1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/arm/virt.h" 35 #include "hw/devices.h" 36 #include "net/net.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/kvm.h" 41 #include "hw/boards.h" 42 #include "hw/loader.h" 43 #include "exec/address-spaces.h" 44 #include "qemu/bitops.h" 45 #include "qemu/error-report.h" 46 #include "hw/pci-host/gpex.h" 47 #include "hw/arm/virt-acpi-build.h" 48 #include "hw/arm/sysbus-fdt.h" 49 #include "hw/platform-bus.h" 50 51 /* Number of external interrupt lines to configure the GIC with */ 52 #define NUM_IRQS 256 53 54 #define GIC_FDT_IRQ_TYPE_SPI 0 55 #define GIC_FDT_IRQ_TYPE_PPI 1 56 57 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1 58 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2 59 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4 60 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8 61 62 #define GIC_FDT_IRQ_PPI_CPU_START 8 63 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8 64 65 #define PLATFORM_BUS_NUM_IRQS 64 66 67 static ARMPlatformBusSystemParams platform_bus_params; 68 69 typedef struct VirtBoardInfo { 70 struct arm_boot_info bootinfo; 71 const char *cpu_model; 72 const MemMapEntry *memmap; 73 const int *irqmap; 74 int smp_cpus; 75 void *fdt; 76 int fdt_size; 77 uint32_t clock_phandle; 78 uint32_t gic_phandle; 79 uint32_t v2m_phandle; 80 } VirtBoardInfo; 81 82 typedef struct { 83 MachineClass parent; 84 VirtBoardInfo *daughterboard; 85 } VirtMachineClass; 86 87 typedef struct { 88 MachineState parent; 89 bool secure; 90 } VirtMachineState; 91 92 #define TYPE_VIRT_MACHINE "virt" 93 #define VIRT_MACHINE(obj) \ 94 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 95 #define VIRT_MACHINE_GET_CLASS(obj) \ 96 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 97 #define VIRT_MACHINE_CLASS(klass) \ 98 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 99 100 /* Addresses and sizes of our components. 101 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 102 * 128MB..256MB is used for miscellaneous device I/O. 103 * 256MB..1GB is reserved for possible future PCI support (ie where the 104 * PCI memory window will go if we add a PCI host controller). 105 * 1GB and up is RAM (which may happily spill over into the 106 * high memory region beyond 4GB). 107 * This represents a compromise between how much RAM can be given to 108 * a 32 bit VM and leaving space for expansion and in particular for PCI. 109 * Note that devices should generally be placed at multiples of 0x10000, 110 * to accommodate guests using 64K pages. 111 */ 112 static const MemMapEntry a15memmap[] = { 113 /* Space up to 0x8000000 is reserved for a boot ROM */ 114 [VIRT_FLASH] = { 0, 0x08000000 }, 115 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 116 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 117 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 118 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 119 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 120 [VIRT_UART] = { 0x09000000, 0x00001000 }, 121 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 122 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a }, 123 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 124 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 125 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 126 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 127 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 128 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 129 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 130 }; 131 132 static const int a15irqmap[] = { 133 [VIRT_UART] = 1, 134 [VIRT_RTC] = 2, 135 [VIRT_PCIE] = 3, /* ... to 6 */ 136 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 137 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 138 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 139 }; 140 141 static VirtBoardInfo machines[] = { 142 { 143 .cpu_model = "cortex-a15", 144 .memmap = a15memmap, 145 .irqmap = a15irqmap, 146 }, 147 { 148 .cpu_model = "cortex-a57", 149 .memmap = a15memmap, 150 .irqmap = a15irqmap, 151 }, 152 { 153 .cpu_model = "host", 154 .memmap = a15memmap, 155 .irqmap = a15irqmap, 156 }, 157 }; 158 159 static VirtBoardInfo *find_machine_info(const char *cpu) 160 { 161 int i; 162 163 for (i = 0; i < ARRAY_SIZE(machines); i++) { 164 if (strcmp(cpu, machines[i].cpu_model) == 0) { 165 return &machines[i]; 166 } 167 } 168 return NULL; 169 } 170 171 static void create_fdt(VirtBoardInfo *vbi) 172 { 173 void *fdt = create_device_tree(&vbi->fdt_size); 174 175 if (!fdt) { 176 error_report("create_device_tree() failed"); 177 exit(1); 178 } 179 180 vbi->fdt = fdt; 181 182 /* Header */ 183 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 184 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 185 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 186 187 /* 188 * /chosen and /memory nodes must exist for load_dtb 189 * to fill in necessary properties later 190 */ 191 qemu_fdt_add_subnode(fdt, "/chosen"); 192 qemu_fdt_add_subnode(fdt, "/memory"); 193 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 194 195 /* Clock node, for the benefit of the UART. The kernel device tree 196 * binding documentation claims the PL011 node clock properties are 197 * optional but in practice if you omit them the kernel refuses to 198 * probe for the device. 199 */ 200 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 201 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 202 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 203 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 204 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 205 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 206 "clk24mhz"); 207 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 208 209 } 210 211 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 212 { 213 uint32_t cpu_suspend_fn; 214 uint32_t cpu_off_fn; 215 uint32_t cpu_on_fn; 216 uint32_t migrate_fn; 217 void *fdt = vbi->fdt; 218 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 219 220 qemu_fdt_add_subnode(fdt, "/psci"); 221 if (armcpu->psci_version == 2) { 222 const char comp[] = "arm,psci-0.2\0arm,psci"; 223 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 224 225 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 226 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 227 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 228 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 229 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 230 } else { 231 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 232 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 233 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 234 } 235 } else { 236 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 237 238 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 239 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 240 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 241 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 242 } 243 244 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 245 * to the instruction that should be used to invoke PSCI functions. 246 * However, the device tree binding uses 'method' instead, so that is 247 * what we should use here. 248 */ 249 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 250 251 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 252 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 253 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 254 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 255 } 256 257 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) 258 { 259 /* Note that on A15 h/w these interrupts are level-triggered, 260 * but for the GIC implementation provided by both QEMU and KVM 261 * they are edge-triggered. 262 */ 263 ARMCPU *armcpu; 264 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 265 266 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 267 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); 268 269 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 270 271 armcpu = ARM_CPU(qemu_get_cpu(0)); 272 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 273 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 274 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 275 compat, sizeof(compat)); 276 } else { 277 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 278 "arm,armv7-timer"); 279 } 280 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 281 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 282 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 283 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 284 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 285 } 286 287 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 288 { 289 int cpu; 290 291 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 292 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); 293 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 294 295 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 296 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 297 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 298 299 qemu_fdt_add_subnode(vbi->fdt, nodename); 300 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 301 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 302 armcpu->dtb_compatible); 303 304 if (vbi->smp_cpus > 1) { 305 qemu_fdt_setprop_string(vbi->fdt, nodename, 306 "enable-method", "psci"); 307 } 308 309 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu); 310 g_free(nodename); 311 } 312 } 313 314 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 315 { 316 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 317 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 318 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 319 "arm,gic-v2m-frame"); 320 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 321 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 322 2, vbi->memmap[VIRT_GIC_V2M].base, 323 2, vbi->memmap[VIRT_GIC_V2M].size); 324 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 325 } 326 327 static void fdt_add_gic_node(VirtBoardInfo *vbi) 328 { 329 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 330 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 331 332 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 333 /* 'cortex-a15-gic' means 'GIC v2' */ 334 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 335 "arm,cortex-a15-gic"); 336 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 337 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 338 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 339 2, vbi->memmap[VIRT_GIC_DIST].base, 340 2, vbi->memmap[VIRT_GIC_DIST].size, 341 2, vbi->memmap[VIRT_GIC_CPU].base, 342 2, vbi->memmap[VIRT_GIC_CPU].size); 343 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 344 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 345 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 346 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 347 } 348 349 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 350 { 351 int i; 352 int irq = vbi->irqmap[VIRT_GIC_V2M]; 353 DeviceState *dev; 354 355 dev = qdev_create(NULL, "arm-gicv2m"); 356 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 357 qdev_prop_set_uint32(dev, "base-spi", irq); 358 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 359 qdev_init_nofail(dev); 360 361 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 362 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 363 } 364 365 fdt_add_v2m_gic_node(vbi); 366 } 367 368 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic) 369 { 370 /* We create a standalone GIC v2 */ 371 DeviceState *gicdev; 372 SysBusDevice *gicbusdev; 373 const char *gictype = "arm_gic"; 374 int i; 375 376 if (kvm_irqchip_in_kernel()) { 377 gictype = "kvm-arm-gic"; 378 } 379 380 gicdev = qdev_create(NULL, gictype); 381 qdev_prop_set_uint32(gicdev, "revision", 2); 382 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 383 /* Note that the num-irq property counts both internal and external 384 * interrupts; there are always 32 of the former (mandated by GIC spec). 385 */ 386 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 387 qdev_init_nofail(gicdev); 388 gicbusdev = SYS_BUS_DEVICE(gicdev); 389 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 390 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 391 392 /* Wire the outputs from each CPU's generic timer to the 393 * appropriate GIC PPI inputs, and the GIC's IRQ output to 394 * the CPU's IRQ input. 395 */ 396 for (i = 0; i < smp_cpus; i++) { 397 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 398 int ppibase = NUM_IRQS + i * 32; 399 /* physical timer; we wire it up to the non-secure timer's ID, 400 * since a real A15 always has TrustZone but QEMU doesn't. 401 */ 402 qdev_connect_gpio_out(cpudev, 0, 403 qdev_get_gpio_in(gicdev, ppibase + 30)); 404 /* virtual timer */ 405 qdev_connect_gpio_out(cpudev, 1, 406 qdev_get_gpio_in(gicdev, ppibase + 27)); 407 408 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 409 sysbus_connect_irq(gicbusdev, i + smp_cpus, 410 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 411 } 412 413 for (i = 0; i < NUM_IRQS; i++) { 414 pic[i] = qdev_get_gpio_in(gicdev, i); 415 } 416 417 fdt_add_gic_node(vbi); 418 419 create_v2m(vbi, pic); 420 } 421 422 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 423 { 424 char *nodename; 425 hwaddr base = vbi->memmap[VIRT_UART].base; 426 hwaddr size = vbi->memmap[VIRT_UART].size; 427 int irq = vbi->irqmap[VIRT_UART]; 428 const char compat[] = "arm,pl011\0arm,primecell"; 429 const char clocknames[] = "uartclk\0apb_pclk"; 430 431 sysbus_create_simple("pl011", base, pic[irq]); 432 433 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 434 qemu_fdt_add_subnode(vbi->fdt, nodename); 435 /* Note that we can't use setprop_string because of the embedded NUL */ 436 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 437 compat, sizeof(compat)); 438 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 439 2, base, 2, size); 440 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 441 GIC_FDT_IRQ_TYPE_SPI, irq, 442 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 443 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 444 vbi->clock_phandle, vbi->clock_phandle); 445 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 446 clocknames, sizeof(clocknames)); 447 448 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 449 g_free(nodename); 450 } 451 452 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 453 { 454 char *nodename; 455 hwaddr base = vbi->memmap[VIRT_RTC].base; 456 hwaddr size = vbi->memmap[VIRT_RTC].size; 457 int irq = vbi->irqmap[VIRT_RTC]; 458 const char compat[] = "arm,pl031\0arm,primecell"; 459 460 sysbus_create_simple("pl031", base, pic[irq]); 461 462 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 463 qemu_fdt_add_subnode(vbi->fdt, nodename); 464 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 465 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 466 2, base, 2, size); 467 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 468 GIC_FDT_IRQ_TYPE_SPI, irq, 469 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 470 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 471 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 472 g_free(nodename); 473 } 474 475 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 476 { 477 int i; 478 hwaddr size = vbi->memmap[VIRT_MMIO].size; 479 480 /* We create the transports in forwards order. Since qbus_realize() 481 * prepends (not appends) new child buses, the incrementing loop below will 482 * create a list of virtio-mmio buses with decreasing base addresses. 483 * 484 * When a -device option is processed from the command line, 485 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 486 * order. The upshot is that -device options in increasing command line 487 * order are mapped to virtio-mmio buses with decreasing base addresses. 488 * 489 * When this code was originally written, that arrangement ensured that the 490 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 491 * the first -device on the command line. (The end-to-end order is a 492 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 493 * guest kernel's name-to-address assignment strategy.) 494 * 495 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 496 * the message, if not necessarily the code, of commit 70161ff336. 497 * Therefore the loop now establishes the inverse of the original intent. 498 * 499 * Unfortunately, we can't counteract the kernel change by reversing the 500 * loop; it would break existing command lines. 501 * 502 * In any case, the kernel makes no guarantee about the stability of 503 * enumeration order of virtio devices (as demonstrated by it changing 504 * between kernel versions). For reliable and stable identification 505 * of disks users must use UUIDs or similar mechanisms. 506 */ 507 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 508 int irq = vbi->irqmap[VIRT_MMIO] + i; 509 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 510 511 sysbus_create_simple("virtio-mmio", base, pic[irq]); 512 } 513 514 /* We add dtb nodes in reverse order so that they appear in the finished 515 * device tree lowest address first. 516 * 517 * Note that this mapping is independent of the loop above. The previous 518 * loop influences virtio device to virtio transport assignment, whereas 519 * this loop controls how virtio transports are laid out in the dtb. 520 */ 521 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 522 char *nodename; 523 int irq = vbi->irqmap[VIRT_MMIO] + i; 524 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 525 526 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 527 qemu_fdt_add_subnode(vbi->fdt, nodename); 528 qemu_fdt_setprop_string(vbi->fdt, nodename, 529 "compatible", "virtio,mmio"); 530 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 531 2, base, 2, size); 532 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 533 GIC_FDT_IRQ_TYPE_SPI, irq, 534 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 535 g_free(nodename); 536 } 537 } 538 539 static void create_one_flash(const char *name, hwaddr flashbase, 540 hwaddr flashsize) 541 { 542 /* Create and map a single flash device. We use the same 543 * parameters as the flash devices on the Versatile Express board. 544 */ 545 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 546 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 547 const uint64_t sectorlength = 256 * 1024; 548 549 if (dinfo) { 550 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 551 &error_abort); 552 } 553 554 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 555 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 556 qdev_prop_set_uint8(dev, "width", 4); 557 qdev_prop_set_uint8(dev, "device-width", 2); 558 qdev_prop_set_bit(dev, "big-endian", false); 559 qdev_prop_set_uint16(dev, "id0", 0x89); 560 qdev_prop_set_uint16(dev, "id1", 0x18); 561 qdev_prop_set_uint16(dev, "id2", 0x00); 562 qdev_prop_set_uint16(dev, "id3", 0x00); 563 qdev_prop_set_string(dev, "name", name); 564 qdev_init_nofail(dev); 565 566 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 567 } 568 569 static void create_flash(const VirtBoardInfo *vbi) 570 { 571 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 572 * Any file passed via -bios goes in the first of these. 573 */ 574 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 575 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 576 char *nodename; 577 578 if (bios_name) { 579 char *fn; 580 int image_size; 581 582 if (drive_get(IF_PFLASH, 0, 0)) { 583 error_report("The contents of the first flash device may be " 584 "specified with -bios or with -drive if=pflash... " 585 "but you cannot use both options at once"); 586 exit(1); 587 } 588 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 589 if (!fn) { 590 error_report("Could not find ROM image '%s'", bios_name); 591 exit(1); 592 } 593 image_size = load_image_targphys(fn, flashbase, flashsize); 594 g_free(fn); 595 if (image_size < 0) { 596 error_report("Could not load ROM image '%s'", bios_name); 597 exit(1); 598 } 599 } 600 601 create_one_flash("virt.flash0", flashbase, flashsize); 602 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 603 604 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 605 qemu_fdt_add_subnode(vbi->fdt, nodename); 606 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 607 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 608 2, flashbase, 2, flashsize, 609 2, flashbase + flashsize, 2, flashsize); 610 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 611 g_free(nodename); 612 } 613 614 static void create_fw_cfg(const VirtBoardInfo *vbi) 615 { 616 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 617 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 618 char *nodename; 619 620 fw_cfg_init_mem_wide(base + 8, base, 8); 621 622 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 623 qemu_fdt_add_subnode(vbi->fdt, nodename); 624 qemu_fdt_setprop_string(vbi->fdt, nodename, 625 "compatible", "qemu,fw-cfg-mmio"); 626 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 627 2, base, 2, size); 628 g_free(nodename); 629 } 630 631 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 632 int first_irq, const char *nodename) 633 { 634 int devfn, pin; 635 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 636 uint32_t *irq_map = full_irq_map; 637 638 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 639 for (pin = 0; pin < 4; pin++) { 640 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 641 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 642 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 643 int i; 644 645 uint32_t map[] = { 646 devfn << 8, 0, 0, /* devfn */ 647 pin + 1, /* PCI pin */ 648 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 649 650 /* Convert map to big endian */ 651 for (i = 0; i < 10; i++) { 652 irq_map[i] = cpu_to_be32(map[i]); 653 } 654 irq_map += 10; 655 } 656 } 657 658 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 659 full_irq_map, sizeof(full_irq_map)); 660 661 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 662 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 663 0x7 /* PCI irq */); 664 } 665 666 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic) 667 { 668 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 669 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 670 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 671 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 672 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 673 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 674 hwaddr base = base_mmio; 675 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 676 int irq = vbi->irqmap[VIRT_PCIE]; 677 MemoryRegion *mmio_alias; 678 MemoryRegion *mmio_reg; 679 MemoryRegion *ecam_alias; 680 MemoryRegion *ecam_reg; 681 DeviceState *dev; 682 char *nodename; 683 int i; 684 685 dev = qdev_create(NULL, TYPE_GPEX_HOST); 686 qdev_init_nofail(dev); 687 688 /* Map only the first size_ecam bytes of ECAM space */ 689 ecam_alias = g_new0(MemoryRegion, 1); 690 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 691 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 692 ecam_reg, 0, size_ecam); 693 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 694 695 /* Map the MMIO window into system address space so as to expose 696 * the section of PCI MMIO space which starts at the same base address 697 * (ie 1:1 mapping for that part of PCI MMIO space visible through 698 * the window). 699 */ 700 mmio_alias = g_new0(MemoryRegion, 1); 701 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 702 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 703 mmio_reg, base_mmio, size_mmio); 704 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 705 706 /* Map IO port space */ 707 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 708 709 for (i = 0; i < GPEX_NUM_IRQS; i++) { 710 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 711 } 712 713 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 714 qemu_fdt_add_subnode(vbi->fdt, nodename); 715 qemu_fdt_setprop_string(vbi->fdt, nodename, 716 "compatible", "pci-host-ecam-generic"); 717 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 718 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 719 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 720 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 721 nr_pcie_buses - 1); 722 723 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle); 724 725 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 726 2, base_ecam, 2, size_ecam); 727 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 728 1, FDT_PCI_RANGE_IOPORT, 2, 0, 729 2, base_pio, 2, size_pio, 730 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 731 2, base_mmio, 2, size_mmio); 732 733 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 734 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 735 736 g_free(nodename); 737 } 738 739 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 740 { 741 DeviceState *dev; 742 SysBusDevice *s; 743 int i; 744 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 745 MemoryRegion *sysmem = get_system_memory(); 746 747 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 748 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 749 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 750 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 751 752 fdt_params->system_params = &platform_bus_params; 753 fdt_params->binfo = &vbi->bootinfo; 754 fdt_params->intc = "/intc"; 755 /* 756 * register a machine init done notifier that creates the device tree 757 * nodes of the platform bus and its children dynamic sysbus devices 758 */ 759 arm_register_platform_bus_fdt_creator(fdt_params); 760 761 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 762 dev->id = TYPE_PLATFORM_BUS_DEVICE; 763 qdev_prop_set_uint32(dev, "num_irqs", 764 platform_bus_params.platform_bus_num_irqs); 765 qdev_prop_set_uint32(dev, "mmio_size", 766 platform_bus_params.platform_bus_size); 767 qdev_init_nofail(dev); 768 s = SYS_BUS_DEVICE(dev); 769 770 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 771 int irqn = platform_bus_params.platform_bus_first_irq + i; 772 sysbus_connect_irq(s, i, pic[irqn]); 773 } 774 775 memory_region_add_subregion(sysmem, 776 platform_bus_params.platform_bus_base, 777 sysbus_mmio_get_region(s, 0)); 778 } 779 780 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 781 { 782 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 783 784 *fdt_size = board->fdt_size; 785 return board->fdt; 786 } 787 788 static 789 void virt_guest_info_machine_done(Notifier *notifier, void *data) 790 { 791 VirtGuestInfoState *guest_info_state = container_of(notifier, 792 VirtGuestInfoState, machine_done); 793 virt_acpi_setup(&guest_info_state->info); 794 } 795 796 static void machvirt_init(MachineState *machine) 797 { 798 VirtMachineState *vms = VIRT_MACHINE(machine); 799 qemu_irq pic[NUM_IRQS]; 800 MemoryRegion *sysmem = get_system_memory(); 801 int n; 802 MemoryRegion *ram = g_new(MemoryRegion, 1); 803 const char *cpu_model = machine->cpu_model; 804 VirtBoardInfo *vbi; 805 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 806 VirtGuestInfo *guest_info = &guest_info_state->info; 807 char **cpustr; 808 809 if (!cpu_model) { 810 cpu_model = "cortex-a15"; 811 } 812 813 /* Separate the actual CPU model name from any appended features */ 814 cpustr = g_strsplit(cpu_model, ",", 2); 815 816 vbi = find_machine_info(cpustr[0]); 817 818 if (!vbi) { 819 error_report("mach-virt: CPU %s not supported", cpustr[0]); 820 exit(1); 821 } 822 823 vbi->smp_cpus = smp_cpus; 824 825 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 826 error_report("mach-virt: cannot model more than 30GB RAM"); 827 exit(1); 828 } 829 830 create_fdt(vbi); 831 832 for (n = 0; n < smp_cpus; n++) { 833 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 834 CPUClass *cc = CPU_CLASS(oc); 835 Object *cpuobj; 836 Error *err = NULL; 837 char *cpuopts = g_strdup(cpustr[1]); 838 839 if (!oc) { 840 fprintf(stderr, "Unable to find CPU definition\n"); 841 exit(1); 842 } 843 cpuobj = object_new(object_class_get_name(oc)); 844 845 /* Handle any CPU options specified by the user */ 846 cc->parse_features(CPU(cpuobj), cpuopts, &err); 847 g_free(cpuopts); 848 if (err) { 849 error_report_err(err); 850 exit(1); 851 } 852 853 if (!vms->secure) { 854 object_property_set_bool(cpuobj, false, "has_el3", NULL); 855 } 856 857 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", 858 NULL); 859 860 /* Secondary CPUs start in PSCI powered-down state */ 861 if (n > 0) { 862 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 863 } 864 865 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 866 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 867 "reset-cbar", &error_abort); 868 } 869 870 object_property_set_bool(cpuobj, true, "realized", NULL); 871 } 872 g_strfreev(cpustr); 873 fdt_add_timer_nodes(vbi); 874 fdt_add_cpu_nodes(vbi); 875 fdt_add_psci_node(vbi); 876 877 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 878 machine->ram_size); 879 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 880 881 create_flash(vbi); 882 883 create_gic(vbi, pic); 884 885 create_uart(vbi, pic); 886 887 create_rtc(vbi, pic); 888 889 create_pcie(vbi, pic); 890 891 /* Create mmio transports, so the user can create virtio backends 892 * (which will be automatically plugged in to the transports). If 893 * no backend is created the transport will just sit harmlessly idle. 894 */ 895 create_virtio_devices(vbi, pic); 896 897 create_fw_cfg(vbi); 898 rom_set_fw(fw_cfg_find()); 899 900 guest_info->smp_cpus = smp_cpus; 901 guest_info->fw_cfg = fw_cfg_find(); 902 guest_info->memmap = vbi->memmap; 903 guest_info->irqmap = vbi->irqmap; 904 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 905 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 906 907 vbi->bootinfo.ram_size = machine->ram_size; 908 vbi->bootinfo.kernel_filename = machine->kernel_filename; 909 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 910 vbi->bootinfo.initrd_filename = machine->initrd_filename; 911 vbi->bootinfo.nb_cpus = smp_cpus; 912 vbi->bootinfo.board_id = -1; 913 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 914 vbi->bootinfo.get_dtb = machvirt_dtb; 915 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 916 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 917 918 /* 919 * arm_load_kernel machine init done notifier registration must 920 * happen before the platform_bus_create call. In this latter, 921 * another notifier is registered which adds platform bus nodes. 922 * Notifiers are executed in registration reverse order. 923 */ 924 create_platform_bus(vbi, pic); 925 } 926 927 static bool virt_get_secure(Object *obj, Error **errp) 928 { 929 VirtMachineState *vms = VIRT_MACHINE(obj); 930 931 return vms->secure; 932 } 933 934 static void virt_set_secure(Object *obj, bool value, Error **errp) 935 { 936 VirtMachineState *vms = VIRT_MACHINE(obj); 937 938 vms->secure = value; 939 } 940 941 static void virt_instance_init(Object *obj) 942 { 943 VirtMachineState *vms = VIRT_MACHINE(obj); 944 945 /* EL3 is enabled by default on virt */ 946 vms->secure = true; 947 object_property_add_bool(obj, "secure", virt_get_secure, 948 virt_set_secure, NULL); 949 object_property_set_description(obj, "secure", 950 "Set on/off to enable/disable the ARM " 951 "Security Extensions (TrustZone)", 952 NULL); 953 } 954 955 static void virt_class_init(ObjectClass *oc, void *data) 956 { 957 MachineClass *mc = MACHINE_CLASS(oc); 958 959 mc->name = TYPE_VIRT_MACHINE; 960 mc->desc = "ARM Virtual Machine", 961 mc->init = machvirt_init; 962 mc->max_cpus = 8; 963 mc->has_dynamic_sysbus = true; 964 } 965 966 static const TypeInfo machvirt_info = { 967 .name = TYPE_VIRT_MACHINE, 968 .parent = TYPE_MACHINE, 969 .instance_size = sizeof(VirtMachineState), 970 .instance_init = virt_instance_init, 971 .class_size = sizeof(VirtMachineClass), 972 .class_init = virt_class_init, 973 }; 974 975 static void machvirt_machine_init(void) 976 { 977 type_register_static(&machvirt_info); 978 } 979 980 machine_init(machvirt_machine_init); 981