1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/datadir.h" 34 #include "qemu/units.h" 35 #include "qemu/option.h" 36 #include "monitor/qdev.h" 37 #include "qapi/error.h" 38 #include "hw/sysbus.h" 39 #include "hw/boards.h" 40 #include "hw/arm/boot.h" 41 #include "hw/arm/primecell.h" 42 #include "hw/arm/virt.h" 43 #include "hw/block/flash.h" 44 #include "hw/vfio/vfio-calxeda-xgmac.h" 45 #include "hw/vfio/vfio-amd-xgbe.h" 46 #include "hw/display/ramfb.h" 47 #include "net/net.h" 48 #include "sysemu/device_tree.h" 49 #include "sysemu/numa.h" 50 #include "sysemu/runstate.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/tpm.h" 53 #include "sysemu/kvm.h" 54 #include "hw/loader.h" 55 #include "exec/address-spaces.h" 56 #include "qemu/bitops.h" 57 #include "qemu/error-report.h" 58 #include "qemu/module.h" 59 #include "hw/pci-host/gpex.h" 60 #include "hw/virtio/virtio-pci.h" 61 #include "hw/arm/sysbus-fdt.h" 62 #include "hw/platform-bus.h" 63 #include "hw/qdev-properties.h" 64 #include "hw/arm/fdt.h" 65 #include "hw/intc/arm_gic.h" 66 #include "hw/intc/arm_gicv3_common.h" 67 #include "hw/irq.h" 68 #include "kvm_arm.h" 69 #include "hw/firmware/smbios.h" 70 #include "qapi/visitor.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "standard-headers/linux/input.h" 73 #include "hw/arm/smmuv3.h" 74 #include "hw/acpi/acpi.h" 75 #include "target/arm/internals.h" 76 #include "hw/mem/pc-dimm.h" 77 #include "hw/mem/nvdimm.h" 78 #include "hw/acpi/generic_event_device.h" 79 #include "hw/virtio/virtio-iommu.h" 80 #include "hw/char/pl011.h" 81 #include "qemu/guest-random.h" 82 83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 84 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 85 void *data) \ 86 { \ 87 MachineClass *mc = MACHINE_CLASS(oc); \ 88 virt_machine_##major##_##minor##_options(mc); \ 89 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 90 if (latest) { \ 91 mc->alias = "virt"; \ 92 } \ 93 } \ 94 static const TypeInfo machvirt_##major##_##minor##_info = { \ 95 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 96 .parent = TYPE_VIRT_MACHINE, \ 97 .class_init = virt_##major##_##minor##_class_init, \ 98 }; \ 99 static void machvirt_machine_##major##_##minor##_init(void) \ 100 { \ 101 type_register_static(&machvirt_##major##_##minor##_info); \ 102 } \ 103 type_init(machvirt_machine_##major##_##minor##_init); 104 105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 106 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 107 #define DEFINE_VIRT_MACHINE(major, minor) \ 108 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 109 110 111 /* Number of external interrupt lines to configure the GIC with */ 112 #define NUM_IRQS 256 113 114 #define PLATFORM_BUS_NUM_IRQS 64 115 116 /* Legacy RAM limit in GB (< version 4.0) */ 117 #define LEGACY_RAMLIMIT_GB 255 118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 119 120 /* Addresses and sizes of our components. 121 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 122 * 128MB..256MB is used for miscellaneous device I/O. 123 * 256MB..1GB is reserved for possible future PCI support (ie where the 124 * PCI memory window will go if we add a PCI host controller). 125 * 1GB and up is RAM (which may happily spill over into the 126 * high memory region beyond 4GB). 127 * This represents a compromise between how much RAM can be given to 128 * a 32 bit VM and leaving space for expansion and in particular for PCI. 129 * Note that devices should generally be placed at multiples of 0x10000, 130 * to accommodate guests using 64K pages. 131 */ 132 static const MemMapEntry base_memmap[] = { 133 /* Space up to 0x8000000 is reserved for a boot ROM */ 134 [VIRT_FLASH] = { 0, 0x08000000 }, 135 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 136 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 137 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 138 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 139 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 140 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 141 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 142 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 143 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 144 /* This redistributor space allows up to 2*64kB*123 CPUs */ 145 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 146 [VIRT_UART] = { 0x09000000, 0x00001000 }, 147 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 148 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 149 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 150 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 151 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 152 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 153 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 154 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 155 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 156 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 157 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 158 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 159 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 160 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 161 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 162 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 163 /* Actual RAM size depends on initial RAM and device memory settings */ 164 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 165 }; 166 167 /* 168 * Highmem IO Regions: This memory map is floating, located after the RAM. 169 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 170 * top of the RAM, so that its base get the same alignment as the size, 171 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 172 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 173 * Note the extended_memmap is sized so that it eventually also includes the 174 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 175 * index of base_memmap). 176 */ 177 static MemMapEntry extended_memmap[] = { 178 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 179 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 180 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 181 /* Second PCIe window */ 182 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 183 }; 184 185 static const int a15irqmap[] = { 186 [VIRT_UART] = 1, 187 [VIRT_RTC] = 2, 188 [VIRT_PCIE] = 3, /* ... to 6 */ 189 [VIRT_GPIO] = 7, 190 [VIRT_SECURE_UART] = 8, 191 [VIRT_ACPI_GED] = 9, 192 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 193 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 194 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 195 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 196 }; 197 198 static const char *valid_cpus[] = { 199 ARM_CPU_TYPE_NAME("cortex-a7"), 200 ARM_CPU_TYPE_NAME("cortex-a15"), 201 ARM_CPU_TYPE_NAME("cortex-a53"), 202 ARM_CPU_TYPE_NAME("cortex-a57"), 203 ARM_CPU_TYPE_NAME("cortex-a72"), 204 ARM_CPU_TYPE_NAME("host"), 205 ARM_CPU_TYPE_NAME("max"), 206 }; 207 208 static bool cpu_type_valid(const char *cpu) 209 { 210 int i; 211 212 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 213 if (strcmp(cpu, valid_cpus[i]) == 0) { 214 return true; 215 } 216 } 217 return false; 218 } 219 220 static void create_kaslr_seed(VirtMachineState *vms, const char *node) 221 { 222 uint64_t seed; 223 224 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 225 return; 226 } 227 qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed); 228 } 229 230 static void create_fdt(VirtMachineState *vms) 231 { 232 MachineState *ms = MACHINE(vms); 233 int nb_numa_nodes = ms->numa_state->num_nodes; 234 void *fdt = create_device_tree(&vms->fdt_size); 235 236 if (!fdt) { 237 error_report("create_device_tree() failed"); 238 exit(1); 239 } 240 241 vms->fdt = fdt; 242 243 /* Header */ 244 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 245 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 246 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 247 248 /* /chosen must exist for load_dtb to fill in necessary properties later */ 249 qemu_fdt_add_subnode(fdt, "/chosen"); 250 create_kaslr_seed(vms, "/chosen"); 251 252 if (vms->secure) { 253 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 254 create_kaslr_seed(vms, "/secure-chosen"); 255 } 256 257 /* Clock node, for the benefit of the UART. The kernel device tree 258 * binding documentation claims the PL011 node clock properties are 259 * optional but in practice if you omit them the kernel refuses to 260 * probe for the device. 261 */ 262 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 263 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 264 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 266 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 267 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 268 "clk24mhz"); 269 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 270 271 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 272 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 273 uint32_t *matrix = g_malloc0(size); 274 int idx, i, j; 275 276 for (i = 0; i < nb_numa_nodes; i++) { 277 for (j = 0; j < nb_numa_nodes; j++) { 278 idx = (i * nb_numa_nodes + j) * 3; 279 matrix[idx + 0] = cpu_to_be32(i); 280 matrix[idx + 1] = cpu_to_be32(j); 281 matrix[idx + 2] = 282 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 283 } 284 } 285 286 qemu_fdt_add_subnode(fdt, "/distance-map"); 287 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 288 "numa-distance-map-v1"); 289 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 290 matrix, size); 291 g_free(matrix); 292 } 293 } 294 295 static void fdt_add_timer_nodes(const VirtMachineState *vms) 296 { 297 /* On real hardware these interrupts are level-triggered. 298 * On KVM they were edge-triggered before host kernel version 4.4, 299 * and level-triggered afterwards. 300 * On emulated QEMU they are level-triggered. 301 * 302 * Getting the DTB info about them wrong is awkward for some 303 * guest kernels: 304 * pre-4.8 ignore the DT and leave the interrupt configured 305 * with whatever the GIC reset value (or the bootloader) left it at 306 * 4.8 before rc6 honour the incorrect data by programming it back 307 * into the GIC, causing problems 308 * 4.8rc6 and later ignore the DT and always write "level triggered" 309 * into the GIC 310 * 311 * For backwards-compatibility, virt-2.8 and earlier will continue 312 * to say these are edge-triggered, but later machines will report 313 * the correct information. 314 */ 315 ARMCPU *armcpu; 316 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 317 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 318 319 if (vmc->claim_edge_triggered_timers) { 320 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 321 } 322 323 if (vms->gic_version == VIRT_GIC_VERSION_2) { 324 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 325 GIC_FDT_IRQ_PPI_CPU_WIDTH, 326 (1 << vms->smp_cpus) - 1); 327 } 328 329 qemu_fdt_add_subnode(vms->fdt, "/timer"); 330 331 armcpu = ARM_CPU(qemu_get_cpu(0)); 332 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 333 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 334 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 335 compat, sizeof(compat)); 336 } else { 337 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 338 "arm,armv7-timer"); 339 } 340 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 341 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 342 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 346 } 347 348 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 349 { 350 int cpu; 351 int addr_cells = 1; 352 const MachineState *ms = MACHINE(vms); 353 354 /* 355 * From Documentation/devicetree/bindings/arm/cpus.txt 356 * On ARM v8 64-bit systems value should be set to 2, 357 * that corresponds to the MPIDR_EL1 register size. 358 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 359 * in the system, #address-cells can be set to 1, since 360 * MPIDR_EL1[63:32] bits are not used for CPUs 361 * identification. 362 * 363 * Here we actually don't know whether our system is 32- or 64-bit one. 364 * The simplest way to go is to examine affinity IDs of all our CPUs. If 365 * at least one of them has Aff3 populated, we set #address-cells to 2. 366 */ 367 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 368 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 369 370 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 371 addr_cells = 2; 372 break; 373 } 374 } 375 376 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 377 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 378 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 379 380 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 381 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 382 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 383 CPUState *cs = CPU(armcpu); 384 385 qemu_fdt_add_subnode(vms->fdt, nodename); 386 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 387 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 388 armcpu->dtb_compatible); 389 390 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 391 && vms->smp_cpus > 1) { 392 qemu_fdt_setprop_string(vms->fdt, nodename, 393 "enable-method", "psci"); 394 } 395 396 if (addr_cells == 2) { 397 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 398 armcpu->mp_affinity); 399 } else { 400 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 401 armcpu->mp_affinity); 402 } 403 404 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 405 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 406 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 407 } 408 409 g_free(nodename); 410 } 411 } 412 413 static void fdt_add_its_gic_node(VirtMachineState *vms) 414 { 415 char *nodename; 416 417 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 418 nodename = g_strdup_printf("/intc/its@%" PRIx64, 419 vms->memmap[VIRT_GIC_ITS].base); 420 qemu_fdt_add_subnode(vms->fdt, nodename); 421 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 422 "arm,gic-v3-its"); 423 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 424 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 425 2, vms->memmap[VIRT_GIC_ITS].base, 426 2, vms->memmap[VIRT_GIC_ITS].size); 427 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 428 g_free(nodename); 429 } 430 431 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 432 { 433 char *nodename; 434 435 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 436 vms->memmap[VIRT_GIC_V2M].base); 437 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 438 qemu_fdt_add_subnode(vms->fdt, nodename); 439 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 440 "arm,gic-v2m-frame"); 441 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 442 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 443 2, vms->memmap[VIRT_GIC_V2M].base, 444 2, vms->memmap[VIRT_GIC_V2M].size); 445 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 446 g_free(nodename); 447 } 448 449 static void fdt_add_gic_node(VirtMachineState *vms) 450 { 451 char *nodename; 452 453 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 454 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 455 456 nodename = g_strdup_printf("/intc@%" PRIx64, 457 vms->memmap[VIRT_GIC_DIST].base); 458 qemu_fdt_add_subnode(vms->fdt, nodename); 459 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 460 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 461 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 462 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 463 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 464 if (vms->gic_version == VIRT_GIC_VERSION_3) { 465 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 466 467 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 468 "arm,gic-v3"); 469 470 qemu_fdt_setprop_cell(vms->fdt, nodename, 471 "#redistributor-regions", nb_redist_regions); 472 473 if (nb_redist_regions == 1) { 474 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 475 2, vms->memmap[VIRT_GIC_DIST].base, 476 2, vms->memmap[VIRT_GIC_DIST].size, 477 2, vms->memmap[VIRT_GIC_REDIST].base, 478 2, vms->memmap[VIRT_GIC_REDIST].size); 479 } else { 480 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 481 2, vms->memmap[VIRT_GIC_DIST].base, 482 2, vms->memmap[VIRT_GIC_DIST].size, 483 2, vms->memmap[VIRT_GIC_REDIST].base, 484 2, vms->memmap[VIRT_GIC_REDIST].size, 485 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 486 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 487 } 488 489 if (vms->virt) { 490 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 491 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 492 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 493 } 494 } else { 495 /* 'cortex-a15-gic' means 'GIC v2' */ 496 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 497 "arm,cortex-a15-gic"); 498 if (!vms->virt) { 499 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 500 2, vms->memmap[VIRT_GIC_DIST].base, 501 2, vms->memmap[VIRT_GIC_DIST].size, 502 2, vms->memmap[VIRT_GIC_CPU].base, 503 2, vms->memmap[VIRT_GIC_CPU].size); 504 } else { 505 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 506 2, vms->memmap[VIRT_GIC_DIST].base, 507 2, vms->memmap[VIRT_GIC_DIST].size, 508 2, vms->memmap[VIRT_GIC_CPU].base, 509 2, vms->memmap[VIRT_GIC_CPU].size, 510 2, vms->memmap[VIRT_GIC_HYP].base, 511 2, vms->memmap[VIRT_GIC_HYP].size, 512 2, vms->memmap[VIRT_GIC_VCPU].base, 513 2, vms->memmap[VIRT_GIC_VCPU].size); 514 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 515 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 516 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 517 } 518 } 519 520 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 521 g_free(nodename); 522 } 523 524 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 525 { 526 ARMCPU *armcpu = ARM_CPU(first_cpu); 527 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 528 529 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 530 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 531 return; 532 } 533 534 if (vms->gic_version == VIRT_GIC_VERSION_2) { 535 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 536 GIC_FDT_IRQ_PPI_CPU_WIDTH, 537 (1 << vms->smp_cpus) - 1); 538 } 539 540 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 541 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 542 const char compat[] = "arm,armv8-pmuv3"; 543 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 544 compat, sizeof(compat)); 545 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 546 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 547 } 548 } 549 550 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 551 { 552 DeviceState *dev; 553 MachineState *ms = MACHINE(vms); 554 int irq = vms->irqmap[VIRT_ACPI_GED]; 555 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 556 557 if (ms->ram_slots) { 558 event |= ACPI_GED_MEM_HOTPLUG_EVT; 559 } 560 561 if (ms->nvdimms_state->is_enabled) { 562 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 563 } 564 565 dev = qdev_new(TYPE_ACPI_GED); 566 qdev_prop_set_uint32(dev, "ged-event", event); 567 568 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 569 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 570 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 571 572 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 573 574 return dev; 575 } 576 577 static void create_its(VirtMachineState *vms) 578 { 579 const char *itsclass = its_class_name(); 580 DeviceState *dev; 581 582 if (!itsclass) { 583 /* Do nothing if not supported */ 584 return; 585 } 586 587 dev = qdev_new(itsclass); 588 589 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 590 &error_abort); 591 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 592 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 593 594 fdt_add_its_gic_node(vms); 595 vms->msi_controller = VIRT_MSI_CTRL_ITS; 596 } 597 598 static void create_v2m(VirtMachineState *vms) 599 { 600 int i; 601 int irq = vms->irqmap[VIRT_GIC_V2M]; 602 DeviceState *dev; 603 604 dev = qdev_new("arm-gicv2m"); 605 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 606 qdev_prop_set_uint32(dev, "base-spi", irq); 607 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 608 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 609 610 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 611 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 612 qdev_get_gpio_in(vms->gic, irq + i)); 613 } 614 615 fdt_add_v2m_gic_node(vms); 616 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 617 } 618 619 static void create_gic(VirtMachineState *vms) 620 { 621 MachineState *ms = MACHINE(vms); 622 /* We create a standalone GIC */ 623 SysBusDevice *gicbusdev; 624 const char *gictype; 625 int type = vms->gic_version, i; 626 unsigned int smp_cpus = ms->smp.cpus; 627 uint32_t nb_redist_regions = 0; 628 629 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 630 631 vms->gic = qdev_new(gictype); 632 qdev_prop_set_uint32(vms->gic, "revision", type); 633 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 634 /* Note that the num-irq property counts both internal and external 635 * interrupts; there are always 32 of the former (mandated by GIC spec). 636 */ 637 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 638 if (!kvm_irqchip_in_kernel()) { 639 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 640 } 641 642 if (type == 3) { 643 uint32_t redist0_capacity = 644 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 645 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 646 647 nb_redist_regions = virt_gicv3_redist_region_count(vms); 648 649 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 650 nb_redist_regions); 651 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 652 653 if (nb_redist_regions == 2) { 654 uint32_t redist1_capacity = 655 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 656 657 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 658 MIN(smp_cpus - redist0_count, redist1_capacity)); 659 } 660 } else { 661 if (!kvm_irqchip_in_kernel()) { 662 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 663 vms->virt); 664 } 665 } 666 gicbusdev = SYS_BUS_DEVICE(vms->gic); 667 sysbus_realize_and_unref(gicbusdev, &error_fatal); 668 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 669 if (type == 3) { 670 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 671 if (nb_redist_regions == 2) { 672 sysbus_mmio_map(gicbusdev, 2, 673 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 674 } 675 } else { 676 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 677 if (vms->virt) { 678 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 679 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 680 } 681 } 682 683 /* Wire the outputs from each CPU's generic timer and the GICv3 684 * maintenance interrupt signal to the appropriate GIC PPI inputs, 685 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 686 */ 687 for (i = 0; i < smp_cpus; i++) { 688 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 689 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 690 int irq; 691 /* Mapping from the output timer irq lines from the CPU to the 692 * GIC PPI inputs we use for the virt board. 693 */ 694 const int timer_irq[] = { 695 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 696 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 697 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 698 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 699 }; 700 701 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 702 qdev_connect_gpio_out(cpudev, irq, 703 qdev_get_gpio_in(vms->gic, 704 ppibase + timer_irq[irq])); 705 } 706 707 if (type == 3) { 708 qemu_irq irq = qdev_get_gpio_in(vms->gic, 709 ppibase + ARCH_GIC_MAINT_IRQ); 710 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 711 0, irq); 712 } else if (vms->virt) { 713 qemu_irq irq = qdev_get_gpio_in(vms->gic, 714 ppibase + ARCH_GIC_MAINT_IRQ); 715 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 716 } 717 718 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 719 qdev_get_gpio_in(vms->gic, ppibase 720 + VIRTUAL_PMU_IRQ)); 721 722 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 723 sysbus_connect_irq(gicbusdev, i + smp_cpus, 724 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 725 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 726 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 727 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 728 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 729 } 730 731 fdt_add_gic_node(vms); 732 733 if (type == 3 && vms->its) { 734 create_its(vms); 735 } else if (type == 2) { 736 create_v2m(vms); 737 } 738 } 739 740 static void create_uart(const VirtMachineState *vms, int uart, 741 MemoryRegion *mem, Chardev *chr) 742 { 743 char *nodename; 744 hwaddr base = vms->memmap[uart].base; 745 hwaddr size = vms->memmap[uart].size; 746 int irq = vms->irqmap[uart]; 747 const char compat[] = "arm,pl011\0arm,primecell"; 748 const char clocknames[] = "uartclk\0apb_pclk"; 749 DeviceState *dev = qdev_new(TYPE_PL011); 750 SysBusDevice *s = SYS_BUS_DEVICE(dev); 751 752 qdev_prop_set_chr(dev, "chardev", chr); 753 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 754 memory_region_add_subregion(mem, base, 755 sysbus_mmio_get_region(s, 0)); 756 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 757 758 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 759 qemu_fdt_add_subnode(vms->fdt, nodename); 760 /* Note that we can't use setprop_string because of the embedded NUL */ 761 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 762 compat, sizeof(compat)); 763 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 764 2, base, 2, size); 765 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 766 GIC_FDT_IRQ_TYPE_SPI, irq, 767 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 768 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 769 vms->clock_phandle, vms->clock_phandle); 770 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 771 clocknames, sizeof(clocknames)); 772 773 if (uart == VIRT_UART) { 774 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 775 } else { 776 /* Mark as not usable by the normal world */ 777 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 778 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 779 780 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", 781 nodename); 782 } 783 784 g_free(nodename); 785 } 786 787 static void create_rtc(const VirtMachineState *vms) 788 { 789 char *nodename; 790 hwaddr base = vms->memmap[VIRT_RTC].base; 791 hwaddr size = vms->memmap[VIRT_RTC].size; 792 int irq = vms->irqmap[VIRT_RTC]; 793 const char compat[] = "arm,pl031\0arm,primecell"; 794 795 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 796 797 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 798 qemu_fdt_add_subnode(vms->fdt, nodename); 799 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 800 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 801 2, base, 2, size); 802 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 803 GIC_FDT_IRQ_TYPE_SPI, irq, 804 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 805 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 806 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 807 g_free(nodename); 808 } 809 810 static DeviceState *gpio_key_dev; 811 static void virt_powerdown_req(Notifier *n, void *opaque) 812 { 813 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 814 815 if (s->acpi_dev) { 816 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 817 } else { 818 /* use gpio Pin 3 for power button event */ 819 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 820 } 821 } 822 823 static void create_gpio(const VirtMachineState *vms) 824 { 825 char *nodename; 826 DeviceState *pl061_dev; 827 hwaddr base = vms->memmap[VIRT_GPIO].base; 828 hwaddr size = vms->memmap[VIRT_GPIO].size; 829 int irq = vms->irqmap[VIRT_GPIO]; 830 const char compat[] = "arm,pl061\0arm,primecell"; 831 832 pl061_dev = sysbus_create_simple("pl061", base, 833 qdev_get_gpio_in(vms->gic, irq)); 834 835 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 836 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 837 qemu_fdt_add_subnode(vms->fdt, nodename); 838 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 839 2, base, 2, size); 840 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 841 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 842 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 843 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 844 GIC_FDT_IRQ_TYPE_SPI, irq, 845 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 846 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 847 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 848 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 849 850 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 851 qdev_get_gpio_in(pl061_dev, 3)); 852 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 853 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 854 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 855 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 856 857 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 858 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 859 "label", "GPIO Key Poweroff"); 860 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 861 KEY_POWER); 862 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 863 "gpios", phandle, 3, 0); 864 g_free(nodename); 865 } 866 867 static void create_virtio_devices(const VirtMachineState *vms) 868 { 869 int i; 870 hwaddr size = vms->memmap[VIRT_MMIO].size; 871 872 /* We create the transports in forwards order. Since qbus_realize() 873 * prepends (not appends) new child buses, the incrementing loop below will 874 * create a list of virtio-mmio buses with decreasing base addresses. 875 * 876 * When a -device option is processed from the command line, 877 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 878 * order. The upshot is that -device options in increasing command line 879 * order are mapped to virtio-mmio buses with decreasing base addresses. 880 * 881 * When this code was originally written, that arrangement ensured that the 882 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 883 * the first -device on the command line. (The end-to-end order is a 884 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 885 * guest kernel's name-to-address assignment strategy.) 886 * 887 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 888 * the message, if not necessarily the code, of commit 70161ff336. 889 * Therefore the loop now establishes the inverse of the original intent. 890 * 891 * Unfortunately, we can't counteract the kernel change by reversing the 892 * loop; it would break existing command lines. 893 * 894 * In any case, the kernel makes no guarantee about the stability of 895 * enumeration order of virtio devices (as demonstrated by it changing 896 * between kernel versions). For reliable and stable identification 897 * of disks users must use UUIDs or similar mechanisms. 898 */ 899 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 900 int irq = vms->irqmap[VIRT_MMIO] + i; 901 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 902 903 sysbus_create_simple("virtio-mmio", base, 904 qdev_get_gpio_in(vms->gic, irq)); 905 } 906 907 /* We add dtb nodes in reverse order so that they appear in the finished 908 * device tree lowest address first. 909 * 910 * Note that this mapping is independent of the loop above. The previous 911 * loop influences virtio device to virtio transport assignment, whereas 912 * this loop controls how virtio transports are laid out in the dtb. 913 */ 914 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 915 char *nodename; 916 int irq = vms->irqmap[VIRT_MMIO] + i; 917 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 918 919 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 920 qemu_fdt_add_subnode(vms->fdt, nodename); 921 qemu_fdt_setprop_string(vms->fdt, nodename, 922 "compatible", "virtio,mmio"); 923 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 924 2, base, 2, size); 925 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 926 GIC_FDT_IRQ_TYPE_SPI, irq, 927 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 928 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 929 g_free(nodename); 930 } 931 } 932 933 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 934 935 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 936 const char *name, 937 const char *alias_prop_name) 938 { 939 /* 940 * Create a single flash device. We use the same parameters as 941 * the flash devices on the Versatile Express board. 942 */ 943 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 944 945 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 946 qdev_prop_set_uint8(dev, "width", 4); 947 qdev_prop_set_uint8(dev, "device-width", 2); 948 qdev_prop_set_bit(dev, "big-endian", false); 949 qdev_prop_set_uint16(dev, "id0", 0x89); 950 qdev_prop_set_uint16(dev, "id1", 0x18); 951 qdev_prop_set_uint16(dev, "id2", 0x00); 952 qdev_prop_set_uint16(dev, "id3", 0x00); 953 qdev_prop_set_string(dev, "name", name); 954 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 955 object_property_add_alias(OBJECT(vms), alias_prop_name, 956 OBJECT(dev), "drive"); 957 return PFLASH_CFI01(dev); 958 } 959 960 static void virt_flash_create(VirtMachineState *vms) 961 { 962 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 963 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 964 } 965 966 static void virt_flash_map1(PFlashCFI01 *flash, 967 hwaddr base, hwaddr size, 968 MemoryRegion *sysmem) 969 { 970 DeviceState *dev = DEVICE(flash); 971 972 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 973 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 974 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 975 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 976 977 memory_region_add_subregion(sysmem, base, 978 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 979 0)); 980 } 981 982 static void virt_flash_map(VirtMachineState *vms, 983 MemoryRegion *sysmem, 984 MemoryRegion *secure_sysmem) 985 { 986 /* 987 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 988 * sysmem is the system memory space. secure_sysmem is the secure view 989 * of the system, and the first flash device should be made visible only 990 * there. The second flash device is visible to both secure and nonsecure. 991 * If sysmem == secure_sysmem this means there is no separate Secure 992 * address space and both flash devices are generally visible. 993 */ 994 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 995 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 996 997 virt_flash_map1(vms->flash[0], flashbase, flashsize, 998 secure_sysmem); 999 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1000 sysmem); 1001 } 1002 1003 static void virt_flash_fdt(VirtMachineState *vms, 1004 MemoryRegion *sysmem, 1005 MemoryRegion *secure_sysmem) 1006 { 1007 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1008 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1009 char *nodename; 1010 1011 if (sysmem == secure_sysmem) { 1012 /* Report both flash devices as a single node in the DT */ 1013 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1014 qemu_fdt_add_subnode(vms->fdt, nodename); 1015 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1016 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1017 2, flashbase, 2, flashsize, 1018 2, flashbase + flashsize, 2, flashsize); 1019 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1020 g_free(nodename); 1021 } else { 1022 /* 1023 * Report the devices as separate nodes so we can mark one as 1024 * only visible to the secure world. 1025 */ 1026 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1027 qemu_fdt_add_subnode(vms->fdt, nodename); 1028 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1029 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1030 2, flashbase, 2, flashsize); 1031 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1032 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1033 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1034 g_free(nodename); 1035 1036 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1037 qemu_fdt_add_subnode(vms->fdt, nodename); 1038 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 1039 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1040 2, flashbase + flashsize, 2, flashsize); 1041 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 1042 g_free(nodename); 1043 } 1044 } 1045 1046 static bool virt_firmware_init(VirtMachineState *vms, 1047 MemoryRegion *sysmem, 1048 MemoryRegion *secure_sysmem) 1049 { 1050 int i; 1051 const char *bios_name; 1052 BlockBackend *pflash_blk0; 1053 1054 /* Map legacy -drive if=pflash to machine properties */ 1055 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1056 pflash_cfi01_legacy_drive(vms->flash[i], 1057 drive_get(IF_PFLASH, 0, i)); 1058 } 1059 1060 virt_flash_map(vms, sysmem, secure_sysmem); 1061 1062 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1063 1064 bios_name = MACHINE(vms)->firmware; 1065 if (bios_name) { 1066 char *fname; 1067 MemoryRegion *mr; 1068 int image_size; 1069 1070 if (pflash_blk0) { 1071 error_report("The contents of the first flash device may be " 1072 "specified with -bios or with -drive if=pflash... " 1073 "but you cannot use both options at once"); 1074 exit(1); 1075 } 1076 1077 /* Fall back to -bios */ 1078 1079 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1080 if (!fname) { 1081 error_report("Could not find ROM image '%s'", bios_name); 1082 exit(1); 1083 } 1084 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1085 image_size = load_image_mr(fname, mr); 1086 g_free(fname); 1087 if (image_size < 0) { 1088 error_report("Could not load ROM image '%s'", bios_name); 1089 exit(1); 1090 } 1091 } 1092 1093 return pflash_blk0 || bios_name; 1094 } 1095 1096 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1097 { 1098 MachineState *ms = MACHINE(vms); 1099 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1100 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1101 FWCfgState *fw_cfg; 1102 char *nodename; 1103 1104 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1105 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1106 1107 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1108 qemu_fdt_add_subnode(vms->fdt, nodename); 1109 qemu_fdt_setprop_string(vms->fdt, nodename, 1110 "compatible", "qemu,fw-cfg-mmio"); 1111 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1112 2, base, 2, size); 1113 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1114 g_free(nodename); 1115 return fw_cfg; 1116 } 1117 1118 static void create_pcie_irq_map(const VirtMachineState *vms, 1119 uint32_t gic_phandle, 1120 int first_irq, const char *nodename) 1121 { 1122 int devfn, pin; 1123 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1124 uint32_t *irq_map = full_irq_map; 1125 1126 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1127 for (pin = 0; pin < 4; pin++) { 1128 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1129 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1130 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1131 int i; 1132 1133 uint32_t map[] = { 1134 devfn << 8, 0, 0, /* devfn */ 1135 pin + 1, /* PCI pin */ 1136 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1137 1138 /* Convert map to big endian */ 1139 for (i = 0; i < 10; i++) { 1140 irq_map[i] = cpu_to_be32(map[i]); 1141 } 1142 irq_map += 10; 1143 } 1144 } 1145 1146 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1147 full_irq_map, sizeof(full_irq_map)); 1148 1149 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1150 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 1151 0x7 /* PCI irq */); 1152 } 1153 1154 static void create_smmu(const VirtMachineState *vms, 1155 PCIBus *bus) 1156 { 1157 char *node; 1158 const char compat[] = "arm,smmu-v3"; 1159 int irq = vms->irqmap[VIRT_SMMU]; 1160 int i; 1161 hwaddr base = vms->memmap[VIRT_SMMU].base; 1162 hwaddr size = vms->memmap[VIRT_SMMU].size; 1163 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1164 DeviceState *dev; 1165 1166 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1167 return; 1168 } 1169 1170 dev = qdev_new("arm-smmuv3"); 1171 1172 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1173 &error_abort); 1174 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1175 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1176 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1177 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1178 qdev_get_gpio_in(vms->gic, irq + i)); 1179 } 1180 1181 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1182 qemu_fdt_add_subnode(vms->fdt, node); 1183 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1184 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1185 1186 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1187 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1188 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1189 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1190 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1191 1192 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1193 sizeof(irq_names)); 1194 1195 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1196 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1197 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1198 1199 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1200 1201 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1202 g_free(node); 1203 } 1204 1205 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1206 { 1207 const char compat[] = "virtio,pci-iommu"; 1208 uint16_t bdf = vms->virtio_iommu_bdf; 1209 char *node; 1210 1211 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1212 1213 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf); 1214 qemu_fdt_add_subnode(vms->fdt, node); 1215 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1216 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 1217 1, bdf << 8, 1, 0, 1, 0, 1218 1, 0, 1, 0); 1219 1220 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1221 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1222 g_free(node); 1223 1224 qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map", 1225 0x0, vms->iommu_phandle, 0x0, bdf, 1226 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1227 } 1228 1229 static void create_pcie(VirtMachineState *vms) 1230 { 1231 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1232 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1233 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1234 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1235 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1236 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1237 hwaddr base_ecam, size_ecam; 1238 hwaddr base = base_mmio; 1239 int nr_pcie_buses; 1240 int irq = vms->irqmap[VIRT_PCIE]; 1241 MemoryRegion *mmio_alias; 1242 MemoryRegion *mmio_reg; 1243 MemoryRegion *ecam_alias; 1244 MemoryRegion *ecam_reg; 1245 DeviceState *dev; 1246 char *nodename; 1247 int i, ecam_id; 1248 PCIHostState *pci; 1249 1250 dev = qdev_new(TYPE_GPEX_HOST); 1251 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1252 1253 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1254 base_ecam = vms->memmap[ecam_id].base; 1255 size_ecam = vms->memmap[ecam_id].size; 1256 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1257 /* Map only the first size_ecam bytes of ECAM space */ 1258 ecam_alias = g_new0(MemoryRegion, 1); 1259 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1260 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1261 ecam_reg, 0, size_ecam); 1262 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1263 1264 /* Map the MMIO window into system address space so as to expose 1265 * the section of PCI MMIO space which starts at the same base address 1266 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1267 * the window). 1268 */ 1269 mmio_alias = g_new0(MemoryRegion, 1); 1270 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1271 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1272 mmio_reg, base_mmio, size_mmio); 1273 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1274 1275 if (vms->highmem) { 1276 /* Map high MMIO space */ 1277 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1278 1279 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1280 mmio_reg, base_mmio_high, size_mmio_high); 1281 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1282 high_mmio_alias); 1283 } 1284 1285 /* Map IO port space */ 1286 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1287 1288 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1289 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1290 qdev_get_gpio_in(vms->gic, irq + i)); 1291 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1292 } 1293 1294 pci = PCI_HOST_BRIDGE(dev); 1295 vms->bus = pci->bus; 1296 if (vms->bus) { 1297 for (i = 0; i < nb_nics; i++) { 1298 NICInfo *nd = &nd_table[i]; 1299 1300 if (!nd->model) { 1301 nd->model = g_strdup("virtio"); 1302 } 1303 1304 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1305 } 1306 } 1307 1308 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1309 qemu_fdt_add_subnode(vms->fdt, nodename); 1310 qemu_fdt_setprop_string(vms->fdt, nodename, 1311 "compatible", "pci-host-ecam-generic"); 1312 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1313 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1314 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1315 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1316 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1317 nr_pcie_buses - 1); 1318 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1319 1320 if (vms->msi_phandle) { 1321 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1322 vms->msi_phandle); 1323 } 1324 1325 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1326 2, base_ecam, 2, size_ecam); 1327 1328 if (vms->highmem) { 1329 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1330 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1331 2, base_pio, 2, size_pio, 1332 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1333 2, base_mmio, 2, size_mmio, 1334 1, FDT_PCI_RANGE_MMIO_64BIT, 1335 2, base_mmio_high, 1336 2, base_mmio_high, 2, size_mmio_high); 1337 } else { 1338 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1339 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1340 2, base_pio, 2, size_pio, 1341 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1342 2, base_mmio, 2, size_mmio); 1343 } 1344 1345 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1346 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1347 1348 if (vms->iommu) { 1349 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1350 1351 switch (vms->iommu) { 1352 case VIRT_IOMMU_SMMUV3: 1353 create_smmu(vms, vms->bus); 1354 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1355 0x0, vms->iommu_phandle, 0x0, 0x10000); 1356 break; 1357 default: 1358 g_assert_not_reached(); 1359 } 1360 } 1361 } 1362 1363 static void create_platform_bus(VirtMachineState *vms) 1364 { 1365 DeviceState *dev; 1366 SysBusDevice *s; 1367 int i; 1368 MemoryRegion *sysmem = get_system_memory(); 1369 1370 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1371 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1372 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1373 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1374 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1375 vms->platform_bus_dev = dev; 1376 1377 s = SYS_BUS_DEVICE(dev); 1378 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1379 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1380 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1381 } 1382 1383 memory_region_add_subregion(sysmem, 1384 vms->memmap[VIRT_PLATFORM_BUS].base, 1385 sysbus_mmio_get_region(s, 0)); 1386 } 1387 1388 static void create_tag_ram(MemoryRegion *tag_sysmem, 1389 hwaddr base, hwaddr size, 1390 const char *name) 1391 { 1392 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1393 1394 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1395 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1396 } 1397 1398 static void create_secure_ram(VirtMachineState *vms, 1399 MemoryRegion *secure_sysmem, 1400 MemoryRegion *secure_tag_sysmem) 1401 { 1402 MemoryRegion *secram = g_new(MemoryRegion, 1); 1403 char *nodename; 1404 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1405 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1406 1407 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1408 &error_fatal); 1409 memory_region_add_subregion(secure_sysmem, base, secram); 1410 1411 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1412 qemu_fdt_add_subnode(vms->fdt, nodename); 1413 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1414 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1415 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1416 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1417 1418 if (secure_tag_sysmem) { 1419 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1420 } 1421 1422 g_free(nodename); 1423 } 1424 1425 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1426 { 1427 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1428 bootinfo); 1429 1430 *fdt_size = board->fdt_size; 1431 return board->fdt; 1432 } 1433 1434 static void virt_build_smbios(VirtMachineState *vms) 1435 { 1436 MachineClass *mc = MACHINE_GET_CLASS(vms); 1437 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1438 uint8_t *smbios_tables, *smbios_anchor; 1439 size_t smbios_tables_len, smbios_anchor_len; 1440 const char *product = "QEMU Virtual Machine"; 1441 1442 if (kvm_enabled()) { 1443 product = "KVM Virtual Machine"; 1444 } 1445 1446 smbios_set_defaults("QEMU", product, 1447 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1448 true, SMBIOS_ENTRY_POINT_30); 1449 1450 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, 1451 &smbios_anchor, &smbios_anchor_len); 1452 1453 if (smbios_anchor) { 1454 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1455 smbios_tables, smbios_tables_len); 1456 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1457 smbios_anchor, smbios_anchor_len); 1458 } 1459 } 1460 1461 static 1462 void virt_machine_done(Notifier *notifier, void *data) 1463 { 1464 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1465 machine_done); 1466 MachineState *ms = MACHINE(vms); 1467 ARMCPU *cpu = ARM_CPU(first_cpu); 1468 struct arm_boot_info *info = &vms->bootinfo; 1469 AddressSpace *as = arm_boot_address_space(cpu, info); 1470 1471 /* 1472 * If the user provided a dtb, we assume the dynamic sysbus nodes 1473 * already are integrated there. This corresponds to a use case where 1474 * the dynamic sysbus nodes are complex and their generation is not yet 1475 * supported. In that case the user can take charge of the guest dt 1476 * while qemu takes charge of the qom stuff. 1477 */ 1478 if (info->dtb_filename == NULL) { 1479 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1480 vms->memmap[VIRT_PLATFORM_BUS].base, 1481 vms->memmap[VIRT_PLATFORM_BUS].size, 1482 vms->irqmap[VIRT_PLATFORM_BUS]); 1483 } 1484 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1485 exit(1); 1486 } 1487 1488 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1489 1490 virt_acpi_setup(vms); 1491 virt_build_smbios(vms); 1492 } 1493 1494 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1495 { 1496 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1497 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1498 1499 if (!vmc->disallow_affinity_adjustment) { 1500 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1501 * GIC's target-list limitations. 32-bit KVM hosts currently 1502 * always create clusters of 4 CPUs, but that is expected to 1503 * change when they gain support for gicv3. When KVM is enabled 1504 * it will override the changes we make here, therefore our 1505 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1506 * and to improve SGI efficiency. 1507 */ 1508 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1509 clustersz = GICV3_TARGETLIST_BITS; 1510 } else { 1511 clustersz = GIC_TARGETLIST_BITS; 1512 } 1513 } 1514 return arm_cpu_mp_affinity(idx, clustersz); 1515 } 1516 1517 static void virt_set_memmap(VirtMachineState *vms) 1518 { 1519 MachineState *ms = MACHINE(vms); 1520 hwaddr base, device_memory_base, device_memory_size; 1521 int i; 1522 1523 vms->memmap = extended_memmap; 1524 1525 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1526 vms->memmap[i] = base_memmap[i]; 1527 } 1528 1529 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1530 error_report("unsupported number of memory slots: %"PRIu64, 1531 ms->ram_slots); 1532 exit(EXIT_FAILURE); 1533 } 1534 1535 /* 1536 * We compute the base of the high IO region depending on the 1537 * amount of initial and device memory. The device memory start/size 1538 * is aligned on 1GiB. We never put the high IO region below 256GiB 1539 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1540 * The device region size assumes 1GiB page max alignment per slot. 1541 */ 1542 device_memory_base = 1543 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1544 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1545 1546 /* Base address of the high IO region */ 1547 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1548 if (base < device_memory_base) { 1549 error_report("maxmem/slots too huge"); 1550 exit(EXIT_FAILURE); 1551 } 1552 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1553 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1554 } 1555 1556 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1557 hwaddr size = extended_memmap[i].size; 1558 1559 base = ROUND_UP(base, size); 1560 vms->memmap[i].base = base; 1561 vms->memmap[i].size = size; 1562 base += size; 1563 } 1564 vms->highest_gpa = base - 1; 1565 if (device_memory_size > 0) { 1566 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1567 ms->device_memory->base = device_memory_base; 1568 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1569 "device-memory", device_memory_size); 1570 } 1571 } 1572 1573 /* 1574 * finalize_gic_version - Determines the final gic_version 1575 * according to the gic-version property 1576 * 1577 * Default GIC type is v2 1578 */ 1579 static void finalize_gic_version(VirtMachineState *vms) 1580 { 1581 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1582 1583 if (kvm_enabled()) { 1584 int probe_bitmap; 1585 1586 if (!kvm_irqchip_in_kernel()) { 1587 switch (vms->gic_version) { 1588 case VIRT_GIC_VERSION_HOST: 1589 warn_report( 1590 "gic-version=host not relevant with kernel-irqchip=off " 1591 "as only userspace GICv2 is supported. Using v2 ..."); 1592 return; 1593 case VIRT_GIC_VERSION_MAX: 1594 case VIRT_GIC_VERSION_NOSEL: 1595 vms->gic_version = VIRT_GIC_VERSION_2; 1596 return; 1597 case VIRT_GIC_VERSION_2: 1598 return; 1599 case VIRT_GIC_VERSION_3: 1600 error_report( 1601 "gic-version=3 is not supported with kernel-irqchip=off"); 1602 exit(1); 1603 } 1604 } 1605 1606 probe_bitmap = kvm_arm_vgic_probe(); 1607 if (!probe_bitmap) { 1608 error_report("Unable to determine GIC version supported by host"); 1609 exit(1); 1610 } 1611 1612 switch (vms->gic_version) { 1613 case VIRT_GIC_VERSION_HOST: 1614 case VIRT_GIC_VERSION_MAX: 1615 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1616 vms->gic_version = VIRT_GIC_VERSION_3; 1617 } else { 1618 vms->gic_version = VIRT_GIC_VERSION_2; 1619 } 1620 return; 1621 case VIRT_GIC_VERSION_NOSEL: 1622 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) { 1623 vms->gic_version = VIRT_GIC_VERSION_2; 1624 } else if (probe_bitmap & KVM_ARM_VGIC_V3) { 1625 /* 1626 * in case the host does not support v2 in-kernel emulation or 1627 * the end-user requested more than 8 VCPUs we now default 1628 * to v3. In any case defaulting to v2 would be broken. 1629 */ 1630 vms->gic_version = VIRT_GIC_VERSION_3; 1631 } else if (max_cpus > GIC_NCPU) { 1632 error_report("host only supports in-kernel GICv2 emulation " 1633 "but more than 8 vcpus are requested"); 1634 exit(1); 1635 } 1636 break; 1637 case VIRT_GIC_VERSION_2: 1638 case VIRT_GIC_VERSION_3: 1639 break; 1640 } 1641 1642 /* Check chosen version is effectively supported by the host */ 1643 if (vms->gic_version == VIRT_GIC_VERSION_2 && 1644 !(probe_bitmap & KVM_ARM_VGIC_V2)) { 1645 error_report("host does not support in-kernel GICv2 emulation"); 1646 exit(1); 1647 } else if (vms->gic_version == VIRT_GIC_VERSION_3 && 1648 !(probe_bitmap & KVM_ARM_VGIC_V3)) { 1649 error_report("host does not support in-kernel GICv3 emulation"); 1650 exit(1); 1651 } 1652 return; 1653 } 1654 1655 /* TCG mode */ 1656 switch (vms->gic_version) { 1657 case VIRT_GIC_VERSION_NOSEL: 1658 vms->gic_version = VIRT_GIC_VERSION_2; 1659 break; 1660 case VIRT_GIC_VERSION_MAX: 1661 vms->gic_version = VIRT_GIC_VERSION_3; 1662 break; 1663 case VIRT_GIC_VERSION_HOST: 1664 error_report("gic-version=host requires KVM"); 1665 exit(1); 1666 case VIRT_GIC_VERSION_2: 1667 case VIRT_GIC_VERSION_3: 1668 break; 1669 } 1670 } 1671 1672 /* 1673 * virt_cpu_post_init() must be called after the CPUs have 1674 * been realized and the GIC has been created. 1675 */ 1676 static void virt_cpu_post_init(VirtMachineState *vms, int max_cpus, 1677 MemoryRegion *sysmem) 1678 { 1679 bool aarch64, pmu, steal_time; 1680 CPUState *cpu; 1681 1682 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 1683 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 1684 steal_time = object_property_get_bool(OBJECT(first_cpu), 1685 "kvm-steal-time", NULL); 1686 1687 if (kvm_enabled()) { 1688 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 1689 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 1690 1691 if (steal_time) { 1692 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 1693 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 1694 1695 /* The memory region size must be a multiple of host page size. */ 1696 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 1697 1698 if (pvtime_size > pvtime_reg_size) { 1699 error_report("pvtime requires a %" HWADDR_PRId 1700 " byte memory region for %d CPUs," 1701 " but only %" HWADDR_PRId " has been reserved", 1702 pvtime_size, max_cpus, pvtime_reg_size); 1703 exit(1); 1704 } 1705 1706 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 1707 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 1708 } 1709 1710 CPU_FOREACH(cpu) { 1711 if (pmu) { 1712 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 1713 if (kvm_irqchip_in_kernel()) { 1714 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 1715 } 1716 kvm_arm_pmu_init(cpu); 1717 } 1718 if (steal_time) { 1719 kvm_arm_pvtime_init(cpu, pvtime_reg_base + 1720 cpu->cpu_index * PVTIME_SIZE_PER_CPU); 1721 } 1722 } 1723 } else { 1724 if (aarch64 && vms->highmem) { 1725 int requested_pa_size = 64 - clz64(vms->highest_gpa); 1726 int pamax = arm_pamax(ARM_CPU(first_cpu)); 1727 1728 if (pamax < requested_pa_size) { 1729 error_report("VCPU supports less PA bits (%d) than " 1730 "requested by the memory map (%d)", 1731 pamax, requested_pa_size); 1732 exit(1); 1733 } 1734 } 1735 } 1736 } 1737 1738 static void machvirt_init(MachineState *machine) 1739 { 1740 VirtMachineState *vms = VIRT_MACHINE(machine); 1741 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1742 MachineClass *mc = MACHINE_GET_CLASS(machine); 1743 const CPUArchIdList *possible_cpus; 1744 MemoryRegion *sysmem = get_system_memory(); 1745 MemoryRegion *secure_sysmem = NULL; 1746 MemoryRegion *tag_sysmem = NULL; 1747 MemoryRegion *secure_tag_sysmem = NULL; 1748 int n, virt_max_cpus; 1749 bool firmware_loaded; 1750 bool aarch64 = true; 1751 bool has_ged = !vmc->no_ged; 1752 unsigned int smp_cpus = machine->smp.cpus; 1753 unsigned int max_cpus = machine->smp.max_cpus; 1754 1755 /* 1756 * In accelerated mode, the memory map is computed earlier in kvm_type() 1757 * to create a VM with the right number of IPA bits. 1758 */ 1759 if (!vms->memmap) { 1760 virt_set_memmap(vms); 1761 } 1762 1763 /* We can probe only here because during property set 1764 * KVM is not available yet 1765 */ 1766 finalize_gic_version(vms); 1767 1768 if (!cpu_type_valid(machine->cpu_type)) { 1769 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1770 exit(1); 1771 } 1772 1773 if (vms->secure) { 1774 if (kvm_enabled()) { 1775 error_report("mach-virt: KVM does not support Security extensions"); 1776 exit(1); 1777 } 1778 1779 /* 1780 * The Secure view of the world is the same as the NonSecure, 1781 * but with a few extra devices. Create it as a container region 1782 * containing the system memory at low priority; any secure-only 1783 * devices go in at higher priority and take precedence. 1784 */ 1785 secure_sysmem = g_new(MemoryRegion, 1); 1786 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1787 UINT64_MAX); 1788 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1789 } 1790 1791 firmware_loaded = virt_firmware_init(vms, sysmem, 1792 secure_sysmem ?: sysmem); 1793 1794 /* If we have an EL3 boot ROM then the assumption is that it will 1795 * implement PSCI itself, so disable QEMU's internal implementation 1796 * so it doesn't get in the way. Instead of starting secondary 1797 * CPUs in PSCI powerdown state we will start them all running and 1798 * let the boot ROM sort them out. 1799 * The usual case is that we do use QEMU's PSCI implementation; 1800 * if the guest has EL2 then we will use SMC as the conduit, 1801 * and otherwise we will use HVC (for backwards compatibility and 1802 * because if we're using KVM then we must use HVC). 1803 */ 1804 if (vms->secure && firmware_loaded) { 1805 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1806 } else if (vms->virt) { 1807 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1808 } else { 1809 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1810 } 1811 1812 /* The maximum number of CPUs depends on the GIC version, or on how 1813 * many redistributors we can fit into the memory map. 1814 */ 1815 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1816 virt_max_cpus = 1817 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1818 virt_max_cpus += 1819 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1820 } else { 1821 virt_max_cpus = GIC_NCPU; 1822 } 1823 1824 if (max_cpus > virt_max_cpus) { 1825 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1826 "supported by machine 'mach-virt' (%d)", 1827 max_cpus, virt_max_cpus); 1828 exit(1); 1829 } 1830 1831 vms->smp_cpus = smp_cpus; 1832 1833 if (vms->virt && kvm_enabled()) { 1834 error_report("mach-virt: KVM does not support providing " 1835 "Virtualization extensions to the guest CPU"); 1836 exit(1); 1837 } 1838 1839 if (vms->mte && kvm_enabled()) { 1840 error_report("mach-virt: KVM does not support providing " 1841 "MTE to the guest CPU"); 1842 exit(1); 1843 } 1844 1845 create_fdt(vms); 1846 1847 possible_cpus = mc->possible_cpu_arch_ids(machine); 1848 for (n = 0; n < possible_cpus->len; n++) { 1849 Object *cpuobj; 1850 CPUState *cs; 1851 1852 if (n >= smp_cpus) { 1853 break; 1854 } 1855 1856 cpuobj = object_new(possible_cpus->cpus[n].type); 1857 object_property_set_int(cpuobj, "mp-affinity", 1858 possible_cpus->cpus[n].arch_id, NULL); 1859 1860 cs = CPU(cpuobj); 1861 cs->cpu_index = n; 1862 1863 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1864 &error_fatal); 1865 1866 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1867 1868 if (!vms->secure) { 1869 object_property_set_bool(cpuobj, "has_el3", false, NULL); 1870 } 1871 1872 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 1873 object_property_set_bool(cpuobj, "has_el2", false, NULL); 1874 } 1875 1876 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1877 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit, 1878 NULL); 1879 1880 /* Secondary CPUs start in PSCI powered-down state */ 1881 if (n > 0) { 1882 object_property_set_bool(cpuobj, "start-powered-off", true, 1883 NULL); 1884 } 1885 } 1886 1887 if (vmc->kvm_no_adjvtime && 1888 object_property_find(cpuobj, "kvm-no-adjvtime")) { 1889 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 1890 } 1891 1892 if (vmc->no_kvm_steal_time && 1893 object_property_find(cpuobj, "kvm-steal-time")) { 1894 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 1895 } 1896 1897 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 1898 object_property_set_bool(cpuobj, "pmu", false, NULL); 1899 } 1900 1901 if (object_property_find(cpuobj, "reset-cbar")) { 1902 object_property_set_int(cpuobj, "reset-cbar", 1903 vms->memmap[VIRT_CPUPERIPHS].base, 1904 &error_abort); 1905 } 1906 1907 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 1908 &error_abort); 1909 if (vms->secure) { 1910 object_property_set_link(cpuobj, "secure-memory", 1911 OBJECT(secure_sysmem), &error_abort); 1912 } 1913 1914 if (vms->mte) { 1915 /* Create the memory region only once, but link to all cpus. */ 1916 if (!tag_sysmem) { 1917 /* 1918 * The property exists only if MemTag is supported. 1919 * If it is, we must allocate the ram to back that up. 1920 */ 1921 if (!object_property_find(cpuobj, "tag-memory")) { 1922 error_report("MTE requested, but not supported " 1923 "by the guest CPU"); 1924 exit(1); 1925 } 1926 1927 tag_sysmem = g_new(MemoryRegion, 1); 1928 memory_region_init(tag_sysmem, OBJECT(machine), 1929 "tag-memory", UINT64_MAX / 32); 1930 1931 if (vms->secure) { 1932 secure_tag_sysmem = g_new(MemoryRegion, 1); 1933 memory_region_init(secure_tag_sysmem, OBJECT(machine), 1934 "secure-tag-memory", UINT64_MAX / 32); 1935 1936 /* As with ram, secure-tag takes precedence over tag. */ 1937 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 1938 tag_sysmem, -1); 1939 } 1940 } 1941 1942 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 1943 &error_abort); 1944 if (vms->secure) { 1945 object_property_set_link(cpuobj, "secure-tag-memory", 1946 OBJECT(secure_tag_sysmem), 1947 &error_abort); 1948 } 1949 } 1950 1951 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 1952 object_unref(cpuobj); 1953 } 1954 fdt_add_timer_nodes(vms); 1955 fdt_add_cpu_nodes(vms); 1956 1957 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 1958 machine->ram); 1959 if (machine->device_memory) { 1960 memory_region_add_subregion(sysmem, machine->device_memory->base, 1961 &machine->device_memory->mr); 1962 } 1963 1964 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 1965 1966 create_gic(vms); 1967 1968 virt_cpu_post_init(vms, possible_cpus->len, sysmem); 1969 1970 fdt_add_pmu_nodes(vms); 1971 1972 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 1973 1974 if (vms->secure) { 1975 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 1976 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1977 } 1978 1979 if (tag_sysmem) { 1980 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 1981 machine->ram_size, "mach-virt.tag"); 1982 } 1983 1984 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 1985 1986 create_rtc(vms); 1987 1988 create_pcie(vms); 1989 1990 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 1991 vms->acpi_dev = create_acpi_ged(vms); 1992 } else { 1993 create_gpio(vms); 1994 } 1995 1996 /* connect powerdown request */ 1997 vms->powerdown_notifier.notify = virt_powerdown_req; 1998 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 1999 2000 /* Create mmio transports, so the user can create virtio backends 2001 * (which will be automatically plugged in to the transports). If 2002 * no backend is created the transport will just sit harmlessly idle. 2003 */ 2004 create_virtio_devices(vms); 2005 2006 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2007 rom_set_fw(vms->fw_cfg); 2008 2009 create_platform_bus(vms); 2010 2011 if (machine->nvdimms_state->is_enabled) { 2012 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2013 .space_id = AML_AS_SYSTEM_MEMORY, 2014 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2015 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2016 }; 2017 2018 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2019 arm_virt_nvdimm_acpi_dsmio, 2020 vms->fw_cfg, OBJECT(vms)); 2021 } 2022 2023 vms->bootinfo.ram_size = machine->ram_size; 2024 vms->bootinfo.nb_cpus = smp_cpus; 2025 vms->bootinfo.board_id = -1; 2026 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2027 vms->bootinfo.get_dtb = machvirt_dtb; 2028 vms->bootinfo.skip_dtb_autoload = true; 2029 vms->bootinfo.firmware_loaded = firmware_loaded; 2030 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2031 2032 vms->machine_done.notify = virt_machine_done; 2033 qemu_add_machine_init_done_notifier(&vms->machine_done); 2034 } 2035 2036 static bool virt_get_secure(Object *obj, Error **errp) 2037 { 2038 VirtMachineState *vms = VIRT_MACHINE(obj); 2039 2040 return vms->secure; 2041 } 2042 2043 static void virt_set_secure(Object *obj, bool value, Error **errp) 2044 { 2045 VirtMachineState *vms = VIRT_MACHINE(obj); 2046 2047 vms->secure = value; 2048 } 2049 2050 static bool virt_get_virt(Object *obj, Error **errp) 2051 { 2052 VirtMachineState *vms = VIRT_MACHINE(obj); 2053 2054 return vms->virt; 2055 } 2056 2057 static void virt_set_virt(Object *obj, bool value, Error **errp) 2058 { 2059 VirtMachineState *vms = VIRT_MACHINE(obj); 2060 2061 vms->virt = value; 2062 } 2063 2064 static bool virt_get_highmem(Object *obj, Error **errp) 2065 { 2066 VirtMachineState *vms = VIRT_MACHINE(obj); 2067 2068 return vms->highmem; 2069 } 2070 2071 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2072 { 2073 VirtMachineState *vms = VIRT_MACHINE(obj); 2074 2075 vms->highmem = value; 2076 } 2077 2078 static bool virt_get_its(Object *obj, Error **errp) 2079 { 2080 VirtMachineState *vms = VIRT_MACHINE(obj); 2081 2082 return vms->its; 2083 } 2084 2085 static void virt_set_its(Object *obj, bool value, Error **errp) 2086 { 2087 VirtMachineState *vms = VIRT_MACHINE(obj); 2088 2089 vms->its = value; 2090 } 2091 2092 bool virt_is_acpi_enabled(VirtMachineState *vms) 2093 { 2094 if (vms->acpi == ON_OFF_AUTO_OFF) { 2095 return false; 2096 } 2097 return true; 2098 } 2099 2100 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2101 void *opaque, Error **errp) 2102 { 2103 VirtMachineState *vms = VIRT_MACHINE(obj); 2104 OnOffAuto acpi = vms->acpi; 2105 2106 visit_type_OnOffAuto(v, name, &acpi, errp); 2107 } 2108 2109 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2110 void *opaque, Error **errp) 2111 { 2112 VirtMachineState *vms = VIRT_MACHINE(obj); 2113 2114 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2115 } 2116 2117 static bool virt_get_ras(Object *obj, Error **errp) 2118 { 2119 VirtMachineState *vms = VIRT_MACHINE(obj); 2120 2121 return vms->ras; 2122 } 2123 2124 static void virt_set_ras(Object *obj, bool value, Error **errp) 2125 { 2126 VirtMachineState *vms = VIRT_MACHINE(obj); 2127 2128 vms->ras = value; 2129 } 2130 2131 static bool virt_get_mte(Object *obj, Error **errp) 2132 { 2133 VirtMachineState *vms = VIRT_MACHINE(obj); 2134 2135 return vms->mte; 2136 } 2137 2138 static void virt_set_mte(Object *obj, bool value, Error **errp) 2139 { 2140 VirtMachineState *vms = VIRT_MACHINE(obj); 2141 2142 vms->mte = value; 2143 } 2144 2145 static char *virt_get_gic_version(Object *obj, Error **errp) 2146 { 2147 VirtMachineState *vms = VIRT_MACHINE(obj); 2148 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2"; 2149 2150 return g_strdup(val); 2151 } 2152 2153 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2154 { 2155 VirtMachineState *vms = VIRT_MACHINE(obj); 2156 2157 if (!strcmp(value, "3")) { 2158 vms->gic_version = VIRT_GIC_VERSION_3; 2159 } else if (!strcmp(value, "2")) { 2160 vms->gic_version = VIRT_GIC_VERSION_2; 2161 } else if (!strcmp(value, "host")) { 2162 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2163 } else if (!strcmp(value, "max")) { 2164 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2165 } else { 2166 error_setg(errp, "Invalid gic-version value"); 2167 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2168 } 2169 } 2170 2171 static char *virt_get_iommu(Object *obj, Error **errp) 2172 { 2173 VirtMachineState *vms = VIRT_MACHINE(obj); 2174 2175 switch (vms->iommu) { 2176 case VIRT_IOMMU_NONE: 2177 return g_strdup("none"); 2178 case VIRT_IOMMU_SMMUV3: 2179 return g_strdup("smmuv3"); 2180 default: 2181 g_assert_not_reached(); 2182 } 2183 } 2184 2185 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2186 { 2187 VirtMachineState *vms = VIRT_MACHINE(obj); 2188 2189 if (!strcmp(value, "smmuv3")) { 2190 vms->iommu = VIRT_IOMMU_SMMUV3; 2191 } else if (!strcmp(value, "none")) { 2192 vms->iommu = VIRT_IOMMU_NONE; 2193 } else { 2194 error_setg(errp, "Invalid iommu value"); 2195 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2196 } 2197 } 2198 2199 static CpuInstanceProperties 2200 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2201 { 2202 MachineClass *mc = MACHINE_GET_CLASS(ms); 2203 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2204 2205 assert(cpu_index < possible_cpus->len); 2206 return possible_cpus->cpus[cpu_index].props; 2207 } 2208 2209 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2210 { 2211 return idx % ms->numa_state->num_nodes; 2212 } 2213 2214 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2215 { 2216 int n; 2217 unsigned int max_cpus = ms->smp.max_cpus; 2218 VirtMachineState *vms = VIRT_MACHINE(ms); 2219 2220 if (ms->possible_cpus) { 2221 assert(ms->possible_cpus->len == max_cpus); 2222 return ms->possible_cpus; 2223 } 2224 2225 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2226 sizeof(CPUArchId) * max_cpus); 2227 ms->possible_cpus->len = max_cpus; 2228 for (n = 0; n < ms->possible_cpus->len; n++) { 2229 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2230 ms->possible_cpus->cpus[n].arch_id = 2231 virt_cpu_mp_affinity(vms, n); 2232 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2233 ms->possible_cpus->cpus[n].props.thread_id = n; 2234 } 2235 return ms->possible_cpus; 2236 } 2237 2238 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2239 Error **errp) 2240 { 2241 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2242 const MachineState *ms = MACHINE(hotplug_dev); 2243 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2244 2245 if (!vms->acpi_dev) { 2246 error_setg(errp, 2247 "memory hotplug is not enabled: missing acpi-ged device"); 2248 return; 2249 } 2250 2251 if (vms->mte) { 2252 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2253 return; 2254 } 2255 2256 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2257 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2258 return; 2259 } 2260 2261 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2262 } 2263 2264 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2265 DeviceState *dev, Error **errp) 2266 { 2267 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2268 MachineState *ms = MACHINE(hotplug_dev); 2269 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2270 2271 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2272 2273 if (is_nvdimm) { 2274 nvdimm_plug(ms->nvdimms_state); 2275 } 2276 2277 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2278 dev, &error_abort); 2279 } 2280 2281 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2282 DeviceState *dev, Error **errp) 2283 { 2284 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2285 2286 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2287 virt_memory_pre_plug(hotplug_dev, dev, errp); 2288 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2289 hwaddr db_start = 0, db_end = 0; 2290 char *resv_prop_str; 2291 2292 switch (vms->msi_controller) { 2293 case VIRT_MSI_CTRL_NONE: 2294 return; 2295 case VIRT_MSI_CTRL_ITS: 2296 /* GITS_TRANSLATER page */ 2297 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2298 db_end = base_memmap[VIRT_GIC_ITS].base + 2299 base_memmap[VIRT_GIC_ITS].size - 1; 2300 break; 2301 case VIRT_MSI_CTRL_GICV2M: 2302 /* MSI_SETSPI_NS page */ 2303 db_start = base_memmap[VIRT_GIC_V2M].base; 2304 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2305 break; 2306 } 2307 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2308 db_start, db_end, 2309 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2310 2311 qdev_prop_set_uint32(dev, "len-reserved-regions", 1); 2312 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str); 2313 g_free(resv_prop_str); 2314 } 2315 } 2316 2317 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2318 DeviceState *dev, Error **errp) 2319 { 2320 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2321 2322 if (vms->platform_bus_dev) { 2323 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 2324 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2325 SYS_BUS_DEVICE(dev)); 2326 } 2327 } 2328 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2329 virt_memory_plug(hotplug_dev, dev, errp); 2330 } 2331 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2332 PCIDevice *pdev = PCI_DEVICE(dev); 2333 2334 vms->iommu = VIRT_IOMMU_VIRTIO; 2335 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2336 create_virtio_iommu_dt_bindings(vms); 2337 } 2338 } 2339 2340 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2341 DeviceState *dev, Error **errp) 2342 { 2343 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2344 Error *local_err = NULL; 2345 2346 if (!vms->acpi_dev) { 2347 error_setg(&local_err, 2348 "memory hotplug is not enabled: missing acpi-ged device"); 2349 goto out; 2350 } 2351 2352 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2353 error_setg(&local_err, 2354 "nvdimm device hot unplug is not supported yet."); 2355 goto out; 2356 } 2357 2358 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2359 &local_err); 2360 out: 2361 error_propagate(errp, local_err); 2362 } 2363 2364 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2365 DeviceState *dev, Error **errp) 2366 { 2367 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2368 Error *local_err = NULL; 2369 2370 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2371 if (local_err) { 2372 goto out; 2373 } 2374 2375 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2376 qdev_unrealize(dev); 2377 2378 out: 2379 error_propagate(errp, local_err); 2380 } 2381 2382 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2383 DeviceState *dev, Error **errp) 2384 { 2385 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2386 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2387 } else { 2388 error_setg(errp, "device unplug request for unsupported device" 2389 " type: %s", object_get_typename(OBJECT(dev))); 2390 } 2391 } 2392 2393 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2394 DeviceState *dev, Error **errp) 2395 { 2396 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2397 virt_dimm_unplug(hotplug_dev, dev, errp); 2398 } else { 2399 error_setg(errp, "virt: device unplug for unsupported device" 2400 " type: %s", object_get_typename(OBJECT(dev))); 2401 } 2402 } 2403 2404 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2405 DeviceState *dev) 2406 { 2407 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) || 2408 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { 2409 return HOTPLUG_HANDLER(machine); 2410 } 2411 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2412 VirtMachineState *vms = VIRT_MACHINE(machine); 2413 2414 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) { 2415 return HOTPLUG_HANDLER(machine); 2416 } 2417 } 2418 return NULL; 2419 } 2420 2421 /* 2422 * for arm64 kvm_type [7-0] encodes the requested number of bits 2423 * in the IPA address space 2424 */ 2425 static int virt_kvm_type(MachineState *ms, const char *type_str) 2426 { 2427 VirtMachineState *vms = VIRT_MACHINE(ms); 2428 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms); 2429 int requested_pa_size; 2430 2431 /* we freeze the memory map to compute the highest gpa */ 2432 virt_set_memmap(vms); 2433 2434 requested_pa_size = 64 - clz64(vms->highest_gpa); 2435 2436 if (requested_pa_size > max_vm_pa_size) { 2437 error_report("-m and ,maxmem option values " 2438 "require an IPA range (%d bits) larger than " 2439 "the one supported by the host (%d bits)", 2440 requested_pa_size, max_vm_pa_size); 2441 exit(1); 2442 } 2443 /* 2444 * By default we return 0 which corresponds to an implicit legacy 2445 * 40b IPA setting. Otherwise we return the actual requested PA 2446 * logsize 2447 */ 2448 return requested_pa_size > 40 ? requested_pa_size : 0; 2449 } 2450 2451 static void virt_machine_class_init(ObjectClass *oc, void *data) 2452 { 2453 MachineClass *mc = MACHINE_CLASS(oc); 2454 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2455 2456 mc->init = machvirt_init; 2457 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2458 * The value may be reduced later when we have more information about the 2459 * configuration of the particular instance. 2460 */ 2461 mc->max_cpus = 512; 2462 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2463 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2464 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2465 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2466 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2467 mc->block_default_type = IF_VIRTIO; 2468 mc->no_cdrom = 1; 2469 mc->pci_allow_0_address = true; 2470 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2471 mc->minimum_page_bits = 12; 2472 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2473 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2474 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2475 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2476 mc->kvm_type = virt_kvm_type; 2477 assert(!mc->get_hotplug_handler); 2478 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2479 hc->pre_plug = virt_machine_device_pre_plug_cb; 2480 hc->plug = virt_machine_device_plug_cb; 2481 hc->unplug_request = virt_machine_device_unplug_request_cb; 2482 hc->unplug = virt_machine_device_unplug_cb; 2483 mc->nvdimm_supported = true; 2484 mc->auto_enable_numa_with_memhp = true; 2485 mc->auto_enable_numa_with_memdev = true; 2486 mc->default_ram_id = "mach-virt.ram"; 2487 2488 object_class_property_add(oc, "acpi", "OnOffAuto", 2489 virt_get_acpi, virt_set_acpi, 2490 NULL, NULL); 2491 object_class_property_set_description(oc, "acpi", 2492 "Enable ACPI"); 2493 object_class_property_add_bool(oc, "secure", virt_get_secure, 2494 virt_set_secure); 2495 object_class_property_set_description(oc, "secure", 2496 "Set on/off to enable/disable the ARM " 2497 "Security Extensions (TrustZone)"); 2498 2499 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 2500 virt_set_virt); 2501 object_class_property_set_description(oc, "virtualization", 2502 "Set on/off to enable/disable emulating a " 2503 "guest CPU which implements the ARM " 2504 "Virtualization Extensions"); 2505 2506 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 2507 virt_set_highmem); 2508 object_class_property_set_description(oc, "highmem", 2509 "Set on/off to enable/disable using " 2510 "physical address space above 32 bits"); 2511 2512 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 2513 virt_set_gic_version); 2514 object_class_property_set_description(oc, "gic-version", 2515 "Set GIC version. " 2516 "Valid values are 2, 3, host and max"); 2517 2518 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 2519 object_class_property_set_description(oc, "iommu", 2520 "Set the IOMMU type. " 2521 "Valid values are none and smmuv3"); 2522 2523 object_class_property_add_bool(oc, "ras", virt_get_ras, 2524 virt_set_ras); 2525 object_class_property_set_description(oc, "ras", 2526 "Set on/off to enable/disable reporting host memory errors " 2527 "to a KVM guest using ACPI and guest external abort exceptions"); 2528 2529 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 2530 object_class_property_set_description(oc, "mte", 2531 "Set on/off to enable/disable emulating a " 2532 "guest CPU which implements the ARM " 2533 "Memory Tagging Extension"); 2534 2535 object_class_property_add_bool(oc, "its", virt_get_its, 2536 virt_set_its); 2537 object_class_property_set_description(oc, "its", 2538 "Set on/off to enable/disable " 2539 "ITS instantiation"); 2540 2541 } 2542 2543 static void virt_instance_init(Object *obj) 2544 { 2545 VirtMachineState *vms = VIRT_MACHINE(obj); 2546 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 2547 2548 /* EL3 is disabled by default on virt: this makes us consistent 2549 * between KVM and TCG for this board, and it also allows us to 2550 * boot UEFI blobs which assume no TrustZone support. 2551 */ 2552 vms->secure = false; 2553 2554 /* EL2 is also disabled by default, for similar reasons */ 2555 vms->virt = false; 2556 2557 /* High memory is enabled by default */ 2558 vms->highmem = true; 2559 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 2560 2561 vms->highmem_ecam = !vmc->no_highmem_ecam; 2562 2563 if (vmc->no_its) { 2564 vms->its = false; 2565 } else { 2566 /* Default allows ITS instantiation */ 2567 vms->its = true; 2568 } 2569 2570 /* Default disallows iommu instantiation */ 2571 vms->iommu = VIRT_IOMMU_NONE; 2572 2573 /* Default disallows RAS instantiation */ 2574 vms->ras = false; 2575 2576 /* MTE is disabled by default. */ 2577 vms->mte = false; 2578 2579 vms->irqmap = a15irqmap; 2580 2581 virt_flash_create(vms); 2582 } 2583 2584 static const TypeInfo virt_machine_info = { 2585 .name = TYPE_VIRT_MACHINE, 2586 .parent = TYPE_MACHINE, 2587 .abstract = true, 2588 .instance_size = sizeof(VirtMachineState), 2589 .class_size = sizeof(VirtMachineClass), 2590 .class_init = virt_machine_class_init, 2591 .instance_init = virt_instance_init, 2592 .interfaces = (InterfaceInfo[]) { 2593 { TYPE_HOTPLUG_HANDLER }, 2594 { } 2595 }, 2596 }; 2597 2598 static void machvirt_machine_init(void) 2599 { 2600 type_register_static(&virt_machine_info); 2601 } 2602 type_init(machvirt_machine_init); 2603 2604 static void virt_machine_6_0_options(MachineClass *mc) 2605 { 2606 } 2607 DEFINE_VIRT_MACHINE_AS_LATEST(6, 0) 2608 2609 static void virt_machine_5_2_options(MachineClass *mc) 2610 { 2611 virt_machine_6_0_options(mc); 2612 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 2613 } 2614 DEFINE_VIRT_MACHINE(5, 2) 2615 2616 static void virt_machine_5_1_options(MachineClass *mc) 2617 { 2618 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2619 2620 virt_machine_5_2_options(mc); 2621 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 2622 vmc->no_kvm_steal_time = true; 2623 } 2624 DEFINE_VIRT_MACHINE(5, 1) 2625 2626 static void virt_machine_5_0_options(MachineClass *mc) 2627 { 2628 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2629 2630 virt_machine_5_1_options(mc); 2631 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 2632 mc->numa_mem_supported = true; 2633 vmc->acpi_expose_flash = true; 2634 mc->auto_enable_numa_with_memdev = false; 2635 } 2636 DEFINE_VIRT_MACHINE(5, 0) 2637 2638 static void virt_machine_4_2_options(MachineClass *mc) 2639 { 2640 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2641 2642 virt_machine_5_0_options(mc); 2643 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 2644 vmc->kvm_no_adjvtime = true; 2645 } 2646 DEFINE_VIRT_MACHINE(4, 2) 2647 2648 static void virt_machine_4_1_options(MachineClass *mc) 2649 { 2650 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2651 2652 virt_machine_4_2_options(mc); 2653 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2654 vmc->no_ged = true; 2655 mc->auto_enable_numa_with_memhp = false; 2656 } 2657 DEFINE_VIRT_MACHINE(4, 1) 2658 2659 static void virt_machine_4_0_options(MachineClass *mc) 2660 { 2661 virt_machine_4_1_options(mc); 2662 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2663 } 2664 DEFINE_VIRT_MACHINE(4, 0) 2665 2666 static void virt_machine_3_1_options(MachineClass *mc) 2667 { 2668 virt_machine_4_0_options(mc); 2669 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2670 } 2671 DEFINE_VIRT_MACHINE(3, 1) 2672 2673 static void virt_machine_3_0_options(MachineClass *mc) 2674 { 2675 virt_machine_3_1_options(mc); 2676 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2677 } 2678 DEFINE_VIRT_MACHINE(3, 0) 2679 2680 static void virt_machine_2_12_options(MachineClass *mc) 2681 { 2682 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2683 2684 virt_machine_3_0_options(mc); 2685 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2686 vmc->no_highmem_ecam = true; 2687 mc->max_cpus = 255; 2688 } 2689 DEFINE_VIRT_MACHINE(2, 12) 2690 2691 static void virt_machine_2_11_options(MachineClass *mc) 2692 { 2693 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2694 2695 virt_machine_2_12_options(mc); 2696 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2697 vmc->smbios_old_sys_ver = true; 2698 } 2699 DEFINE_VIRT_MACHINE(2, 11) 2700 2701 static void virt_machine_2_10_options(MachineClass *mc) 2702 { 2703 virt_machine_2_11_options(mc); 2704 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2705 /* before 2.11 we never faulted accesses to bad addresses */ 2706 mc->ignore_memory_transaction_failures = true; 2707 } 2708 DEFINE_VIRT_MACHINE(2, 10) 2709 2710 static void virt_machine_2_9_options(MachineClass *mc) 2711 { 2712 virt_machine_2_10_options(mc); 2713 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2714 } 2715 DEFINE_VIRT_MACHINE(2, 9) 2716 2717 static void virt_machine_2_8_options(MachineClass *mc) 2718 { 2719 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2720 2721 virt_machine_2_9_options(mc); 2722 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2723 /* For 2.8 and earlier we falsely claimed in the DT that 2724 * our timers were edge-triggered, not level-triggered. 2725 */ 2726 vmc->claim_edge_triggered_timers = true; 2727 } 2728 DEFINE_VIRT_MACHINE(2, 8) 2729 2730 static void virt_machine_2_7_options(MachineClass *mc) 2731 { 2732 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2733 2734 virt_machine_2_8_options(mc); 2735 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2736 /* ITS was introduced with 2.8 */ 2737 vmc->no_its = true; 2738 /* Stick with 1K pages for migration compatibility */ 2739 mc->minimum_page_bits = 0; 2740 } 2741 DEFINE_VIRT_MACHINE(2, 7) 2742 2743 static void virt_machine_2_6_options(MachineClass *mc) 2744 { 2745 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2746 2747 virt_machine_2_7_options(mc); 2748 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2749 vmc->disallow_affinity_adjustment = true; 2750 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2751 vmc->no_pmu = true; 2752 } 2753 DEFINE_VIRT_MACHINE(2, 6) 2754