xref: /openbmc/qemu/hw/arm/virt.c (revision c11b0583)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 #include "hw/arm/fdt.h"
51 #include "hw/intc/arm_gic_common.h"
52 #include "kvm_arm.h"
53 #include "hw/smbios/smbios.h"
54 
55 /* Number of external interrupt lines to configure the GIC with */
56 #define NUM_IRQS 256
57 
58 #define PLATFORM_BUS_NUM_IRQS 64
59 
60 static ARMPlatformBusSystemParams platform_bus_params;
61 
62 typedef struct VirtBoardInfo {
63     struct arm_boot_info bootinfo;
64     const char *cpu_model;
65     const MemMapEntry *memmap;
66     const int *irqmap;
67     int smp_cpus;
68     void *fdt;
69     int fdt_size;
70     uint32_t clock_phandle;
71     uint32_t gic_phandle;
72     uint32_t v2m_phandle;
73 } VirtBoardInfo;
74 
75 typedef struct {
76     MachineClass parent;
77     VirtBoardInfo *daughterboard;
78 } VirtMachineClass;
79 
80 typedef struct {
81     MachineState parent;
82     bool secure;
83     bool highmem;
84 } VirtMachineState;
85 
86 #define TYPE_VIRT_MACHINE   "virt"
87 #define VIRT_MACHINE(obj) \
88     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
89 #define VIRT_MACHINE_GET_CLASS(obj) \
90     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
91 #define VIRT_MACHINE_CLASS(klass) \
92     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
93 
94 /* Addresses and sizes of our components.
95  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
96  * 128MB..256MB is used for miscellaneous device I/O.
97  * 256MB..1GB is reserved for possible future PCI support (ie where the
98  * PCI memory window will go if we add a PCI host controller).
99  * 1GB and up is RAM (which may happily spill over into the
100  * high memory region beyond 4GB).
101  * This represents a compromise between how much RAM can be given to
102  * a 32 bit VM and leaving space for expansion and in particular for PCI.
103  * Note that devices should generally be placed at multiples of 0x10000,
104  * to accommodate guests using 64K pages.
105  */
106 static const MemMapEntry a15memmap[] = {
107     /* Space up to 0x8000000 is reserved for a boot ROM */
108     [VIRT_FLASH] =              {          0, 0x08000000 },
109     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
110     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
111     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
112     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
113     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
114     [VIRT_UART] =               { 0x09000000, 0x00001000 },
115     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
116     [VIRT_FW_CFG] =             { 0x09020000, 0x0000000a },
117     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
118     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
119     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
120     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
121     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
122     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
123     [VIRT_MEM] =                { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
124     /* Second PCIe window, 512GB wide at the 512GB boundary */
125     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
126 };
127 
128 static const int a15irqmap[] = {
129     [VIRT_UART] = 1,
130     [VIRT_RTC] = 2,
131     [VIRT_PCIE] = 3, /* ... to 6 */
132     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
133     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
134     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
135 };
136 
137 static VirtBoardInfo machines[] = {
138     {
139         .cpu_model = "cortex-a15",
140         .memmap = a15memmap,
141         .irqmap = a15irqmap,
142     },
143     {
144         .cpu_model = "cortex-a53",
145         .memmap = a15memmap,
146         .irqmap = a15irqmap,
147     },
148     {
149         .cpu_model = "cortex-a57",
150         .memmap = a15memmap,
151         .irqmap = a15irqmap,
152     },
153     {
154         .cpu_model = "host",
155         .memmap = a15memmap,
156         .irqmap = a15irqmap,
157     },
158 };
159 
160 static VirtBoardInfo *find_machine_info(const char *cpu)
161 {
162     int i;
163 
164     for (i = 0; i < ARRAY_SIZE(machines); i++) {
165         if (strcmp(cpu, machines[i].cpu_model) == 0) {
166             return &machines[i];
167         }
168     }
169     return NULL;
170 }
171 
172 static void create_fdt(VirtBoardInfo *vbi)
173 {
174     void *fdt = create_device_tree(&vbi->fdt_size);
175 
176     if (!fdt) {
177         error_report("create_device_tree() failed");
178         exit(1);
179     }
180 
181     vbi->fdt = fdt;
182 
183     /* Header */
184     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
185     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
186     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
187 
188     /*
189      * /chosen and /memory nodes must exist for load_dtb
190      * to fill in necessary properties later
191      */
192     qemu_fdt_add_subnode(fdt, "/chosen");
193     qemu_fdt_add_subnode(fdt, "/memory");
194     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
195 
196     /* Clock node, for the benefit of the UART. The kernel device tree
197      * binding documentation claims the PL011 node clock properties are
198      * optional but in practice if you omit them the kernel refuses to
199      * probe for the device.
200      */
201     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
202     qemu_fdt_add_subnode(fdt, "/apb-pclk");
203     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
204     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
205     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
206     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
207                                 "clk24mhz");
208     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
209 
210 }
211 
212 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
213 {
214     uint32_t cpu_suspend_fn;
215     uint32_t cpu_off_fn;
216     uint32_t cpu_on_fn;
217     uint32_t migrate_fn;
218     void *fdt = vbi->fdt;
219     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
220 
221     qemu_fdt_add_subnode(fdt, "/psci");
222     if (armcpu->psci_version == 2) {
223         const char comp[] = "arm,psci-0.2\0arm,psci";
224         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
225 
226         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
227         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
228             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
229             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
230             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
231         } else {
232             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
233             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
234             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
235         }
236     } else {
237         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
238 
239         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
240         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
241         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
242         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
243     }
244 
245     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
246      * to the instruction that should be used to invoke PSCI functions.
247      * However, the device tree binding uses 'method' instead, so that is
248      * what we should use here.
249      */
250     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
251 
252     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
253     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
254     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
255     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
256 }
257 
258 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
259 {
260     /* Note that on A15 h/w these interrupts are level-triggered,
261      * but for the GIC implementation provided by both QEMU and KVM
262      * they are edge-triggered.
263      */
264     ARMCPU *armcpu;
265     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
266 
267     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
268                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
269 
270     qemu_fdt_add_subnode(vbi->fdt, "/timer");
271 
272     armcpu = ARM_CPU(qemu_get_cpu(0));
273     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
274         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
275         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
276                          compat, sizeof(compat));
277     } else {
278         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
279                                 "arm,armv7-timer");
280     }
281     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
282                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
283                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
284                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
285                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
286 }
287 
288 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
289 {
290     int cpu;
291     int addr_cells = 1;
292 
293     /*
294      * From Documentation/devicetree/bindings/arm/cpus.txt
295      *  On ARM v8 64-bit systems value should be set to 2,
296      *  that corresponds to the MPIDR_EL1 register size.
297      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
298      *  in the system, #address-cells can be set to 1, since
299      *  MPIDR_EL1[63:32] bits are not used for CPUs
300      *  identification.
301      *
302      *  Here we actually don't know whether our system is 32- or 64-bit one.
303      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
304      *  at least one of them has Aff3 populated, we set #address-cells to 2.
305      */
306     for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
307         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
308 
309         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
310             addr_cells = 2;
311             break;
312         }
313     }
314 
315     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
316     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
317     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
318 
319     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
320         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
321         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
322 
323         qemu_fdt_add_subnode(vbi->fdt, nodename);
324         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
325         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
326                                     armcpu->dtb_compatible);
327 
328         if (vbi->smp_cpus > 1) {
329             qemu_fdt_setprop_string(vbi->fdt, nodename,
330                                         "enable-method", "psci");
331         }
332 
333         if (addr_cells == 2) {
334             qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
335                                  armcpu->mp_affinity);
336         } else {
337             qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
338                                   armcpu->mp_affinity);
339         }
340 
341         g_free(nodename);
342     }
343 }
344 
345 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
346 {
347     vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
348     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
349     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
350                             "arm,gic-v2m-frame");
351     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
352     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
353                                  2, vbi->memmap[VIRT_GIC_V2M].base,
354                                  2, vbi->memmap[VIRT_GIC_V2M].size);
355     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
356 }
357 
358 static void fdt_add_gic_node(VirtBoardInfo *vbi)
359 {
360     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
361     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
362 
363     qemu_fdt_add_subnode(vbi->fdt, "/intc");
364     /* 'cortex-a15-gic' means 'GIC v2' */
365     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
366                             "arm,cortex-a15-gic");
367     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
368     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
369     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
370                                      2, vbi->memmap[VIRT_GIC_DIST].base,
371                                      2, vbi->memmap[VIRT_GIC_DIST].size,
372                                      2, vbi->memmap[VIRT_GIC_CPU].base,
373                                      2, vbi->memmap[VIRT_GIC_CPU].size);
374     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
375     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
376     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
377     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
378 }
379 
380 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
381 {
382     int i;
383     int irq = vbi->irqmap[VIRT_GIC_V2M];
384     DeviceState *dev;
385 
386     dev = qdev_create(NULL, "arm-gicv2m");
387     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
388     qdev_prop_set_uint32(dev, "base-spi", irq);
389     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
390     qdev_init_nofail(dev);
391 
392     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
393         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
394     }
395 
396     fdt_add_v2m_gic_node(vbi);
397 }
398 
399 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, bool secure)
400 {
401     /* We create a standalone GIC v2 */
402     DeviceState *gicdev;
403     SysBusDevice *gicbusdev;
404     const char *gictype;
405     int i;
406 
407     gictype = gic_class_name();
408 
409     gicdev = qdev_create(NULL, gictype);
410     qdev_prop_set_uint32(gicdev, "revision", 2);
411     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
412     /* Note that the num-irq property counts both internal and external
413      * interrupts; there are always 32 of the former (mandated by GIC spec).
414      */
415     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
416     if (!kvm_irqchip_in_kernel()) {
417         qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
418     }
419     qdev_init_nofail(gicdev);
420     gicbusdev = SYS_BUS_DEVICE(gicdev);
421     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
422     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
423 
424     /* Wire the outputs from each CPU's generic timer to the
425      * appropriate GIC PPI inputs, and the GIC's IRQ output to
426      * the CPU's IRQ input.
427      */
428     for (i = 0; i < smp_cpus; i++) {
429         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
430         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
431         int irq;
432         /* Mapping from the output timer irq lines from the CPU to the
433          * GIC PPI inputs we use for the virt board.
434          */
435         const int timer_irq[] = {
436             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
437             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
438             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
439             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
440         };
441 
442         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
443             qdev_connect_gpio_out(cpudev, irq,
444                                   qdev_get_gpio_in(gicdev,
445                                                    ppibase + timer_irq[irq]));
446         }
447 
448         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
449         sysbus_connect_irq(gicbusdev, i + smp_cpus,
450                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
451     }
452 
453     for (i = 0; i < NUM_IRQS; i++) {
454         pic[i] = qdev_get_gpio_in(gicdev, i);
455     }
456 
457     fdt_add_gic_node(vbi);
458 
459     create_v2m(vbi, pic);
460 }
461 
462 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
463 {
464     char *nodename;
465     hwaddr base = vbi->memmap[VIRT_UART].base;
466     hwaddr size = vbi->memmap[VIRT_UART].size;
467     int irq = vbi->irqmap[VIRT_UART];
468     const char compat[] = "arm,pl011\0arm,primecell";
469     const char clocknames[] = "uartclk\0apb_pclk";
470 
471     sysbus_create_simple("pl011", base, pic[irq]);
472 
473     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
474     qemu_fdt_add_subnode(vbi->fdt, nodename);
475     /* Note that we can't use setprop_string because of the embedded NUL */
476     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
477                          compat, sizeof(compat));
478     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
479                                      2, base, 2, size);
480     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
481                                GIC_FDT_IRQ_TYPE_SPI, irq,
482                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
483     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
484                                vbi->clock_phandle, vbi->clock_phandle);
485     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
486                          clocknames, sizeof(clocknames));
487 
488     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
489     g_free(nodename);
490 }
491 
492 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
493 {
494     char *nodename;
495     hwaddr base = vbi->memmap[VIRT_RTC].base;
496     hwaddr size = vbi->memmap[VIRT_RTC].size;
497     int irq = vbi->irqmap[VIRT_RTC];
498     const char compat[] = "arm,pl031\0arm,primecell";
499 
500     sysbus_create_simple("pl031", base, pic[irq]);
501 
502     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
503     qemu_fdt_add_subnode(vbi->fdt, nodename);
504     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
505     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
506                                  2, base, 2, size);
507     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
508                            GIC_FDT_IRQ_TYPE_SPI, irq,
509                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
510     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
511     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
512     g_free(nodename);
513 }
514 
515 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
516 {
517     int i;
518     hwaddr size = vbi->memmap[VIRT_MMIO].size;
519 
520     /* We create the transports in forwards order. Since qbus_realize()
521      * prepends (not appends) new child buses, the incrementing loop below will
522      * create a list of virtio-mmio buses with decreasing base addresses.
523      *
524      * When a -device option is processed from the command line,
525      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
526      * order. The upshot is that -device options in increasing command line
527      * order are mapped to virtio-mmio buses with decreasing base addresses.
528      *
529      * When this code was originally written, that arrangement ensured that the
530      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
531      * the first -device on the command line. (The end-to-end order is a
532      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
533      * guest kernel's name-to-address assignment strategy.)
534      *
535      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
536      * the message, if not necessarily the code, of commit 70161ff336.
537      * Therefore the loop now establishes the inverse of the original intent.
538      *
539      * Unfortunately, we can't counteract the kernel change by reversing the
540      * loop; it would break existing command lines.
541      *
542      * In any case, the kernel makes no guarantee about the stability of
543      * enumeration order of virtio devices (as demonstrated by it changing
544      * between kernel versions). For reliable and stable identification
545      * of disks users must use UUIDs or similar mechanisms.
546      */
547     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
548         int irq = vbi->irqmap[VIRT_MMIO] + i;
549         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
550 
551         sysbus_create_simple("virtio-mmio", base, pic[irq]);
552     }
553 
554     /* We add dtb nodes in reverse order so that they appear in the finished
555      * device tree lowest address first.
556      *
557      * Note that this mapping is independent of the loop above. The previous
558      * loop influences virtio device to virtio transport assignment, whereas
559      * this loop controls how virtio transports are laid out in the dtb.
560      */
561     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
562         char *nodename;
563         int irq = vbi->irqmap[VIRT_MMIO] + i;
564         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
565 
566         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
567         qemu_fdt_add_subnode(vbi->fdt, nodename);
568         qemu_fdt_setprop_string(vbi->fdt, nodename,
569                                 "compatible", "virtio,mmio");
570         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
571                                      2, base, 2, size);
572         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
573                                GIC_FDT_IRQ_TYPE_SPI, irq,
574                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
575         g_free(nodename);
576     }
577 }
578 
579 static void create_one_flash(const char *name, hwaddr flashbase,
580                              hwaddr flashsize)
581 {
582     /* Create and map a single flash device. We use the same
583      * parameters as the flash devices on the Versatile Express board.
584      */
585     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
586     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
587     const uint64_t sectorlength = 256 * 1024;
588 
589     if (dinfo) {
590         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
591                             &error_abort);
592     }
593 
594     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
595     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
596     qdev_prop_set_uint8(dev, "width", 4);
597     qdev_prop_set_uint8(dev, "device-width", 2);
598     qdev_prop_set_bit(dev, "big-endian", false);
599     qdev_prop_set_uint16(dev, "id0", 0x89);
600     qdev_prop_set_uint16(dev, "id1", 0x18);
601     qdev_prop_set_uint16(dev, "id2", 0x00);
602     qdev_prop_set_uint16(dev, "id3", 0x00);
603     qdev_prop_set_string(dev, "name", name);
604     qdev_init_nofail(dev);
605 
606     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
607 }
608 
609 static void create_flash(const VirtBoardInfo *vbi)
610 {
611     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
612      * Any file passed via -bios goes in the first of these.
613      */
614     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
615     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
616     char *nodename;
617 
618     if (bios_name) {
619         char *fn;
620         int image_size;
621 
622         if (drive_get(IF_PFLASH, 0, 0)) {
623             error_report("The contents of the first flash device may be "
624                          "specified with -bios or with -drive if=pflash... "
625                          "but you cannot use both options at once");
626             exit(1);
627         }
628         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
629         if (!fn) {
630             error_report("Could not find ROM image '%s'", bios_name);
631             exit(1);
632         }
633         image_size = load_image_targphys(fn, flashbase, flashsize);
634         g_free(fn);
635         if (image_size < 0) {
636             error_report("Could not load ROM image '%s'", bios_name);
637             exit(1);
638         }
639     }
640 
641     create_one_flash("virt.flash0", flashbase, flashsize);
642     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
643 
644     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
645     qemu_fdt_add_subnode(vbi->fdt, nodename);
646     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
647     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
648                                  2, flashbase, 2, flashsize,
649                                  2, flashbase + flashsize, 2, flashsize);
650     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
651     g_free(nodename);
652 }
653 
654 static void create_fw_cfg(const VirtBoardInfo *vbi)
655 {
656     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
657     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
658     char *nodename;
659 
660     fw_cfg_init_mem_wide(base + 8, base, 8);
661 
662     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
663     qemu_fdt_add_subnode(vbi->fdt, nodename);
664     qemu_fdt_setprop_string(vbi->fdt, nodename,
665                             "compatible", "qemu,fw-cfg-mmio");
666     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
667                                  2, base, 2, size);
668     g_free(nodename);
669 }
670 
671 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
672                                 int first_irq, const char *nodename)
673 {
674     int devfn, pin;
675     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
676     uint32_t *irq_map = full_irq_map;
677 
678     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
679         for (pin = 0; pin < 4; pin++) {
680             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
681             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
682             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
683             int i;
684 
685             uint32_t map[] = {
686                 devfn << 8, 0, 0,                           /* devfn */
687                 pin + 1,                                    /* PCI pin */
688                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
689 
690             /* Convert map to big endian */
691             for (i = 0; i < 10; i++) {
692                 irq_map[i] = cpu_to_be32(map[i]);
693             }
694             irq_map += 10;
695         }
696     }
697 
698     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
699                      full_irq_map, sizeof(full_irq_map));
700 
701     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
702                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
703                            0x7           /* PCI irq */);
704 }
705 
706 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
707                         bool use_highmem)
708 {
709     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
710     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
711     hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
712     hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
713     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
714     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
715     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
716     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
717     hwaddr base = base_mmio;
718     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
719     int irq = vbi->irqmap[VIRT_PCIE];
720     MemoryRegion *mmio_alias;
721     MemoryRegion *mmio_reg;
722     MemoryRegion *ecam_alias;
723     MemoryRegion *ecam_reg;
724     DeviceState *dev;
725     char *nodename;
726     int i;
727 
728     dev = qdev_create(NULL, TYPE_GPEX_HOST);
729     qdev_init_nofail(dev);
730 
731     /* Map only the first size_ecam bytes of ECAM space */
732     ecam_alias = g_new0(MemoryRegion, 1);
733     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
734     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
735                              ecam_reg, 0, size_ecam);
736     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
737 
738     /* Map the MMIO window into system address space so as to expose
739      * the section of PCI MMIO space which starts at the same base address
740      * (ie 1:1 mapping for that part of PCI MMIO space visible through
741      * the window).
742      */
743     mmio_alias = g_new0(MemoryRegion, 1);
744     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
745     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
746                              mmio_reg, base_mmio, size_mmio);
747     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
748 
749     if (use_highmem) {
750         /* Map high MMIO space */
751         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
752 
753         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
754                                  mmio_reg, base_mmio_high, size_mmio_high);
755         memory_region_add_subregion(get_system_memory(), base_mmio_high,
756                                     high_mmio_alias);
757     }
758 
759     /* Map IO port space */
760     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
761 
762     for (i = 0; i < GPEX_NUM_IRQS; i++) {
763         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
764     }
765 
766     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
767     qemu_fdt_add_subnode(vbi->fdt, nodename);
768     qemu_fdt_setprop_string(vbi->fdt, nodename,
769                             "compatible", "pci-host-ecam-generic");
770     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
771     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
772     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
773     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
774                            nr_pcie_buses - 1);
775 
776     qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle);
777 
778     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
779                                  2, base_ecam, 2, size_ecam);
780 
781     if (use_highmem) {
782         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
783                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
784                                      2, base_pio, 2, size_pio,
785                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
786                                      2, base_mmio, 2, size_mmio,
787                                      1, FDT_PCI_RANGE_MMIO_64BIT,
788                                      2, base_mmio_high,
789                                      2, base_mmio_high, 2, size_mmio_high);
790     } else {
791         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
792                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
793                                      2, base_pio, 2, size_pio,
794                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
795                                      2, base_mmio, 2, size_mmio);
796     }
797 
798     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
799     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
800 
801     g_free(nodename);
802 }
803 
804 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
805 {
806     DeviceState *dev;
807     SysBusDevice *s;
808     int i;
809     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
810     MemoryRegion *sysmem = get_system_memory();
811 
812     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
813     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
814     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
815     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
816 
817     fdt_params->system_params = &platform_bus_params;
818     fdt_params->binfo = &vbi->bootinfo;
819     fdt_params->intc = "/intc";
820     /*
821      * register a machine init done notifier that creates the device tree
822      * nodes of the platform bus and its children dynamic sysbus devices
823      */
824     arm_register_platform_bus_fdt_creator(fdt_params);
825 
826     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
827     dev->id = TYPE_PLATFORM_BUS_DEVICE;
828     qdev_prop_set_uint32(dev, "num_irqs",
829         platform_bus_params.platform_bus_num_irqs);
830     qdev_prop_set_uint32(dev, "mmio_size",
831         platform_bus_params.platform_bus_size);
832     qdev_init_nofail(dev);
833     s = SYS_BUS_DEVICE(dev);
834 
835     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
836         int irqn = platform_bus_params.platform_bus_first_irq + i;
837         sysbus_connect_irq(s, i, pic[irqn]);
838     }
839 
840     memory_region_add_subregion(sysmem,
841                                 platform_bus_params.platform_bus_base,
842                                 sysbus_mmio_get_region(s, 0));
843 }
844 
845 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
846 {
847     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
848 
849     *fdt_size = board->fdt_size;
850     return board->fdt;
851 }
852 
853 static void virt_build_smbios(VirtGuestInfo *guest_info)
854 {
855     FWCfgState *fw_cfg = guest_info->fw_cfg;
856     uint8_t *smbios_tables, *smbios_anchor;
857     size_t smbios_tables_len, smbios_anchor_len;
858 
859     if (!fw_cfg) {
860         return;
861     }
862 
863     smbios_set_defaults("QEMU", "QEMU Virtual Machine",
864                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
865 
866     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
867                       &smbios_anchor, &smbios_anchor_len);
868 
869     if (smbios_anchor) {
870         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
871                         smbios_tables, smbios_tables_len);
872         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
873                         smbios_anchor, smbios_anchor_len);
874     }
875 }
876 
877 static
878 void virt_guest_info_machine_done(Notifier *notifier, void *data)
879 {
880     VirtGuestInfoState *guest_info_state = container_of(notifier,
881                                               VirtGuestInfoState, machine_done);
882     virt_acpi_setup(&guest_info_state->info);
883     virt_build_smbios(&guest_info_state->info);
884 }
885 
886 static void machvirt_init(MachineState *machine)
887 {
888     VirtMachineState *vms = VIRT_MACHINE(machine);
889     qemu_irq pic[NUM_IRQS];
890     MemoryRegion *sysmem = get_system_memory();
891     int n;
892     MemoryRegion *ram = g_new(MemoryRegion, 1);
893     const char *cpu_model = machine->cpu_model;
894     VirtBoardInfo *vbi;
895     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
896     VirtGuestInfo *guest_info = &guest_info_state->info;
897     char **cpustr;
898 
899     if (!cpu_model) {
900         cpu_model = "cortex-a15";
901     }
902 
903     /* Separate the actual CPU model name from any appended features */
904     cpustr = g_strsplit(cpu_model, ",", 2);
905 
906     vbi = find_machine_info(cpustr[0]);
907 
908     if (!vbi) {
909         error_report("mach-virt: CPU %s not supported", cpustr[0]);
910         exit(1);
911     }
912 
913     vbi->smp_cpus = smp_cpus;
914 
915     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
916         error_report("mach-virt: cannot model more than 30GB RAM");
917         exit(1);
918     }
919 
920     create_fdt(vbi);
921 
922     for (n = 0; n < smp_cpus; n++) {
923         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
924         CPUClass *cc = CPU_CLASS(oc);
925         Object *cpuobj;
926         Error *err = NULL;
927         char *cpuopts = g_strdup(cpustr[1]);
928 
929         if (!oc) {
930             fprintf(stderr, "Unable to find CPU definition\n");
931             exit(1);
932         }
933         cpuobj = object_new(object_class_get_name(oc));
934 
935         /* Handle any CPU options specified by the user */
936         cc->parse_features(CPU(cpuobj), cpuopts, &err);
937         g_free(cpuopts);
938         if (err) {
939             error_report_err(err);
940             exit(1);
941         }
942 
943         if (!vms->secure) {
944             object_property_set_bool(cpuobj, false, "has_el3", NULL);
945         }
946 
947         object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
948                                 NULL);
949 
950         /* Secondary CPUs start in PSCI powered-down state */
951         if (n > 0) {
952             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
953         }
954 
955         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
956             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
957                                     "reset-cbar", &error_abort);
958         }
959 
960         object_property_set_bool(cpuobj, true, "realized", NULL);
961     }
962     g_strfreev(cpustr);
963     fdt_add_timer_nodes(vbi);
964     fdt_add_cpu_nodes(vbi);
965     fdt_add_psci_node(vbi);
966 
967     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
968                                          machine->ram_size);
969     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
970 
971     create_flash(vbi);
972 
973     create_gic(vbi, pic, vms->secure);
974 
975     create_uart(vbi, pic);
976 
977     create_rtc(vbi, pic);
978 
979     create_pcie(vbi, pic, vms->highmem);
980 
981     /* Create mmio transports, so the user can create virtio backends
982      * (which will be automatically plugged in to the transports). If
983      * no backend is created the transport will just sit harmlessly idle.
984      */
985     create_virtio_devices(vbi, pic);
986 
987     create_fw_cfg(vbi);
988     rom_set_fw(fw_cfg_find());
989 
990     guest_info->smp_cpus = smp_cpus;
991     guest_info->fw_cfg = fw_cfg_find();
992     guest_info->memmap = vbi->memmap;
993     guest_info->irqmap = vbi->irqmap;
994     guest_info->use_highmem = vms->highmem;
995     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
996     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
997 
998     vbi->bootinfo.ram_size = machine->ram_size;
999     vbi->bootinfo.kernel_filename = machine->kernel_filename;
1000     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1001     vbi->bootinfo.initrd_filename = machine->initrd_filename;
1002     vbi->bootinfo.nb_cpus = smp_cpus;
1003     vbi->bootinfo.board_id = -1;
1004     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1005     vbi->bootinfo.get_dtb = machvirt_dtb;
1006     vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1007     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1008 
1009     /*
1010      * arm_load_kernel machine init done notifier registration must
1011      * happen before the platform_bus_create call. In this latter,
1012      * another notifier is registered which adds platform bus nodes.
1013      * Notifiers are executed in registration reverse order.
1014      */
1015     create_platform_bus(vbi, pic);
1016 }
1017 
1018 static bool virt_get_secure(Object *obj, Error **errp)
1019 {
1020     VirtMachineState *vms = VIRT_MACHINE(obj);
1021 
1022     return vms->secure;
1023 }
1024 
1025 static void virt_set_secure(Object *obj, bool value, Error **errp)
1026 {
1027     VirtMachineState *vms = VIRT_MACHINE(obj);
1028 
1029     vms->secure = value;
1030 }
1031 
1032 static bool virt_get_highmem(Object *obj, Error **errp)
1033 {
1034     VirtMachineState *vms = VIRT_MACHINE(obj);
1035 
1036     return vms->highmem;
1037 }
1038 
1039 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1040 {
1041     VirtMachineState *vms = VIRT_MACHINE(obj);
1042 
1043     vms->highmem = value;
1044 }
1045 
1046 static void virt_instance_init(Object *obj)
1047 {
1048     VirtMachineState *vms = VIRT_MACHINE(obj);
1049 
1050     /* EL3 is disabled by default on virt: this makes us consistent
1051      * between KVM and TCG for this board, and it also allows us to
1052      * boot UEFI blobs which assume no TrustZone support.
1053      */
1054     vms->secure = false;
1055     object_property_add_bool(obj, "secure", virt_get_secure,
1056                              virt_set_secure, NULL);
1057     object_property_set_description(obj, "secure",
1058                                     "Set on/off to enable/disable the ARM "
1059                                     "Security Extensions (TrustZone)",
1060                                     NULL);
1061 
1062     /* High memory is enabled by default */
1063     vms->highmem = true;
1064     object_property_add_bool(obj, "highmem", virt_get_highmem,
1065                              virt_set_highmem, NULL);
1066     object_property_set_description(obj, "highmem",
1067                                     "Set on/off to enable/disable using "
1068                                     "physical address space above 32 bits",
1069                                     NULL);
1070 }
1071 
1072 static void virt_class_init(ObjectClass *oc, void *data)
1073 {
1074     MachineClass *mc = MACHINE_CLASS(oc);
1075 
1076     mc->name = TYPE_VIRT_MACHINE;
1077     mc->desc = "ARM Virtual Machine",
1078     mc->init = machvirt_init;
1079     mc->max_cpus = 8;
1080     mc->has_dynamic_sysbus = true;
1081     mc->block_default_type = IF_VIRTIO;
1082     mc->no_cdrom = 1;
1083 }
1084 
1085 static const TypeInfo machvirt_info = {
1086     .name = TYPE_VIRT_MACHINE,
1087     .parent = TYPE_MACHINE,
1088     .instance_size = sizeof(VirtMachineState),
1089     .instance_init = virt_instance_init,
1090     .class_size = sizeof(VirtMachineClass),
1091     .class_init = virt_class_init,
1092 };
1093 
1094 static void machvirt_machine_init(void)
1095 {
1096     type_register_static(&machvirt_info);
1097 }
1098 
1099 machine_init(machvirt_machine_init);
1100