 
2566     return g_strdup(vms->oem_id);
2567 }
2568 
2569 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2570 {
2571     VirtMachineState *vms = VIRT_MACHINE(obj);
2572     size_t len = strlen(value);
2573 
2574     if (len > 6) {
2575         error_setg(errp,
2576                    "User specified oem-id value is bigger than 6 bytes in size");
2577         return;
2578     }
2579 
2580     strncpy(vms->oem_id, value, 6);
2581 }
2582 
2583 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2584 {
2585     VirtMachineState *vms = VIRT_MACHINE(obj);
2586 
2587     return g_strdup(vms->oem_table_id);
2588 }
2589 
2590 static void virt_set_oem_table_id(Object *obj, const char *value,
2591                                   Error **errp)
2592 {
2593     VirtMachineState *vms = VIRT_MACHINE(obj);
2594     size_t len = strlen(value);
2595 
2596     if (len > 8) {
2597         error_setg(errp,
2598                    "User specified oem-table-id value is bigger than 8 bytes in size");
2599         return;
2600     }
2601     strncpy(vms->oem_table_id, value, 8);
2602 }
2603 
2604 
2605 bool virt_is_acpi_enabled(VirtMachineState *vms)
2606 {
2607     if (vms->acpi == ON_OFF_AUTO_OFF) {
2608         return false;
2609     }
2610     return true;
2611 }
2612 
2613 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2614                           void *opaque, Error **errp)
2615 {
2616     VirtMachineState *vms = VIRT_MACHINE(obj);
2617     OnOffAuto acpi = vms->acpi;
2618 
2619     visit_type_OnOffAuto(v, name, &acpi, errp);
2620 }
2621 
2622 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2623                           void *opaque, Error **errp)
2624 {
2625     VirtMachineState *vms = VIRT_MACHINE(obj);
2626 
2627     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2628 }
2629 
2630 static bool virt_get_ras(Object *obj, Error **errp)
2631 {
2632     VirtMachineState *vms = VIRT_MACHINE(obj);
2633 
2634     return vms->ras;
2635 }
2636 
2637 static void virt_set_ras(Object *obj, bool value, Error **errp)
2638 {
2639     VirtMachineState *vms = VIRT_MACHINE(obj);
2640 
2641     vms->ras = value;
2642 }
2643 
2644 static bool virt_get_mte(Object *obj, Error **errp)
2645 {
2646     VirtMachineState *vms = VIRT_MACHINE(obj);
2647 
2648     return vms->mte;
2649 }
2650 
2651 static void virt_set_mte(Object *obj, bool value, Error **errp)
2652 {
2653     VirtMachineState *vms = VIRT_MACHINE(obj);
2654 
2655     vms->mte = value;
2656 }
2657 
2658 static char *virt_get_gic_version(Object *obj, Error **errp)
2659 {
2660     VirtMachineState *vms = VIRT_MACHINE(obj);
2661     const char *val;
2662 
2663     switch (vms->gic_version) {
2664     case VIRT_GIC_VERSION_4:
2665         val = "4";
2666         break;
2667     case VIRT_GIC_VERSION_3:
2668         val = "3";
2669         break;
2670     default:
2671         val = "2";
2672         break;
2673     }
2674     return g_strdup(val);
2675 }
2676 
2677 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2678 {
2679     VirtMachineState *vms = VIRT_MACHINE(obj);
2680 
2681     if (!strcmp(value, "4")) {
2682         vms->gic_version = VIRT_GIC_VERSION_4;
2683     } else if (!strcmp(value, "3")) {
2684         vms->gic_version = VIRT_GIC_VERSION_3;
2685     } else if (!strcmp(value, "2")) {
2686         vms->gic_version = VIRT_GIC_VERSION_2;
2687     } else if (!strcmp(value, "host")) {
2688         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2689     } else if (!strcmp(value, "max")) {
2690         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2691     } else {
2692         error_setg(errp, "Invalid gic-version value");
2693         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2694     }
2695 }
2696 
2697 static char *virt_get_iommu(Object *obj, Error **errp)
2698 {
2699     VirtMachineState *vms = VIRT_MACHINE(obj);
2700 
2701     switch (vms->iommu) {
2702     case VIRT_IOMMU_NONE:
2703         return g_strdup("none");
2704     case VIRT_IOMMU_SMMUV3:
2705         return g_strdup("smmuv3");
2706     default:
2707         g_assert_not_reached();
2708     }
2709 }
2710 
2711 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2712 {
2713     VirtMachineState *vms = VIRT_MACHINE(obj);
2714 
2715     if (!strcmp(value, "smmuv3")) {
2716         vms->iommu = VIRT_IOMMU_SMMUV3;
2717     } else if (!strcmp(value, "none")) {
2718         vms->iommu = VIRT_IOMMU_NONE;
2719     } else {
2720         error_setg(errp, "Invalid iommu value");
2721         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2722     }
2723 }
2724 
2725 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2726 {
2727     VirtMachineState *vms = VIRT_MACHINE(obj);
2728 
2729     return vms->default_bus_bypass_iommu;
2730 }
2731 
2732 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2733                                               Error **errp)
2734 {
2735     VirtMachineState *vms = VIRT_MACHINE(obj);
2736 
2737     vms->default_bus_bypass_iommu = value;
2738 }
2739 
2740 static CpuInstanceProperties
2741 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2742 {
2743     MachineClass *mc = MACHINE_GET_CLASS(ms);
2744     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2745 
2746     assert(cpu_index < possible_cpus->len);
2747     return possible_cpus->cpus[cpu_index].props;
2748 }
2749 
2750 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2751 {
2752     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2753 
2754     return socket_id % ms->numa_state->num_nodes;
2755 }
2756 
2757 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2758 {
2759     int n;
2760     unsigned int max_cpus = ms->smp.max_cpus;
2761     VirtMachineState *vms = VIRT_MACHINE(ms);
2762     MachineClass *mc = MACHINE_GET_CLASS(vms);
2763 
2764     if (ms->possible_cpus) {
2765         assert(ms->possible_cpus->len == max_cpus);
2766         return ms->possible_cpus;
2767     }
2768 
2769     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2770                                   sizeof(CPUArchId) * max_cpus);
2771     ms->possible_cpus->len = max_cpus;
2772     for (n = 0; n < ms->possible_cpus->len; n++) {
2773         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2774         ms->possible_cpus->cpus[n].arch_id =
2775             virt_cpu_mp_affinity(vms, n);
2776 
2777         assert(!mc->smp_props.dies_supported);
2778         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2779         ms->possible_cpus->cpus[n].props.socket_id =
2780             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2781         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2782         ms->possible_cpus->cpus[n].props.cluster_id =
2783             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2784         ms->possible_cpus->cpus[n].props.has_core_id = true;
2785         ms->possible_cpus->cpus[n].props.core_id =
2786             (n / ms->smp.threads) % ms->smp.cores;
2787         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2788         ms->possible_cpus->cpus[n].props.thread_id =
2789             n % ms->smp.threads;
2790     }
2791     return ms->possible_cpus;
2792 }
2793 
2794 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2795                                  Error **errp)
2796 {
2797     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2798     const MachineState *ms = MACHINE(hotplug_dev);
2799     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2800 
2801     if (!vms->acpi_dev) {
2802         error_setg(errp,
2803                    "memory hotplug is not enabled: missing acpi-ged device");
2804         return;
2805     }
2806 
2807     if (vms->mte) {
2808         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2809         return;
2810     }
2811 
2812     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2813         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2814         return;
2815     }
2816 
2817     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp);
2818 }
2819 
2820 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2821                              DeviceState *dev, Error **errp)
2822 {
2823     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2824     MachineState *ms = MACHINE(hotplug_dev);
2825     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2826 
2827     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2828 
2829     if (is_nvdimm) {
2830         nvdimm_plug(ms->nvdimms_state);
2831     }
2832 
2833     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2834                          dev, &error_abort);
2835 }
2836 
2837 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2838                                             DeviceState *dev, Error **errp)
2839 {
2840     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2841 
2842     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2843         virt_memory_pre_plug(hotplug_dev, dev, errp);
2844     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2845         virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2846     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2847         hwaddr db_start = 0, db_end = 0;
2848         QList *reserved_regions;
2849         char *resv_prop_str;
2850 
2851         if (vms->iommu != VIRT_IOMMU_NONE) {
2852             error_setg(errp, "virt machine does not support multiple IOMMUs");
2853             return;
2854         }
2855 
2856         switch (vms->msi_controller) {
2857         case VIRT_MSI_CTRL_NONE:
2858             return;
2859         case VIRT_MSI_CTRL_ITS:
2860             /* GITS_TRANSLATER page */
2861             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2862             db_end = base_memmap[VIRT_GIC_ITS].base +
2863                      base_memmap[VIRT_GIC_ITS].size - 1;
2864             break;
2865         case VIRT_MSI_CTRL_GICV2M:
2866             /* MSI_SETSPI_NS page */
2867             db_start = base_memmap[VIRT_GIC_V2M].base;
2868             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2869             break;
2870         }
2871         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2872                                         db_start, db_end,
2873                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2874 
2875         reserved_regions = qlist_new();
2876         qlist_append_str(reserved_regions, resv_prop_str);
2877         qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2878         g_free(resv_prop_str);
2879     }
2880 }
2881 
2882 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2883                                         DeviceState *dev, Error **errp)
2884 {
2885     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2886 
2887     if (vms->platform_bus_dev) {
2888         MachineClass *mc = MACHINE_GET_CLASS(vms);
2889 
2890         if (device_is_dynamic_sysbus(mc, dev)) {
2891             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2892                                      SYS_BUS_DEVICE(dev));
2893         }
2894     }
2895 
2896     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2897         virt_memory_plug(hotplug_dev, dev, errp);
2898     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2899         virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2900     }
2901 
2902     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2903         PCIDevice *pdev = PCI_DEVICE(dev);
2904 
2905         vms->iommu = VIRT_IOMMU_VIRTIO;
2906         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2907         create_virtio_iommu_dt_bindings(vms);
2908     }
2909 }
2910 
2911 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2912                                      DeviceState *dev, Error **errp)
2913 {
2914     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2915 
2916     if (!vms->acpi_dev) {
2917         error_setg(errp,
2918                    "memory hotplug is not enabled: missing acpi-ged device");
2919         return;
2920     }
2921 
2922     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2923         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2924         return;
2925     }
2926 
2927     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2928                                    errp);
2929 }
2930 
2931 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2932                              DeviceState *dev, Error **errp)
2933 {
2934     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2935     Error *local_err = NULL;
2936 
2937     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2938     if (local_err) {
2939         goto out;
2940     }
2941 
2942     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2943     qdev_unrealize(dev);
2944 
2945 out:
2946     error_propagate(errp, local_err);
2947 }
2948 
2949 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2950                                           DeviceState *dev, Error **errp)
2951 {
2952     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2953         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2954     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2955         virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2956                                      errp);
2957     } else {
2958         error_setg(errp, "device unplug request for unsupported device"
2959                    " type: %s", object_get_typename(OBJECT(dev)));
2960     }
2961 }
2962 
2963 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2964                                           DeviceState *dev, Error **errp)
2965 {
2966     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2967         virt_dimm_unplug(hotplug_dev, dev, errp);
2968     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2969         virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2970     } else {
2971         error_setg(errp, "virt: device unplug for unsupported device"
2972                    " type: %s", object_get_typename(OBJECT(dev)));
2973     }
2974 }
2975 
2976 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2977                                                         DeviceState *dev)
2978 {
2979     MachineClass *mc = MACHINE_GET_CLASS(machine);
2980 
2981     if (device_is_dynamic_sysbus(mc, dev) ||
2982         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2983         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2984         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2985         return HOTPLUG_HANDLER(machine);
2986     }
2987     return NULL;
2988 }
2989 
2990 /*
2991  * for arm64 kvm_type [7-0] encodes the requested number of bits
2992  * in the IPA address space
2993  */
2994 static int virt_kvm_type(MachineState *ms, const char *type_str)
2995 {
2996     VirtMachineState *vms = VIRT_MACHINE(ms);
2997     int max_vm_pa_size, requested_pa_size;
2998     bool fixed_ipa;
2999 
3000     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
3001 
3002     /* we freeze the memory map to compute the highest gpa */
3003     virt_set_memmap(vms, max_vm_pa_size);
3004 
3005     requested_pa_size = 64 - clz64(vms->highest_gpa);
3006 
3007     /*
3008      * KVM requires the IPA size to be at least 32 bits.
3009      */
3010     if (requested_pa_size < 32) {
3011         requested_pa_size = 32;
3012     }
3013 
3014     if (requested_pa_size > max_vm_pa_size) {
3015         error_report("-m and ,maxmem option values "
3016                      "require an IPA range (%d bits) larger than "
3017                      "the one supported by the host (%d bits)",
3018                      requested_pa_size, max_vm_pa_size);
3019         return -1;
3020     }
3021     /*
3022      * We return the requested PA log size, unless KVM only supports
3023      * the implicit legacy 40b IPA setting, in which case the kvm_type
3024      * must be 0.
3025      */
3026     return fixed_ipa ? 0 : requested_pa_size;
3027 }
3028 
3029 static void virt_machine_class_init(ObjectClass *oc, void *data)
3030 {
3031     MachineClass *mc = MACHINE_CLASS(oc);
3032     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3033     static const char * const valid_cpu_types[] = {
3034 #ifdef CONFIG_TCG
3035         ARM_CPU_TYPE_NAME("cortex-a7"),
3036         ARM_CPU_TYPE_NAME("cortex-a15"),
3037 #ifdef TARGET_AARCH64
3038         ARM_CPU_TYPE_NAME("cortex-a35"),
3039         ARM_CPU_TYPE_NAME("cortex-a55"),
3040         ARM_CPU_TYPE_NAME("cortex-a72"),
3041         ARM_CPU_TYPE_NAME("cortex-a76"),
3042         ARM_CPU_TYPE_NAME("cortex-a710"),
3043         ARM_CPU_TYPE_NAME("a64fx"),
3044         ARM_CPU_TYPE_NAME("neoverse-n1"),
3045         ARM_CPU_TYPE_NAME("neoverse-v1"),
3046         ARM_CPU_TYPE_NAME("neoverse-n2"),
3047 #endif /* TARGET_AARCH64 */
3048 #endif /* CONFIG_TCG */
3049 #ifdef TARGET_AARCH64
3050         ARM_CPU_TYPE_NAME("cortex-a53"),
3051         ARM_CPU_TYPE_NAME("cortex-a57"),
3052 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
3053         ARM_CPU_TYPE_NAME("host"),
3054 #endif /* CONFIG_KVM || CONFIG_HVF */
3055 #endif /* TARGET_AARCH64 */
3056         ARM_CPU_TYPE_NAME("max"),
3057         NULL
3058     };
3059 
3060     mc->init = machvirt_init;
3061     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
3062      * The value may be reduced later when we have more information about the
3063      * configuration of the particular instance.
3064      */
3065     mc->max_cpus = 512;
3066     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
3067     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
3068     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
3069     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
3070 #ifdef CONFIG_TPM
3071     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
3072 #endif
3073     mc->block_default_type = IF_VIRTIO;
3074     mc->no_cdrom = 1;
3075     mc->pci_allow_0_address = true;
3076     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3077     mc->minimum_page_bits = 12;
3078     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3079     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3080 #ifdef CONFIG_TCG
3081     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3082 #else
3083     mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
3084 #endif
3085     mc->valid_cpu_types = valid_cpu_types;
3086     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3087     mc->kvm_type = virt_kvm_type;
3088     assert(!mc->get_hotplug_handler);
3089     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3090     hc->pre_plug = virt_machine_device_pre_plug_cb;
3091     hc->plug = virt_machine_device_plug_cb;
3092     hc->unplug_request = virt_machine_device_unplug_request_cb;
3093     hc->unplug = virt_machine_device_unplug_cb;
3094     mc->nvdimm_supported = true;
3095     mc->smp_props.clusters_supported = true;
3096     mc->auto_enable_numa_with_memhp = true;
3097     mc->auto_enable_numa_with_memdev = true;
3098     /* platform instead of architectural choice */
3099     mc->cpu_cluster_has_numa_boundary = true;
3100     mc->default_ram_id = "mach-virt.ram";
3101     mc->default_nic = "virtio-net-pci";
3102 
3103     object_class_property_add(oc, "acpi", "OnOffAuto",
3104         virt_get_acpi, virt_set_acpi,
3105         NULL, NULL);
3106     object_class_property_set_description(oc, "acpi",
3107         "Enable ACPI");
3108     object_class_property_add_bool(oc, "secure", virt_get_secure,
3109                                    virt_set_secure);
3110     object_class_property_set_description(oc, "secure",
3111                                                 "Set on/off to enable/disable the ARM "
3112                                                 "Security Extensions (TrustZone)");
3113 
3114     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3115                                    virt_set_virt);
3116     object_class_property_set_description(oc, "virtualization",
3117                                           "Set on/off to enable/disable emulating a "
3118                                           "guest CPU which implements the ARM "
3119                                           "Virtualization Extensions");
3120 
3121     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3122                                    virt_set_highmem);
3123     object_class_property_set_description(oc, "highmem",
3124                                           "Set on/off to enable/disable using "
3125                                           "physical address space above 32 bits");
3126 
3127     object_class_property_add_bool(oc, "compact-highmem",
3128                                    virt_get_compact_highmem,
3129                                    virt_set_compact_highmem);
3130     object_class_property_set_description(oc, "compact-highmem",
3131                                           "Set on/off to enable/disable compact "
3132                                           "layout for high memory regions");
3133 
3134     object_class_property_add_bool(oc, "highmem-redists",
3135                                    virt_get_highmem_redists,
3136                                    virt_set_highmem_redists);
3137     object_class_property_set_description(oc, "highmem-redists",
3138                                           "Set on/off to enable/disable high "
3139                                           "memory region for GICv3 or GICv4 "
3140                                           "redistributor");
3141 
3142     object_class_property_add_bool(oc, "highmem-ecam",
3143                                    virt_get_highmem_ecam,
3144                                    virt_set_highmem_ecam);
3145     object_class_property_set_description(oc, "highmem-ecam",
3146                                           "Set on/off to enable/disable high "
3147                                           "memory region for PCI ECAM");
3148 
3149     object_class_property_add_bool(oc, "highmem-mmio",
3150                                    virt_get_highmem_mmio,
3151                                    virt_set_highmem_mmio);
3152     object_class_property_set_description(oc, "highmem-mmio",
3153                                           "Set on/off to enable/disable high "
3154                                           "memory region for PCI MMIO");
3155 
3156     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3157                                   virt_set_gic_version);
3158     object_class_property_set_description(oc, "gic-version",
3159                                           "Set GIC version. "
3160                                           "Valid values are 2, 3, 4, host and max");
3161 
3162     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3163     object_class_property_set_description(oc, "iommu",
3164                                           "Set the IOMMU type. "
3165                                           "Valid values are none and smmuv3");
3166 
3167     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3168                                    virt_get_default_bus_bypass_iommu,
3169                                    virt_set_default_bus_bypass_iommu);
3170     object_class_property_set_description(oc, "default-bus-bypass-iommu",
3171                                           "Set on/off to enable/disable "
3172                                           "bypass_iommu for default root bus");
3173 
3174     object_class_property_add_bool(oc, "ras", virt_get_ras,
3175                                    virt_set_ras);
3176     object_class_property_set_description(oc, "ras",
3177                                           "Set on/off to enable/disable reporting host memory errors "
3178                                           "to a KVM guest using ACPI and guest external abort exceptions");
3179 
3180     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3181     object_class_property_set_description(oc, "mte",
3182                                           "Set on/off to enable/disable emulating a "
3183                                           "guest CPU which implements the ARM "
3184                                           "Memory Tagging Extension");
3185 
3186     object_class_property_add_bool(oc, "its", virt_get_its,
3187                                    virt_set_its);
3188     object_class_property_set_description(oc, "its",
3189                                           "Set on/off to enable/disable "
3190                                           "ITS instantiation");
3191 
3192     object_class_property_add_bool(oc, "dtb-randomness",
3193                                    virt_get_dtb_randomness,
3194                                    virt_set_dtb_randomness);
3195     object_class_property_set_description(oc, "dtb-randomness",
3196                                           "Set off to disable passing random or "
3197                                           "non-deterministic dtb nodes to guest");
3198 
3199     object_class_property_add_bool(oc, "dtb-kaslr-seed",
3200                                    virt_get_dtb_randomness,
3201                                    virt_set_dtb_randomness);
3202     object_class_property_set_description(oc, "dtb-kaslr-seed",
3203                                           "Deprecated synonym of dtb-randomness");
3204 
3205     object_class_property_add_str(oc, "x-oem-id",
3206                                   virt_get_oem_id,
3207                                   virt_set_oem_id);
3208     object_class_property_set_description(oc, "x-oem-id",
3209                                           "Override the default value of field OEMID "
3210                                           "in ACPI table header."
3211                                           "The string may be up to 6 bytes in size");
3212 
3213 
3214     object_class_property_add_str(oc, "x-oem-table-id",
3215                                   virt_get_oem_table_id,
3216                                   virt_set_oem_table_id);
3217     object_class_property_set_description(oc, "x-oem-table-id",
3218                                           "Override the default value of field OEM Table ID "
3219                                           "in ACPI table header."
3220                                           "The string may be up to 8 bytes in size");
3221 
3222 }
3223 
3224 static void virt_instance_init(Object *obj)
3225 {
3226     VirtMachineState *vms = VIRT_MACHINE(obj);
3227     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3228 
3229     /* EL3 is disabled by default on virt: this makes us consistent
3230      * between KVM and TCG for this board, and it also allows us to
3231      * boot UEFI blobs which assume no TrustZone support.
3232      */
3233     vms->secure = false;
3234 
3235     /* EL2 is also disabled by default, for similar reasons */
3236     vms->virt = false;
3237 
3238     /* High memory is enabled by default */
3239     vms->highmem = true;
3240     vms->highmem_compact = !vmc->no_highmem_compact;
3241     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3242 
3243     vms->highmem_ecam = !vmc->no_highmem_ecam;
3244     vms->highmem_mmio = true;
3245     vms->highmem_redists = true;
3246 
3247     if (vmc->no_its) {
3248         vms->its = false;
3249     } else {
3250         /* Default allows ITS instantiation */
3251         vms->its = true;
3252 
3253         if (vmc->no_tcg_its) {
3254             vms->tcg_its = false;
3255         } else {
3256             vms->tcg_its = true;
3257         }
3258     }
3259 
3260     /* Default disallows iommu instantiation */
3261     vms->iommu = VIRT_IOMMU_NONE;
3262 
3263     /* The default root bus is attached to iommu by default */
3264     vms->default_bus_bypass_iommu = false;
3265 
3266     /* Default disallows RAS instantiation */
3267     vms->ras = false;
3268 
3269     /* MTE is disabled by default.  */
3270     vms->mte = false;
3271 
3272     /* Supply kaslr-seed and rng-seed by default */
3273     vms->dtb_randomness = true;
3274 
3275     vms->irqmap = a15irqmap;
3276 
3277     virt_flash_create(vms);
3278 
3279     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3280     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3281 }
3282 
3283 static const TypeInfo virt_machine_info = {
3284     .name          = TYPE_VIRT_MACHINE,
3285     .parent        = TYPE_MACHINE,
3286     .abstract      = true,
3287     .instance_size = sizeof(VirtMachineState),
3288     .class_size    = sizeof(VirtMachineClass),
3289     .class_init    = virt_machine_class_init,
3290     .instance_init = virt_instance_init,
3291     .interfaces = (InterfaceInfo[]) {
3292          { TYPE_HOTPLUG_HANDLER },
3293          { }
3294     },
3295 };
3296 
3297 static void machvirt_machine_init(void)
3298 {
3299     type_register_static(&virt_machine_info);
3300 }
3301 type_init(machvirt_machine_init);
3302 
3303 static void virt_machine_9_1_options(MachineClass *mc)
3304 {
3305 }
3306 DEFINE_VIRT_MACHINE_AS_LATEST(9, 1)
3307 
3308 static void virt_machine_9_0_options(MachineClass *mc)
3309 {
3310     virt_machine_9_1_options(mc);
3311     mc->smbios_memory_device_size = 16 * GiB;
3312     compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
3313 }
3314 DEFINE_VIRT_MACHINE(9, 0)
3315 
3316 static void virt_machine_8_2_options(MachineClass *mc)
3317 {
3318     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3319 
3320     virt_machine_9_0_options(mc);
3321     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3322     /*
3323      * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and
3324      * earlier machines. (Exposing it tickles a bug in older EDK2
3325      * guest BIOS binaries.)
3326      */
3327     vmc->no_ns_el2_virt_timer_irq = true;
3328 }
3329 DEFINE_VIRT_MACHINE(8, 2)
3330 
3331 static void virt_machine_8_1_options(MachineClass *mc)
3332 {
3333     virt_machine_8_2_options(mc);
3334     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3335 }
3336 DEFINE_VIRT_MACHINE(8, 1)
3337 
3338 static void virt_machine_8_0_options(MachineClass *mc)
3339 {
3340     virt_machine_8_1_options(mc);
3341     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3342 }
3343 DEFINE_VIRT_MACHINE(8, 0)
3344 
3345 static void virt_machine_7_2_options(MachineClass *mc)
3346 {
3347     virt_machine_8_0_options(mc);
3348     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3349 }
3350 DEFINE_VIRT_MACHINE(7, 2)
3351 
3352 static void virt_machine_7_1_options(MachineClass *mc)
3353 {
3354     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3355 
3356     virt_machine_7_2_options(mc);
3357     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3358     /* Compact layout for high memory regions was introduced with 7.2 */
3359     vmc->no_highmem_compact = true;
3360 }
3361 DEFINE_VIRT_MACHINE(7, 1)
3362 
3363 static void virt_machine_7_0_options(MachineClass *mc)
3364 {
3365     virt_machine_7_1_options(mc);
3366     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3367 }
3368 DEFINE_VIRT_MACHINE(7, 0)
3369 
3370 static void virt_machine_6_2_options(MachineClass *mc)
3371 {
3372     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3373 
3374     virt_machine_7_0_options(mc);
3375     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3376     vmc->no_tcg_lpa2 = true;
3377 }
3378 DEFINE_VIRT_MACHINE(6, 2)
3379 
3380 static void virt_machine_6_1_options(MachineClass *mc)
3381 {
3382     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3383 
3384     virt_machine_6_2_options(mc);
3385     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3386     mc->smp_props.prefer_sockets = true;
3387     vmc->no_cpu_topology = true;
3388 
3389     /* qemu ITS was introduced with 6.2 */
3390     vmc->no_tcg_its = true;
3391 }
3392 DEFINE_VIRT_MACHINE(6, 1)
3393 
3394 static void virt_machine_6_0_options(MachineClass *mc)
3395 {
3396     virt_machine_6_1_options(mc);
3397     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3398 }
3399 DEFINE_VIRT_MACHINE(6, 0)
3400 
3401 static void virt_machine_5_2_options(MachineClass *mc)
3402 {
3403     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3404 
3405     virt_machine_6_0_options(mc);
3406     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3407     vmc->no_secure_gpio = true;
3408 }
3409 DEFINE_VIRT_MACHINE(5, 2)
3410 
3411 static void virt_machine_5_1_options(MachineClass *mc)
3412 {
3413     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3414 
3415     virt_machine_5_2_options(mc);
3416     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3417     vmc->no_kvm_steal_time = true;
3418 }
3419 DEFINE_VIRT_MACHINE(5, 1)
3420 
3421 static void virt_machine_5_0_options(MachineClass *mc)
3422 {
3423     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3424 
3425     virt_machine_5_1_options(mc);
3426     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3427     mc->numa_mem_supported = true;
3428     vmc->acpi_expose_flash = true;
3429     mc->auto_enable_numa_with_memdev = false;
3430 }
3431 DEFINE_VIRT_MACHINE(5, 0)
3432 
3433 static void virt_machine_4_2_options(MachineClass *mc)
3434 {
3435     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3436 
3437     virt_machine_5_0_options(mc);
3438     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3439     vmc->kvm_no_adjvtime = true;
3440 }
3441 DEFINE_VIRT_MACHINE(4, 2)
3442 
3443 static void virt_machine_4_1_options(MachineClass *mc)
3444 {
3445     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3446 
3447     virt_machine_4_2_options(mc);
3448     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3449     vmc->no_ged = true;
3450     mc->auto_enable_numa_with_memhp = false;
3451 }
3452 DEFINE_VIRT_MACHINE(4, 1)
3453 
3454 static void virt_machine_4_0_options(MachineClass *mc)
3455 {
3456     virt_machine_4_1_options(mc);
3457     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3458 }
3459 DEFINE_VIRT_MACHINE(4, 0)
3460 
3461 static void virt_machine_3_1_options(MachineClass *mc)
3462 {
3463     virt_machine_4_0_options(mc);
3464     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3465 }
3466 DEFINE_VIRT_MACHINE(3, 1)
3467 
3468 static void virt_machine_3_0_options(MachineClass *mc)
3469 {
3470     virt_machine_3_1_options(mc);
3471     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3472 }
3473 DEFINE_VIRT_MACHINE(3, 0)
3474 
3475 static void virt_machine_2_12_options(MachineClass *mc)
3476 {
3477     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3478 
3479     virt_machine_3_0_options(mc);
3480     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3481     vmc->no_highmem_ecam = true;
3482     mc->max_cpus = 255;
3483 }
3484 DEFINE_VIRT_MACHINE(2, 12)
3485 
3486 static void virt_machine_2_11_options(MachineClass *mc)
3487 {
3488     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3489 
3490     virt_machine_2_12_options(mc);
3491     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3492     vmc->smbios_old_sys_ver = true;
3493 }
3494 DEFINE_VIRT_MACHINE(2, 11)
3495 
3496 static void virt_machine_2_10_options(MachineClass *mc)
3497 {
3498     virt_machine_2_11_options(mc);
3499     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3500     /* before 2.11 we never faulted accesses to bad addresses */
3501     mc->ignore_memory_transaction_failures = true;
3502 }
3503 DEFINE_VIRT_MACHINE(2, 10)
3504 
3505 static void virt_machine_2_9_options(MachineClass *mc)
3506 {
3507     virt_machine_2_10_options(mc);
3508     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3509 }
3510 DEFINE_VIRT_MACHINE(2, 9)
3511 
3512 static void virt_machine_2_8_options(MachineClass *mc)
3513 {
3514     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3515 
3516     virt_machine_2_9_options(mc);
3517     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3518     /* For 2.8 and earlier we falsely claimed in the DT that
3519      * our timers were edge-triggered, not level-triggered.
3520      */
3521     vmc->claim_edge_triggered_timers = true;
3522 }
3523 DEFINE_VIRT_MACHINE(2, 8)
3524 
3525 static void virt_machine_2_7_options(MachineClass *mc)
3526 {
3527     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3528 
3529     virt_machine_2_8_options(mc);
3530     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3531     /* ITS was introduced with 2.8 */
3532     vmc->no_its = true;
3533     /* Stick with 1K pages for migration compatibility */
3534     mc->minimum_page_bits = 0;
3535 }
3536 DEFINE_VIRT_MACHINE(2, 7)
3537 
3538 static void virt_machine_2_6_options(MachineClass *mc)
3539 {
3540     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3541 
3542     virt_machine_2_7_options(mc);
3543     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3544     vmc->disallow_affinity_adjustment = true;
3545     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3546     vmc->no_pmu = true;
3547 }
3548 DEFINE_VIRT_MACHINE(2, 6)
3549