1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "hw/sysbus.h" 33 #include "hw/arm/arm.h" 34 #include "hw/arm/primecell.h" 35 #include "hw/arm/virt.h" 36 #include "hw/devices.h" 37 #include "net/net.h" 38 #include "sysemu/block-backend.h" 39 #include "sysemu/device_tree.h" 40 #include "sysemu/sysemu.h" 41 #include "sysemu/kvm.h" 42 #include "hw/boards.h" 43 #include "hw/loader.h" 44 #include "exec/address-spaces.h" 45 #include "qemu/bitops.h" 46 #include "qemu/error-report.h" 47 #include "hw/pci-host/gpex.h" 48 #include "hw/arm/virt-acpi-build.h" 49 #include "hw/arm/sysbus-fdt.h" 50 #include "hw/platform-bus.h" 51 #include "hw/arm/fdt.h" 52 #include "hw/intc/arm_gic_common.h" 53 #include "kvm_arm.h" 54 #include "hw/smbios/smbios.h" 55 #include "qapi/visitor.h" 56 #include "standard-headers/linux/input.h" 57 58 /* Number of external interrupt lines to configure the GIC with */ 59 #define NUM_IRQS 256 60 61 #define PLATFORM_BUS_NUM_IRQS 64 62 63 static ARMPlatformBusSystemParams platform_bus_params; 64 65 typedef struct VirtBoardInfo { 66 struct arm_boot_info bootinfo; 67 const char *cpu_model; 68 const MemMapEntry *memmap; 69 const int *irqmap; 70 int smp_cpus; 71 void *fdt; 72 int fdt_size; 73 uint32_t clock_phandle; 74 uint32_t gic_phandle; 75 uint32_t v2m_phandle; 76 bool using_psci; 77 } VirtBoardInfo; 78 79 typedef struct { 80 MachineClass parent; 81 VirtBoardInfo *daughterboard; 82 } VirtMachineClass; 83 84 typedef struct { 85 MachineState parent; 86 bool secure; 87 bool highmem; 88 int32_t gic_version; 89 } VirtMachineState; 90 91 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt") 92 #define VIRT_MACHINE(obj) \ 93 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 94 #define VIRT_MACHINE_GET_CLASS(obj) \ 95 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 96 #define VIRT_MACHINE_CLASS(klass) \ 97 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 98 99 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means 100 * RAM can go up to the 256GB mark, leaving 256GB of the physical 101 * address space unallocated and free for future use between 256G and 512G. 102 * If we need to provide more RAM to VMs in the future then we need to: 103 * * allocate a second bank of RAM starting at 2TB and working up 104 * * fix the DT and ACPI table generation code in QEMU to correctly 105 * report two split lumps of RAM to the guest 106 * * fix KVM in the host kernel to allow guests with >40 bit address spaces 107 * (We don't want to fill all the way up to 512GB with RAM because 108 * we might want it for non-RAM purposes later. Conversely it seems 109 * reasonable to assume that anybody configuring a VM with a quarter 110 * of a terabyte of RAM will be doing it on a host with more than a 111 * terabyte of physical address space.) 112 */ 113 #define RAMLIMIT_GB 255 114 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024) 115 116 /* Addresses and sizes of our components. 117 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 118 * 128MB..256MB is used for miscellaneous device I/O. 119 * 256MB..1GB is reserved for possible future PCI support (ie where the 120 * PCI memory window will go if we add a PCI host controller). 121 * 1GB and up is RAM (which may happily spill over into the 122 * high memory region beyond 4GB). 123 * This represents a compromise between how much RAM can be given to 124 * a 32 bit VM and leaving space for expansion and in particular for PCI. 125 * Note that devices should generally be placed at multiples of 0x10000, 126 * to accommodate guests using 64K pages. 127 */ 128 static const MemMapEntry a15memmap[] = { 129 /* Space up to 0x8000000 is reserved for a boot ROM */ 130 [VIRT_FLASH] = { 0, 0x08000000 }, 131 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 132 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 133 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 134 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 135 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 136 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 137 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 138 /* This redistributor space allows up to 2*64kB*123 CPUs */ 139 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 140 [VIRT_UART] = { 0x09000000, 0x00001000 }, 141 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 142 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 143 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 144 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 145 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 146 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 147 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 148 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 149 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 150 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 151 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 152 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES }, 153 /* Second PCIe window, 512GB wide at the 512GB boundary */ 154 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 155 }; 156 157 static const int a15irqmap[] = { 158 [VIRT_UART] = 1, 159 [VIRT_RTC] = 2, 160 [VIRT_PCIE] = 3, /* ... to 6 */ 161 [VIRT_GPIO] = 7, 162 [VIRT_SECURE_UART] = 8, 163 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 164 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 165 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 166 }; 167 168 static VirtBoardInfo machines[] = { 169 { 170 .cpu_model = "cortex-a15", 171 .memmap = a15memmap, 172 .irqmap = a15irqmap, 173 }, 174 { 175 .cpu_model = "cortex-a53", 176 .memmap = a15memmap, 177 .irqmap = a15irqmap, 178 }, 179 { 180 .cpu_model = "cortex-a57", 181 .memmap = a15memmap, 182 .irqmap = a15irqmap, 183 }, 184 { 185 .cpu_model = "host", 186 .memmap = a15memmap, 187 .irqmap = a15irqmap, 188 }, 189 }; 190 191 static VirtBoardInfo *find_machine_info(const char *cpu) 192 { 193 int i; 194 195 for (i = 0; i < ARRAY_SIZE(machines); i++) { 196 if (strcmp(cpu, machines[i].cpu_model) == 0) { 197 return &machines[i]; 198 } 199 } 200 return NULL; 201 } 202 203 static void create_fdt(VirtBoardInfo *vbi) 204 { 205 void *fdt = create_device_tree(&vbi->fdt_size); 206 207 if (!fdt) { 208 error_report("create_device_tree() failed"); 209 exit(1); 210 } 211 212 vbi->fdt = fdt; 213 214 /* Header */ 215 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 216 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 217 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 218 219 /* 220 * /chosen and /memory nodes must exist for load_dtb 221 * to fill in necessary properties later 222 */ 223 qemu_fdt_add_subnode(fdt, "/chosen"); 224 qemu_fdt_add_subnode(fdt, "/memory"); 225 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 226 227 /* Clock node, for the benefit of the UART. The kernel device tree 228 * binding documentation claims the PL011 node clock properties are 229 * optional but in practice if you omit them the kernel refuses to 230 * probe for the device. 231 */ 232 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 233 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 234 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 235 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 236 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 237 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 238 "clk24mhz"); 239 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 240 241 } 242 243 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 244 { 245 uint32_t cpu_suspend_fn; 246 uint32_t cpu_off_fn; 247 uint32_t cpu_on_fn; 248 uint32_t migrate_fn; 249 void *fdt = vbi->fdt; 250 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 251 252 if (!vbi->using_psci) { 253 return; 254 } 255 256 qemu_fdt_add_subnode(fdt, "/psci"); 257 if (armcpu->psci_version == 2) { 258 const char comp[] = "arm,psci-0.2\0arm,psci"; 259 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 260 261 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 262 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 263 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 264 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 265 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 266 } else { 267 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 268 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 269 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 270 } 271 } else { 272 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 273 274 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 275 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 276 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 277 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 278 } 279 280 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 281 * to the instruction that should be used to invoke PSCI functions. 282 * However, the device tree binding uses 'method' instead, so that is 283 * what we should use here. 284 */ 285 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 286 287 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 288 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 289 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 290 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 291 } 292 293 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype) 294 { 295 /* Note that on A15 h/w these interrupts are level-triggered, 296 * but for the GIC implementation provided by both QEMU and KVM 297 * they are edge-triggered. 298 */ 299 ARMCPU *armcpu; 300 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 301 302 if (gictype == 2) { 303 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 304 GIC_FDT_IRQ_PPI_CPU_WIDTH, 305 (1 << vbi->smp_cpus) - 1); 306 } 307 308 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 309 310 armcpu = ARM_CPU(qemu_get_cpu(0)); 311 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 312 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 313 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 314 compat, sizeof(compat)); 315 } else { 316 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 317 "arm,armv7-timer"); 318 } 319 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0); 320 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 321 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 322 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 323 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 324 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 325 } 326 327 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 328 { 329 int cpu; 330 int addr_cells = 1; 331 332 /* 333 * From Documentation/devicetree/bindings/arm/cpus.txt 334 * On ARM v8 64-bit systems value should be set to 2, 335 * that corresponds to the MPIDR_EL1 register size. 336 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 337 * in the system, #address-cells can be set to 1, since 338 * MPIDR_EL1[63:32] bits are not used for CPUs 339 * identification. 340 * 341 * Here we actually don't know whether our system is 32- or 64-bit one. 342 * The simplest way to go is to examine affinity IDs of all our CPUs. If 343 * at least one of them has Aff3 populated, we set #address-cells to 2. 344 */ 345 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 346 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 347 348 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 349 addr_cells = 2; 350 break; 351 } 352 } 353 354 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 355 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 356 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 357 358 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 359 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 360 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 361 362 qemu_fdt_add_subnode(vbi->fdt, nodename); 363 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 364 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 365 armcpu->dtb_compatible); 366 367 if (vbi->using_psci && vbi->smp_cpus > 1) { 368 qemu_fdt_setprop_string(vbi->fdt, nodename, 369 "enable-method", "psci"); 370 } 371 372 if (addr_cells == 2) { 373 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 374 armcpu->mp_affinity); 375 } else { 376 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 377 armcpu->mp_affinity); 378 } 379 380 g_free(nodename); 381 } 382 } 383 384 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 385 { 386 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 387 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 388 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 389 "arm,gic-v2m-frame"); 390 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 391 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 392 2, vbi->memmap[VIRT_GIC_V2M].base, 393 2, vbi->memmap[VIRT_GIC_V2M].size); 394 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 395 } 396 397 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type) 398 { 399 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 400 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 401 402 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 403 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 404 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 405 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 406 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 407 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 408 if (type == 3) { 409 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 410 "arm,gic-v3"); 411 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 412 2, vbi->memmap[VIRT_GIC_DIST].base, 413 2, vbi->memmap[VIRT_GIC_DIST].size, 414 2, vbi->memmap[VIRT_GIC_REDIST].base, 415 2, vbi->memmap[VIRT_GIC_REDIST].size); 416 } else { 417 /* 'cortex-a15-gic' means 'GIC v2' */ 418 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 419 "arm,cortex-a15-gic"); 420 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 421 2, vbi->memmap[VIRT_GIC_DIST].base, 422 2, vbi->memmap[VIRT_GIC_DIST].size, 423 2, vbi->memmap[VIRT_GIC_CPU].base, 424 2, vbi->memmap[VIRT_GIC_CPU].size); 425 } 426 427 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 428 } 429 430 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 431 { 432 int i; 433 int irq = vbi->irqmap[VIRT_GIC_V2M]; 434 DeviceState *dev; 435 436 dev = qdev_create(NULL, "arm-gicv2m"); 437 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 438 qdev_prop_set_uint32(dev, "base-spi", irq); 439 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 440 qdev_init_nofail(dev); 441 442 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 443 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 444 } 445 446 fdt_add_v2m_gic_node(vbi); 447 } 448 449 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure) 450 { 451 /* We create a standalone GIC */ 452 DeviceState *gicdev; 453 SysBusDevice *gicbusdev; 454 const char *gictype; 455 int i; 456 457 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 458 459 gicdev = qdev_create(NULL, gictype); 460 qdev_prop_set_uint32(gicdev, "revision", type); 461 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 462 /* Note that the num-irq property counts both internal and external 463 * interrupts; there are always 32 of the former (mandated by GIC spec). 464 */ 465 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 466 if (!kvm_irqchip_in_kernel()) { 467 qdev_prop_set_bit(gicdev, "has-security-extensions", secure); 468 } 469 qdev_init_nofail(gicdev); 470 gicbusdev = SYS_BUS_DEVICE(gicdev); 471 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 472 if (type == 3) { 473 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base); 474 } else { 475 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 476 } 477 478 /* Wire the outputs from each CPU's generic timer to the 479 * appropriate GIC PPI inputs, and the GIC's IRQ output to 480 * the CPU's IRQ input. 481 */ 482 for (i = 0; i < smp_cpus; i++) { 483 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 484 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 485 int irq; 486 /* Mapping from the output timer irq lines from the CPU to the 487 * GIC PPI inputs we use for the virt board. 488 */ 489 const int timer_irq[] = { 490 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 491 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 492 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 493 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 494 }; 495 496 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 497 qdev_connect_gpio_out(cpudev, irq, 498 qdev_get_gpio_in(gicdev, 499 ppibase + timer_irq[irq])); 500 } 501 502 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 503 sysbus_connect_irq(gicbusdev, i + smp_cpus, 504 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 505 } 506 507 for (i = 0; i < NUM_IRQS; i++) { 508 pic[i] = qdev_get_gpio_in(gicdev, i); 509 } 510 511 fdt_add_gic_node(vbi, type); 512 513 if (type == 2) { 514 create_v2m(vbi, pic); 515 } 516 } 517 518 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart, 519 MemoryRegion *mem) 520 { 521 char *nodename; 522 hwaddr base = vbi->memmap[uart].base; 523 hwaddr size = vbi->memmap[uart].size; 524 int irq = vbi->irqmap[uart]; 525 const char compat[] = "arm,pl011\0arm,primecell"; 526 const char clocknames[] = "uartclk\0apb_pclk"; 527 DeviceState *dev = qdev_create(NULL, "pl011"); 528 SysBusDevice *s = SYS_BUS_DEVICE(dev); 529 530 qdev_init_nofail(dev); 531 memory_region_add_subregion(mem, base, 532 sysbus_mmio_get_region(s, 0)); 533 sysbus_connect_irq(s, 0, pic[irq]); 534 535 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 536 qemu_fdt_add_subnode(vbi->fdt, nodename); 537 /* Note that we can't use setprop_string because of the embedded NUL */ 538 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 539 compat, sizeof(compat)); 540 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 541 2, base, 2, size); 542 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 543 GIC_FDT_IRQ_TYPE_SPI, irq, 544 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 545 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 546 vbi->clock_phandle, vbi->clock_phandle); 547 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 548 clocknames, sizeof(clocknames)); 549 550 if (uart == VIRT_UART) { 551 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 552 } else { 553 /* Mark as not usable by the normal world */ 554 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 555 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 556 } 557 558 g_free(nodename); 559 } 560 561 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 562 { 563 char *nodename; 564 hwaddr base = vbi->memmap[VIRT_RTC].base; 565 hwaddr size = vbi->memmap[VIRT_RTC].size; 566 int irq = vbi->irqmap[VIRT_RTC]; 567 const char compat[] = "arm,pl031\0arm,primecell"; 568 569 sysbus_create_simple("pl031", base, pic[irq]); 570 571 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 572 qemu_fdt_add_subnode(vbi->fdt, nodename); 573 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 574 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 575 2, base, 2, size); 576 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 577 GIC_FDT_IRQ_TYPE_SPI, irq, 578 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 579 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 580 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 581 g_free(nodename); 582 } 583 584 static DeviceState *pl061_dev; 585 static void virt_powerdown_req(Notifier *n, void *opaque) 586 { 587 /* use gpio Pin 3 for power button event */ 588 qemu_set_irq(qdev_get_gpio_in(pl061_dev, 3), 1); 589 } 590 591 static Notifier virt_system_powerdown_notifier = { 592 .notify = virt_powerdown_req 593 }; 594 595 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic) 596 { 597 char *nodename; 598 hwaddr base = vbi->memmap[VIRT_GPIO].base; 599 hwaddr size = vbi->memmap[VIRT_GPIO].size; 600 int irq = vbi->irqmap[VIRT_GPIO]; 601 const char compat[] = "arm,pl061\0arm,primecell"; 602 603 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 604 605 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt); 606 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 607 qemu_fdt_add_subnode(vbi->fdt, nodename); 608 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 609 2, base, 2, size); 610 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 611 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2); 612 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0); 613 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 614 GIC_FDT_IRQ_TYPE_SPI, irq, 615 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 616 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 617 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 618 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle); 619 620 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys"); 621 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys"); 622 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0); 623 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1); 624 625 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff"); 626 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff", 627 "label", "GPIO Key Poweroff"); 628 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code", 629 KEY_POWER); 630 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff", 631 "gpios", phandle, 3, 0); 632 633 /* connect powerdown request */ 634 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 635 636 g_free(nodename); 637 } 638 639 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 640 { 641 int i; 642 hwaddr size = vbi->memmap[VIRT_MMIO].size; 643 644 /* We create the transports in forwards order. Since qbus_realize() 645 * prepends (not appends) new child buses, the incrementing loop below will 646 * create a list of virtio-mmio buses with decreasing base addresses. 647 * 648 * When a -device option is processed from the command line, 649 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 650 * order. The upshot is that -device options in increasing command line 651 * order are mapped to virtio-mmio buses with decreasing base addresses. 652 * 653 * When this code was originally written, that arrangement ensured that the 654 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 655 * the first -device on the command line. (The end-to-end order is a 656 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 657 * guest kernel's name-to-address assignment strategy.) 658 * 659 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 660 * the message, if not necessarily the code, of commit 70161ff336. 661 * Therefore the loop now establishes the inverse of the original intent. 662 * 663 * Unfortunately, we can't counteract the kernel change by reversing the 664 * loop; it would break existing command lines. 665 * 666 * In any case, the kernel makes no guarantee about the stability of 667 * enumeration order of virtio devices (as demonstrated by it changing 668 * between kernel versions). For reliable and stable identification 669 * of disks users must use UUIDs or similar mechanisms. 670 */ 671 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 672 int irq = vbi->irqmap[VIRT_MMIO] + i; 673 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 674 675 sysbus_create_simple("virtio-mmio", base, pic[irq]); 676 } 677 678 /* We add dtb nodes in reverse order so that they appear in the finished 679 * device tree lowest address first. 680 * 681 * Note that this mapping is independent of the loop above. The previous 682 * loop influences virtio device to virtio transport assignment, whereas 683 * this loop controls how virtio transports are laid out in the dtb. 684 */ 685 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 686 char *nodename; 687 int irq = vbi->irqmap[VIRT_MMIO] + i; 688 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 689 690 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 691 qemu_fdt_add_subnode(vbi->fdt, nodename); 692 qemu_fdt_setprop_string(vbi->fdt, nodename, 693 "compatible", "virtio,mmio"); 694 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 695 2, base, 2, size); 696 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 697 GIC_FDT_IRQ_TYPE_SPI, irq, 698 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 699 g_free(nodename); 700 } 701 } 702 703 static void create_one_flash(const char *name, hwaddr flashbase, 704 hwaddr flashsize, const char *file, 705 MemoryRegion *sysmem) 706 { 707 /* Create and map a single flash device. We use the same 708 * parameters as the flash devices on the Versatile Express board. 709 */ 710 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 711 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 712 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 713 const uint64_t sectorlength = 256 * 1024; 714 715 if (dinfo) { 716 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 717 &error_abort); 718 } 719 720 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 721 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 722 qdev_prop_set_uint8(dev, "width", 4); 723 qdev_prop_set_uint8(dev, "device-width", 2); 724 qdev_prop_set_bit(dev, "big-endian", false); 725 qdev_prop_set_uint16(dev, "id0", 0x89); 726 qdev_prop_set_uint16(dev, "id1", 0x18); 727 qdev_prop_set_uint16(dev, "id2", 0x00); 728 qdev_prop_set_uint16(dev, "id3", 0x00); 729 qdev_prop_set_string(dev, "name", name); 730 qdev_init_nofail(dev); 731 732 memory_region_add_subregion(sysmem, flashbase, 733 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); 734 735 if (file) { 736 char *fn; 737 int image_size; 738 739 if (drive_get(IF_PFLASH, 0, 0)) { 740 error_report("The contents of the first flash device may be " 741 "specified with -bios or with -drive if=pflash... " 742 "but you cannot use both options at once"); 743 exit(1); 744 } 745 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file); 746 if (!fn) { 747 error_report("Could not find ROM image '%s'", file); 748 exit(1); 749 } 750 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0)); 751 g_free(fn); 752 if (image_size < 0) { 753 error_report("Could not load ROM image '%s'", file); 754 exit(1); 755 } 756 } 757 } 758 759 static void create_flash(const VirtBoardInfo *vbi, 760 MemoryRegion *sysmem, 761 MemoryRegion *secure_sysmem) 762 { 763 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 764 * Any file passed via -bios goes in the first of these. 765 * sysmem is the system memory space. secure_sysmem is the secure view 766 * of the system, and the first flash device should be made visible only 767 * there. The second flash device is visible to both secure and nonsecure. 768 * If sysmem == secure_sysmem this means there is no separate Secure 769 * address space and both flash devices are generally visible. 770 */ 771 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 772 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 773 char *nodename; 774 775 create_one_flash("virt.flash0", flashbase, flashsize, 776 bios_name, secure_sysmem); 777 create_one_flash("virt.flash1", flashbase + flashsize, flashsize, 778 NULL, sysmem); 779 780 if (sysmem == secure_sysmem) { 781 /* Report both flash devices as a single node in the DT */ 782 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 783 qemu_fdt_add_subnode(vbi->fdt, nodename); 784 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 785 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 786 2, flashbase, 2, flashsize, 787 2, flashbase + flashsize, 2, flashsize); 788 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 789 g_free(nodename); 790 } else { 791 /* Report the devices as separate nodes so we can mark one as 792 * only visible to the secure world. 793 */ 794 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 795 qemu_fdt_add_subnode(vbi->fdt, nodename); 796 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 797 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 798 2, flashbase, 2, flashsize); 799 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 800 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 801 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 802 g_free(nodename); 803 804 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 805 qemu_fdt_add_subnode(vbi->fdt, nodename); 806 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 807 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 808 2, flashbase + flashsize, 2, flashsize); 809 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 810 g_free(nodename); 811 } 812 } 813 814 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as) 815 { 816 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 817 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 818 char *nodename; 819 820 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 821 822 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 823 qemu_fdt_add_subnode(vbi->fdt, nodename); 824 qemu_fdt_setprop_string(vbi->fdt, nodename, 825 "compatible", "qemu,fw-cfg-mmio"); 826 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 827 2, base, 2, size); 828 g_free(nodename); 829 } 830 831 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 832 int first_irq, const char *nodename) 833 { 834 int devfn, pin; 835 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 836 uint32_t *irq_map = full_irq_map; 837 838 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 839 for (pin = 0; pin < 4; pin++) { 840 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 841 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 842 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 843 int i; 844 845 uint32_t map[] = { 846 devfn << 8, 0, 0, /* devfn */ 847 pin + 1, /* PCI pin */ 848 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 849 850 /* Convert map to big endian */ 851 for (i = 0; i < 10; i++) { 852 irq_map[i] = cpu_to_be32(map[i]); 853 } 854 irq_map += 10; 855 } 856 } 857 858 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 859 full_irq_map, sizeof(full_irq_map)); 860 861 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 862 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 863 0x7 /* PCI irq */); 864 } 865 866 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 867 bool use_highmem) 868 { 869 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 870 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 871 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 872 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 873 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 874 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 875 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 876 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 877 hwaddr base = base_mmio; 878 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 879 int irq = vbi->irqmap[VIRT_PCIE]; 880 MemoryRegion *mmio_alias; 881 MemoryRegion *mmio_reg; 882 MemoryRegion *ecam_alias; 883 MemoryRegion *ecam_reg; 884 DeviceState *dev; 885 char *nodename; 886 int i; 887 PCIHostState *pci; 888 889 dev = qdev_create(NULL, TYPE_GPEX_HOST); 890 qdev_init_nofail(dev); 891 892 /* Map only the first size_ecam bytes of ECAM space */ 893 ecam_alias = g_new0(MemoryRegion, 1); 894 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 895 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 896 ecam_reg, 0, size_ecam); 897 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 898 899 /* Map the MMIO window into system address space so as to expose 900 * the section of PCI MMIO space which starts at the same base address 901 * (ie 1:1 mapping for that part of PCI MMIO space visible through 902 * the window). 903 */ 904 mmio_alias = g_new0(MemoryRegion, 1); 905 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 906 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 907 mmio_reg, base_mmio, size_mmio); 908 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 909 910 if (use_highmem) { 911 /* Map high MMIO space */ 912 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 913 914 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 915 mmio_reg, base_mmio_high, size_mmio_high); 916 memory_region_add_subregion(get_system_memory(), base_mmio_high, 917 high_mmio_alias); 918 } 919 920 /* Map IO port space */ 921 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 922 923 for (i = 0; i < GPEX_NUM_IRQS; i++) { 924 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 925 } 926 927 pci = PCI_HOST_BRIDGE(dev); 928 if (pci->bus) { 929 for (i = 0; i < nb_nics; i++) { 930 NICInfo *nd = &nd_table[i]; 931 932 if (!nd->model) { 933 nd->model = g_strdup("virtio"); 934 } 935 936 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 937 } 938 } 939 940 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 941 qemu_fdt_add_subnode(vbi->fdt, nodename); 942 qemu_fdt_setprop_string(vbi->fdt, nodename, 943 "compatible", "pci-host-ecam-generic"); 944 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 945 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 946 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 947 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 948 nr_pcie_buses - 1); 949 950 if (vbi->v2m_phandle) { 951 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", 952 vbi->v2m_phandle); 953 } 954 955 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 956 2, base_ecam, 2, size_ecam); 957 958 if (use_highmem) { 959 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 960 1, FDT_PCI_RANGE_IOPORT, 2, 0, 961 2, base_pio, 2, size_pio, 962 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 963 2, base_mmio, 2, size_mmio, 964 1, FDT_PCI_RANGE_MMIO_64BIT, 965 2, base_mmio_high, 966 2, base_mmio_high, 2, size_mmio_high); 967 } else { 968 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 969 1, FDT_PCI_RANGE_IOPORT, 2, 0, 970 2, base_pio, 2, size_pio, 971 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 972 2, base_mmio, 2, size_mmio); 973 } 974 975 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 976 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 977 978 g_free(nodename); 979 } 980 981 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 982 { 983 DeviceState *dev; 984 SysBusDevice *s; 985 int i; 986 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 987 MemoryRegion *sysmem = get_system_memory(); 988 989 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 990 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 991 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 992 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 993 994 fdt_params->system_params = &platform_bus_params; 995 fdt_params->binfo = &vbi->bootinfo; 996 fdt_params->intc = "/intc"; 997 /* 998 * register a machine init done notifier that creates the device tree 999 * nodes of the platform bus and its children dynamic sysbus devices 1000 */ 1001 arm_register_platform_bus_fdt_creator(fdt_params); 1002 1003 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1004 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1005 qdev_prop_set_uint32(dev, "num_irqs", 1006 platform_bus_params.platform_bus_num_irqs); 1007 qdev_prop_set_uint32(dev, "mmio_size", 1008 platform_bus_params.platform_bus_size); 1009 qdev_init_nofail(dev); 1010 s = SYS_BUS_DEVICE(dev); 1011 1012 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 1013 int irqn = platform_bus_params.platform_bus_first_irq + i; 1014 sysbus_connect_irq(s, i, pic[irqn]); 1015 } 1016 1017 memory_region_add_subregion(sysmem, 1018 platform_bus_params.platform_bus_base, 1019 sysbus_mmio_get_region(s, 0)); 1020 } 1021 1022 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem) 1023 { 1024 MemoryRegion *secram = g_new(MemoryRegion, 1); 1025 char *nodename; 1026 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base; 1027 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size; 1028 1029 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal); 1030 vmstate_register_ram_global(secram); 1031 memory_region_add_subregion(secure_sysmem, base, secram); 1032 1033 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1034 qemu_fdt_add_subnode(vbi->fdt, nodename); 1035 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory"); 1036 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size); 1037 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 1038 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 1039 1040 g_free(nodename); 1041 } 1042 1043 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1044 { 1045 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 1046 1047 *fdt_size = board->fdt_size; 1048 return board->fdt; 1049 } 1050 1051 static void virt_build_smbios(VirtGuestInfo *guest_info) 1052 { 1053 FWCfgState *fw_cfg = guest_info->fw_cfg; 1054 uint8_t *smbios_tables, *smbios_anchor; 1055 size_t smbios_tables_len, smbios_anchor_len; 1056 const char *product = "QEMU Virtual Machine"; 1057 1058 if (!fw_cfg) { 1059 return; 1060 } 1061 1062 if (kvm_enabled()) { 1063 product = "KVM Virtual Machine"; 1064 } 1065 1066 smbios_set_defaults("QEMU", product, 1067 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 1068 1069 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 1070 &smbios_anchor, &smbios_anchor_len); 1071 1072 if (smbios_anchor) { 1073 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 1074 smbios_tables, smbios_tables_len); 1075 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 1076 smbios_anchor, smbios_anchor_len); 1077 } 1078 } 1079 1080 static 1081 void virt_guest_info_machine_done(Notifier *notifier, void *data) 1082 { 1083 VirtGuestInfoState *guest_info_state = container_of(notifier, 1084 VirtGuestInfoState, machine_done); 1085 virt_acpi_setup(&guest_info_state->info); 1086 virt_build_smbios(&guest_info_state->info); 1087 } 1088 1089 static void machvirt_init(MachineState *machine) 1090 { 1091 VirtMachineState *vms = VIRT_MACHINE(machine); 1092 qemu_irq pic[NUM_IRQS]; 1093 MemoryRegion *sysmem = get_system_memory(); 1094 MemoryRegion *secure_sysmem = NULL; 1095 int gic_version = vms->gic_version; 1096 int n, virt_max_cpus; 1097 MemoryRegion *ram = g_new(MemoryRegion, 1); 1098 const char *cpu_model = machine->cpu_model; 1099 VirtBoardInfo *vbi; 1100 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1101 VirtGuestInfo *guest_info = &guest_info_state->info; 1102 char **cpustr; 1103 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1104 1105 if (!cpu_model) { 1106 cpu_model = "cortex-a15"; 1107 } 1108 1109 /* We can probe only here because during property set 1110 * KVM is not available yet 1111 */ 1112 if (!gic_version) { 1113 gic_version = kvm_arm_vgic_probe(); 1114 if (!gic_version) { 1115 error_report("Unable to determine GIC version supported by host"); 1116 error_printf("KVM acceleration is probably not supported\n"); 1117 exit(1); 1118 } 1119 } 1120 1121 /* Separate the actual CPU model name from any appended features */ 1122 cpustr = g_strsplit(cpu_model, ",", 2); 1123 1124 vbi = find_machine_info(cpustr[0]); 1125 1126 if (!vbi) { 1127 error_report("mach-virt: CPU %s not supported", cpustr[0]); 1128 exit(1); 1129 } 1130 1131 /* If we have an EL3 boot ROM then the assumption is that it will 1132 * implement PSCI itself, so disable QEMU's internal implementation 1133 * so it doesn't get in the way. Instead of starting secondary 1134 * CPUs in PSCI powerdown state we will start them all running and 1135 * let the boot ROM sort them out. 1136 * The usual case is that we do use QEMU's PSCI implementation. 1137 */ 1138 vbi->using_psci = !(vms->secure && firmware_loaded); 1139 1140 /* The maximum number of CPUs depends on the GIC version, or on how 1141 * many redistributors we can fit into the memory map. 1142 */ 1143 if (gic_version == 3) { 1144 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000; 1145 } else { 1146 virt_max_cpus = GIC_NCPU; 1147 } 1148 1149 if (max_cpus > virt_max_cpus) { 1150 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1151 "supported by machine 'mach-virt' (%d)", 1152 max_cpus, virt_max_cpus); 1153 exit(1); 1154 } 1155 1156 vbi->smp_cpus = smp_cpus; 1157 1158 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 1159 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB); 1160 exit(1); 1161 } 1162 1163 if (vms->secure) { 1164 if (kvm_enabled()) { 1165 error_report("mach-virt: KVM does not support Security extensions"); 1166 exit(1); 1167 } 1168 1169 /* The Secure view of the world is the same as the NonSecure, 1170 * but with a few extra devices. Create it as a container region 1171 * containing the system memory at low priority; any secure-only 1172 * devices go in at higher priority and take precedence. 1173 */ 1174 secure_sysmem = g_new(MemoryRegion, 1); 1175 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1176 UINT64_MAX); 1177 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1178 } 1179 1180 create_fdt(vbi); 1181 1182 for (n = 0; n < smp_cpus; n++) { 1183 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 1184 CPUClass *cc = CPU_CLASS(oc); 1185 Object *cpuobj; 1186 Error *err = NULL; 1187 char *cpuopts = g_strdup(cpustr[1]); 1188 1189 if (!oc) { 1190 error_report("Unable to find CPU definition"); 1191 exit(1); 1192 } 1193 cpuobj = object_new(object_class_get_name(oc)); 1194 1195 /* Handle any CPU options specified by the user */ 1196 cc->parse_features(CPU(cpuobj), cpuopts, &err); 1197 g_free(cpuopts); 1198 if (err) { 1199 error_report_err(err); 1200 exit(1); 1201 } 1202 1203 if (!vms->secure) { 1204 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1205 } 1206 1207 if (vbi->using_psci) { 1208 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, 1209 "psci-conduit", NULL); 1210 1211 /* Secondary CPUs start in PSCI powered-down state */ 1212 if (n > 0) { 1213 object_property_set_bool(cpuobj, true, 1214 "start-powered-off", NULL); 1215 } 1216 } 1217 1218 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1219 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 1220 "reset-cbar", &error_abort); 1221 } 1222 1223 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1224 &error_abort); 1225 if (vms->secure) { 1226 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1227 "secure-memory", &error_abort); 1228 } 1229 1230 object_property_set_bool(cpuobj, true, "realized", NULL); 1231 } 1232 g_strfreev(cpustr); 1233 fdt_add_timer_nodes(vbi, gic_version); 1234 fdt_add_cpu_nodes(vbi); 1235 fdt_add_psci_node(vbi); 1236 1237 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1238 machine->ram_size); 1239 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 1240 1241 create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem); 1242 1243 create_gic(vbi, pic, gic_version, vms->secure); 1244 1245 create_uart(vbi, pic, VIRT_UART, sysmem); 1246 1247 if (vms->secure) { 1248 create_secure_ram(vbi, secure_sysmem); 1249 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem); 1250 } 1251 1252 create_rtc(vbi, pic); 1253 1254 create_pcie(vbi, pic, vms->highmem); 1255 1256 create_gpio(vbi, pic); 1257 1258 /* Create mmio transports, so the user can create virtio backends 1259 * (which will be automatically plugged in to the transports). If 1260 * no backend is created the transport will just sit harmlessly idle. 1261 */ 1262 create_virtio_devices(vbi, pic); 1263 1264 create_fw_cfg(vbi, &address_space_memory); 1265 rom_set_fw(fw_cfg_find()); 1266 1267 guest_info->smp_cpus = smp_cpus; 1268 guest_info->fw_cfg = fw_cfg_find(); 1269 guest_info->memmap = vbi->memmap; 1270 guest_info->irqmap = vbi->irqmap; 1271 guest_info->use_highmem = vms->highmem; 1272 guest_info->gic_version = gic_version; 1273 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 1274 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1275 1276 vbi->bootinfo.ram_size = machine->ram_size; 1277 vbi->bootinfo.kernel_filename = machine->kernel_filename; 1278 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1279 vbi->bootinfo.initrd_filename = machine->initrd_filename; 1280 vbi->bootinfo.nb_cpus = smp_cpus; 1281 vbi->bootinfo.board_id = -1; 1282 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1283 vbi->bootinfo.get_dtb = machvirt_dtb; 1284 vbi->bootinfo.firmware_loaded = firmware_loaded; 1285 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1286 1287 /* 1288 * arm_load_kernel machine init done notifier registration must 1289 * happen before the platform_bus_create call. In this latter, 1290 * another notifier is registered which adds platform bus nodes. 1291 * Notifiers are executed in registration reverse order. 1292 */ 1293 create_platform_bus(vbi, pic); 1294 } 1295 1296 static bool virt_get_secure(Object *obj, Error **errp) 1297 { 1298 VirtMachineState *vms = VIRT_MACHINE(obj); 1299 1300 return vms->secure; 1301 } 1302 1303 static void virt_set_secure(Object *obj, bool value, Error **errp) 1304 { 1305 VirtMachineState *vms = VIRT_MACHINE(obj); 1306 1307 vms->secure = value; 1308 } 1309 1310 static bool virt_get_highmem(Object *obj, Error **errp) 1311 { 1312 VirtMachineState *vms = VIRT_MACHINE(obj); 1313 1314 return vms->highmem; 1315 } 1316 1317 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1318 { 1319 VirtMachineState *vms = VIRT_MACHINE(obj); 1320 1321 vms->highmem = value; 1322 } 1323 1324 static char *virt_get_gic_version(Object *obj, Error **errp) 1325 { 1326 VirtMachineState *vms = VIRT_MACHINE(obj); 1327 const char *val = vms->gic_version == 3 ? "3" : "2"; 1328 1329 return g_strdup(val); 1330 } 1331 1332 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1333 { 1334 VirtMachineState *vms = VIRT_MACHINE(obj); 1335 1336 if (!strcmp(value, "3")) { 1337 vms->gic_version = 3; 1338 } else if (!strcmp(value, "2")) { 1339 vms->gic_version = 2; 1340 } else if (!strcmp(value, "host")) { 1341 vms->gic_version = 0; /* Will probe later */ 1342 } else { 1343 error_setg(errp, "Invalid gic-version value"); 1344 error_append_hint(errp, "Valid values are 3, 2, host.\n"); 1345 } 1346 } 1347 1348 static void virt_instance_init(Object *obj) 1349 { 1350 VirtMachineState *vms = VIRT_MACHINE(obj); 1351 1352 /* EL3 is disabled by default on virt: this makes us consistent 1353 * between KVM and TCG for this board, and it also allows us to 1354 * boot UEFI blobs which assume no TrustZone support. 1355 */ 1356 vms->secure = false; 1357 object_property_add_bool(obj, "secure", virt_get_secure, 1358 virt_set_secure, NULL); 1359 object_property_set_description(obj, "secure", 1360 "Set on/off to enable/disable the ARM " 1361 "Security Extensions (TrustZone)", 1362 NULL); 1363 1364 /* High memory is enabled by default */ 1365 vms->highmem = true; 1366 object_property_add_bool(obj, "highmem", virt_get_highmem, 1367 virt_set_highmem, NULL); 1368 object_property_set_description(obj, "highmem", 1369 "Set on/off to enable/disable using " 1370 "physical address space above 32 bits", 1371 NULL); 1372 /* Default GIC type is v2 */ 1373 vms->gic_version = 2; 1374 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1375 virt_set_gic_version, NULL); 1376 object_property_set_description(obj, "gic-version", 1377 "Set GIC version. " 1378 "Valid values are 2, 3 and host", NULL); 1379 } 1380 1381 static void virt_class_init(ObjectClass *oc, void *data) 1382 { 1383 MachineClass *mc = MACHINE_CLASS(oc); 1384 1385 mc->desc = "ARM Virtual Machine", 1386 mc->init = machvirt_init; 1387 /* Start max_cpus at the maximum QEMU supports. We'll further restrict 1388 * it later in machvirt_init, where we have more information about the 1389 * configuration of the particular instance. 1390 */ 1391 mc->max_cpus = MAX_CPUMASK_BITS; 1392 mc->has_dynamic_sysbus = true; 1393 mc->block_default_type = IF_VIRTIO; 1394 mc->no_cdrom = 1; 1395 mc->pci_allow_0_address = true; 1396 } 1397 1398 static const TypeInfo machvirt_info = { 1399 .name = TYPE_VIRT_MACHINE, 1400 .parent = TYPE_MACHINE, 1401 .instance_size = sizeof(VirtMachineState), 1402 .instance_init = virt_instance_init, 1403 .class_size = sizeof(VirtMachineClass), 1404 .class_init = virt_class_init, 1405 }; 1406 1407 static void machvirt_machine_init(void) 1408 { 1409 type_register_static(&machvirt_info); 1410 } 1411 1412 machine_init(machvirt_machine_init); 1413